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1 Introduction

This paper examines capacity manipulation games in hospital-intern markets. Hospital-intern

markets are entry-level labor markets, where new physicians seek positions in hospitals as resi-

dents. Motivated by this real-life problem, Roth (1984, 1991) demonstrated that these markets

can be modeled using the two-sided matching model of Gale and Shapley (1962).1

A hospital-intern market consists of a Þnite set of hospitals each with a Þnite quota of po-

sitions, a Þnite set of interns, strict preferences of hospitals over groups of interns, and strict

preferences of interns over hospitals. Each intern can work at one hospital, while a hospital can

hire as many interns as its capacity permits.2 A matching assigns an intern at most to one hos-

pital and assigns a hospital to a group of interns not larger than its quota. A stable matching is

deÞned as a matching where (i) no hospital prefers keeping a position vacant to Þlling it with one

of its assignments, (ii) no intern prefers being unemployed to her assignment, and (iii) there is no

unmatched hospital-intern pair such that the intern prefers the hospital to her assignment and

the hospital prefers the intern to one of its assignments or keeping a vacant position. A match-

ing rule is a systematic procedure that assigns a matching to each hospital-intern market. In

the game-theoretical model, hospitals report their preferences and capacities, and interns report

their preferences to the authority. The authority matches interns to hospitals via a matching

rule using the revealed information.

The two stable matching rules, known as hospital-optimal and intern-optimal stable matching

rules, are being used in the United States and in different regions of the United Kingdom to

match medical interns to hospitals (Roth, 1984, 1991, Roth and Peranson, 1999).3 Thus, the

game theoretical model is indeed a real-world practice. Hence, it is important to know the

normative and strategic performances of these two matching rules.

1See Roth and Sotomayor (1990) for an extensive game-theoretical treatment of two-sided matching problems.
2A hospital-intern market is also known as a many-to-one two-sided matching market or a college admissions

market in the literature.
3After each physician graduates from medical school, she is required to work in a residency position in a qual-

iÞed hospital. From 1951 to 1997 the National Residency Matching Program (NRMP) used various mechanisms
based on the hospital-optimal stable rule to match hospitals and interns in the United States (Roth, 1984). Then,
Roth and Peranson (1999) designed a mechanism based on the intern-optimal stable rule and Roth and Vande
Vate (1990) study. This matching rule is now being used in the United States market (Roth and Peranson, 1999).
Also, Roth (1991) observed that unstable rules failed in the Þeld to obtain stable matches in Britain. Some
were replaced by the hospital-optimal and intern-optimal rules. Matching rules based on the hospital-optimal
and intern-optimal stable rules have been used in regions of England, Scotland and Wales. For the centralized
match, applicants submit an ordered list of hospital names, hospitals submit the number of vacant residencies
and an ordered list of applicant names to the NRMP. Then, the NRMP uses this information to match hospitals
to intern candidates using the Roth and Peranson algorithm. In our model, the Roth and Peranson matching
rule is equivalent to the intern-optimal stable rule.
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In this paper, we consider strategic capacity manipulation by hospitals. Sönmez (1997b)

showed that hospitals may have incentives to underreport their capacities in a hospital-intern

market. Roth (1982) and Dubins and Freedman (1981) showed that truthful preference revelation

is a dominant strategy for interns under the intern-optimal stable rule. This result is particularly

important in applications where hospitals cannot misrepresent their preferences. The game

theoretical hospital-intern markets can be also used to model various real-life school admission

markets.4 For example, in Turkish college admissions market, students take standardized exams

on various subjects. In this market, preferences of colleges over students are determined using

these test scores through a publicly known formula (Balinski and Sönmez, 1999). Another

example is elementary and secondary school choice in the USA. In many school districts, priority

of each student at each school is determined by the school district (Abdulkadiroùglu and Sönmez,

2003). Schools have no control over these priorities and they can only manipulate their capacities.

Students, on the other hand, do not have any incentives to misreport their preferences under the

intern-optimal stable matching rule.

Motivated by these observations, we analyze a capacity-reporting game where preferences of

agents are common knowledge. In this game, hospitals are the active players and reveal their

capacities. A matching rule is Þxed and the outcome of the induced market is found using the

revealed capacities.5 We analyze the properties of equilibria of this game under the hospital-

optimal and intern-optimal stable matching rules.6

Using the standard responsive (Roth, 1985) and strict preferences, we show that there may

not be any pure strategy equilibrium of the capacity-reporting game. When a pure strategy

equilibrium exists, we prove that every hospital weakly prefers this equilibrium outcome to the

outcome of any capacity proÞle that is at least as large as the equilibrium in every component.

Finally, we consider two preference restrictions each of which guarantees the existence of a pure

strategy equilibrium. First, if every hospital always prefers a larger group of acceptable interns

to a smaller group, then truthful capacity revelation is a weakly dominant strategy under the

intern-optimal stable rule. Moreover, there exists a pure strategy equilibrium (not necessarily

truthful capacity revelation) under the hospital-optimal rule. Second, if hospitals have exactly

the same preferences over the set of individual interns or interns have exactly same preferences

4Hospitals represent schools and interns represent students in these applications.
5It is informationally demanding to assume that every agent�s preferences are common knowledge. One may

want to analyze a capacity-revelation game where preferences are not common knowledge. However, there are
multiple ways to formulate information structures over preferences. In this paper, we adopt a common knowledge
information structure in order to conduct a benchmark study on games of capacity manipulation.

6It is also worthwhile to know the strategic performance of the other commonly used matching rule, hospital-
optimal stable rule, under capacity manipulation.
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over the set of hospitals, then truthful capacity revelation becomes a weakly dominant strategy.

The paper is organized as follows. The rest of this section provides a brief discussion of the

literature on two-sided matching games. In Section 2, we present the game theoretical model for

hospital-intern markets, introduce relevant concepts for our analysis, and deÞne our notion of

capacity-reporting games. In Section 3, we show that there may not be a pure strategy equilib-

rium in capacity-reporting games. In Section 4, we discuss the welfare implications of capacity

manipulation on equilibria. We also present a useful example for understanding characteristics

of the set of equilibria. In Section 5, we introduce two types of preference restrictions that guar-

antee nonemptiness of the set of pure strategy equilibria in capacity-reporting games. Section 6

concludes the paper.

1.1 A Brief Literature Review

There is an extensive literature on stable matching rules and their properties in two-sided match-

ing markets.7 Strategic actions by agents are one of the central interests in the literature. Under

what conditions and how can interns or hospitals beneÞt from choosing their actions strategically?

Such questions have direct implications for real-life policy.

