Facilitating applied economic research with Stata

Christopher F Baum
Boston College

January 2002

Abstract

We describe the Stata software environment, and illustrate how it may be profitably
employed for applied economic research. Stata stands between “point and click” statistical
packages and matrix languages in terms of extensibility and ease of use, and provides
web-accessible features that enhance collaborative research and instruction.

Introduction

Applied empirical research in economics and finance has traditionally involved the
use of two types of high-level software: statistical/econometric packages, such as TSP,
SAS, RATS or eViews, and matrix languages, such as MATLAB, GAUSS, S-Plus or Ox.
Each type has its strengths and weaknesses. In this essay, we describe the middle ground
posed by the Stata statistical package and its programming language, and its usefulness in
rapid prototyping of sophisticated econometric routines. Stata, a rapidly evolving software
environment, brings several unique features to empirical researchers, particularly for those
collaborating from diverse locations, and those relying on other Stata users for assistance
with the implementation of new capabilities. Although Stata is a commercial product, its
evolution is a unique blend of its vendor’s efforts and the sophisticated contributions of a
broad set of users, interchanged via the package’s Internet-access features.

The plan of the paper is as follows. In the next section, we discuss the fundamental
design of Stata’s software environment. Section 3 describes the tools provided to Stata
users for advanced software development efforts. In Section 4, we discuss the various
means by which Stata is integrated with the Internet, and the implications of that integration
for collaborative research and distance learning. Section 5 presents a case study of the
development of a routine for the analysis of endogeneity in a regression equation, and
discusses a Monte Carlo experiment evaluating the routine’s performance. Concluding
remarks are offered in Section 6.

2

The Stata software environment

The Stata software environment provides a unique middle ground between statistical
packages with a defined feature set and open-ended matrix languages. In the former context,
a variety of econometric procedures are available, with well-formatted results, batteries of
diagnostics, and predesigned graphical output. Data series may be referred to by name, and
missing values and transformations such as lags and differences may be readily handled:
the software does the housekeeping. But extending the context of many packages (adding
estimation procedures, customizing output, or reusing the results of computed quantities)
may be difficult, and almost without exception the user-provided extensions to statistical
packages will require special handling. User-written procedures will not be “first—class
citizens” in most statistical package environments, but will require sourcing or include
statements to make them available within the package. User-written procedures often
include, at best, comment statements providing on-line help. In summary, if a statistical
package provides the econometric capabilities that you seek, and you are satisfied with the
formatting of its output (or ability to transfer computed results to an external file), you may
be quite satisfied with such an environment. In other circumstances—e.g., if you seek to
utilize a very recently developed econometric procedure that has not yet been implemented
as an affordable update for your package of choice by its vendors—one may find that
considerable effort is required to develop and test the statistical routines necessary for an
empirical research project.

Many applied researchers, and a preponderance of econometric theorists, circumvent
the restrictions posed by the defined feature set of statistical packages by employing a
matrix language such as MATLAB, GAUSS, S-Plus or Ox. The argued advantage of
these languages is their extensibility: one may translate any complex sequence of matrix
operations into the language, without the explicit loops or extensive libraries that would be
required in C, C++, or Fortran 90. Unlike these compiled languages, the matrix languages
are interpreted languages, supporting more rapid development and allowing for interactive
use and debugging. Their disadvantages—beyond execution speed, since most (with the
notable exception of Ox) are quite slow, even on powerful hardware—relate to the greater
housekeeping burden that they impose on the researcher. The convenience features of the
statistical packages’ languages are generally absent from matrix languages, in which one
must explicitly keep track of the correspondence between named variables and columns of
matrices, take account of observations lost through lags, differences, and the handling of
unbalanced panel data, and provide much of the logic for the formatted output of results.
While the matrix languages conceptually support reusable code, it appears to be relatively
scarce in practice.! For example, many researchers will provide the GAUSS code used
in their work on request, but those routines almost without exception contain explicit
references to the particular problem they have solved in terms of the dimensions of the
problem, the specific files accessed, and the specific form of the output. A building—block
approach is notably absent. Another disadvantage of many of the matrix languages is their

L A notable exception is James P. LeSage’s Econometrics Toolbox for MATLAB (http: //www.spatial-

econometrics.com/), which provides an exhaustive set of econometric routines for MATLAB, with full
documentation and an extensible development environment, at zero cost.

2

reliance on numerous components, each sold separately (MATLAB “toolboxes” or GAUSS
“applications”), implying that most users will have a different set of available functions in
their copy of the language.> The matrix languages are generally more constrained in terms
of cross-platform availability than are many statistical packages.

