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ABSTRACT

The purpose of this paper is to develop a model that integrates inventory and labor
decisions.  We extend a model of inventory behavior to include a detailed specification of
the role of labor input in the production process and of the costs associated with it. In
particular, we distinguish between employment, hours and effort per worker, and allow
for adjustment costs associated with employment changes. We assume that the
requirement function for effective hours has a general trans-logarithmic form, and derive
an estimable system of Euler equations for inventories and employment with implied
cross-equation restrictions. The econometric results shed light on several important
topics, including the shape of the marginal cost of output and the role of labor hoarding
as an explanation of procyclical productivity and the persistence of inventory stocks.
Moreover, they raise questions about the adequacy of commonly used specifications such
as Cobb-Douglas approximations to the production process and the definition of labor
input as the product of employment and effective hours worked per worker.
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I. INTRODUCTION

In the last two decades, extensive research has been done on inventory

movements.   This research has focused on an analysis of several issues that are important

for business cycle research.1  The issues have been provoked by several stylized facts.

One provocative fact is that in aggregate manufacturing and in most industries the

variance of production exceeds the variance of sales, which contradicts the basic idea that

inventories are held by firms primarily to smooth production relative to sales.  This fact

raised questions about, and stimulated research on, whether the short-run marginal cost of

producing output is upward-sloping, which is a rather important assumption in much of

macroeconomics research.  A second fact is that estimates of adjustment speeds, which

govern the adjustment of actual to "desired" inventory stocks, tend to be very low, or, to

put the matter in more contemporary parlance, inventory stocks tend to be quite

persistent.  This fact spawned research on the question of whether there are important

costs to changing the level of output.  This is because a shock that perturbs desired

inventory stocks will cause inventories to return slowly to desired levels if firms adjust

production gradually.2

To analyze these issues, the bulk of the literature has utilized a linear-quadratic

model.  The model assumes that the typical firm minimizes the discounted value of

expected costs.  Costs consist of production costs that depend on the level of output,

convex adjustment costs associated with changes in the level of output, and inventory

                                                          
1 See Blinder and Maccini [1991a,b] and Ramey and West [1999] for surveys of the literature and the
presentation of relevant stylized facts.
2 Research intended to explain one or both of the stylized facts has been done with models that emphasize
stock-out avoidance motives (Blanchard [1983], West [1986], Kahn [1992] and Bils and Kahn [2000]),
observable cost shocks in the form of real input prices (Miron and Zeldes [1988] and Durlauf and Maccini
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holding costs.  To rationalize the shape of short-run production costs, an appeal is

typically made to the short-run returns to labor, with diminishing (increasing) returns to

labor signifying a rising (decreasing) marginal cost of output.  Similarly, to rationalize

adjustment costs, an appeal is made to costs attached to changing the labor force in the

form of, for example, hiring and firing costs.3  A difficulty with the model, however, is

that the specification of production costs and adjustment costs is not directly derived

from the role of labor input in the production process and from the nature of the labor

cost structure the firm faces.

Similarly, extensive research has been done on labor demand over the last couple

of decades.  One of the aims of this research is to explain procyclical movements in labor

productivity.4  Potential explanations hinge on technology shocks, labor hoarding or

increasing returns.  The empirical work on labor demand and procyclical labor

productivity has been conducted largely with data for manufacturing industries.  These

industries, however, hold inventories.  Yet, the empirical work that has been done has

generally ignored the fact that labor demand decisions by business firms are typically

made in an environment in which inventory decisions are made as well.5

The issues that have been the focus of both debates--such as, why output appears

to fluctuate more than sales, why inventory stocks are so persistent, and why labor

                                                                                                                                                                            
[1995]), unobservable technology shocks (Eichenbaum [1989] and Kollintzas [1995]), and declining
marginal production costs (Ramey [1991]).
3  Adjustment costs are of course also associated with changes in the capital stock, but given the high
frequency nature of inventory decisions, it is natural to put more emphasis on changes in the labor input.
4 See Hamermesh [1993] and Rotemberg and Woodford [1999] for surveys. Relevant contributions have
been made by Basu [1996], Basu and Kimball [1997], Bernanke and Parkinson [1991], Bils and Cho
(1994), Burnside, Eichenbaum and Rebelo [1993], Caballero and Lyons (1992), Chirinko [1995], Fair
(1985), Fay and Medoff (1985), Morrison and Berndt (1981), Rotemberg and Summers (1990), and
Sbordone [1996].
5 Note that the early literature, mostly employing flexible accelerator models, recognized the interaction
between inventories, employment and hours�See Maccini and Rossana [1984] and Rossana [1990].
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productivity is procyclical--hinge on the parameter estimates that emerge from the

models that have been used in empirical work.  Despite considerable empirical research

on inventories alone or on movements in labor productivity alone, the issues under debate

essentially remain open.

The purpose of this paper is to develop a model that integrates inventory and labor

decisions.  We extend a model of inventory behavior to include a detailed specification of

the production process, the role of labor input in the production process, the structure of

labor costs and the nature of adjustment costs for labor.  In particular, we distinguish

between altering labor input along the extensive and intensive margins, and accordingly

decompose labor input into an employment decision�the extensive margin�and hours

worked per worker and effort decisions�the intensive margins.  The model of course

includes as well the benefits and costs of holding inventories.  Furthermore, we depart

from the standard linear-quadratic inventory model by using a translog approximation to

production costs.  Alternatively, the model can be thought of as an extension of the

models used in the labor demand and labor productivity literature to allow for inventory

decisions.

These extensions yield several potential advantages to empirical work on

inventories and labor demand.  Our model yields a system of Euler equations for

inventories and employment with implied cross-equation restrictions.  In the empirical

work, we estimate the system of Euler equations jointly and impose the cross-equation

restrictions.  We also obtain a requirement function for actual hours of work that can be

estimated jointly with the Euler equations, making full use of the cross equation

                                                                                                                                                                            
Haltiwanger and Maccini [1989] study empirically the interaction of inventories, hours, new hires and
temporary and permanent layoffs.
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restrictions implied by the theoretical model.  The joint estimation procedure has two

advantages. The first is econometric: it gives rise to a potential gain in efficiency, as more

information regarding the structure of the model is used in estimation than in econometric

work done with models in the literature on inventories alone or in the literature on labor

demand alone.  The second is economic: joint estimation of the Euler equations (with or

without the hours requirement function) yields estimates of important structural

parameters that may differ from those obtained in empirical work with the inventory

model alone or the labor demand model alone.   This can be helpful in understanding

some of the puzzles that are plaguing empirical work on inventory movements and

procyclical movements in labor productivity.

The model is estimated with monthly data on the nondurable aggregate and the

two-digit industries of U.S. manufacturing that produce to stock. The empirical results

reveal the advantages of estimating jointly the Euler equations for inventories and

employment.  The parameters of the jointly estimated equations are generally quite

different from those estimated with the inventory equation alone or the employment

equation alone.  This has important implications for the critical issues under debate in the

inventory literature and in the labor productivity literature.  Three in particular standout:

First, using a new procedure for estimating the slope of marginal cost, we find evidence

that the marginal cost of output is indeed generally upward-sloping, which suggests that

other forces are needed to explain why production fluctuates more than sales and why

labor productivity is procyclical.  Second, the results provide evidence of adjustment

costs to labor, which is an important ingredient to labor hoarding as an explanation for

the procyclical behavior of labor productivity, and which can help to explain persistent
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movements in inventories.  Finally, we find that Cobb-Douglas approximations of the

production process and the specification of labor input as the product of employment and

effective hours worked per worker, both special cases of our model, are rejected by the

data. This suggests that the wide use of such approximations in empirical work,

especially in the labor productivity literature, may be leading to incorrect inferences.

The next section of the paper presents the model of inventories, employment, and

effective hours that we work with.  Succeeding sections report estimates of the

parameters of our model and tests of the model with data from the nondurable sector and

selected two-digit industries of US manufacturing.  A concluding section summarizes the

paper and suggests areas for further research.

II.  A MODEL OF INVENTORIES AND EMPLOYMENT

We begin with the firm�s technology, which is represented by the

following standard short-run neoclassical production function.  Allowing for internal

adjustment costs defined in terms of net changes in the quasi-fixed input, we define the

production function in terms of value added:

1
� ( , , / , )t t t t t t t tVA Y M F L Z L L T−= − = ∆                (1-a)

� � �, , 0L Z TF F F >
1

� 0L
L

F
−

∆
<
>

    as    
1

0L
L−

∆ >
<

       (1-b)

where tVA  is value added6, tY  is gross output, tM  is the amount of materials and supplies

purchased and used in the production process, tL  is the number of workers employed by

                                                          
6 The definition of value added assumes for simplicity that the ratio of materials prices to output prices is
constant.  An interesting extension of the model is to explore the implications of variable real materials
prices and the materials input decision, which we leave for future work.
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the firm, tZ  is effective hours per worker, and 1/t tL L −∆  is the net growth rate in the

firm�s workforce.  Effective hours worked per worker are defined as t t tZ H X=  where

tH  is the number of hours worked by each worker and tX  is work intensity, i.e. the

effort level expended by a worker in each hour.7   Note that, contrary to much of the labor

productivity literature, we treat employment, which is the extensive margin by which

labor input can be varied, as a separate input from effective hours, which is the intensive

margin.

The production function of course depends also on the state of technology.