Incentives for preference manipulation have been widely studied in the literature. Dubins and

Freedman (1981) show that the hospital-optimal stable matching rule is not immune to prefer-

ence manipulation in the marriage framework (i.e., for the case when a hospital can hire only one

intern). Roth (1982) shows that there is no stable matching rule immune to preference manipu-

lation. Alcalde and Barberà (1994) generalize Roth�s negative result to any individually rational

and Pareto-efficient matching rule. Roth and Rothblum (1999) study preference manipulation

by interns with incomplete information about others� preferences under the hospital-optimal sta-

ble rule. Equilibrium analysis of preference manipulation games has been studied (generally in

the marriage framework) as well. Gale and Sotomayor (1985a,b) study preference manipulation

games under the hospital-optimal stable rule in marriage markets. Alcalde (1996), Ma (1995,

1997), and Shin and Suh (1996) characterize the equilibria of the preference reporting games

induced by stable solutions in marriage markets. Sönmez (1997a) analyzes the equilibrium out-

comes of the preference reporting games induced by Pareto-efficient and individually rational

solutions in the context of marriage problems.8

7See Roth and Sotomayor (1990) to have an account of the literature prior to 1990.
8Kara and Sönmez (1996,1997) analyze implementable matching rules in the marriage and hospital-intern

frameworks respectively. Alcalde and Romero-Medina (2000) analyze simple mechanisms that implement the
core of hospital-intern markets.
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Two additional strategic issues have been examined in hospital-intern markets. One ques-

tion is whether a hospital and an intern can beneÞt from making an early contract prior to the

centralized match. Sönmez (1999) shows that no stable matching rule is immune to manipula-

tion through early contracting. This is in the same spirit as Roth and Xing�s (1994) model of

unraveling in hospital-intern markets. Another question is whether a hospital can beneÞt from

underreporting its capacity. Sönmez (1997b) shows that there is no stable matching rule that is

immune to manipulation via underreporting capacities.9

In this paper, we further pursue Sönmez�s (1997b) research program on capacity manipulation.

We inspect the pure strategy equilibria of the capacity-reporting games in the spirit of Gale and

Sotomayor (1985a,b).

2 Hospital-InternMarkets and Capacity-Reporting Games

First, we deÞne hospital-intern markets (Gale and Shapley, 1962). A hospital-intern market is a

quadruple (H, I, q,R) where

1. H = {h1, h2, ..., hm} is a set of hospitals,

2. I = {i1, i2, ..., in} is a set of interns,

3. q = (qh1, .., qhm) is a list of hospital capacities where qh is the capacity of hospital h,

4. R = (Rh1 , ..., Rhm, Ri1 , ..., Rin) is a proÞle of preference relations where Rh is the preference

relation of hospital h and Ri is the preference relation of intern i.

For any h ∈ H, Rh is a binary preference relation that is a linear order (or strict preference)10
on groups of interns and staying unmatched. Formally, Rh is deÞned on the members of the set

XI
h ≡ XI = 2I . The preferences of hospitals are responsive (Roth, 1985). For any h ∈ H, its

preference relation Rh is responsive if and only if (i) for any i, j ∈ I and any J ⊆ I\{i, j},
we have (J ∪ {i})Rh (J ∪ {j}) ⇐⇒ {i}Rh{j}, and (ii) for any i ∈ I and J ⊆ I\{i}, we have
(J ∪ {i})RhJ ⇐⇒ {i}Rh∅. Let Rh be the class of all such responsive preference relations.

9This is in the same spirit as Postlewaite (1979), which studies manipulations via endowments in exchange
economies. See also Sertel (1994) and Thomson (1987a, 1987b, 1995).
10A binary relation Rv on the set X is a linear order if
1. For every x ∈ X, we have xRvx.
2. For every x, x0, x00 ∈ X such that xRvx0 and x0Rvx00, we have xRvx00.
3. For every x, x0 ∈ X such that x 6= x0, we have xRvx0 or x0Rvx but not both.
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For any i ∈ I, Ri is a binary preference relation that is a linear order on individual hos-
pitals and staying unmatched. Formally, Ri is deÞned on the members of set XH

i ≡ XH =

{{h1}, {h2}, ..., {hm}, ∅}. Let Ri be the class of all such preference relations. Let R = Π
h∈H

Rh ×
Π
i∈I
Ri.

Let Ph be the strict relation induced by Rh for any h ∈ H. Since Rh is a linear order, LPhL0
⇐⇒ LRhL

0 and L 6= L0 for any L,L0 ⊆ I. Similarly, let Pi denote the strict relation induced by
Ri for any i ∈ I. Since Ri is a linear order, {h}Pi{h0} ⇐⇒ {h}Ri{h0} and {h} 6= {h0} for any
h, h0 ∈ H.
Let N = H ∪ I be the set of agents. Each hospital h can hire at most qh interns and each

intern i can work at most for 1 hospital. Hospital h is acceptable for intern i if and only if

{h}Pi∅, i.e. intern i prefers working in the hospital h to staying unmatched. An intern i ∈ I is
acceptable for hospital h if and only if {i}Ph∅.
A matching assigns each hospital h to at most qh interns and assigns each intern to at most

one hospital. Formally, a matching is deÞned as a function µ : N −→ XI ∪XH such that11 (i)

for any i ∈ I, µi ∈ XH , (ii) for any h ∈ H, µh ∈ XI with |µh| ≤ qh, and (iii) for any i ∈ I and
for any h ∈ H, µi = {h}⇐⇒ i ∈ µh.
Note that for any agent v ∈ N, µv = ∅ means that this agent is unmatched by matching µ.

LetM(H, I, q,R) be the set of matchings of market (H, I, q, R).12

A matching µ ∈M(H, I, q, R) is stable if and only if (i) there exists no hospital h and intern

i such that for some group of interns J ⊆ µh with |J | < qh, we have (J ∪ {i})Phµh and {h}Piµi
(pair (h, i) is said to be a �blocking pair�), and (ii) there exists no agent v such that for some

agent y ∈ µv we have ∅Pvy (agent v is said to be a �blocking agent�). Let S(H, I, q,R) denote the
set of stable matchings of market (H, I, q,R). This set is non-empty (Gale and Shapley, 1962).

In many cases it is multivalued.

2.1 Hospital-Optimal and Intern-Optimal Stable Matchings

In each market (H, I, q, R), there exists a stable matching that is weakly preferred to any other

stable matching by every hospital (Gale and Shapley, 1962). We refer to this matching as the

hospital-optimal stable matching and denote it by µH(H, I, q,R). Every intern weakly prefers

any stable matching to the hospital-optimal stable matching (Roth and Sotomayor, 1990). Sim-

ilarly, there exists a stable matching that is weakly preferred to any other stable matching by

11For any agent v ∈ N, µ(v) refers to the allocation of agent v in matching µ. For purposes of notation, we will
denote µ(v) by µv.
12We will sometimes say that �agent v prefers matching µ to matching µ0� to describe µvPvµ0v.
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every intern. We refer to this matching as the intern-optimal stable matching and denote it by

µI(H, I, q, R). Every hospital weakly prefers any stable matching to the intern-optimal stable

matching.

The hospital-proposing deferred acceptance algorithm (Gale and Shapley, 1962) can be used

to Þnd the hospital-optimal stable matching. This algorithm can be outlined as follows, when

hospitals report capacity proÞle q0.

Step 1. Each hospital h makes as many as q0h offers to its best acceptable interns
in Rh. Each intern i who receives at least one offer holds the best acceptable offer
and rejects the rest. The algorithm terminates if no offer is rejected. Otherwise,

hospitals skip to the next step.

...
...

Step t. Each hospital h that has fewer than q0h held offers, and still has acceptable
interns to whom it has not proposed yet, makes offers to as many acceptable interns

as possible in order to complete the number of offers to q0h. Each intern i holds the
best acceptable offer among the ones she receives at this step and the one she was

holding from the previous step. She rejects the rest. The algorithm terminates if no
offer is rejected by any intern. Otherwise, hospitals skip to the next step.

When the algorithm terminates, the tentatively held offers are realized as assign-

ments.

Gale and Shapley�s intern-proposing deferred acceptance algorithm can be used to Þnd the

intern-optimal stable matching. This algorithm can be outlined, when hospitals report capacity

q0 :

Step 1. Each intern i makes an offer to her best acceptable hospital in Ri. Each
hospital h that receives one or more offers holds as many as q0h best acceptable offers
and rejects the rest. The algorithm terminates if no offer is rejected. Otherwise,

interns skip to the next step.