The Stata software environment provides an interesting middle ground. Stata, a product
of Stata Corporation (College Station, TX: http://www.stata.com), is a statistical
package marketed to a diverse set of customers, with the greatest concentration in the health
sciences, rather than econometrics or social science research. Like its major broadly-based
competitors SAS and SPSS, Stata offers a wide range of statistical and econometric
capabilities for the researcher who merely wants to plug in the data and execute a routine
statistical analysis. But Stata diverges from these packages, and from econometric packages
like TSP, eViews and RATS as well, by promoting its extensibility, and providing explicit
support for the development and dissemination of procedures crafted by its user community.
The core functionality of the package itself may be readily upgraded by its vendor between
major releases, and as we will discuss in Section 4, those upgrades (as well as bugfixes)
may be readily acquired and installed by the user base. Like other statistical packages, Stata
performs the housekeeping chores: allowing the user to name variables, operate on variables
with wildcard syntax, and rely on the program to keep track of missing values, lags, and the
messy details of unbalanced panel data. Advanced features include the ability to transform
“wide” data (such as those used in seemingly unrelated regression estimation) into “long”
data (that which has been stacked by column with the “vec” operator), suitable for panel data
estimators such as fixed effects and random effects. Unlike some statistical packages, Stata
operates in a vector context, so that transformations (generating new variables and revising
existing variables) are specified without explicit loops—and as with matrix languages,
explicit loops in this context carry a speed penalty. The entire dataset is held in memory, so
that transformations and most estimation procedures are very fast, even when hundreds of
thousands of observations are defined. This implies the need for sizable memory resources,
but the cost of relaxing that constraint today is quite minimal for most systems.

In contrast to the matrix languages, Stata provides a broad set of preformatted output
routines, so that the user need not specify the format and perform housekeeping chores
in order to generate all of the items needed for presentation of the results at the desired
precision. All Stata statistical commands leave results in the program’s data structures, so
that customized output is readily generated by extracting items from these data structures.
Commands are either “r-class” routines, which return results in the r () data structures,
or ‘e-class” (estimation) routines, which return results in the e () data structures. Each
data structure may contain scalars, local macros, matrices, and functions: for instance,

r (mean) contains the mean of a series after application of r-class command summarize,
while e (b) is a matrix (row vector) of estimated coefficients returned by e-class command
regress. Results are available until another r-class or e-class command is executed, and
may be examined with commands return list orestimates list.

Stata provides support for users’ programming of statistical optimization routines

2 Jurgen Doornik’s Ox language (http: //www.nuff.ox.ac.uk/Users/Doornik /doornik.html#ox)

is better placed in this regard, in that additional packages in that environment are generally freely downloadable.

3

through its m1 (maximum likelihood) and nl (nonlinear least squares) commands.’ It also
contains extensive support for Monte Carlo experiments through its simul command,
and for bootstrap sampling and estimation via the bstrap command. Both simul and
bstrap require some degree of programming, but in return Stata handles the many
housekeeping details of organizing and saving the results of these experiments.

Unlike both competing statistical packages and the matrix languages, Stata as a product
is monolithic: there are no add-ons or optional components available as separate commercial
products, so that users’ Stata environments are likely to be more homogeneous. Stata is fully
cross-platform, with the identical look and feel and product functionality on all supported
platforms: currently all versions of Windows, Macintosh OS 8.6 and 9, Mac OS X, Linux
(Intel and PPC), and almost every flavor of Unix. Uniquely among the products mentioned,
Stata’s binary files are exchangeable across “big-endian” and “little-endian” platforms, so
that no “export format” nor “transport file” is needed to utilize the binary files on every
supported platform—and as discussed below, to access them via Hypertext Transport
Protocol (http) across the Internet.

Software development in Stata

The software development environment created by the designers of Stata is both
evolutionary and revolutionary. In its fundamental design, Stata harks back to Unix,*
with a very small executable kernel containing the most frequently used commands, and
those commands which for reasons of efficiency must be executed in compiled code—e.g.,
elementary arithmetic and input-output routines. The preponderance of Stata commands
(over 82% in the most recent version, 7.0, of January 2000) are provided by several
hundred separate “ado—files”: automatic do—files, or procedures, whose names correspond
to user commands. This design promotes timely updates to the software for bugfixes, since
updating the ado—files (which are plain text files) can be achieved by merely copying the
corrected files to the appropriate locations (which, as we discuss below, can be performed
automatically). Kernel updates are occasionally provided (on average, less than once per
month), but since the kernel is quite small (1.5-2 Mb, depending on platform) updated
versions can readily be transferred across the Internet.

For a Stata user, the most interesting aspect of this structure is the concept of the
“adopath”: a Unix-like path containing a number of directories which is searched for an
ado-file containing the specified command. The official Stata directories are naturally on the
path, but so are directories such as “ado/stbplus,” “ado/personal” and the current directory.
An extensive library of user-written commands, documented in the Stata Technical Bulletin
(STB) over the last ten years,’ is freely accessible from Stata’s web site. The adofiles and

3
4

To make effective use of the m1 environment, the book by Gould and Sribney (1999) is essential.

There are also similarities to MATLAB’s structure, in which the vendor’s “.m-files,” loaded on demand, define
a number of the language’s commands.