Further, in accordance with the concept of a short-run production function, the capital

stock is taken as given at each point in time, giving rise to strict concavity of the

production function.8  We denote the variable, tT , as the �state of technology�, but it is

intended to capture both the usual state of technology and the capital stock, which shift

the short-run production function over time.  We assume these forces change relatively

smoothly, and can thus be captured by trend movements.9

Suppose further that materials usage is proportional to output so that t tM Yλ=

and substituting into (1-a) yields a production function for gross output:

1 1
1 � ( , , / , ) ( , , / , )

1t t t t t t t t t t tY F L Z L L T F L Z L L T
λ − −= ∆ = ∆

−
        (2-a)

                                                          
7 See the recent studies by Basu [1996], Basu and Kimball [1997], and Sbordone [1996] for investigations
on the role of effort in explaining the procycilcality of measured productivity.  Bils and Khan [2000] also
allow for a role for effort in a model that includes inventories but abstracts from the cost of adjusting
factors of production.
8 We also abstract from changes in the utilization of capital. On this issue see Shapiro [1986a], Shapiro
[1996], and Basu, Fernald and Shapiro [2001].
9 Clearly an interesting extension of the model and empirical work is to add investment in the capital stock
as a decision variable.  See Galeotti, Guiso, Sacks and Schiantarelli [1997] for a model with capital as a
fixed factor and labor as a variable factor. A key difficulty here, however, is the lack of monthly data on the
capital stock, rendering empirical work difficult.  Further, intuition suggests that labor is apt to be a closer
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which has the same properties as stated in (1-b), namely:

, , 0L Z TF F F >
1

� 0L
L

F
−

∆
<
>

   as   
1

0L
L−

∆ >
<

        (2-b)

Note that strict concavity of the value added production function, (1-a), of course implies

strict concavity of the gross output production function, (2-a).  We focus on the

production function for gross output because, when inventories are introduced below, it is

gross output that constitutes additions to finished goods inventories10.

The stock of workers is a quasi-fixed factor of production, and thus generates

adjustment costs to the firm when it changes its labor force. They reflect the hiring,

training and firing costs the firm incurs when it devotes resources to the process of

changing its labor force.  For simplicity, at this stage, adjustment costs are assumed to be

internal to the firm and thus take the form of foregone output.11  Further, we assume that

adjustment costs are convex and associated only with changing employment.12 Finally,

observe that, in line with existing empirical evidence, we are assuming that the firm

incurs no costs of adjusting hours worked per worker.13

Solve (2-a) for effective hours worked per worker, t t tZ H X= , to obtain an

effective hours requirement function:

1( , , / , )t t t t t t t tZ H X J Y L L L T−= = ∆        (3-a)

                                                                                                                                                                            
substitute for inventory stocks than the capital stock.  We note that, even if adjustment costs for capital are
present but are not interrelated with those of labor, the first-order condition for labor we derive still holds.
10 In this paper, we not only assume that materials usage is proportional to output, we also abstract from the
holding of materials and supplies and works-in-progress inventories.  See Humphreys, Maccini and Schuh
[2001] for an analysis of the materials usage decision and the interaction of inventory holdings at different
stages of fabrication.  These are extensions that we leave for future work.
11 Below we experiment with a version of the model with external adjustment costs for labor.
12  We are well aware that there is an extensive literature that suggests the need to depart from symmetric
quadratic adjustment costs.  See Hamermesh and Pfann [1996] for a review of the literature. In this paper,
however, we decided to maintain this hypothesis in order not to depart in too many directions from the
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with:

0YJ > , 0L TJ J <
1

0L
L

J
−

∆
<
>

   as   
1

0L
L−

∆ >
<

                   (3-b)

where the restrictions in (3-b) follow directly from (2-b).  Observe that strict concavity of

the gross production function, (2-a), implies strict convexity of the effective hours

requirement function, (3-a).

The firm is assumed to minimize the discounted value of its expected real costs,

which consist of real labor costs and real inventory holding costs.  That is, the firm

minimizes

1
0

[ ( , ) ( , )]j
t t j t j t j t j t j

j
E H X L N Sβ ω

∞

+ + + + − +
=

+ Φ�        (4)

where ( , )t tH Xω is real labor cost per employee to the firm, 1( , )t tN S−Φ  is the real cost of

holding inventories, tN  is the stock of real finished goods inventories at the end of period

t, tS  is real sales, β is constant real discount factor, and tE  is an expectation operator

conditional on information available at time t.   We will assume that the firm takes sales

as given14, which is common in the inventory literature, and to be a price-taker in input

markets and thus takes real input prices as given.

We assume that labor costs per worker, ( , )t tH Xω , is increasing in the number of

hours worked and effort, and is convex. We will allow below for the existence of an

                                                                                                                                                                            
standard linear quadratic inventory model. Moreover, even with convex adjustment costs, the model is
already quite complex.  Accounting for non-convexities is thus left for future work.
13 See, for example, Shapiro [1986b], Bils [1987], Hamermesh [1993].
14 This assumption is stronger than necessary.  An alternative is to assume that the firm has price setting
power, in which case price or sales is an endogenous variable and the optimality conditions require equality
between marginal revenue and marginal cost.  In principle one could estimate the condition for sales jointly
with the cost minimization conditions. This however, would require making specific assumptions about the
structure of demand and the determination the markup of prices over marginal costs. In this paper, we focus
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overtime premium when hours exceed their normal level.  The remuneration of effort can

be explicit (as in the case of piece rates payment systems, or of bonuses linked to the

achievement of production targets) or implicit (as in the case of promotions linked to

performance).

Inventory holding costs, 1( , )t tN S−Φ , are assumed to be U-shaped in the stock of

inventories, given sales.  Inventory holding costs balance two forces.  They tend to rise

with the stock of inventories, reflecting increased storage costs, insurance costs, etc.  On

the other hand, they tend to fall with inventory stocks, reflecting the idea that higher

inventory stocks, given sales, enable the firm to avoid �stock-outs� and therefore avoid

suffering lost sales.  The presence of sales in the inventory holding cost function captures

the idea of an �accelerationist� motive to holding inventories, as higher expected sales

induce the firm to add to inventories to avoid stockouts.

The minimization of the present value of expected total costs, (4), is subject to the

effective hours requirement function, (3a), and to the inventory accumulation equation:

1t t t tN N Y S−− = −        (5)

where 1tN − , the initial stock of inventories, is taken as given by the firm.

After some manipulation, the optimality conditions for , , ,t t t tH X N L  reduce to

(3a) and

( , ) ( , )
( , ) ( , )

H t t t X t t t

t t t t

H X H H X X
H X H X

ω ω
ω ω

=                                                   (6)

[ ]1 1
( , ) ( , , / , ) ( , )H t t t

Y t t t t t t N t t
t

H X L J Y L L L T E N S
X

ω β− +∆ + Φ                         (7)

                                                                                                                                                                            
only on the cost minimization conditions, and leave extensions of the model to deal with the price/sales
decision for future work.
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1 1 1
1 1 1 1

1

( , ) ( , , / , ) 0H t t t
t Y t t t t t

t

H X LE J Y L L L T
X

ωβ + + +
+ + + +

+

� �
− ∆ =� �

� �

1
( , )( , ) ( , , / , )H t t t

t t L t t t t t
t

H X LH X J Y L L L T
X

ωω −+ ∆                        (8)

1

1
1

( , ) ( , , / , )H t t t
L t t t t t

t t L

H X L J Y L L L T
X L

ω

−

∆ −
−

� �
+ ∆� �

� �

1

2

1 1 1
1 1 1 1

1

( , ) ( , , / , ) 0H t t t
t L t t t t t

t t L

H X LE J Y L L L T
X L

ωβ
−

+ + +
∆ + + + +

+

� �� �
� �− ∆ =� �
� �	 
� �

  where, using (5), output is defined by 1t t t tY S N N −= + − .

Condition (6) relates hours worked and effort along the optimal path.15  It states

that the elasticity of  the labor cost function with respect to hours must equal the elasticity

with respect to effort, as in Basu and Kimball (1997).  Under the appropriate conditions

(6) implies that effort is an increasing function of the number of hours worked,

( )t tX X H= .16 Using this relationship, unobservable effort can be eliminated from the

Euler equations in (7) and (8).

Condition (7) is the optimality condition on inventories.  It requires the firm to

balance the marginal cost of producing a unit of output this period and holding it in

inventories with the marginal cost of producing it next period.

                                                          
15 Note that hours worked per worker, effort, employment and inventories are assumed to be chosen at the
same time on the basis of the information set that is available to the firm at time t.
16 More specifically,

       0t H HH t HX t

t X XX t HX t

dX H X
dH X H

ω ω ω
ω ω ω

+ −= >
+ −

.
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Condition (8) is the optimality condition on employment.  It requires the firm to

equate the marginal gain to acquiring an additional worker with the marginal cost of

acquiring an additional worker.  The former includes the reduction in cost due to the

decrease in the number of hours or effort level required to produce a given level of output

when the stock of workers increases (for given adjustment costs).  The latter includes

both the increase in the remuneration per employee and the net marginal hiring and

training costs.

Using the optimality condition between hours and effort along the optimal path,

(6), and the effective hours requirement function, (3a), one can solve for tH  and tX as a

function of output, employment, its growth rate, and the state of technology:

1
� ( , , / , )t t t t t tH H Y L L L T−= ∆      (9)

1
� ( , , / , )t t t t t tX X Y L L L T−= ∆     (10)

Using (9) and (10), labor costs may then be written as:

1 1
� �( , ) ( , , / , ), ( , , / , )t t t t t t t t t t t t t tH X L H Y L L L T X Y L L L T Lω ω − −� �= ∆ ∆� �

          1( , , / , )t t t t tC Y L L L T−= ∆ ,          (11)

which is short-run production costs.

Before proceeding, it is useful to compare the structure of our model with that of

the standard inventory and labor demand models.  In contrast with the standard inventory

model, we have allowed for an explicit specification of the production process with a

distinction between employment, hours worked, and effort per worker, with labor costs

                                                                                                                                                                            
This follows from our assumptions that labor cost per employee is increasing in tH  and tX  so that

0, 0H Xω ω> > , is convex so that 0, 0HH XXω ω≥ ≥ , and the additional assumptions that

0HH t HX tH Xω ω− ≥  and 0XX t HX tX Hω ω− ≥ .
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reflecting the need to remunerate these different dimensions of the labor input. In

addition, observe that labor costs, which are the analogue to short-run production costs in

the standard inventory model, depend, on the stock of the quasi-fixed factor�the number

of workers employed�as well as on the level of output. Finally, labor costs incorporate

adjustment costs, which are captured by the change in employment and not  by the

change in output, as it is assumed in a rather ad hoc fashion in the standard model.