...
...

Step t. Each intern i whose offer was rejected at step t-1 proposes to the best
acceptable hospital to which she has not proposed before. Each hospital h holds as
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many as q0h best acceptable offers among the ones it receives at this step and the ones

it was holding from the previous step. It rejects the rest. The algorithm terminates
if no offer is rejected by any hospital. Otherwise, interns skip to the next step.

When the algorithm terminates, the tentatively held offers are realized as assign-

ments.

2.2 Capacity-Reporting Games

Let (H, I, q,R) be a hospital-intern market. Since we are interested in capacity manipulation,

we will Þx H, I, and R throughout the paper. We need to deÞne a capacity-reporting game.

A matching rule ϕ is a systematic procedure that assigns a matching for each hospital-intern

market. We consider only different capacity possibilities. An admissible capacity of each hospital

h is a nonnegative integer that is no greater than the true capacity.13 Thus, h can report

q0h ∈ Qh = {0, 1, ..., qh}. DeÞne the set of admissible capacity proÞles as Q = Πh∈HQh. Let ϕH
be the matching rule such that for each q0 ∈ Q, ϕH(q0) = µH(H, I, q0, R). We refer to this rule
as the hospital-optimal stable matching rule. Let ϕI be the matching rule such that for each

q0 ∈ Q, ϕI(q0) = µI(H, I, q0, R). We refer to this rule as the intern-optimal stable matching rule.
As Gale and Sotomayor (1985b) focused in a preference manipulation game, we focus on these

two matching rules. These rules have been widely used in real markets.14

In the �capacity-reporting game,� each hospital h reports an admissible capacity q0h, and a

matching rule ϕ is used to Þnd a matching in the induced matching market. The preferences of

agents are common knowledge. Interns are passive players in this setting. Hospitals are active

players, and hospital h�s strategy space is Qh, that is, the space of admissible capacities. Hospital

h�s preferences over reported capacities are represented as a binary relation %ϕh over Q such that
13Note that we could permit upward manipulation of capacities as well. In that case, we should deÞne the

preferences of hospitals responsive relative to their capacity. Since hospitals cannot honor extra jobs over their
capacity, we can simply assume that for any hospital being matched to any group of interns that is larger than its
true capacity is worse than being unmatched (this preference restriction can be weakened much further). Under
such a preference restriction, it can be shown that upward manipulation would be weakly dominated by truthful
capacity revelation under the intern-optimal and hospital-optimal stable rules.
14In the British hospital-intern markets, algorithms based on both intern-optimal and hospital-optimal stable

rules have been used to match interns to hospitals in different regions (Roth, 1991). In the United States hospital-
intern market, an algorithm based on the hospital-optimal stable rule have been used until recently (Roth, 1984).
They started to use an algorithm based on the intern-optimal stable rule in 1998 (Roth and Peranson, 1999).
In Turkish college admissions market, the hospital-optimal stable rule is used to allocate students in college
departments (Balinski and Sönmez, 1999). Recently, many entry-level professional specialty markets started using
variants of the intern-optimal stable rule for their centralized match. These markets include clinical psychology
internships in the USA and Canada, article positions with law Þrms in Canada, hospital-intern markets in Scotland
(Irving, 1998), and various medical specialty markets.
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q0 %ϕh q00 if and only if ϕh(q0)Rhϕh(q00). A capacity-reporting game under matching rule ϕ is

described by a strategic form game (H, (Qh,%ϕh)h∈H). A pure strategy (Nash) equilibrium of

(H, (Qh,%ϕh)h∈H) is a strategy proÞle q0 ∈ Q such that q0 %ϕh (q00h, q0−h) for any h ∈ H and any

q00h ∈ Qh. Note that (q00h, q0−h) ∈ Q is a strategy proÞle obtained by replacing component q0h of

proÞle q0 by q00h.
15

3 Nonexistence of Pure Strategy Equilibria

We will analyze pure strategy equilibria of the capacity-reporting game under the hospital-

optimal and intern-optimal stable matching rules, ϕH and ϕI , respectively. The Þrst two theorems

show that pure strategy equilibria may not exist. The proofs are based on two examples in

which no pure strategy proÞle is an equilibrium of the capacity-reporting games. For notational

convenience, deÞne hospital h�s best-response correspondence under matching rule ϕ by βϕh :

Πh0∈H\{h}Qh0 ³ Qh such that β
ϕ
h (q

0
−h) = {�qh ∈ Qh : (�qh, q0−h) %ϕh (q00h, q0−h) for any q00h ∈ Qh}.

Theorem 1 The capacity-reporting game under ϕH may not have a pure strategy equilibrium.

Proof. We prove the proposition with an example. Consider the following market (H, I, q,R)
with H = {h1, h2}, I = {i1, i2, i3, i4, i5}, q1 = 3, q2 = 3, hospitals� preferences satisfying16

{i1}Ph1{i2}Ph1{i4}Ph1{i3}Ph1{i5}Ph1∅ with {i3, i4}Ph1{i1}
{i4}Ph2{i5}Ph2{i1}Ph2{i3}Ph2{i2}Ph2∅ with {i4}Ph2{i1, i3} and {i2, i3}Ph2{i5}

and interns� preferences are given by

{h2}Pi1{h1}Pi1∅
{h2}Pi2{h1}Pi2∅
{h2}Pi3{h1}Pi3∅
{h1}Pi4{h2}Pi4∅
{h1}Pi5{h2}Pi5∅

15Similarly, we will use the notation (q0G, q−G) to denote the capacity proÞle (q
0
G, qH\G) for any G ⊂ H such

that |G| > 1.
16We also impose responsiveness on hospitals� preferences. It is easy to see that we can construct such prefer-

ences. The same comment applies to the example in the proof of Theorem 2 and Example 1.
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We give the outcome allocations of the game for each pure strategy q0 ∈ Q:
q02

q01

1 2 3

1

µ
h1 h2 ∅
{i1} {i4} i2, i3, i5

¶ µ
h1 h2 ∅
{i1} {i4, i5} i2, i3

¶ µ
h1 h2 ∅
{i2} {i1, i4, i5} i2, i3

¶
2

µ
h1 h2 ∅

{i1, i2} {i4} i3, i5

¶ µ
h1 h2 ∅

{i1, i2} {i4, i5} i3

¶ µ
h1 h2

{i2, i4} {i1, i3, i5}
¶

3

µ
h1 h2 ∅

{i1, i2, i4} {i5} i3

¶ µ
h1 h2

{i2, i3, i4} {i1, i5}
¶ µ

h1 h2
{i4, i5} {i1, i2, i3}

¶
According to the speciÞcations of hospitals� preferences, their best-response correspondences are:

βϕ
H

1 (1) = {3}, βϕH1 (2) = {3}, βϕH1 (3) = {2};
βϕ

H

2 (1) = {3}, βϕH2 (2) = {2}, βϕH2 (3) = {3}.

Therefore, this game has no pure strategy equilibrium.

We discuss the above example in detail in order to understand why no pure strategy equi-

librium exists. These observations will help us to proceed especially in identifying preference

restrictions that guarantee the existence of a pure strategy equilibrium (in Section 5).