5 As of fall 2001, the Stata Technical Bulletin (STB) has been transformed into a quarterly, reviewed journal, The
Stata Journal (http://www.stata-journal.com). It will continue to play the STB’s role in the distribution

4

associated help files for these commands may be downloaded, installed in the appropriate
directory (e.g. “ado/stbplus”) and the commands defined therein will become first—class
citizens in the Stata command language. A continuously expanding archive of user-written
additions to Stata is also available as the Boston College Statistical Software Components
(SSC) archive,® which provides free access to several hundred Stata modules, which may be
installed in the same manner.

The innovative concept underlying this structure is exemplified in the “level playing
field” that it creates. A user-written command, whether downloaded from the STB, acquired
from a colleague, or written oneself is indistinguishable from any “official” Stata command
once it is placed on the “adopath.” This feature is similar to that implemented in MATLAB,
which also has the concept of a “path” on which it will search for the “.m-file” defining a
particular function. Unlike MATLAB, in which on-line help is provided in comments in the
body of the “.m—file”, each Stata command has an accompanying “.hlp” file which may be
accessed in a separate window.

If it has been carefully crafted, a user—written Stata command will follow the same
syntax, provide on—line help, and return results in exactly the same manner as any other
command.” Stata’s developers have promoted the development of this quality work in the
user community by providing high—level tools for ado—file development: the same tools
that they themselves employ. The workings of all official commands that are implemented
outside the kernel are revealed to the Stata user, making it straightforward to explore the
workings of professionally—developed code and adapt it to one’s purposes. Each ado-file
will generally make use of a syntax statement: a template specifying the required and
optional features of the command’s syntax, which will enforce any rules inherent in the
command’s structure. For instance, a command to calculate some function based on a
single existing variable will specify that precisely one preexisting variable’s name must be
provided: e.g.,

syntax varlist (max=1) [, table lag(integer 1)]

would define a command that required a single, existing variable as an argument. The
user could specify the table option, and an integer value for the 1ag option, which if
not specified will take a default value of 1. A command to generate a new variable as a
result will specify that constraint in the syntax statement, and the command parser will
reject a user’s specification if an existing variable name is provided. An ado—file, defining
a command, may also specify that a time-series calendar must have been defined, or that
both “i ” and “t” variables must have been defined for an operation involving longitudinal
(panel) data. A command’s syntax statement will normally allow the optional specification
of an if clause or an in condition, where the former applies the command only if some
Boolean expression is satisfied, while the latter specifies that the command should be applied
to some specified subset of the currently defined observations. The syntax of the example
above could be extended to:

and documentation of user-authored additions to Stata.

6 http://ideas.ugam.ca/ideas/data/bocbocode.html or
http://econpapers.hhs.se/software/bocbocode/

7 One quite sensible exception: a user-written command may not take the name of an “official” Stata command.
A variation on the name must be chosen to prevent confusion.

5

syntax varlist (max=1) [if] [in] [, table lag(integer 1)]

in order to specify that either an i f-clause or an in-clause may optionally be specified.
If either of these restrictions on the sample are present, Stata will handle the housekeeping
of generating the subset of the sample that is to be analyzed by the user’s code with a single
marksample command.

The constructs we have discussed follow Stata’s fundamental model: that an operation,
such as the definition of a new variable as a function of existing variables (e.g., calculating
the logarithm of income, or the first difference of the price series) will be applied in vector
form to the currently defined observations (modified, where specified, by an i f clause or in
condition). This model encourages the development of concise, bug—free user programs and
procedures. Whereas in many statistical packages one must code an explicit loop over the
observations to generate a transformed variable—and perform the housekeeping to deal with
lagged values, or differences—in Stata one merely defines the transformation, and it will be
applied to all specified observations. This promotes generality in a program or procedure,
and allows the user to avoid the use of numerous counters and indices that merely serve to
define loop bounds. One can write an explicit loop in Stata code, but in most cases there is a
more concise construct that will also carry a speed advantage.

A related tool for the development of clear and concise programs is the “local macro.”
Macros are the “variables” of Stata programs—confusing, perhaps, since the data series
themselves are also variables. Macros are just that: containers, which can hold text strings
of almost arbitrary length, which can be built up by concatenation. For instance, the
list of regressors for a given equation can be stored in a macro, and that macro invoked
rather than explicitly repeating the variable list. This might seem to be an unnecessary
replacement for a copy/paste operation—but in the concept of a procedure, or ado-file, a
local macro can be used to build up that specification automatically from an arbitrary list
of specifications provided by the user. For instance, one may conduct the Hylleberg et al.
(HEGY, 1990) test for seasonal unit roots in a timeseries specifying that the deterministic
variables to be included may include none, a constant, a trend, or a set of seasonal trends.
In our implementation of HEGY for quarterly data,® the user specifies a one—word option,
and the list of deterministic variables is built up from that response and included in the
model specification. Since local macro names may themselves include macros, it is possible
to generate a set of local macros which mimic a subscripted array (e.g. a KPSS test
(Kwiatkowski et al., 1992) may return values of the KPSS statistic for 0 lags, 1 lag, 2 lags, ...
M lags in local macros “kpss0”, “kpssl”, ...“kpssM”. These macros’ values will then be
accessible to the calling program, where they might be placed into a table of results. Local
macros are local to the routine in which they are defined (but they may be returned from that
routine), while global macros exist throughout the program.