In contrast with the standard labor demand model, we have allowed for inventory

decisions.  In particular, changes in demand or costs, which produce changes in

employment, hours worked or effort in the standard model, may be satisfied at least in

part by inventory movements in our model.  This significantly expands the margins along

which the firm may respond to exogenous shifts in demand or costs.

III.  THE TRANSLOG MODEL

A. General Translogarithmic Specification

Our empirical objective is to estimate (7) and (8) jointly (with and without the

hours requirement function).  To accomplish this requires a parameterization of the

effective hours requirement function, inventory holding cost and labor costs per worker,

to which we now turn. We utilize a translog approximation for the firm�s effective hours

requirement function.  Specifically:

2
0ln ln ln ln ln 0.5 (ln )t t t Y t L t T t YY tZ H X Y L T Yα α α α γ= = + + + +

2 20.5 (ln ) 0.5 (ln ) ln lnLL t TT t LY t tL T L Yγ γ γ+ + +      (12)
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2

1

ln ln ln ln 0.5 t
YT t t LT t t

t

LT Y T L
L

γ γ ψ
−

� �∆+ + + � �
� �

where the 'i sα  are first-order translog parameters and the 'ij sγ  are second-order translog

parameters of the production process and ψ  is an adjustment cost parameter.  Note that

to achieve a specification that is parsimonious in the parameters to be estimated we have

assumed that hours requirement function is multiplicatively separable in adjustment

costs.17

Inventory holding costs are assumed to be given by:

( )
2

1
1, 0.5 t

t t t
t

NN S S
S

δ θ−
−

� �
Φ = −� �

� �
     (13)

with , 0δ θ > .  Here, inventory holding costs are assumed to be proportional to sales,

implying that marginal inventory holding costs depend on the inventory-sales ratio.

Moreover, we assume that the state of technology contains a deterministic

component that grows at a constant rate so that the ln tT tζ= .  We normalize ζ  to unity

so that hereafter 1ζ = .18  The state of technology also contains a stochastic component,

which will be introduced below.

Finally, labor costs are assumed to take the form:

( ) ( ){ }( , ) 1.5s
t t t t t t t t t t tH X L b w H H H X X Lω τ� �= + + − + −� �                 (14)

so that labor costs per employee, ( , )t tH Xω , are assumed to be linear and additively

separable in tH  and tX .  Labor costs per employee are the sum of three components.

                                                          
17 See, for example, Chirinko [1995] for a similar parametrization of the hours requirement function in a
model without inventories. See also Considine [1997] for the use of a translog cost function, albeit with a
different specification of adjustment costs, in a model of a multi-output firm with inventories.
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The first component, tb , is the portion of real non-wage compensation per worker that is

unrelated to effort. The second component is a function of the number of hours worked.

We assume that workers receive a straight wage, s
tw , when hours worked do not exceed

normal hours, tH .  When working overtime, they receive a premium of 50% over the

straight-time wage rate.  Finally a last component reflects the remuneration for effort.

For simplicity, we will assume that the latter takes the form ( )s
t t tw X Xτ − , where tX

denotes the normal level of effort and τ is a positive constant. We will assume that the

typical firm chooses to use some overtime, since overtime hours are positive at each point

of the sample we will use for estimation.

The compensation schedule, (14), and the optimality condition for hours and

effort, (6), imply that effort is proportional to hours where the constant of proportionality

is 1.5 τ .19  That is,

            1.5
t tX H

τ
=                                                                                 (15)

If we assume further that (1.5 )t tX Hτ= , then the unobservable effort variable can be

eliminated from labor costs, so that labor costs, (14), can be written as a function of hours

and employment alone as follows:

( ){ }( , ) 3.0s
t t t t t t t t tH X L b w H H H Lω � �= + + −� �               (16)

          
( )3.0 t ts t

t t t t t
t t

H HHb L w H L
H H

� �−
= + +� �

� �� �

                                                                                                                                                                            
18 A normalization is needed because ζ  cannot be separately identified from the parameters of the hours
requirement function that involve the state of technology.
19 Note that an elasticity of unity is well within a one standard deviation interval around the point estimate
of 1.12 obtained by  Basu and Kimball [1997].
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                                  t t t t tb L w H L= +

where tw  denotes the average wage per hour, inclusive of the remuneration of effort. 20

Note that (16) implies that the remuneration of effort in effect results in an increase in the

premium paid for overtime hours.

Assuming rational expectations and thus replacing expected values with actual

values, the Euler equations for inventories and employment are

[ ] 11.5 ln ln
s
t t t t

Y YY t YL t YT
t t

w L H NY L t
Y S

α γ γ γ βδ θ−� � � �
+ + + + −� � � �

� � � �
     (17)

[ ]1 1 1
1 1 1

1

1.5 ln ln ( 1)
s
t t t

Y YY t YL t YT t
t

w L H Y L t
Y

β α γ γ γ ξ+ + +
+ +

+

� �
− + + + + =� �

� �

[ ]1.5 ln lns
t t t t t L LL t YL t LTb w H w H L Y tα γ γ γ+ + + + +      (18)

2

1 1
1 1 2

1 1

1.5 1.5s st t t t
t t t t t

t t t t

L L L Lw H w H
L L L L

ψ βψ ξ+ +
+ +

− −

� �� � � �� �∆ ∆+ − =� �� � � �� �
� �� � � �� �

where 1tξ  and 2tξ  are forecast errors.

Observe that (17) and (18) contain a cross-equation restriction in that YLγ  appears

in both equations.  An advantage of estimating the inventory and employment Euler

equations jointly is that no special normalization is needed to identify and interpret

                                                          
20 If we assume that the effort related component of remuneration is s

t tw Xτ , the average cost per hour,

tw , becomes 
( )3.0 t ts t

t t
t t

H HHw w
H H

� �−
= +� �

� �� �
.
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parameters.  This is in contrast to the standard linear-quadratic inventory model.  The

reason is that labor costs are measured in labor cost per worker, so that the parameters of

the employment Euler equation are identified and are measured in terms of units of labor

costs.21  Given that there is a cross-equation restriction, namely, that YLγ  must be the

same in both equations, and that the inventory and employment equations are estimated

jointly, the parameters of the inventory equation are identified as well and are measured

in terms of units of labor costs.  This is a real advantage as it enables us to avoid issues

regarding appropriate normalizations that are needed to interpret parameter estimates and

that have plagued debates in the inventory literature.

Finally, applying (15) to (12) to eliminate effort, we derive a requirement function

for hours worked, which is

{ 2 2
0

1ln ln ln 0.5 (ln ) 0.5 (ln )
2t Y t L t T YY t LL tH Y L t Y Lα α α α γ γ= + + + + +               (19)

           
2

2
3

1

0.5 ln ln ln ln 0.5 t
TT LY t t YT t LT t t

t

Lt L Y t Y t L
L

γ γ γ γ ψ ξ
−

�� �∆ �+ + + + + +�� �
� 	 �


where 0 0 ln(1.5 / )α α τ= −  and 3tξ  is the stochastic component to the state of

technology.22  Equation (19) can be estimated jointly with the Euler equations (17) and

(18), yielding a system of three equations with a richer set of cross-equations restrictions.

Both additivity and linearity of remuneration in effort are essential in deriving equation

(19).

                                                                                                                                                                            

21 Observe in particular that in (18) labor cost per worker, t t tb w H+ , appears as a variable without a
parameter attached to it.  Hence, the parameters of the labor Euler equation are measured in terms of units
of labor costs.
22 Note that the stochastic shock to technology enters the hours requirement function additively, and thus
does not appear in (17) and (18).
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It is of interest to compare the optimality conditions of our model with variable

effort with those of a model in which effort is kept constant (and normalized to one),

which is effectively the case in models where effort is ignored.  Obviously, the actual

hours requirement functions in the two cases are conceptually very different since, in the

case of variable effort, the function incorporates not only a technological requirement, but

also the positive relationship that holds on the optimal path between hours and effort.

Since now an increase in, say, output, given employment, can be satisfied by a

combination of an increase in hours and effort, the required increase in hours is smaller.

The Euler equations for employment and inventories, on the other hand, would be the

same in the two cases, provided that the remuneration of effort is additive and that the

observed data on average hourly earnings captures compensation for both overtime and

effort.  However, in practice, it is unlikely that the observed average hourly earnings data

is inclusive of all the forms of remuneration for effort. In any case, a model with constant

effort would not be able to account for the procyclical nature of observed labor

productivity (or total factor productivity).

B.  Empirical Results: General Translog Model

We now present the empirical results for the general translog model.  To

estimate the model, we use monthly data on inventories, sales, hours and employment

from the nondurable sector of the manufacturing sector of the US economy for the period

1959.6-1994.3. We work with both the nondurable aggregate and the two-digit industries
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within the nondurables sector that produce to stock.23  The inventory and sales data are

published by the Bureau of Economic Analysis.  They are seasonally adjusted and

expressed in constant 1987 dollars.  The employment, hours and wage data are from the

Bureau of Labor Statistics establishment survey, and refer to production workers, and the

non-wage costs are data for fringe benefits from the U.S. Chamber of Commerce at

annual frequencies.24  Throughout the empirical work, we set the discount factor to .995,

which is equivalent to an annualized discount rate of 6%.

To estimate the model, we first apply GMM to the Euler equations, (17) and

(18).25  We note that all the structural parameters of interest can be estimated from (17)

and (18) alone.  The instrument sets include output, average hourly earnings, the wage

bill, the inventory-sales ratio, the share of labor in output, fringe benefits, and the growth

rate of employment, all lagged at least once. Moreover, we have allowed for

heteroskedasticity and MA(1) error structures.