First, we describe why and how a capacity manipulation improves a deviator�s payoff. At

(q01, q
0
2) = (3, 3), hospitals h1 and h2 get assignments {i4, i5} and {i1, i2, i3}, respectively. However,

both hospitals are matched with relatively undesirable interns, although each intern is matched

with her favorite hospital under this matching. If interns i1 or i2 could be swapped with interns

i4 or i5, then both hospitals would be better off. Capacity manipulation by hospital h1 makes

such a swap feasible. To see this, we can describe how the hospital-optimal stable rule makes its

assignment for (q01, q
0
2) = (3, 3) by using the hospital-proposing deferred acceptance algorithm.

Step 1. Hospitals h1 and h2 make offers to {i1, i2, i4} and {i4, i5, i1}, respectively.
Since i1 and i4 got two offers, they choose h2 and h1, respectively. Thus, the tentative

allocation is µ
h1 h2

{i2, i4} {i5, i1}
¶
.

Step 2. Hospitals h1 and h2 make offers to i3. Then i3 chooses h2. Thus, the
tentative allocation is µ

h1 h2
{i2, i4} {i5, i1, i3}

¶
.

Step 3. Hospital h1 makes an offer to i5, and she accepts h1 by rejecting h2.µ
h1 h2

{i2, i4, i5} {i1, i3}
¶
.
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Step 4. Hospital h2 makes an offer to i2, and she accepts h2 by rejecting h1.µ
h1 h2

{i4, i5} {i1, i3, i2}
¶
.

Step 5. Hospital h1 has no other intern to make an offer to, so the algorithm
terminates.

At steps 3 and 4, having a vacancy, hospital h1 makes an offer to i5 and ends up stealing her

from h2. Because of this newly created vacancy, hospital h2 makes an offer to i2 and ends up

stealing her from hospital h1. Unfortunately, hospital h1 prefers i2 to i5, yet hospital h2 prefers i5
to i2. If hospital h1 had not gotten an extra vacancy at the tentative matching at the end of step

2, then a welfare decreasing swapping (for hospitals) would not have happened.17 This is exactly

why h1 has an incentive to reduce q01 to 2 at (q
0
1, q

0
2) = (3, 3). Having larger capacities means

that they have the chance to make offers to many interns, which implies that interns have more

choices. This makes interns better off, but not hospitals.18 By reducing capacities, hospitals may

be able to keep their favorite interns who prefer other hospitals. Whenever a hospital hi has an

incentive to reduce its capacity, hi is making a deal with another hospital hj: by not stealing a

favorite intern from hj, hi closes off hj�s opportunity to steal hi�s favorite intern.

Second, note that there is a best response cycle among strategy proÞles: (3, 3) → (2, 3) →
(2, 2) → (3, 2) → (3, 3) → ... As we have seen in the previous paragraph, at (q01, q

0
2) = (3, 3),

hospital h1 has an incentive to reduce q01 to 2. Given this, hospital h2 now has an incentive to

reduce q02 to 2. By so doing, hospital h2 loses interns i1 and i3, but it can get its most preferable

intern i4. As a result, at (q01, q
0
2) = (2, 2), both hospitals get the two most preferable interns

each. However, once q02 is reduced to 2, hospital h1 has an incentive to increase its capacity to

3. Hospital h1 did not mind reducing its capacity from 3 to 2 at (q01, q
0
2) = (3, 3), only because

Þlling all three positions was never possible as long as q02 = 3. Finally, once q01 is raised to 3,

hospital h2 also has an incentive to raise q02 to 3. Hospital h2 reduced its capacity from 3 to

2 at (q01, q
0
2) = (2, 3), only because it wanted to get intern i4. However, after q

0
1 is raised to 3,

it became impossible for hospital h2 to get intern i4 anyway. This is why we have a cycle à la

matching pennies game.

Third, related to the second point, hospitals have non-monotonic best-response correspon-

dences.19 This creates a best response cycle. Such a non-monotonicity is not special to this
17Note that interns i2 and i5 are better off by this swapping.
18If hospitals have no capacity limitation, then there is a unique stable matching. This is simply because every

intern receives offers from all hospitals that Þnd her acceptable. Obviously, she chooses her favorite hospital. See
Sönmez (1996).
19If such monotonicity is shown for all hospitals, then the game becomes an ordinary supermodular game (see
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example. With larger reported capacities, hospitals tend to get less preferable interns unless

hospitals� preferences are positively correlated with interns� preferences. Thus, hospitals may

reduce their reported capacities in order to prevent welfare decreasing swapping for themselves.

However, under smaller reported capacities, a hospital may have an incentive to raise its reported

capacity, since there may be acceptable unmatched interns left in the market.

We can also observe similar properties in games under the intern-optimal stable matching

rule. As a result, we have a similar proposition for the capacity-reporting game under ϕI .

Theorem 2 The capacity-reporting game under ϕI may not have a pure strategy equilibrium.

Proof. We prove the proposition with an example. Consider the following market (H, I, q,R)
with H = {h1, h2}, I = {i1, i2, i3, i4, i5}, q1 = 3, q2 = 2, hospitals� preferences satisfying

{i1}Ph1{i2}Ph1{i3}Ph1{i4}Ph1{i5}Ph1∅ with {i2}Ph1{i4, i5} and {i3, i4}Ph1{i1}
{i3}Ph2{i4}Ph2{i1}Ph2{i5}Ph2{i2}Ph2∅ with {i3}Ph2{i1, i4},

and interns� preferences are given by

{h2}Pi1{h1}Pi1∅
{h2}Pi2{h1}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅
{h1}Pi5{h2}Pi5∅.

We give the outcome allocations of the game for each pure strategy q0 ∈ Q:
q02

q01

1 2

1

µ
h1 h2 ∅
{i1} {i3} i2, i4, i5

¶ µ
h1 h2 ∅
{i1} {i3, i4} i2, i5

¶
2

µ
h1 h2 ∅

{i1, i2} {i3} i4, i5

¶ µ
h1 h2 ∅

{i2, i3} {i1, i4} i5

¶
3

µ
h1 h2 ∅

{i2, i3, i4} {i1} i5

¶ µ
h1 h2

{i3, i4, i5} {i1, i2}
¶

According to the speciÞcation of hospitals� preferences, their best-response correspondences are:20

βϕ
I

1 (1) = {3}, βϕ
I

1 (2) = {2};
βϕ

I

2 (1) = {2}, βϕ
I

2 (2) = {1}, βϕ
I

2 (3) = {2}.
Milgrom and Shanon, 1994), and it has a pure strategy equilibrium. Unfortunately, it is hard to satisfy such a
property in our game.
20Responsiveness together with {i3, i4}Ph1{i1} implies {i2, i3}Ph1{i1}.
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Therefore, this game has no pure strategy equilibrium.

As before, similar observations can be made in this example. Thus, we will make only a brief

remark on the Þrst point: an incentive to reduce capacity. In the example above, it is easy to

see that if q0 = (3, 2), then every intern is matched with her most preferable hospital: in the

intern-proposing deferred acceptance algorithm, interns offer to their most preferable hospitals

at step 1, and having enough capacity, hospitals accept all interns. However, such a matching is

not good for hospitals. Hospitals are getting their least preferable acceptable interns. Hospitals

can do better by swapping interns. Hospital h1 can obtain intern i2 by cutting its capacity to 2,

because i5 is a more preferable intern than i2 for hospital h2. By rejecting i5 through reducing

its capacity, hospital h1 gets a chance to obtain i2.