As an illustration of the usefulness of Stata’s macro language, we present a complete
Stata program to generate regression estimates of a model expressing real exchange rate
volatility (vrx...) as a function of median levels of real exchange rate volatility (ssq...) and
income volatility (Inip...), across trading partners, for each of the G-7 countries in turn. The
dataset is in “stacked” or panel format, with each observation identified by a country code

8 Available from the SSC Archive as routine hegy4, written by C. E. Baum and Richard Sperling.

6

(ccode) and time period (in this case monthly). The dependent and independent variables
are computed within the routine as row standard deviations and row medians, respectively,
across the remaining countries, using Stata’s egen (extended generate) command. This
program is a good illustration of the ease of integration of user-written commands with
“official” Stata commands, since four of Nicholas J. Cox’s 1istutil routines® are
employed. wclist counts the countries to be analyzed; rot1ist rotates the list; and
takelist selects each country, in turn, as local macro dep and the remaining six countries
as local macro model. Finally, prelist generates variable names by prefixing each
country code with the appropriate identifier (i.e. 1nrxS for the log of the real exchange
rate). This program can readily be adapted to work with a different set of countries’ data
by merely redefining the IMF-assigned country codes in the cty macro. The contents of a
local macro are referenced by ‘macroname’, while the contents of a global macro are
referenced by $globalname.

Exhibit 1: Stata program illustrating the use of the macro language

log using exhibitl, replace
use "multicountry.dta",clear
* define the list of countries
local cty 112 132 134 136 156 158 111
* count elements in country list, save as local ncty
wclist ‘cty’
local ncty = ‘r(nw)’
* loop over countries
forvalues i = 1/'‘ncty’ {
* rotate the country list, store as local "now"
rotlist ‘cty’,rot(-‘'i’)
local now ‘r(list)’
* take one element from the list, store as local "dep"
takelist ‘now’,pos (1)
local dep ‘r(list)’
* take remainder of list, store as local "model"
takelist ‘now’,pos(2/‘'‘ncty’)
local model ‘r(list)’
* generate lists of log of real exchange rate (rxlist),
exchange rate volatility (ssqglist),
income volatility (iplist)
prelist "‘model’",pre("lnrxS") global (rxlist)
prelist "‘model’",pre("ssqg") global (ssglist)
prelist "‘model’",pre("lnip") global (iplist)
* generate cross-country std.dev. of real exchange rate,
cross-country median exchange rate volatility,
cross-country median income volatility

9 http://ideas.uqam.ca/ideas/data/Softwares/bocbocodeS391301.html

7

quietly {
egen vrx‘dep’=rsd($rxlist) if ccode==‘dep’
egen mdssqg‘'dep’=rmean($ssqglist) if ccode==‘dep’
egen mdvol‘dep’=rmean($vollist) if ccode==‘dep’
}
display n "Dependent : vrx‘dep’"
* regress std.dev. of real exchange rate on
* trading partners’ exchange rate and income volatility
regress vrx'‘dep’ muvol‘dep’ mussqg‘dep’
* generate predicted values for each country
predict vrxhat‘'dep’, xb
}
* save new variables to file
save g7preds, replace
log close
exit,clear

This program generates the appropriate data for each country’s regression from the
remaining countries, runs the regression, and generates the predicted values from this
regression as a new variable. At termination, these new variables (and the original variables)
are saved to a new binary file, g7preds, for further analysis (e.g., graphical presentation).

Integration with the Internet

The sample program above makes extensive use of utility routines not provided in
“official Stata”: wclist, rotlist, takelist, and prelist from the l1istutil
package. In this section, we discuss the ease of incorporating user-authored components into
a copy of Stata. Before touching upon that, we first consider the functionality, added to Stata
in January 1999 (version 6.0), for a user with Internet access to instruct Stata to query the
vendor’s site for updates. By issuing the command update gquery, the user may at any
time evaluate the status of her copy versus the most recent available:

Exhibit 2: Update query

update query
(contacting http://www.stata.com)
Stata executable
folder: :Rumelihisari:Stata:
name of file: Stata
currently installed: 08 Aug 2001
latest available: 08 Aug 2001
Ado-file updates
folder: :Rumelihisari:Stata:ado:updates:

8

names of files: (various)
currently installed: 06 Sep 2001
latest available: 06 Sep 2001
Recommendation

Do nothing; all files up-to-date.

This dialog reveals that both of the components of Stata installed on this machine—the
executable, or kernel, and the official “ado-files”—are up—to—date. If either component was
available in a more recent version on the vendor’s site, the dialog would recommend that
the user download the update. Ado-file updates are automatically placed in the appropriate
directories; the executable is copied to the user’s hard disk, and detailed instructions are
given for replacing the executable.!” This update facility does not support a “push” strategy,
but rather makes it possible for the user to check the currency of her copy at any convenient
time. Updates to the ado—files have been made available about every two weeks, providing
both bugfixes to official Stata and significant functionality in the form of additional
commands or new features of existing commands.