Joint estimation of the two Euler equations allows for interaction between the

inventory and employment decisions.  This is accomplished by imposing the cross-

equation restriction on YLγ , which is the only parameter that is common to both Euler

equations, in the estimation process.  We start from the specification in which actual

average hourly earnings is assumed to capture the remuneration for effort as well as that

for overtime in the Euler equation for employment. The results are reported in Table I,

where each column corresponds to different instruments sets.  However, some of the

                                                          
23 Empirical work with durable goods industries requires extending the model to allow for the firm to hold
work-in-progress and materials and supplies inventories.  As Humphreys, Maccini and Schuh  [2001] show,
such input inventories are relatively more important in durable goods industries.
24 We use the number of production workers for consistency with the available monthly wage data. All data
are seasonally adjusted, with the exception of the straight wage data that does not display any pronounced
seasonal pattern.
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remuneration for effort (such as production bonuses) is not well captured by the average

hourly earnings data provided by BLS.  The alternative is to use the functional form for

remuneration per worker implied by the model.  Below, we present results based on this

alternative formulation of remuneration per worker.

The parameter estimates obtained with the specification of the model reported in

Table I are very supportive of the model.  All the parameters are fairly precisely

estimated and have the predicted sign, whenever the theory yields a definitive prediction.

Moreover, the parameter estimates are robust to the dating of the instrument set.  Column

1 reports the estimates when the instrument set contains variables lagged once, twice and

three times, which we refer to as Instrument Set A.26  We have also estimated the model

with the instruments lagged at least twice, which is labeled Instrument Set B.  The results

produced virtually identical parameter estimates and significance levels.  These are

presented in Column 2.  Finally, to check for an excessive number of instruments, we

also estimated the model with the instruments lagged only twice and three times.  This is

labeled Instrument Set C, and again it produced very similar parameter estimates and

significance levels.  Henceforth, for the sake of brevity, we will generally present results

with Instrument Set B which contains three lags of the instruments beginning with the

variables lagged twice, knowing that the results are quite robust to this choice.

Estimates of θ, the target inventory-sales ratio, and δ , the slope of marginal

inventory holding costs, are significant and of reasonable size.  The target inventory-sales

ratio in particular indicates that firms hold finished goods inventories equal to about three

                                                                                                                                                                            
25 The Euler equations are heavily nonlinear in the variables, rendering it impossible to solve the Euler
equations for the decision rules and to estimate the parameters of the model with the decision rules.
26 To be conservative in guarding against correlation between the instruments and the error terms, we have
avoided the use of variables dated at time t in the instrument sets.
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weeks of sales.  These results provide strong evidence for an �accelerator� motive for

holding inventories.  The labor adjustment cost parameter estimate, ψ, is positive and

significant at the 5% level in all the specifications, in accordance with our assumptions of

strictly convex adjustment costs for labor.  The existence of adjustment costs is a

necessary ingredient for labor hoarding, which is a possible explanation for procyclical

observed labor productivity. Further, adjustment costs for labor are also useful for

rationalizing the persistence of inventory movements.  The parameter estimates of the

hours requirement function are also consistent with the predictions of the model and

tightly estimated.  In particular, the first order parameters, Yα  and Lα , are positive and

negative respectively and very tightly estimated.  However, even the second-order

parameters play an important role.  Specifically, YYγ  and LLγ  are positive and significant,

while YLγ  is negative and very significant.  The latter result is especially important, as

YLγ  is the only parameter that is common to both the inventory and employment Euler

equations and thus bears the cross-equation restriction.

We turn now to the convexity of labor costs.  The signs and magnitudes of the

first and second order parameters of the effective hours requirement function are by

themselves neither necessary nor sufficient for determining the convexity of labor costs.

The formulae for convexity of labor costs are straightforward to calculate.27   Using the

parameter estimates from each column of Table I, and evaluating the formulae at sample

means, the results for each instrument set are reported at the bottom of each table.  They

                                                          
27 Specifically, the formulae needed to check the convexity of labor costs under the translog specification
are: 0)]1()[/( 2 >−+= YYYYYY mmYHC γ , 0)]1()[/( 2 >−+= LLLLLL mmLHC γ ,

       ))(/( LYYLYL mmYLHC += γ , 02 >−= YLLLYY CCCDET ,

where tLYm YTYLYYYY γγγα +++= lnln  and tLYm LTLLYLLL γγγα +++= lnln .
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reveal that labor costs are indeed strictly convex in tY  and tL , for a given level of

1/t tL L −∆ . More specifically, YYC  and LLC  are positive and significantly different from

zero when they are evaluated at the sample means.  The fact that YYC  is positive and

significant implies that the marginal cost of output is clearly upward sloping, given the

stock of the quasi-fixed factor.   Moreover, YLC  is negative and significant.  This is

expected, given that employment is a quasi-fixed factor which determines the position of

short-run marginal cost, and increases in employment should reduce the marginal cost of

output.  Finally, the second order principal minor of labor costs, denoted by

2
YY LL YLDET C C C= − , is always positive and significant at the 1% level in column (1) and

at the 10% level in column (2).   These conditions together with convexity of adjustment

costs are sufficient to ensure the convexity of labor costs.

Finally, on convexity, it can easily be proven that, for positive values of ψ ,δ  and

θ , convexity of labor costs in tN  and tL , for given 1/t tL L −∆ , is sufficient to guarantee

the overall convexity of the cost function, provided that the change in employment is not

too negative.

Consider next the slope of marginal cost with respect to output, which has been

debated at length in the inventory literature.28  As we have stated above, standard

assumptions about the production function imply that labor costs are convex in output.

Our specification of the slope of marginal cost with respect to output, however, differs

from that in the standard linear-quadratic inventory model for two reasons.  First, here we

                                                                                                                                                                            

28 See Galeotti, Guiso, Sack and Schiantarelli [1997] for a discussion of the estimation of the slope of
marginal cost in the presence of quasi-fixed factors of production.  In particular, they point out the need to
recognize that production costs depend on the stock of the quasi-fixed factor of production, as well as its
change, in calculating the slope of marginal cost.
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are keeping the quasi-fixed factor tL , constant when varying output, which is

accomplished by varying the perfectly variable factor of production�effective hours

worked per worker. Second, in the standard inventory model adjustment costs depend

upon the change in output, whereas in our model adjustment costs are a function of the

change in the number of workers.  However, a specification of the slope of marginal cost

with respect to output that is closer to that in the standard model is represented by YYMC

in Table I.   YYMC  is the derivative of the marginal cost of output calculated by allowing

the stock of workers as well as effective hours worked per worker to change when output

changes, for given adjustment costs.29  Again, the results imply that marginal cost is

increasing in output: MCYY is always positive and has a marginal significance level

extremely close to 5% in Column 2, which is our preferred result.

A word is in order regarding the quantitative importance of adjustment costs

implied by our econometric results: for instance, using the estimates reported in Table I,

increasing the workforce for one period by 1% generates adjustment costs for an

additional worker that vary between 65% (using instrument set A) and 126% (using

                                                          
29 In general, to calculate the slope of the marginal cost of output, use (11) to compute

Y Y L
LMC C C
Y

∂= +
∂

and
2 2

22YY YY YL LL L
L L LMC C C C C
Y Y Y

∂ ∂ ∂� �= + + +� �∂ ∂ ∂� �

The first term in YMC  is the marginal cost of output calculated by varying hours worked per worker.  The

second term in YMC  is the product of the marginal cost of output calculated by varying the number of
workers and the response of the number of workers to a change in output.  The latter may be compute from
the Euler equation for labor, which is (8) in general, or (18) for the general trans-log model that is used in
the empirical work here.
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instrument set C) of the variable monthly wage bill for a worker.  So the size of

adjustment costs for labor is certainly not trivial, but is not very large either.30

The only problematic aspect of the results presented in Table I is the rejection of

the test of over-identifying restrictions. Although the rejection is very common in

empirical work with the standard model of inventories, the problem reappears in the

context of our more complex model.

Finally, as noted above, if some of the remuneration for effort, e.g., production

bonuses, is not well captured by average hourly earnings data, then an alternative

measure for remuneration per worker is to use the functional form implied by the model

and reported in equation (16), i.e.,  ( )3.0s
t t t tw H H H� �+ −� � .31  We have thus also

estimated (17) and (18) with the earnings component of compensation replaced by

( )3.0s
t t t tw H H H� �+ −� �  in (18).  The results are presented in Table II.  There are very

small differences in parameter estimates, especially for the parameters of the hours

requirement function, but the broad conclusions from Table I are exactly the same. Given

this, in the rest of the paper we will report only the results obtained when we use actual

average hourly earnings.

                                                          
30 A comparison of our results on the size of adjustment costs with those in the literature is not easy, since
most empirical studies focusing on labor are done with lower frequency data. Moreover, there is no unique
way of assessing the magnitude of adjustment costs, and the results depend crucially upon the rate of
change of employment that is assumed in the calculations. That said, using quarterly data for
manufacturing, Shapiro [1986b] finds that adjustment costs for production workers are not significantly
different from zero, while adjustment costs for non-production workers are significant and quantitatively
important. In Chirinko [1995], using annual data for the non-financial business sector, the own adjustment
cost parameter for total employment is not significant but the one capturing interrelated adjustment cost
with capital is significant. The size of adjustment costs is quantitatively small. The empirical literature,
taken together, seems to suggest that labor adjustment costs are not large (see Hamermesh and Pfann
[1996]).

31 Remember that equation (16) is derived from the compensation schedule (14) and the optimal
relationship between effort and hours worked, (15)
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IV. SOME SPECIAL CASES: INTERNAL ADJUSTMENT COSTS

A. No Cross Equation Restrictions

In Column 1 of Table III, we investigate an interesting variation of the basic

model.  In this case, we do not impose the cross-equation restriction implied by the

model, namely, that YLγ  be the same in both the inventory and employment Euler

equations.  Specifically, we allow YLγ  to take two different values, denoted by N
YLγ  and

L
YLγ  respectively.  This is designed to check the impact of imposing the cross-equation

restriction on the other critical parameters of the inventory and employment Euler

equations.  Note that in this case a normalization is needed to identify the parameters of

the inventory equation.  For comparison purposes, we set the parameter of the slope of

marginal inventory holding costs, δ , equal to its value in Table I.