4 Results on Welfare Properties of Equilibria

In both examples in the previous section, we observe that when a hospital reduces its capacity,

the other hospital is better off. Although interns are not the active players in our games, their

welfare is affected by capacity manipulation of hospitals. When all the examples given above

are inspected, it is straightforward to see that at equilibrium, no intern ever beneÞts by capacity

misreports.

This is not a coincidence. The next lemma shows that if some hospital decreases its quota

under the hospital-optimal and intern-optimal stable rules, no other hospital will be worse off

and no intern will be better off . This lemma plays an important role in proving our main result

on welfare properties of the equilibria (when pure strategy equilibria exist). This lemma will be

referred to as the �Capacity Lemma.� Its proof depends on a similar result proven for one-to-one

matching (or marriage) markets.

Lemma 1 (Capacity Lemma) In capacity-reporting games under ϕH and ϕI, a hospital�s

capacity underreport makes all other hospitals weakly better off and all interns weakly worse off.

Proof. Let (H, I, q, R) be a hospital-intern market. We deÞne the corresponding one-to-one
two-sided matching market (Hc, I, qc, Rc). In the corresponding hospital-intern market, every

position of any hospital h is itself an agent. The set of positions is denoted by Hc. Positions of

any h ∈ H are indexed from 1 to qh and each of them has the same preferences as hospital h

over the members of XI
h = {{i1}, {i2}, ..., {in},∅}. Formally, we denote k�th position of hospital

h by hk. For any index k ∈ {1, 2, ..., qh} and i, i0 ∈ I , (i) {i}P chk{i0} ⇐⇒ {i}Ph{i0}, and (ii)
{i}P c

hk
∅ ⇐⇒ {i}Ph∅.
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By deÞnition, each position has capacity 1: qchk = 1 for all h
k ∈ Hc.

The interns are still the same agents. The preference relation of intern i, Rci is deÞned on

the members of XHc

i = {{h11}, .., {hq11 }, ..., {h1m}, ..., {hqmm }, ∅}. For any i ∈ I and any h, h0 ∈ H,
(i) {hk}P ci {h0`} for any k ≤ qh and ` ≤ qh0 ⇐⇒ {h}Pi{h0}, (ii) {hk}P ci {h`}⇐⇒ k < `, and (iii)

{hk}P ci ∅ for all k ≤ qh ⇐⇒{h}Pi∅. Market (Hc, I, qc, Rc) is a hospital-intern market including

hospitals with capacity 1.

For µ ∈M(H, I, q, R), the corresponding matching µc ∈M(Hc, I, qc, Rc) is deÞned as follows:

(i) For any i ∈ I and h ∈ H, µi = {h}⇐⇒ µci = {hk} for some k ∈ {1, 2, ..., qh}.
(ii) For any h ∈ H and i ∈ I, i ∈ µh ⇐⇒ µchk = {i} for some k ∈ {1, 2, ..., |µh|} and µch`Phµchk

for all ` ∈ {1, 2, ..., k − 1}.
(iii) For any i ∈ I, µi = ∅ ⇐⇒ µci = ∅.
(iv) For any h ∈ H and for every k > |µh|, we have µchk = ∅.
Lemma 1 in Roth and Sotomayor (1989 p. 566) implies that a matching µ is in S(H, I, q,R)

if and only if its corresponding matching µc is in S(Hc, I, qc, Rc). By Theorem 4 in Roth and

Sotomayor (1989 p. 568), we know that for any ν, η ∈ S(H, I, q,R) if there is some h ∈ H
with νhPhηh, then for all i ∈ νh and all j ∈ ηh\νh we have {i}Ph {j}. Hence, each position
of each hospital h gets its most preferred intern in matching

¡
µH(H, I, q,R)

¢c
among all stable

matchings of (Hc, I, qc, Rc). This implies
¡
µH(H, I, q,R)

¢c
is the hospital-optimal stable matching

of market (Hc, I, qc, Rc) :
¡
µH(H, I, q,R)

¢c
= µH(Hc, I, qc, Rc). Similarly, each position h gets its

least preferred intern in matching
¡
µI(H, I, q,R)

¢c
among all stable matchings of (Hc, I, qc, Rc).

This implies that
¡
µI(H, I, q, R)

¢c
= µI(Hc, I, qc, Rc). By Proposition 2 of Gale and Sotomayor

(1985b p. 264), decreasing the number of positions in Hc does not harm any other position under

the hospital position-optimal and intern-optimal stable rules in (Hc, I, qc, Rc). By responsiveness

of preferences, decreasing the capacity of a hospital does not harm other hospitals under the

hospital-optimal and intern-optimal stable rules in (H, I, q,R). On the other hand, again by

Proposition 2 of Gale and Sotomayor (1985b p. 264), decreasing the number of positions in

Hc does not make any intern better off under the hospital position-optimal and intern-optimal

stable rules in (Hc, I, qc, Rc). This fact implies that decreasing the capacity of any hospital in H

does not make any intern better off under the hospital-optimal and intern-optimal stable rules

in (H, I, q,R).

Next, we examine the properties of pure strategy equilibria when they exist. First, consider

the following example.

Example 1. Let (H, I, q,R) be a hospital-intern market such that H = {h1, h2} and I =
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{i1, i2, i3, i4}. Let q1 = 4 and q2 = 4. Hospitals� preferences satisfy

{i1}Ph1{i3}Ph1{i2}Ph1{i4}Ph1∅ with {i1}Ph1{i2, i3, i4}

{i3}Ph2{i2}Ph2{i4}Ph2{i1}Ph2∅ with {i2}Ph2{i1, i4}
and interns� preferences are stated as

{h2}Pi1{h1}Pi1∅
{h1}Pi2{h2}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅

Below, we give the outcome matchings of the capacity-reporting games under ϕH and ϕI for each

pure strategy q0 ∈ Q, with equilibria of the two games highlighted in bold:

ϕH q02

q01

1 2 3 4

1

µ
h1 h2 ∅
{i1} {i3} i2,i4

¶ µ
h1 h2 ∅
{i1} {i2, i3} i4

¶ µ
h1 h2
{i1} {i2, i3, i4}

¶ µ
h1 h2
{i3} {i1, i2, i4}

¶
2

µ
h1 h2 ∅

{i1, i3} {i2} i4

¶ µ
h1 h2

{i1, i3} {i2, i4}
¶ µ

h1 h2
{i2, i3} {i1, i4}

¶ µ
h1 h2

{i2, i3} {i1, i4}
¶

3

µ
h1 h2

{i1, i2, i3} {i4}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶ µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶
4

µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶ µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶

ϕI q02

q01

1 2 3 4

1

µ
h1 h2 ∅
{i1} {i3} i2, i4

¶ µ
h1 h2 ∅
{i1} {i2, i3} i4

¶ µ
h1 h2
{i3} {i1, i2, i4}

¶ µ
h1 h2
{i3} {i1, i2, i4}

¶
2

µ
h1 h2 ∅

{i1, i3} {i2} i4

¶ µ
h1 h2

{i2, i3} {i1, i4}
¶ µ

h1 h2
{i2, i3} {i1, i4}

¶ µ
h1 h2

{i2, i3} {i1, i4}
¶

3

µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶ µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶
4

µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶ µ
h1 h2

{i2, i3, i4} {i1}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶
In the capacity-reporting game under the hospital optimal rule, every hospital weakly prefers each

of the equilibrium matchings ϕH(1, 3), ϕH(2, 2) and ϕH(3, 1) to equilibrium matching ϕH(4, 4).