The ability of Stata to communicate with the vendor’s site also implies that on-line help,
when connected to the Internet, can make use of both local and remote resources. The
most recent search tool added to Stata, the findit command, will search both local on-line
help, remote FAQs on the StataCorp web site, the contents of the 60+ issues of the Stata
Technical Bulletin, and the contents of a number of additional remote sites (such as the SSC
archive) that provide downloadable Stata software components. We turn next to the facility
for downloading and installing user-authored additions to official Stata.

When StataCorp introduced web accessibility in Stata version 6.0, its designers
envisioned that a network of user sites would be constructed and maintained by individual
authors. The documentation of the net facility provides all of the necessary information
for any user to set up an ht tp-based web site, accessible from within Stata, from which
individual software modules may be downloaded and automatically installed in a user’s
copy of Stata. Although there are a number of user sites extant, the vast majority of
user-authored materials adding functionality to Stata are indexed in one web-based archive:
the Boston College Statistical Software Components Archive (commonly termed the
SSC archive). This archive contains metadata, or bibliographic entries, which may be
accessed and searched with any web browser. For the vast majority of entries, a copy of
the code (.ado and .h1lp files) are housed in the archive, so that they may be accessed
and installed from within Stata (which communicates with the web server using standard
HTTP protocols). This is the preferential method for acquiring these materials, since any
platform—dependent issues (line ending conventions, etc.) are avoided, and the user need
not be concerned with the appropriate relocation of downloaded files to the appropriate
directories. To provide “one-click” access to these facilities, Stata recently added the ssc
command, which allows the user to describe a particular routine in the archive and install it
with a single command.!! In contrast, The MathWorks provides a vendor sitt—“MATLAB

10 The replacement of the executable in the appropriate directory is scripted in the Unix and Linux versions of

Stata.
11 Stata’s version 7 ssc command is based upon the earlier archut i1 (archive utility) package of Cox and

9

Central”'>—which provides a searchable archive of user—contributed software, but must be
used from within a web browser (not directly within MATLAB). When files are downloaded,
they are customarily in ZIP format, and must be extracted and placed in the appropriate
directory on the MATLAB “path.” In my experience, these steps often surpass novice users’
capabilities, especially for those in a Windows environment. Stata’s access to user—written
code, from within the package itself, may be less problematic. Exhibit 3 details a user’s
enquiry and subsequent installation of the HEGY4 routine from the SSC archive.

Exhibit 3: Illustration of archive utilities

ssc describe hegy4

TITLE
"HEGY4' : module to compute Hylleberg et al seasonal unit root test

DESCRIPTION/AUTHOR (S)

hegy4 performs the Hylleberg et al. (HEGY) test for seasonal unit
roots in a quarterly timeseries. It estimates the four roots of
the timeseries representation (1-B®4) x(t) = e(t), where B is the
backshift operator, and presents estimates of these roots as
Pi(1l)..Pi(4). Joint tests for Pi(3)=Pi(4)=0, Pi(2)=P1i(3)=Pi(4)=0
and Pi(1)=Pi(2)=Pi(3)=Pi(4)=0 are calculated (the latter two
proposed by Ghysels et al.) The routine will also estimate the
model with seasonal trends proposed by Smith and Taylor. This is
version 1.0.5 of the routine, which corrects an error in the
tabulation of critical values.

Author: Christopher F Baum, Boston College
Support: email baum@bc.edu

Author: Richard Sperling, The Ohio State University
Support: email rsperling@bc.edu

INSTALLATION FILES
hegy4 .ado
hegy4 .hlp

Baum (http://ideas.uqam.ca/ideas/data/Softwares/bocbocodeS375501.html), which provides access to the archive to
Stata version 6 users as well.
12 http://www.mathworks.com/matlabcentral/fileexchange/index.jsp

10

(type -ssc install hegy4- to install)

ssc install hegy4, replace

checking hegy4 consistency and verifying not already installed...

the following files will be replaced:
~:ado:stbplus:h:hegy4.ado
~:ado:stbplus:h:hegy4.hlp

installing into ~:ado:stbplus:...
installation complete.

Stata’s ability to operate as a web browser has an important implication for those
engaged in collaborative research, on the one hand, and for instruction and distance learning
on the other. Researchers in separate locations—whether across campus or several time zones
away—are able to share datasets, programs, and log files without having to transfer those files
by ftp or email. Stata’s command to access a binary-format dataset, use filename, can
refer to a file on one’s own hard disk, on a network drive, or at a specified URL anywhere on
the Internet. Since there is a single, platform-independent binary dataset format, a dataset
mounted on a web server can be readily accessed by distant collaborators (including those
whose Internet access is mediated by proxy servers). If their colleague writes a program
(such as that presented in Exhibit 1 above) and places it on a web server, the remote user
may simply give the Stata command copy http://. .. localfile to acquire a copy of the
program, or may inspect it with the Stata command type http://... Even Stata’s
graphics files, which may be saved by each graph command, can be placed on a web
server, and the Stata command graph using http://. .. allows the remote user to
view the graph without having the data used to produce it. These built-in facilities, coupled
with access to a web server, make it very straightforward for researchers to exchange
materials related to their work, whether they be datasets, program files, graphics files, or
Stata procedures (. ado-files).