The results are presented in Column 1 of Table III.  The estimated values of N
YLγ

and L
YLγ  are both negative and quite significant.  Further, conditional on the

normalization, they are significantly different from each other and from the value of YLγ

estimated when the cross-equation restriction is imposed.  A Wald test, reported in

Column 1 of Table III, clearly rejects the hypothesis that N
YLγ  and L

YLγ  are the same.  A

consequence of this result is that many of the estimates of the parameters of the model are

quite different from those reported in Table I.  One that particularly stands out is the

parameter that captures the cost of adjusting employment, ψ , which is one of the crucial

parameters of the model, and which becomes negative and looses significance when the

cross-equation restriction is ignored.  Another is that labor costs are not strictly convex in
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output and employment, and the slope of the marginal cost of output is actually negative,

though not significantly so.  These results are quite different from the results in Table I,

and suggest that imposing the restrictions implied by the model in estimation is actually

quite important to obtain parameter estimates that are consistent with the theory.  Failure

to impose the restrictions can give rise to incorrect inferences regarding important issues

under debate, such as whether adjustment costs and labor hoarding are important in

explaining procyclical labor productivity and whether the marginal cost of output is

upward-sloping.

B.  No Inventories

Another interesting variation of the model is to explore the effects of ignoring the

inventory decision.  The literature on labor demand and in particular the recent literature

that is focused on explaining procyclical labor productivity has ignored the impact of the

fact that manufacturing firms typically hold finished goods inventories.  But, if firms hold

inventories, our model implies that inventory decisions should interact with labor

decisions, and thus estimates of labor Euler equations will in general be affected by

whether or not inventory Euler equations are taken into account.

Column 2 of Table III presents the results for a model in which inventories are

absent.  In this case, production equals sales so that t tY S= , and there is no Euler equation

for inventories.32  There is of course an Euler equation for employment.  Here, the

estimates of the first and second order parameters of the effective hours requirement

function are again consistent with the theory, and labor costs are clearly convex in the

stock of workers.  But, the adjustment cost parameter becomes negative and looses its

                                                          
32 Note that, since in this case output is equal to sales and sales are exogenous, it is not meaningful to
calculate the slope of the marginal cost of producing output.
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significance, suggesting that it is very fruitful to consider the employment and inventory

decisions jointly.  Otherwise, incorrect inferences may be drawn regarding the properties

of labor demand and the role of adjustment costs.

C.  Cobb-Douglas Model

In recent empirical work on productivity, the Cobb-Douglas production function has

been widely used.  Moreover, the Cobb-Douglas production function has de facto become

particularly prominent with the tendency in dynamic general equilibrium models to

approximate the Euler equations and the production possibility set with their log-

linearized counterparts. In the context of our model, the Cobb-Douglas production

function yields an implied effective hours requirement function that is a special case of

(12) with all the second-order parameters, the ijγ , set to zero, that is:

0YY LL YL TT YT LTγ γ γ γ γ γ= = = = = =      (20)

We call these the �Cobb-Douglas restrictions�.

Observe that the Cobb-Douglas restrictions yield interesting Euler equations.

Applying (20) to (17) and (18) implies the following Euler equations:

1 1 1 1
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     (22)

Observe in particular that the Euler equations for inventories and employment are now

separable.  That is, because 0YLγ =  by assumption, there are no cross-equation
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restrictions, and thus estimation of (21) will require a normalization. For comparison

purposes, we set δ  equal to its value in Table I.

The results from imposing the Cobb-Douglas restrictions are presented in Table

IV.  We use a Wald statistic to test the hypothesis that the Cobb-Douglas restrictions are

satisfied.  As the W-Statistic in Column 1 of Table IV indicates, the Cobb-Douglas

restrictions are resoundingly rejected.   Furthermore, the Cobb-Douglas specification

results in a labor requirement function that is non-convex in output, and by implication a

declining marginal cost of output, results that are counter to those in Table I when the

Cobb-Douglas restrictions are not imposed.   These results highlight the role the second-

order parameters play in estimating inventory and employment Euler equations, and they

suggest that, at least for this purpose, Cobb-Douglas approximations appear be too

strong.

D.  The Worker-Effective Hours Model

A widely used specification of labor input to the firm is to assume that the production

function depends on total worker-effective hours.33  Specifically, in the literature total

worker-effective hours is defined as t t t t t tA Z L H X L= = , which means that labor input is

the product of hours worked per worker, effort, and the number of workers employed.

With this specification for total worker-effective hours, (2a) becomes

1 1 1( , / , ) ( , / , )t t t t t t t t t tY F H X L L L T F A L L T− −= ∆ = ∆� �      (23)

Now, inverting (23) yields

1( , / , )t t t t tA A Y L L T−= ∆      (24)

                                                          
33 See, for example, Sbordone [1996] and Basu and Kimball (1997) in the labor productivity literature.
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Applying the translog approximation to (24) and assuming again that the effective hours

requirement function is separable in adjustment costs gives

2 2
0ln ln ln 0.5 (ln ) 0.5 (ln )t Y j T j YY j TT jA Y T Y Tα α α γ γ= + + + +      (25)

2
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Because ln ln ln lnt t t t t t tA H X L H X L= = + , (25) may be written as

2 2
0ln ln ln ln 0.5 (ln ) 0.5 (ln )t t t Y t T t YY t TT tH X L Y T Y Tα α α γ γ= − + + + + +

2

1

ln ln 0.5 t
YT t t

t

LY T
L

γ ψ
−

� �∆+ + � �
� �

     (26)

which is a special case of (12) with the restrictions

1Lα = − 0LL YL LTγ γ γ= = =      (27)

We call these restrictions the �worker-effective hours restrictions�.

When the worker-effective hours restrictions are imposed, the Euler equations

now become:
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Again, there is no cross-equation restriction, and thus a normalization is needed to

identify the parameters of the inventory equation.  As above, we assume the value of δ is

that of Table I.
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The results are presented in Column 2 of Table IV.  A Wald test of the worker-

effective hours restrictions indicates that the restrictions are dramatically rejected.

Further, Yα  has the wrong sign and is significant, which contradicts the theory.  Further,

YYC  is now negative and very significant, which implies that labor costs are concave in

output, given employment, which also contradicts the theory.  This contrasts with the

results above where hours worked per worker and employment enter as separate inputs in

the production process; in the latter case, labor costs are convex in output, which is

consistent with the theory.  Finally, in the worker-effective hours model the coefficient

on the adjustment cost parameter is much less precisely estimated.  These results

therefore suggest that a second order approximation to a production function in which

workers and effective hours enter as separate inputs (and not as a product) in the

production function is more consistent with the data, particularly when both inventory

and employment Euler equations are estimated jointly.

V. ALTERNATIVE SPECIFICATIONS

A. External Adjustment Costs

So far we have assumed that adjustment costs are internal to the firm and consist

of lost output.  We will now assume that adjustment costs are external to the firm.   In

this case, the effective hours requirement function, (3a), becomes

( , , )t t t t t tZ H X J Y L T= =
�

     (30)

which is independent of the growth rate of employment.  The corresponding general

trans-log approximation is then

0ln ln ln ln lnt t t Y t L t T tZ H X Y L Tα α α α= = + + +
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2 2 20.5 (ln ) (ln ) (ln )YY t LL t TT tY L Tγ γ γ� �+ + + +� �       (31)

ln ln ln ln ln lnLY t t YT t t LT t tL Y T Y T Lγ γ γ+ + +

The costs the firm minimizes now become
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�      (32)

which includes a term capturing the real external adjustment costs as well as labor costs

and inventory holding costs.  Note that we are assuming that the adjustment costs are

quadratic and proportional to the number of workers employed, are valued at the straight-

time hourly wage rate, and depend on the growth rate of employment.  The firm now

minimizes (32) subject to (30) and (5).

The Euler equation for inventories remains identical to (17), while the one for

employment now becomes

[ ]ln lno
t t t t t L LL t YL t LTb w H w H L Y tα γ γ γ+ + + + +    (18 )′
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Table V mirrors Table I for the case of external adjustment costs. Results are

presented for all three instrument sets.  The overall results are very similar to the ones

obtained for internal adjustment costs. In reality, some types of adjustment costs are

external, while others are internal and take the form of a loss in output, but one has to

make a choice in the empirical implementation. Fortunately, the results are very similar

to the ones obtained with internal adjustment costs. The only minor difference is that in

two out of the three specifications, the adjustment cost parameter ψ  is almost, but not
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quite significant at the 5% level. This suggests, perhaps, that the assumption of internal

adjustment costs is a marginally better approximation to reality.

B. Distributed Lags in Adjustment Costs

So far, current adjustment costs depend solely on the current change in the workforce.

However, given that we are working with monthly data, adjustment costs may be

incurred in the current period from prior adjustments in the workforce as well, if the costs

of expanding or contracting the workforce extend beyond one month.  For example,

training programs for new workers may easily last more than one month.  We thus extend

the model by allowing current adjustment costs to depend on the current and the previous

month�s change in employment.34  Specifically, we extend (12) to

2
0ln ln ln ln ln 0.5 (ln )t t t Y t L t T t YY tZ H X Y L T Yα α α α γ= = + + + +

2 20.5 (ln ) 0.5 (ln ) ln lnLL t TT t LY t tL T L Yγ γ γ+ + +                   (33)
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γ γ ψ µ −

− −

� �∆ ∆+ + + +� �
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with presumably 0 1µ< < .  We expect current adjustment costs to depend relatively

more heavily on current changes in the workforce than on lagged changes, which

accounts for the prediction on µ .  Obviously, when 0µ = , (33) reduces to (12).

The Euler equation for inventories, (17), remains unchanged with the new

effective hours requirement function, (33), but the Euler equation for employment, (18),

now becomes

[ ]ln lno
t t t t t L LL t YL t LTb w H w H L Y tα γ γ γ+ + + + +   (18 )′′

                                                          
34 We also experimented with a specification with two lags in the change in employment with essentially
the same results.
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The results from estimating (17) and (18 )′′  jointly are presented in Table VI.