Moreover, every intern weakly prefers ϕH(4, 4) to each of ϕH(1, 3), ϕH(2, 2) and ϕH(3, 1).
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Similarly, in the game under the intern optimal rule, every hospital weakly prefers each of the

equilibrium matchings ϕI(1, 2) and ϕI(2, 1) to equilibrium matching ϕI(4, 4). Moreover, every

intern weakly prefers ϕI(4, 4) to each of ϕI(1, 2) and ϕI(2, 1). The remaining three pure strategy

equilibria, (3, 4), (4, 3), and (3, 3), yield the same equilibrium outcomes as (4, 4) does.

We observe a few interesting properties in Example 1. First, these two games have very differ-

ent sets of equilibria. Except truthful capacity revelation, there is no other common equilibrium

proÞle. This observation is not very surprising.

Second, when a pure strategy equilibrium exists, truthful capacity revelation need not be an

equilibrium. Consider the capacity-reporting game under ϕH . If we restricted the true capacities

of hospitals to q1 = 3 and q2 = 3, (3,3) - truthful capacity revelation - would not be an equilibrium,

but (1,3), (2,2), and (3,1) would be. Next consider the capacity-reporting game under ϕI . If we

restricted the true capacities as q1 = 2 and q2 = 2, (2,2) - truthful capacity revelation - would

not be an equilibrium, but (1,2) and (2,1) would be.

Third, and more important, in both games, the truthful capacity revelation equilibrium gen-

erates a matching that is no better than the outcome of the other equilibria for hospitals and

at least as good as the outcome of the other equilibria for the interns. This property is not an

exception and does not depend on the choice of ϕH or ϕI . We can state a more general result

about this observation as a theorem. The proof of the theorem is composed of simple applications

of the Capacity Lemma.

Theorem 3 Let V ∈ {H, I}. If q0 ∈ Q is an equilibrium in the capacity reporting game under

ϕV and q00 ∈ Q such that q0 ≤ q00, then (i) every hospital weakly prefers ϕV (q0) to ϕV (q00), and
(ii) every intern weakly prefers ϕV (q00) to ϕV (q0).

Proof. Let (H, I, q,R) be a hospital-intern market. First, we consider the capacity-reporting
game under ϕH . Suppose that q0 ∈ Q is an equilibrium of this game-form and q00 ∈ Q such that
q0 ≤ q00. Let h be an arbitrary hospital. Since q0 is an equilibrium, ϕHh (q0)RhϕHh (q00h, q0−h) follows.
By the Capacity Lemma, ϕHh (q

00
h, q

0
−h)Rhϕ

H
h (q

00). Thus, ϕHh (q
0)RhϕHh (q

00). On the other hand, a

direct application of the Capacity Lemma implies ϕHi (q
00)RiϕHi (q

0). A similar proof can be given

for the capacity-reporting game under ϕI .

We can state an immediate corollary to this theorem. If there is an equilibrium different

from truthful capacity revelation, every hospital weakly prefers this equilibrium outcome to the

outcome of truthful capacity revelation. On the other hand, every intern weakly prefers the

outcome of truthful capacity revelation to this equilibrium outcome.
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5 Positive Results Under Restricted Domains of Prefer-
ences

In this section, we consider two preference restrictions each of which guarantees the existence of

a pure strategy equilibrium. These restrictions are motivated by the observations that followed

Theorem 1. The Þrst restriction requires that hospitals prefer a larger number of acceptable

interns irrespective of the preferability of each intern. Under this restriction, named �strong

monotonicity in population,� we will not observe best response cycles discussed in the third

remark in the subsequent discussion for Theorem 1. The second restriction is to require common

preferences for one group: we consider the cases where either (i) all hospitals have common

preferences over interns and their preferences over groups of interns are responsive but otherwise

arbitrary, or (ii) all interns have common preferences over hospitals. In either case, the sets

of acceptable interns (and hospitals) are equal to the set of interns (and hospitals). Such a

restriction, named �common preference rankings for one group,� removes conßicts of interests

between interns and hospitals. Thus, welfare decreasing swappings for hospitals due to truthful

capacity revelation will not occur.

5.1 Strong Monotonicity in Population of Acceptable Interns

We start with the case where hospitals prefer larger number of acceptable interns irrespective of

the preferability of each intern. Let Ah = {i ∈ I : {i}Ph∅} be the set of acceptable interns for
hospital h. We say that hospitals� preferences satisfy strong monotonicity in population, if and

only if for any h ∈ H and for any L,L0 ⊆ Ah we have |L| > |L0|⇒ LPhL
0. Let RSM ⊂ R be the

domain of such proÞles of responsive preference relations.

First, we consider the capacity-reporting game under ϕH . The following result establishes

that if every hospital h reports
¯̄
ϕHh (q)

¯̄
as its capacity, this strategy will be an equilibrium of the

game.

Theorem 4 Let (H, I, q,R) be a hospital-intern market such that R ∈ RSM . If q∗h =
¯̄
ϕHh (q)

¯̄
for every hospital h, then q∗ will be an equilibrium of the capacity-reporting game under ϕH.

Proof. Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM . Let q∗h =
¯̄
ϕHh (q)

¯̄
for

each h ∈ H. We will prove that q∗ is an equilibrium using the following claim.

Claim: If bq ∈ Q with q∗ ≤ bq, then for each hospital h we have ϕHh (q∗)RhϕHh (bq).
16



Proof of Claim. Let bq ∈ Q such that q∗ ≤ bq. Matching ϕH(q) is feasible in the
market (H, I, bq, R). Suppose that ϕH(q) /∈ S(H, I, bq,R). We have either (i) there
exists a pair (h, i) blocking ϕH(q) in market (H, I, bq,R), or (ii) there exists some
agent v and some agent y ∈ ϕHv (q) such that ∅Pvy. If case (i) holds, (h, i) will block
ϕH(q) also in market (H, I, q,R), since qh ≥ bqh. If case (ii) holds, agent v will block
ϕH(q) also in market (H, I, q, R). In both cases, the result will be a contradiction to

ϕH(q) ∈ S(H, I, q,R).We showed that ϕH(q) ∈ S(H, I, bq, R). Similarly, we can show
that ϕH(q) ∈ S(H, I, q∗, R). By Theorem 1 in Roth and Sotomayor (1989 p. 566), for
any h ∈ H, for any stable matching η ∈ S(H, I, q∗, R) we have |ηh| =

¯̄
ϕHh (q)

¯̄
= q∗h

and for any stable matching ν ∈ S(H, I, bq, R) we have |νh| = ¯̄ϕHh (q)¯̄ = q∗h. So ϕH(bq)
is feasible in (H, I, q∗, R). Any pair or any agent that blocks it in market (H, I, q∗, R)

can block it also in market (H, I, bq, R). Therefore, ϕH(bq) ∈ S(H, I, q∗, R). Since
ϕH(q∗) is hospital-optimal in (H, I, q∗, R), ϕHh (q

∗)RhϕHh (bq) for each hospital h. ¤
Consider capacity q∗. Let h ∈ H. By the Claim,

ϕHh (q
∗)RhϕHh (bqh, q∗−h) for any bqh > q∗h.

By strong monotonicity in population,

ϕHh (q
∗)PhϕHh (bqh, q∗−h) for any bqh < q∗h.

Hence, q∗ is an equilibrium of the capacity-reporting game under ϕH .

Note that this theorem says neither (i) truthful capacity revelation strategy proÞle q is an

equilibrium, nor (ii) ϕH(q∗) = ϕH(q). These points can be seen in the following example, which

is a modiÞed version of Example 1.