The advantages of this easy interchange for the instructional process should be readily
apparent. In teaching econometrics, instructors usually have to deal with the logistical
difficulties of providing access to datasets to be used in assignments in a variety of formats
and locations, depending on students’ platforms, network access, and location (e.g. whether
they will access the data with statistical software in an on—campus computer lab, or from
elsewhere on the campus network, or from the public Internet). But in today’s campus
environment, one commonality emerges: students will inevitably have access to the Internet.
Stata’s access methods—whether for datasets, program updates and enhancements, or
on-line remote help—all depend on http access, which will be available to the broadest
group of students (including those who may be engaged in “distance learning,” or working at
another location while finishing their dissertation research, etc.) The commonality of Stata
files and functions across a variety of hardware and operating systems also makes it likely
that an instructor can disseminate the electronic materials related to her course with minimal

11

difficulty. The only difference between accessing a dataset from a local hard drive and over
the Internet is the transfer time; even at 56 Kb modem speed, quite sizable datasets may be
transferred in reasonable time. An important contributing factor is the efficiency with which
Stata stores data (or can be instructed to optimize storage, via the compress command).
Unlike, e.g., SPSS, which has a single numeric format, using the same storage allocation for
the highest-precision floating-point number and a binary indicator variable, Stata has a range
of data types, similar to C or Fortran, so that variables may be efficiently stored, and datasets
optimized for the storage actually required. The author, who teaches econometrics at
undergraduate and Ph.D. levels, has implemented a RePEc (Research Papers in Economics)
series containing the datasets from a number of widely used econometrics textbooks, as well
as a number of additional datasets (e.g. the Nelson—Plosser macroeconomic data), available
as the series “Instructional Stata datasets for econometrics” at IDEAS.!3 All of these datasets
may be accessed by any Internet user from within a recent version of Stata.

Case study: testing for endogeneity

To illustrate Stata’s usefulness in applied econometric research, we present an extended
example of the sort of rapid prototyping that the development environment supports,
allowing a quite general routine to be developed while closely following the derivation of
the underlying analytics.

The exhibit below presents the code for dmexog . ado, a Stata module implementing
an auxiliary regression test for the endogeneity of regressors in an instrumental variables
context, written by Steven Stillman and the author.!* It is available from the SSC archive,
via a web browser or from within Stata via the ssc command. Comments on the features
of this routine, and the aspects of the Stata development environment that they illustrate,
are provided below. Most Stata commands may be abbreviated; for clarity, their names are
spelled out in this sample code.

We present the rationale for the development and employment of this auxiliary regression
test. Many econometrics texts discuss the issue of “OLS vs. IV” in the context of the
well-known Hausman test, which involves estimating the model via both OLS and IV
approaches and comparing the resulting coefficient vectors. A quadratic form in the
differences between the two coefficient vectors—scaled by the precision matrix—gives rise to
a test statistic for the null hypothesis that the OLS estimator is consistent and fully efficient.
This approach, implemented by Stata’s hausman command, has one clear drawback: in
finite samples, the precision matrix (defined as the difference between the two estimated
variance-covariance matrices of the parameter estimates) may not be positive definite. A less
problematic approach is the auxiliary regression framework of Davidson and MacKinnon
(1993, p.236), which may always be computed. In the context of a single endogenous
variable, consider the model

13
14

http://ideas.uqam.ca/ideas/data/bocbocins.html
This version of the routine has been simplified for presentation; the latest archived copy also includes support
for xt ivreg (the instrumental variables estimator applied to panel data).

12

y1 = Bo + Pry2 + Bez1 + Bsze + uq,

with z; and 22 assumed exogenous. Assume that z3 and 24 are also exogenous, and may
be employed in IV estimation of this equation. The auxiliary regression approach involves
estimating the reduced form (first—stage) regression for s :

Y2 = Y0 + 7121 + V222 + Y323 + Ya2a + U2
We are concerned with testing that y» L u;. Since by assumption each z is uncorrelated
with w1, the first stage regression implies that this condition is equivalent to a test of
ug L up. Exogeneity of the z’s implies that @iy —the residuals from OLS estimation of
equation (5)—will be a consistent estimator of uz. Thus, we augment the original equation
with 4y and reestimate this equation with OLS. A t—test of the significance of s is then a
direct test of the null hypothesis (in this context, that § = 0):

Yy = ﬂo + ﬂlyQ + 6221 + 6322 + Ol + vy

The test may be readily generalized to multiple endogenous variables, since it merely
requires the estimation of the first stage regression for each of the suspect variables,
and augmentation of the original model with their residual series. The test statistic then
becomes an F'—test, with numerator degrees of freedom equal to the number of included
endogenous variables. The test may also be applied to a subset of the regressors: those
whose endogeneity may be questioned. Consider dividing a set of endogenous regressors
into two subsets, Y4 and Y, where only the second set of variables are to be tested for
endogeneity. Then a modified test involves estimating the first stage regression for each
variable in Yp in order to generate a residual series. These residual series are then used to
augment the original model, and a t—test or F—test used to judge their significance.