Again, for comparison purposes, we present results for the same instrument sets used in

Table I.  Many results are quite similar to those with the model without lags in

adjustment costs.  The parameters of the inventory holding cost function, the first and

second order parameters of the hours requirement function, and the convexity of labor

cots are about the same in size and statistical significance.  Still, even in this more general

model, we find the overidentifying restrictions rejected.

Adjustment costs, however, are now described by a basic parameter, ψ , and the

weight, µ , attached to the lagged change in employment.  The estimate of the basic

parameter, ψ , is again positive and about the same size as in the basic specification

reported in Table I, but it is slightly less precisely estimated.  The weight attached to the

lagged change in employment, µ  is positive and non-trivial in size, but it is never quite

significant, which suggests that lagged changes in employment do not have a strong

effect on current adjustment costs.  However, collinearity problems may make it difficult

to sort out precisely the separate contributions of the current and the lagged change in

employment on current adjustment costs.  Given the difficulty of picking up a strong

influence of lagged employment changes on current adjustment costs, we continue to

work with the specification that contains only the effects of current employment changes

on current adjustment costs.
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C. Joint Estimation of the Hours Requirement Function

Thus far, we have jointly estimated the Euler equations, and in doing so we have

imposed a single cross-equation restriction.   In particular, in jointly estimating (17) and

(18), we have imposed the restriction that YLγ  must be the same in the two equations.  As

indicated above, this has an important effect on the estimates of the other parameters of

the model.

There is also the option of using even more fully the restrictions implied by the

model, by estimating jointly the Euler equations, (17) and (18), together with the hours

requirement function, (19) itself.  This dramatically expands the set of cross-equation

restrictions, which now require that , , , , ,Y L YY LL YT LTα α γ γ γ γ  and ψ  as well as YLγ  be the

same across equations.

The results of this more complex estimation problem are presented in Table VII.   We

present results for two cases:  One case is where the hours requirement function contains

only a linear time trend so that 0TTγ = .  Since also the Euler equations for inventories

and employment contain a linear trend, it is as if we de-trended linearly all the variables.

The other case is where the hours requirement function contains a quadratic time trend as

well so that 0TTγ ≠ .   Due to space limitations, we present the results for only instrument

sets B and C for each case, and simply note that, as above, the results for instrument set A

are consistent with those of instrument sets B and C.

The results for the case where the hours requirement function contains only a linear

time trend, Columns (1) and (2) in Table VII, are remarkably similar to those in our basic
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specification in Table I, where the hours requirement function was not estimated.35  Not

surprisingly, the inventory cost function parameters are unaffected by joint estimation of

the hours requirement function.  Although some differences appear in quantitative

magnitudes, the parameters of the hours requirement function are qualitatively similar to

their counterparts in Table I in statistical significance, though LLγ is not significant.  The

adjustment cost parameter is now even more precisely determined, pointing to a clear role

for adjustment costs.  The cost function remains strictly convex, and the marginal cost of

output is steadfastly upward sloping.

When we add a quadratic term to the hours requirement function, Columns (3) and

(4) in Table VII, its coefficient is significantly different from zero. Certain results are

quite similar to the ones obtained when only the two Euler equations for inventories and

employment  are estimated.  The parameters of the inventory cost function, the convexity

of labor costs, and the upward slope to marginal cost are qualitatively similar.  The

parameters of the hours requirement function, however, are affected in two senses:  First,

oα , Lα  and LLγ  reverse themselves in sign, and are all significant.  Second, the

adjustment cost parameter, ψ , is now negative and insignificant.  It appears that adding a

quadratic time trend to the hours requirement function alters the estimates of the

parameters capturing the effects of employment.  However, LLC  remains positive, very

precisely estimated, and almost exactly the same magnitude as in the case where the

quadratic term does not appear, so that the hours requirement function and labor costs

remain strictly convex in employment.

                                                          
35 Note that although the coefficient of the linear trend term is positive, the coefficients of the interaction
terms between time, on the one hand, and employment and output, on the other are negative. As a result,
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VI. EMPIRICAL WORK WITH TWO-DIGIT INDUSTRIES

We also estimated the model with data from the two-digit industries commonly

referred to as industries that produce to stock.  These include Tobacco, Apparel and

Textiles, Chemicals, Petroleum and Coal, and Rubber and Plastics.  The results for the

case where the two Euler equations, (17) and (18), are estimated jointly are presented in

Table VIII.  The results for the case where hours requirements function, (19), is estimated

jointly along with the two Euler equations are presented in Table IX.

Consider first the results for the case where just the two Euler equations are

estimated jointly, which are presented in Table VIII.  The target inventory-sales ratio, θ ,

is very precisely estimated and has a plausible size in each industry.  The target

inventory-sales ratio is estimated to be about one month�s sales in each industry.  The

slope of marginal inventory holding costs, δ , however, experienced mixed results, being

positive and significant in two industries, but negative and significant in two others.   The

adjustment cost parameter, ψ , is positive in all industries except Petroleum.  In the

industries where it is positive, ψ exceeds its standard error, though it is only significant at

the five percent level in Apparel and Textiles and at the ten percent level in Chemicals.

These are also the only two industries in which adjustment costs are economically

important.  Labor costs are convex in output and employment in all cases except

Tobacco.  Finally, the slope of marginal cost is positive in all industries except again for

Tobacco, but it is significant only in the Apparel and Textiles industry.

Consider next the case where the hours requirement function is estimated along

with the Euler equations. The results are presented in Table IX.  The results are generally

                                                                                                                                                                            
the effect of time on the hours requirement function is negative for all the observations, as one would
expect. The same is true for the model including a quadratic trend as well.
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consistent with those in Table VIII.  In at least two respects, however, the results

improve.36  First, the adjustment cost parameter, ψ , in the industries in which it is

positive, is now generally more precisely estimated, and except in the Rubber industry it

is now statistically significant at at least the five percent level.  This provides evidence,

beyond the non-durable aggregate, for adjustment costs to labor, and its implications for

procyclical labor productivity and the persistence of inventory movements.  Second,

except again for the Tobacco industry, the slope of marginal cost with respect to output is

positive, and is now statistically significant at at least the five percent level in three of the

four industries where it is positive.  This provides considerable support for the

proposition that marginal cost is generally upward-sloping across the two digit industries.

Taking the results of Tables VIII and IX together, we conclude that the results

for the two-digit industries are generally consistent with those for the nondurable

aggregate.  Except for Tobacco, the marginal cost of output clearly slopes upward.  There

is evidence in favor of adjustment costs for labor, in the sense that the adjustment cost

parameter is generally significant, though adjustment costs appear to be quantitatively

large in only two industries.  The results on inventory holding costs and thus an

accelerator motive are more mixed.  The target inventory-sales ratio is positive, a

plausible size, and very precisely estimated, but the slope of marginal inventory holding

costs is negative and significant in several industries.

VII. CONCLUSIONS

In this paper, we propose a model that focuses on the interaction of inventory

decisions and labor input decisions.  Unlike the standard inventory model, we carefully

                                                          
36 The only area where the results deteriorate in comparison with those in Table VII is that the inventory
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specify the role of labor in the firm�s decision process, including the decomposition of

labor input into separate employment and effective hours worked decisions in the

production process, the structure of labor costs, and the nature of adjustment costs on

labor.  Further, we use a translog approximation for labor costs and thus production costs.

Unlike the labor demand literature, we allow the firm to take into account inventory

positions in making employment and effective hours decisions.  The model yields Euler

equations for both inventories and employment with implied cross-equation restrictions.

The cross-equation restrictions are imposed when the model is estimated with monthly

data on the non-durable aggregate and selected two-digit industries of U.S.

manufacturing.

The empirical work yields a number of interesting results and implications:

(1) Estimating the Euler equations for inventories and employment jointly so that the

cross-equation restrictions are imposed turns out to be extremely important.   If

the restrictions are not imposed, the parameters of the model on which there are

no cross-equation restrictions can change drastically, which can alter dramatically

the implications of the model for important debates in the inventory and labor

demand literature. When we estimate the hours requirement function (with a

linear trend) jointly with the Euler equations for inventory and employment, we

get similar parameter estimates and implications.

(2) We find reasonably strong evidence that the short-run marginal cost of producing

output is upward-sloping in non-durable manufacturing and all but one two-digit

industry.  This implies that the evidence does not support the idea that declining

short-run marginal cost is why production varies more than sales.  Nor does it

                                                                                                                                                                            
holding cost parameter is negative and significant in the Petroleum industry.



40

support the idea that short-run increasing returns to labor is an explanation for

procyclical labor productivity.

(3) We find considerable evidence that adjustment costs for labor play an important

role in inventory and labor demand decisions for the non-durable aggregate and

for two of the two digit industries.  There is, therefore, some evidence that

adjustment costs and labor hoarding are a potential explanation for the procyclical

behavior of observed labor (or total factor) productivity and for the persistence of

inventory movements.

(4) Certain simplifying assumptions that are often made in the empirical and

theoretical literature are rejected by the data.  Specifically, the restrictions

imposed on the model by a Cobb-Douglas specification are rejected.  Similarly,

assuming that labor input is measured by the product of employment and effective

hours worked per worker, rather than by treating each as separate inputs in the

production process, is also rejected.  These results also affect inferences regarding

the role of adjustment costs in labor productivity movements and the slope of the

marginal cost of production.

(5) We find mixed evidence for an �accelerator� motive for holding inventories.  The

target inventory-sales ratio is very precisely estimated and plausible in all

industries.  However, the slope of inventory holding costs, while positive in the

nondurable aggregate and several two-digit industries, is negative in other

industries.