Example 2. Let (H, I, q,R) be a hospital-intern market such that H = {h1, h2} and I =
{i1, i2, i3, i4}. Let q1 = 3 and q2 = 3. The proÞle of preference relations, R, which satisÞes strong
monotonicity in population (R ∈ RSM), is stated as

{i1}Ph1{i3}Ph1{i2}Ph1{i4}Ph1∅
{i3}Ph2{i2}Ph2{i4}Ph2{i1}Ph2∅

{h2}Pi1{h1}Pi1∅
{h1}Pi2{h2}Pi2∅
{h1}Pi3{h2}Pi3∅
{h1}Pi4{h2}Pi4∅
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Below, we give the outcome matchings of the capacity-reporting game under ϕH for each pure

strategy q0 ∈ Q. Equilibria of this game are highlighted in bold:
ϕH q02

q01

1 2 3

1

µ
h1 h2 ∅
{i1} {i3} i2,i4

¶ µ
h1 h2 ∅
{i1} {i2, i3} i4

¶ µ
h1 h2
{i1} {i2, i3, i4}

¶
2

µ
h1 h2 ∅

{i1, i3} {i2} i4

¶ µ
h1 h2

{i1, i3} {i2, i4}
¶ µ

h1 h2
{i2, i3} {i1, i4}

¶
3

µ
h1 h2

{i1, i2, i3} {i4}
¶ µ

h1 h2
{i2, i3, i4} {i1}

¶ µ
h1 h2

{i2, i3, i4} {i1}
¶

Note that q∗ = (3, 1), and q0 = q∗ is an equilibrium of the game (as Theorem 4 says). However,

truthful capacity revelation is not an equilibrium, and ϕH(q) does not coincide with ϕH(q∗).

We see a very different result in the capacity-reporting game under ϕI : truthful capacity

revelation is a weakly dominant strategy when preferences satisfy strong monotonicity in popu-

lation.

Theorem 5 Let (H, I, q, R) be a hospital-intern market such that R ∈ RSM . In the capacity-

reporting game under ϕI, qh is a weakly-dominant strategy for each h ∈ H.
Proof. Let (H, I, q,R) be a hospital-intern market such that R ∈ RSM . Consider the capacity-

reporting game under ϕI . Let h be an arbitrary hospital. Suppose that q0−h is the reported capac-

ities of all the remaining hospitals. Let
¯̄
ϕIh(qh, q

0
−h)
¯̄
= q0h. Let bqh ∈ Qh be a capacity for hospital

h such that q0h ≤ bqh. Then ϕI(bqh, q0−h) is a feasible matching in the market (H, I, (qh, q0−h), R).
Furthermore ϕI(qh, q0−h) ∈ S(H, I, (bqh, q0−h), R). Otherwise the blocking pair or the blocking agent
in market (H, I, (bqh, q0−h), R) would also block it in market (H, I, (qh, q0−h), R). Since by Corol-
lary 5.30 in Roth and Sotomayor (1990 p. 163) every hospital weakly prefers any other stable

matching to the intern-optimal stable matching in market (H, I, (bqh, q0−h), R), it follows that
ϕIh(qh, q

0
−h)Rhϕ

I
h(bqh, q0−h).

By strong monotonicity in population,

ϕIh(qh, q
0
−h)Phϕ

I
h(eqh, q0−h) for all eqh < q0h.

Hence, qh is a weakly-dominant strategy for hospital h.

The immediate implication of this result is that truthful capacity revelation is an equilibrium

of the capacity-reporting game under ϕI . This result is in sharp contrast with the game under

ϕH , although strong monotonicity in population guarantees existence of equilibrium in both

games.

18



5.2 Common Preferences for One Group over Agents

Finally, we consider the cases where either all hospitals or all interns have perfectly correlated

preferences over the agents of the other group.21 Preference proÞle R ∈ R satisÞes common

preferences for hospitals over individual interns if and only if for any h, h0 ∈ H (i) for any

i, i0 ∈ I we have {i}Ph{i0} ⇐⇒ {i}Ph0{i0} and (ii) for any i ∈ I, we have {i}Ph∅ and {i}Ph0∅.22
Preference proÞle R ∈ R satisÞes common preferences for interns if and only if for any i, i0 ∈ I,
(i) for any h, h0 ∈ H, we have {h}Pi{h0}⇐⇒ {h}Pi0{h0}, and (ii) for any h ∈ H, we have {h}Pi∅
and {h}Pi0∅. Let RCH ⊂ R and RCI ⊂ R be the domains of such proÞles of preference relations,
respectively.

First, we consider preference domain RCH . We can reorder acceptable interns by hospitals�

common preference ordering as i1, i2, ..., im. Hospital h has the same preference ordering as this

ordering:

{i1}Ph{i2}Ph...Ph{in}Ph∅
Let Chi(G) be the most preferable acceptable hospital in G ⊆ H for intern i, i.e., Chi(G) =

{h ∈ G : {h}Ri{h0} for any h0 ∈ G, and {h}Pi∅}. It is useful to have a matching µ∗ generated
by the following serial-dictatorship:23

Step 1. Let G1 = H and q1h = qh for each h ∈ H. Set µ∗i1(H, I, q,R) = Chi1(G1).
...

...

Step t. For each h ∈ H let qth = q
t−1
h − 1 if µ∗it−1 = {h}, and qth = qt−1h otherwise.

Let Gt = {h ∈ H : qth 6= 0}. Set µ∗it = Chit(Gt).
The algorithm terminates after n steps, and µ∗ becomes a matching of the hospital-

intern market.
21Perfectly correlated preferences may be observed in real life. The same region hospitals and interns may be

competing to be matched with each other, as it is in Britain. In this case, the central hospital is almost always
preferred to smaller hospitals in the region (Roth, 1991). Also, common preferences for schools are observed in
student placement for some high schools done by a central authority in Turkey (Balinski and Sönmez, 1999).
Unlike college admissions, test score is unidimensional (only one skill category), so high schools� preferences are
common: they all want the students who got high scores in the test.
22Here, we assume Ah = I for all h ∈ H only for simplicity. We can obtain the same result (with some

modiÞcation of the argument) even when hospitals have heterogeneous sets of acceptable interns: there exists a
common ordering Â over I such that (i) for any h ∈ H and i, i0 ∈ Ah, {i}Ph{i0} ⇐⇒ i Â i0, and (ii) for any
h ∈ H, i0 ∈ Ah, and i ∈ I, i Â i0 =⇒ i ∈ Ah. For common preference restriction for interns over hospitals, we
can weaken the assumption by employing the counter-part assumption for interns� preferences.
23Loosely speaking, stability and common preference property induces a hierarchy very much like the hierarchy

inherent in serial dictatorships in the context of one-sided matching markets. See Svensson (1994), Abdulkadiroùglu
and Sönmez (1998), and Papai (2000).
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We have the following lemma.24

Lemma 2 Let (H, I, q,R) be a hospital-intern market such that R ∈ RCH. Then µ∗ is the

unique stable matching.