Exhibit 4: dmexog.ado

*! dmexog V1.3.10 C F Baum and Steve Stillman
* with help from Mark Schaffer
* Ref: Davidson & MacKinnon, Estimation and Inference
* in Econometrics, p.239-242
program define dmexog, rclass
version 7.0
syntax [anything]
local xvarlist ‘anything’

if n\e(cmd)lu —— "ivreg" {
error 301

}

if "‘e(vcetype)’" == "Robust" {
di in red "test not wvalid with robust covariance estimatesg"
exit 198

}

13

if "‘e(wtype)’'" == "aweight" | "‘e(wtype)’'" == "iweight" {
di in red "test not valid with aweights or iweightgs"
exit 198

}

tempname touse depvar inst incrhs nin b varlist i word regest weight
tempname rhadd idvar

/* mark sample */
gen byte ‘touse’ = e(sample)
/* dependent variable */
local depvar ‘e(depvar)’
/* instrument list */
local inst ‘e(insts)’
/* included RHS endog list */
local incrhs ‘e (instd)’
local nendog : word count ‘e(instd)’
/* get regressorlist of original model */

mat ‘b’ = e(b)
local varlist : colnames ‘b’
local varlist : subinstr local varlist " cons" "", /*
*/ word count (local hascons)
* if no constant in original model, exclude from aux regr
if ‘hascons’ == 0 {local noc = "noc"}

/* get weights setting of original model */
local weight ""
if "re(wexp) " 1= "n {
local weight "[‘e(wtype)’ ‘e(wexp)’]"
}

* 1.3.7: check if xvarlist is populated, if so validate entries
local ninc 0
local rem O

if "‘xvarlist’" ~= ""
local nexog : word count ‘xvarlist’
local rem = ‘nendog’ - ‘nexog’

local nincrhs ‘incrhs’
foreach v of local xvarlist {

local nincrhs: subinstr local nincrhs "‘v’'" nwn, = /%

*/ word count (local =zap)

if ‘zap’ ~= 1 {
di in r n "Error: ‘v’ is not an endogenous variable"
exit 198

}

14

}

* remove nincrhs from varlist if rem>0 and load xvarlist in incrhs
if ‘rem’ > 0 {
foreach v of local nincrhs {
local varlist: subinstr local varlist "‘v’" "" word

}

local incrhs ‘xvarlist’
}
incrhs now contains the pruned list of vars assumed exogenous
* nincrhs contains the remaining included endogenous
* varlist contains the included exogenous
local ninc : word count ‘incrhs’
}
* deal with ts operators in endog list
tsrevar ‘incrhs’, sub
local incrhs ‘r(varlist)’
local rhadd ""
estimates hold ‘regest’
foreach word of local incrhs {
qui regress ‘word’ ‘inst’ ‘weight’ if ‘touse’
tempvar v_‘word’
qui predict double ‘v _‘word’’, r
local rhadd "‘rhadd’ ‘v_‘word’’"

}

if (‘ninc’ == 0 | ‘rem’ == 0) {
qui regress ‘depvar’ ‘varlist’ ‘rhadd’ ‘weight’ /*
*/ 1if ‘touse’, ‘noc’
}
else {
qui ivreg ‘depvar’ ‘varlist’ ‘rhadd’ (‘nincrhs’ = ‘inst’)
/* ‘weight’ if ‘touse’, ‘noc’

}

qui test ‘rhadd’

return scalar df = r(df)

return scalar df r = r(df_r)
return scalar dmexog = r(F)

return scalar p = r(p)

di in gr n "Davidson-MacKinnon test of exogeneity: " /*
/ in ye %9.0g return(dmexog) in gr /
/ in gr " F(" %2.0f in ye return(df) "," return(df r) /
*/ in gr ") P-value = " in ye %6.0g return (p)
end
exit

15

/*

The code for this routine illustrates a number of the features of Stata’s development
environment that make it quite straightforward to generate a “rapid prototype” of an
econometric routine from its analytical development in the literature. The program
define line indicates the name of the routine (which must be that of the file which contains
it) and specifies that the routine is “rclass”—that is, returned macros, scalars and matrices
will be denoted r (retval) . The version statement specifies that version 7 of Stata is
required to execute the code. The syntax statement provides a template for the user’s
invocation of this command. Since dmexog is used following an estimation command, it
need not have any arguments; it supports an optional varlist if a subset test is specified.