Given that the empirical work demonstrates the importance of looking at the

interaction of decisions by the firm, the model and empirical work need to be extended in
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a number of directions.  The extensions are also prompted by the fact that the over-

identifying restrictions of the model are rejected, suggesting the possibility that some of

the simplifying assumptions we have made need to be relaxed.  One extension is to

expand the margins along which the firm makes decisions to include the capital

utilization and investment decisions.  However, we note again that a difficulty here is

obtaining reliable monthly data on the capital stock.  Another is to relax the assumption

that the materials input decision is a fixed proportion of output and to allow for inventory

decisions at different stages of fabrication, including not only finished goods decisions,

which is done here, but also work-in-progress and materials and supplies decisions.  This

would permit the model to be applied to durable goods industries where work-in-progress

and materials and supplies inventories play a relatively more important role.  Moreover, it

would be interesting, although very complex due to the aggregation difficulties, to allow

for fixed components in labor adjustment costs, in addition to the convex component used

here. A final extension is to model the pricing decision of firms and to estimate it jointly

with the conditions for cost minimization.  All this is left for future work.
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TABLE I
Internal Adjustment Costs Model

Earnings per Hour Measure: Average Hourly Earnings Data

Parameter
(1)

Instrument Set A
(2)

Instrument Set B
(3)

Instrument Set C

αY 2.005***
             (.349)

2.976***
            (.510)

3.570***
             (.684)

αL -26.636***
             (8.693)

-25.921***
             (8.839)

-26.631***
             (9.493)

γYY .121***
            (.029)

.190***
            (.048)

.241***
            (.065)

γLL 2.015**
            (1.003)

1.994*
             (1.024)

2.119**
            (1.098)

γYL -.281***
              (.049)

-.420***
             (.074)

-.507***
             (.099)

γYT -.0003***
            (.0001)

-.0003*
              (.0002)

-.0004*
(.0002)

γLT -.026***
             (.0003)

-.026***
             (.0004)

-.026***
             (.0004)

ψ 44.482**
           (22.489)

49.962**
           (24.071)

86.586**
           (42.858)

θ .790***
            (.016)

.785***
            (.012)

.790***
            (.014)

δ 1306.45**
            (528.876)

2320.81***
           (756.710)

2887.63***
         (1009.62)

CYY 114.785***
           (36.819)

141.592**
            (61.682)

177.996**
            (86.338)

CLL 56.243***
              (.265)

56.282***
              (.272)

56.187***
              (.298)

CYL -17.663**
              (7.652)

-36.234***
           (11.585)

-47.248***
           (15.867)

DET 6143.85***
         (2147.57)

6656.16*
           (3628.56)

7768.76
(5199.57)

MCYY 146.943***
            (52.089)

168.867*
(87.121)

207.628*
(122.850)

J Test 126.534
[.000]

124.947
[.000]

117.862
[.000]

Footnotes:
(i) Standard errors are in parentheses, and are estimated with a covariance matrix that allows for

heteroscedasticity and MA(1) errors.
(ii) Three asterisks denote significance at the1% level; two asterisks denote significance at the 5% level; and one

asterisk denotes significance at the 10% level.
(iii) Number of observations: 414.
(iv) The J test indicates the Test of Over-identifying Restrictions. P-value in square brackets.
(v) List of instrument in addition to constant and trend:

ILt= 2
11 )/(,,ln,,,/,/ −− ∆ tttttttttttt

s
t LLHWYWbSNYHLW

Instrument Sets    (A): ILt-1, ILt-2, ILt-3;;    (B): ILt-2, ILt-3, ILt-4 ;      (C): ILt-2, ILt-3
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TABLE II
Internal Adjustment Costs Model

Earnings per Hour Measure: Functional Form Implied by the Model

Parameter
(1)

Instrument Set A
(2)

Instrument Set B
(3)

Instrument Set C

αY 1.979***
             (.345)

2.944***
            (.506)

3.537***
             (.681)

αL -25.890***
             (8.681)

-25.290***
             (8.795)

-26.062***
             (9.441)

γYY .121***
            (.029)

.188***
            (.048)

.240***
            (.064)

γLL 1.920*
            (1.001)

1.912*
             (1.018)

2.044*
            (1.092)

γYL -.277***
              (.049)

-.416***
             (.073)

-.504***
             (.099)

γYT -.0003**
            (.0001)

-.0002
              (.0001)

-.0004*
(.0002)

γLT -.026***
             (.0003)

-.026***
             (.0004)

-.026***
             (.0004)

ψ 43.908**
           (22.329)

48.499**
           (23.856)

85.256**
           (42.470)

θ .789***
            (.016)

.785***
            (.012)

.789***
            (.014)

δ 1300.04**
            (523.813)

2307.91***
           (750.838)

2880.79***
         (1005.11)

CYY 113.403***
           (36.477)

140.357**
            (61.263)

177.311**
            (86.082)

CLL 56.811***
              (.265)

56.854***
              (.271)

56.760***
              (.296)

CYL -17.660**
              (7.614)

-36.119***
           (11.552)

-47.333***
           (15.885)

DET 6130.75***
         (2148.53)

6675.29*
           (3640.06)

7823.77
(5236.05)

MCYY 144.707***
            (51.366)

167.098*
(87.145)

206.491*
(121.924)

J Test 126.396
[.000]

124.831
[.000]

117.820
[.000]

Footnotes: see Table I.
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TABLE III
Internal Adjustment Costs Model: Special Cases

No Cross equation Restrictions Case and No Inventories Case

Parameter
(1)

No Cross Equation
Restrictions

(2)
No Inventories

αY .764***
                   (.150)

αL -189.534***
                   (11.449)

-188.204***
                   (12.767)

γYY .069***
                  (.017)

γLL 31.836***
                   (1.772)

31.283***
                   (1.982)

N
YLγ -.118***

                   (-.022)
L
YLγ -24.950***

                   (1.255)
γYT .0001*

                    (.00007)
γLT .028***

                   (.003)
.026***

                   (.003)
γSL -24.068***

                    (1.408)
ψ -3.713

                    (17.898)
-13.443

                     (19.024)
θ .768***

(.005)

CYY 6.536
                   (26.3450)

CLL 63.611***
                     (.456)

63.290***
                     (.528)

N
YLC -3874.57***

                  (194.80)
L
YLC -352805.0***

                 (38833.9)
DET -.138E+10***

               (.221E+9)
YYMC -113.509

                   (622.441)
NA

Wald Test 390.884
[.000]

J Test 107.634
[.000]

100.070
[.000]

Footnotes: see Table I.  In addition:
In column (1) δ has been normalized to 2320.81, which is the value it takes in column (2) of Table I.
The Wald test refers to the restrictions implied by the models in column (1) and (2) relative to the more general translog model

of Table I.
Instrument Set:  Instrument set B in both column (1) and (2).
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TABLE IV

Internal Adjustment Costs Model: More Special Cases
Cobb-Douglas Model and Workers-Effective Hours Model

Parameter
(1)

Cobb-Douglas Model
(2)

Worker-Effective Hours
Model

αY .037***
                   (.006)

-.065**
                     (.027)

αL -17.117***
(.127)

γYY .018**
                    (.007)

γYT .0002***
                  (.00004)

ψ 255.051***
                  (92.728)

502.819
 (418.217)

θ .770***
                   (.003)

.763**
                    (.003)

CYY -52.911***
                    (8.504)

-42.058***
                  (13.816)

CLL 63.990***
                   (0.982)

CYL -10.636***
                    (1.787)

DET -3498.86***
(589.438)

YYMC -71.627***
                  (11.635)

.838E+38***
              (.166E+37)

Wald Test 9069.148
[.000]

198708.28
[.000]

J Test 170.898
[.000]

206.033
[.000]

Footnotes: see Table I. In addition:

(i) The Wald test refers to the restrictions implied by the models in column (1) and (2) relative to the
more general translog model of Table I.

(ii) List of instrument in addition to constant and trend:
Instrument Set: ILt = 2

11 )/(,,ln,,,/,/ −− ∆ tttttttttttt
s

t LLHWYWbSNYHLW , lagged 2, 3,
and 4 periods in both columns.
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TABLE V

 External Adjustment Costs Model

Parameter
(1)

Instrument Set A
(2)

Instrument Set B
(3)

Instrument Set C

αY 2.007***
             (.348)

3.007***
            (.511)

3.684***
             (.708)

αL -26.847***
             (8.693)

-26.443***
             (8.792)

-27.489***
             (9.370)

γYY .122***
            (.029)

.192***
            (.049)

.249***
            (.067)

γLL 2.040**
            (1.003)

2.057**
            (1.018)

2.225**
            (1.085)

γYL -.281***
             (.049)

-.425***
             (.074)

-.524***
             (.103)

γYT -.0003**
             (.0001)

-.0003
(.0002)

-.0004*
(.0002)

γLT -.026***
             (.0003)

-.026***
             (.0004)

-.025***
             (.0004)

ψ 6995.84*
           (3857.59)

7643.77*
           (4051.19)

13683.4**
 (6938.03)

θ .790***
            (.016)

.785***
             (.012)

.790***
            (.014)

δ 1297.13***
           (530.138)

2331.36***
           (764.116)

2946.26***
         (1043.13)

CYY 114.832***
           (36.929)

142.013**
            (62.357)

184.165**
            (89.065)

CLL 56.249***
              (.266)

56.295***
              (.271)

56.214***
              (.294)

CYL -17.822**
             (7.668)

-36.803***
           (11.683)

-49.009***
           (16.387)

DET 6141.55***
         (2154.68)

6640.16*
(3670.22)

7950.71
(5371.66)

MCYY 146.930***
           (52.251)

168.852*
(88.081)

213.958*
(126.677)

J Test 126.672
[.000]

125.269
[.000]

118.662
[.000]

Footnotes: see Table I.
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TABLE VI

Distributed Lag Internal Adjustment Costs Model

Parameter
(1)

Instrument Set A
(2)

Instrument Set B
(3)

Instrument Set C

αY 1.902***
             (.339)

2.759***
            (.497)

3.574***
             (.689)

αL -25.226***
            (8.876)

-24.952***
             (8.969)

-27.093***
             (9.351)

γYY .119***
            (.028)

.184***
            (.046)

.248***
            (.066)

γLL 1.847*
             (1.024)

1.8871**
           (1.037)

2.174**
            (1.082)

γYL -.268***
             (.048)

-.393***
             (.072)

-.511***
             (.100)

γYT -.0004*
            (.0002)

-.0003*
(.0002)

-.0004*
(.0002)

γLT -.0260***
            (.0003)

-.0257***
            (.0004)