Proof. Let (H, I, q,R) be a hospital-intern market such that R ∈ RCH . We will prove that µ∗ is

the unique stable matching of this market. Before proving the statement, note Gt ⊇ Gt+1 applies
for any t ≤ n − 1. This can be seen from the fact that Gt = {h ∈ H : qth 6= 0} monotonically
shrinks (weakly) by construction. First, µi1 = Chi1(G

1) at any stable matching µ. Otherwise,

pair (i1, Chi1(G
1)) will block µ if Chi1(G

1) 6= ∅; and i1 would be better of by staying unmatched
if Chi1(G

1) = ∅. Given this, µi2 = Chi2(G2) at any stable matching µ. Otherwise, (i2, Chi2(G2))
will block µ if Chi2(G

2) 6= ∅; and i2 would be better off by staying unmatched if Chi2(G2) = ∅.
Similarly, for any t ≤ n, µit = Chit(Gt) at any stable matching.
We can now prove that truthful capacity revelation is a weakly dominant strategy in the

capacity-reporting game under the stable matching rule.25

Theorem 6 Let (H, I, q,R) be a hospital-intern market such that R ∈ RCH . In the capacity-

reporting game under stable matching rule, qh is a weakly dominant strategy for each h ∈ H.

Proof. Let (H, I, q, R) be a hospital-intern market such that R ∈ RCH . Let ϕ∗ be the unique

stable matching rule in (H, I, q, R). Pick a hospital h ∈ H, and consider a possible capacity
report q0h < qh. Let ϕ

∗
h(qh, q

0
−h) = {ik, il, ..., ir}, where k < l < ... < r ≤ n. For any t < k, and

any q0h < qh, it /∈ ϕ∗h(q0) follows by the construction of ϕ∗ (q0). As long as q0h ≥ 1, ik ∈ ϕ∗h(q0) also
follows. By the same argument, (i) for any t < l with t 6= k and any q0h < qh, it /∈ ϕ∗h(q0), and (ii)
as long as q0h ≥ 2, il ∈ ϕ∗h(q0). Thus, by iteration of the same argument, ϕ∗h(q0) ⊆ ϕ∗h(qh, q0−h) for
any q0h < qh; moreover, ϕ

∗
h(qh, q

0
−h)\ϕ∗h(q0) contains an acceptable intern if it is non-empty. By

responsiveness of hospital preferences, hospital h is not better off by reporting q0h. Hence, there

is no incentive for a hospital to misreport its capacity.

Second, we consider preference domain RCI . We can reorder acceptable hospitals by interns�

common preference ordering as h1, h2, ..., hm. Intern i has the same preference ordering as this

ordering:

{h1}Pi{h2}Pi...Pi{hm}Pi∅
24Alcalde (1995) and Banerjee, Konishi and Sönmez (2001) prove uniqueness of stable allocations for different

kinds of markets by imposing preference restrictions called α-reducibility and top-coalition property, respectively.
The proofs of the following two lemmas in the current paper are similar to theirs.
25Since stable matching is unique under RCH , we do not need to specify the stable matching rule to be ϕH or

ϕI . The same comment applies to Theorem 7.
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Recall that Ah denotes the set of acceptable interns for hospital h. Let Chh(J, qh) be the set

of most preferable acceptable interns among J ⊆ I for hospital h under capacity q0h ∈ Qh, i.e.,
Chh(J, q

0
h) = {L ⊆ J ∩ Ah with |L| ≤ q0h : LRhL0 for any L0 ⊆ J with |L0| ≤ q0h}. It is useful to

have a matching µ∗∗ generated by the following serial-dictatorship:

Step 1. Let J1 = I. Set µ∗∗h1 = Chh1(J
1, qh1).

...
...

Step t. Let J t = J t−1\Chht−1(J t−1, qht−1). Set µ∗∗ht = Chht(J t, qht).
The algorithm terminates after m steps, and µ∗∗ is a matching of the hospital-

intern market.

We have the following lemma.

Lemma 3 Let (H, I, q,R) be a hospital-intern market such that R ∈ RCI. Then µ∗∗ is the

unique stable matching.

Proof. Let (H, I, q,R) be a hospital-intern market such that R ∈ RCI .We will prove that µ∗∗ is

the unique stable matching of this market. Before proving the statement, note J t ⊇ J t+1 applies
for any t ≤ m − 1, since the set J t = J t−1\Chht−1(J t−1, qht−1) monotonically shrinks (weakly)
as t increases. First, µh1 = Chh1(I) at any stable matching µ. Otherwise, if Chh1(I, qh1) 6= ∅,
then for some i ∈ Chh1(I, qh1), pair (i, h1) will block µ; and if Chh1(I, qh1) = ∅, then h1 will be
better off by staying unmatched and deviating from µ. Given this, µh2 = Chi2(J

2, qh2) at any

stable matching µ. Otherwise, if Chh2(J
2, qh2) 6= ∅, then for some i ∈ Chh2(J2, qh2), pair (i, h2)

will block matching µ; and if Chh2(J
2, qh2) = ∅, then h2 will be better off by staying unmatched.

Similarly, for any t ≤ m, µht = Chht(J t, qht) at any stable matching.
We can now prove that truthful capacity revelation is a weakly dominant strategy in the

capacity-reporting game under the stable matching rule.

Theorem 7 Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI . In the capacity-

reporting game under the stable matching rule, qh is a weakly dominant strategy for each h ∈ H.
Proof. Let (H, I, q, R) be a hospital-intern market such that R ∈ RCI . Let ϕ∗∗ be the unique sta-

ble matching rule in (H, I, q,R). Pick a hospital ht ∈ H. Since J t is solely determined by reports
{q0h1 , ..., q0ht−1}, hospital ht cannot affect J t. Pick q0 ∈ Q. We have ϕ∗∗ht(q0) = Chht(J

t, q0ht) and

ϕ∗∗ht(qht, q
0
−ht) = Chht(J

t, qht). We have ϕ
∗∗
ht
(qht, q

0
−ht)Rhtϕ

∗∗
ht
(q0) since (i) ϕ∗∗ht(q

0) ⊆ ϕ∗∗ht(qht, q0−ht),
and (ii) interns in ϕ∗∗ht(qht, q

0
−ht) are acceptable for ht. Thus, hospital ht cannot do better by

underreporting.
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6 Conclusions

In this paper, we examined strategic interactions among hospitals in manipulating their capacities

in hospital-intern matching markets. Hospitals report their capacities taking the matching rule

and preferences of agents as given. We found that there may not be any pure strategy equilibrium

in the standard preference domain (strict and responsive preferences). Even if equilibria exist,

truthful capacity revelation may not be an equilibrium. When there is an equilibrium different

from truthful capacity revelation, every hospital weakly prefers this equilibrium outcome to

the outcome of any larger capacity proÞle. This makes capacity manipulation very likely to

occur in real life. To make matters worse, there is an aftermarket for hospitals and interns in

real life. If there are unmatched interns, hospitals can come back to hire these interns in the

aftermarket. This strengthens hospitals� incentives to underreport. They can get better interns

by underreporting their capacities in the regular market, and then Þll the rest of their capacities

with unmatched acceptable interns in the aftermarket. Our welfare result (the Capacity Lemma)

says that such practices beneÞt hospitals but are detrimental to interns.

We also Þnd preference restrictions that guarantee the existence of a pure strategy equilib-

rium. Restrictions on the domain of preferences can make truthful capacity revelation a weakly

dominant strategy in some cases, depending on the choice of matching rule. Under strong

monotonicity in population, truthful capacity revelation is a weakly dominant strategy under

the intern-optimal stable rule, but not under the hospital-optimal stable rule. Interestingly, the

National Resident Matching Program in the USA recently replaced the hospital-optimal stable

rule with the intern-optimal stable rule based on recommendation by Roth and Peranson (1999).
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