An initial set of checks ensures that the most recent command was ivreg; that ivreg
was not invoked with the robust option; and that if weights were specified, they were
compatible with the test. tempname serves to define a number of macros local to the
routine. The ivreg’s e () data structure is accessed to retrieve the variables specified
in that routine, which are then used to set up the appropriate auxiliary regressions. If the
user has specified the optional varlist when invoking dmexog, each of the variables
must be checked to ensure that they not only exist but were among the included endogenous
regressors in the prior command. The incrhs macro then contains the variables from
which residuals are to be generated; those residuals are stored as temporary variables
‘v’ *word’ ’ in a loop over words in incrhs. The auxiliary regression is then executed,
as either an OLS regress or an IV ivreg, and Stata’s test command used to generate
the appropriate test statistic. test returns the statistic, its p-value, and degrees of freedom
in the r () data structure; those elements are then formatted for presentation in dmexog’s
output. The return scalar statements are used to make computed values from the
routine available to the calling routine; e.g. return scalar dmexog will cause the
value of the F-statistic to be accessible as r (dmexog) in the calling routine, while
return scalar p will place its p-value in r (p)

We now include an example of the use of this routine, as presented in the on-line
help file for dmexog. We must first access an appropriate dataset: in this case, the Mroz
dataset, as provided with Wooldridge’s (2000) econometrics text, containing data on 428
working married women. An instrumental variables estimate of the log of the worker’s
wage is computed, using experience and education as potentially endogenous variables,
instrumented by mother’s, father’s and husband’s levels of education (so that the equation is
overidentified). In the interest of brevity, the regression output is suppressed. The dmexog
test is applied, and indicates that the null hypothesis of exogeneity (i.e., that OLS would be a
consistent estimator of the equation) cannot be rejected. A second invocation of dmexog
considers only experience as potentially exogenous, assuming that education is endogenous;
this null hypothesis cannot be rejected.

Exhibit 5: use of the dmexog.routine
quietly ivreg lwage (exper educ = motheduc fatheduc huseduc)
dmexog

16

Davidson-MacKinnon test of exogeneity: 1.531276 F(2,423)

P-value = .2175
dmexog exper
Davidson-MacKinnon test of exogeneity: .5944261 F(1,424)
P-value = .4411

We may be interested in gauging the performance of this test versus that of the
well-known Hausman test in this context. We have conducted extensive simulation
experiments, using Stata’s simul command, over a range of sample sizes and constructed
correlations between regressor and error. Although we will not reproduce the program
listing and results here in the interest of brevity, they are available upon request. Our
findings are quite robust: the dmexog test exhibits comparable power, over both specified
factors, to the standard Hausman test for the detection of endogeneity among the regressors
when applied to cross—sectional data. Since the dmexog test can be calculated for all
samples, and is more straightforward for the user, one may rely on it without concern for its
efficacy. Interestingly, in longitudinal (panel) data, the auxiliary regression test appears to
be considerably more powerful. Although further research is needed to identify the source
of this power differential, it points out the value of working in an environment where such
comparisons may readily be programmed and tabulated.

Conclusions

Applied economic researchers should be concerned with the efficiency of their
computational environment in terms of the amount of their own time required to perform
their work. High-level tools such as matrix languages are often not very efficient from
a computational standpoint, but the speed at which CPU cycles can be delivered at a
given price is constantly declining. Since researchers’ processing speed is not increasing,
an environment which permits researchers to economize on their own time will be the
most effective. The Stata programming environment poses significant advantages over
those provided by matrix languages and traditional statistical packages in terms of its
ease of use, extensibility, documentation of research strategy, and explicit support for
collaborative research. From a programming language standpoint, Stata’s features encourage
the development of reusable, robust and well-documented code, as evidenced by the large
collection of reliable extensions to the program that are in the public domain. Those seeking
a workable environment for applied economic research should gain familiarity with Stata’s
potential.

17

Acknowledgements

C. F. Baum is an associate professor of economics at Boston College, where he co-directs

the Minor in Scientific Computation in the College of Arts and Sciences. He is an associate
editor of Computational Economics and The Stata Journal, and serves on the Advisory
Council of the Society for Computational Economics. Baum founded and manages the
Boston College Statistical Software Components archive at RePEc (http://repec.org), the
largest Web repository of Stata code. He acknowledges useful discussions with Petia
Petrova, Nicholas J. Cox, William Gould, Stanislav Kolenikov, Francesco Zanetti, an
anonymous reviewer, and the editor of this volume. The standard disclaimer applies.

References

Baum, C. F., 2000. sts15: Tests for stationarity of a time series. Stata Technical Bulletin
57, 36-39.

Baum, C. F. and R. Sperling, 2000. sts15.1: Tests for stationarity of a time series:
Update. Stata Technical Bulletin 58, 35-36.

Davidson, R. and MacKinnon, J., Estimation and Inference in Econometrics, 1993,
New York: Oxford University Press.

Gould, W., and W. Sribney, 1999. Maximum likelihood estimation with Stata. College
Station, TX: Stata Press.

Hylleberg, S., Engle, R. F., Granger, C. W. J. and B. S. Yoo, 1990. Seasonal integration
and cointegration. Journal of Econometrics, 44, 215-238.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Y. Shin, 1992. Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that
economic time series have a unit root? Journal of Econometrics, 54, 159-178.
Wooldridge, J., Introductory Econometrics: A Modern Approach, 2000, New York:
South-Western College Publishing.

18