-.0255***
            (.0004)

ψ 48.360**
           (22.509)

47.924*
            (27.227)

75.402
(47.327)

µ .244
(.232)

                .335
(.333)

.128
(.283)

Θ .789***
            (.016)

.784***
            (.012)

.789***
            (.014)

δ 1294.75**
            (515.79)

2245.20***
           (727.11)

2938.80***
         (1037.24)

CYY 112.400***
           (36.105)

138.438***
           (56.728)

184.443**
            (88.381)

CLL 56.196***
              (.273)

56.215***
              (.276)

56.191***
              (.292)

CYL -17.271**
             (7.431)

-34.542***
           (11.175)

-48.423***
           (16.206)

DET 6018.06***
         (2099.95)

6589.17*
           (3513.86)

8019.38
(5331.52)

MCYY 144.307***
           (51.036)

166.828**
            (84.528)

215.497*
           (125.808)

J Test 126.358
[.000]

123.923
[.000]

118.205
[.000]

Footnotes: see Table I.
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TABLE VII
Joint Estimation of the Hours Requirement Function and the Euler Equations

for the Internal Adjustment Costs Model

Linear Trend Quadratic Trend
Parameter

(1)
Instrument Set B

(2)
Instrument Set C

(3)
Instrument Set B

(4)
Instrument Set C

α0 36.911***
      (8.885)

33.060***
      (10.850)

-30.488***
       (9.259)

-25.118**
       (10.372)

αY 6.800***
         (1.591)

 9.779***
       (2.135)

4.655***
         (.863)

6.714***
          (1.275)

αL -7.629**
        (4.324)

        -7.320
        (5.342)

24.382***
        (4.315)

20.926***
        (4.867)

αT .221***
        (.005)

.216***
        (.007)

.235***
         (.003)

.230***
        (.004)

γYY .865***
        (.158)

1.091***
        (.232)

.439***
          (.093)

.578***
        (.138)

γLL .185
           (.547)

          .335
         (.690)

-3.684***
          (.510)

-3.156***
          (.585)

γYL -1.101***
         (.234)

-1.516***
         (.320)

-.706***
         (.130)

-.993***
         (.191)

γTT -.00006***
       (.000003)

-.00006***
       (.000004)

γYT -.0028***
        (.0005)

-.0035***
        (.0007)

-.0004
           (.0003)

-.0005
           (.0004)

γLT -.025***
         (.0005)

-.024***
        (.0008)

-.026***
         (.0004)

-.025***
         (.0005)

ψ 53.157***
       (22.258)

78.265**
       (30.689)

-11.096
 (15.126)

-13.288
        ( 19.531)

θ .842***
        (.036)

.847***
         (.039)

.797***
         (.011)

.801***
         (.014)

δ 5656.32**
      (2555.55)

7569.42**
      (3482.74)

5651.61***
       (1418.94)

7462.83***
     (2099.41)

CYY 928.610***
     (220.276)

   1279.79***
      (383.629)

309.687***
         (126.090)

491.071**
      (210.893)

CLL 56.397***
          (.258)

  56.413***
         (.298)

55.575***
          (.233)

55.715***
          (.267)

CYL -132.566***
       (39.312)

-196.659***
       (54.471)

-111.159***
       (21.016)

-160.973***
        (31.644)

DET 34797.6**
        (11906.5)

        33522.7*
      (18055.8)

4854.69
 (6675.53)

1447.61
(10376.8)

MCYY 1094.86***
     (273.616)

1367.18***
       (428.628)

284.233**
       (163.022)

393.242
(252.093)

J Test 171.808
[.000]

166.496
[.000]

159.774
[.000]

156.883
[.000]

Footnotes: see Table I.
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TABLE VIII

Production to Stock Industries: Internal Adjustment Costs Model

Param.
(1)

Tobacco

(SIC 21)

(2)
Apparel and

Textile
(SIC 23)

(3)
Chemical

(SIC 28)

(4)
Petroleum
and Coal
(SIC 29)

(5)
Rubber and

Plastic
(SIC 30)

αY .011***
   (.003)

-.004
(.004)

.218***
    (.039)

-.033***
     (.0094)

-.033***
     (.0060)

αL 37.836***
    (3.551)

83.570***
  (9.870)

12.562***
    (4.228)

31.229***
    (1.896)

3.720
(2.339)

γYY -.00004
      (.00019)

.0006**
     (.0003)

-.010**
      (.004)

-.0002
(.0008)

-.002**
(.0006)

γLL -11.676***
      (.813)

-13.444***
     (1.370)

-3.584***
      (.669)

-8.489***
      (.393)

-2.387***
      (.398)

γYL -.002***
     (.0007)

.0005
(.0005)

-.032***
     (.006)

.0064***
    (.0019)

.005***
     (.0010)

γYT -.000008***
  (.000003)

-.000004**
   (.000002)

.000001
    (.00002)

.000007*
(.000004)

-.000005
 (.000004)

γLT -.053***
     (.002)

-.044***
     (.002)

-.027***
     (.0003)

-.032***
     (.0003)

-.023***
     (.0008)

ψ 3.552
(2.479)

57.535**
    (23.665)

42.333*
    (24.964)

-2.132
       (1.846)

6.037
(5.457)

θ .570**
     (.249)

1.142***
     (.056)

1.080***
     (.057)

.764***
     (.053)

1.144***
      (.141)

δ 3.039
(3.968)

13.187**
     (6.177)

-51.489*
(29.033)

7.446*
(4.463)

-13.643**
(5.963)

CYY -9.888**
     (4.536)

22.933***
    (6.569)

13.947
(20.174)

2.496
(2.587)

47.342
 (29.778)

CLL 12625.5***
       (84.890)

226.504***
     (2.014)

730.932***
     (3.571)

5253.44***
(22.892)

714.272***
(3.391)

CYL -8.230**
     (3.884)

.106
(.787)

20.351***
    (7.869)

5.363**
    (2.351)

22.449***
    (4.848)

DET -124909.0**
    (57224.1)

5194.32***
 (1480.99)

9780.40
   (14671.8)

13085.7
(13576.9)

33310.9
(21097.8)

MCYY -10.128**
      (4.592)

23.094***
    (6.609)

11.179
(19.241)

3.984
(3.610)

36.085
(22.553)

J Test 43.508
[.182]

76.773
[.000]

120.014
[.000]

87.721
[.000]

122.432
[.000]

Footnotes: see Table 1. In addition:
(i) MA(1) errors. List of instrument in addition to constant and trend:

Instrument Set: ILt= 2
11 )/(,,ln,,,/,/ −− ∆ tttttttttttt

s
t LLHWYWbSNYHLW , lagged 2, 3, and

4 periods.
(ii) Number of observations: 318 for columns (2), and (3); 414 for columns (3), (4) and (5).
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TABLE IX
Production to Stock Industries:

Joint Estimation of the Hours Requirement Function and the Euler Equations
for the Internal Adjustment Cost Model

Param.
(1)

Tobacco

(SIC 21)

(2)
Apparel and

Textile
(SIC 23)

(3)
Chemical

(SIC 28)

(4)
Petroleum
and Coal
(SIC 29)

(5)
Rubber and

Plastic
(SIC 30)

αo -16.033***
    (3.131)

    39.721***
     (6.999)

  -14.100***
     (3.032)

   -32.705***
(1.437)

    7.329***
      (2.033)

αY .150***
    (.029)

.009**
      (.004)

.224*
      (.133)

-.028
  (.042)

-.067***
     (.024)

αL 33.730***
     (2.833)

-5.847
      (3.898)

    22.146***
      (1.925)

    41.420***
      (1.191)

  8.130***
     (1.391)

αT .152***
     (.007)

   .146***
       (.005)

 .173***
      (.002)

 .152***
      (.001)

.168***
     (.003)

γYY -.004**
(.002)

   .0007***
      (.0002)

      -.027***
       (.010)

 .019***
      (.005)

-.009***
     (.002)

γLL -10.805***
       (.645)

-1.032*
       (.543)

  -5.080***
      (.306)

  -10.578***
      (.248)

-3.092***
      (.235)

γYL -.033***
     (.006)

 -.001**
(.0005)

-.020
        (.022)

.004
(.009)

.013***
     (.004)

γYT -.0001***
    (.00003)

-.000009***
  (.000002)

-.0003***
    (.00005)

-.0001***
    (.00003)

-.00006***
    (.00002)

γLT -.050***
     (.002)

-.025***
     (.0008)

-.027***
     (.0003)

-.034***
     (.0002)

-.022***
     (.0005)

ψ 3.954**
    (1.665)

33.772**
    (13.951)

88.647***
   (28.384)

-2.631**
     (1.305)

       2.034
      (3.895)

θ .359***
     (.015)

  1.211***
      (.070)

1.080
-

.614***
     (.024)

  .896***
      (.045)

δ 224.454***
    (47.464)

 14.403**
     (5.865)

-244.246***
    (86.010)

-115.147***
    (28.915)

-86.734***
   (29.709)

CYY -124.584**
(52.119)

   17.662***
     (5.484)

106.439
      (69.763)

36.280**
    (15.143)

287.591**
  (135.862)

CLL   12847.0***
    (72.768)

   237.040***
     (1.331)

  712.798***
     (2.818)

    5250.37***
(21.627)

703.734***
     (2.989)

CYL -41.816
  (34.634)

-.969
        (.731)

  81.231***
    (25.220)

-35.694*
    (17.476)

87.483***
    (21.206)

DET -.160E+07**
(670645.0)

4185.73***
   (1302.39)

69271.1
(49590.9)

189208.0**
   (79677.6)

194734.0**
    (92994.8)

MCYY -127.520**
(52.669)

17.734***
    (5.512)

98.900
(66.396)

50.413**
    (21.055)

218.138**
   (102.867)

J Test 123.512
[.000]

127.010
[.000]

180.333
[.000]

140.562
[.000]

148.302
[.000]

Footnotes: see Table VIII. In addition, convergence of the objective function was not achieved in Industry
28 when all parameters were estimated.  Hence, θ was set at its value in Table VIII.
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