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1. The Model

Here, the framework from Ireland (2002) is modiÞed to focus on the relative im-
portance of markup, or cost-push, shocks and technology shocks in an estimated
version of the New Keynesian model. The economy consists of a representative
household, a representative Þnished goods-producing Þrm, a continuum of inter-
mediate goods-producing Þrms indexed by i ∈ [0, 1], and a central bank. During
each period t = 0, 1, 2, ..., each intermediate goods-producing Þrm produces a
distinct, perishable intermediate good. Hence, intermediate goods may also be
indexed by i ∈ [0, 1], where Þrm i produces good i. The model features enough
symmetry, however, to allow the analysis to focus on the behavior of a represen-
tative intermediate goods-producing Þrm, identiÞed by the generic index i.
The activities of each agent, and their implications for the evolution of equi-

librium prices and quantities, will now be described in turn.

1.1. The Representative Household

The representative household enters each period t = 0, 1, 2, ... with money Mt−1
and bonds Bt−1. At the beginning of the period, the household receives a lump-
sum nominal transfer Tt from the central bank. Next, the household�s bonds
mature, providing Bt−1 additional units of money. The household uses some of
this money to purchase Bt new bonds at nominal cost Bt/rt, where rt denotes the
gross nominal interest rate between t and t+ 1.



During period t, the household supplies ht(i) units of labor to each intermedi-
ate goods-producing Þrm i ∈ [0, 1], for a total of

ht =
Z 1

0
ht(i)di

during period t. The household is paid at the nominal wage Wt. The household
consumes ct units of the Þnished good, purchased at the nominal price Pt from
the representative Þnished goods-producing Þrm.
At the end of period t, the household receives nominal proÞts Dt(i) from each

intermediate goods-producing Þrm i ∈ [0, 1], for a total of

Dt =
Z 1

0
Dt(i)di.

The household then carries Mt units of money into period t + 1, chosen subject
to the budget constraint

Mt−1 + Tt +Bt−1 + (1− τ)(Wtht +Dt)

Pt
≥ ct + Bt/rt +Mt

Pt
, (1)

where τ is the constant income tax rate.
The household�s preferences are described by the expected utility function

E
∞X
t=0

βtat[u(ct) + etv(Mt/Pt)− ηht],

where 1 > β > 0 and η > 0. The preference shocks at and et follow the autore-
gressive processes

ln(at) = ρa ln(at−1) + εat (2)

and
ln(et) = (1− ρe) ln(e) + ρe ln(et−1) + εet, (3)

where 1 > ρa > 0, 1 > ρe > 0, e > 0, and the zero-mean, serially uncorrelated
innovations εat and εet are normally distributed with standard deviations σa and
σe.
Thus, the household chooses ct, ht, Bt, andMt for all t = 0, 1, 2, ... to maximize

its utility subject to the budget constraint (1) for all t = 0, 1, 2, .... Letting
mt = Mt/Pt denote real balances, πt = Pt/Pt−1 the inßation rate, wt = Wt/Pt

2



the real wage, and λt the nonnegative Lagrange multiplier on (1), the Þrst-order
conditions for this problem are

atu
0(ct) = λt, (4)

atη = (1− τ)λtwt, (5)

λt = βrtEt(λt+1/πt+1), (6)

atetv
0(mt) = λt − βEt(λt+1/πt+1), (7)

and (1) with equality for all t = 0, 1, 2, ....

1.2. The Representative Finished Goods-Producing Firm

During each period t = 0, 1, 2, ..., the representative Þnished goods-producing
Þrm uses yt(i) units of each intermediate good i ∈ [0, 1], purchased at the nominal
price Pt(i), to manufacture yt units of the Þnished good according to the constant-
returns-to-scale technology described by

·Z 1

0
yt(i)

(θt−1)/θtdi
¸θt/(θt−1)

≥ yt,

where, as in Smets and Wouters (2002) and Steinsson (2002), θt translates into
a random shock to the markup of price over marginal cost. Here, this markup
shock follows the autoregressive process

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + εθt, (8)

where 1 > ρθ > 0, θ > 1, and the zero-mean, serially uncorrelated innovation εθt
is normally distributed with standard deviation σθ.
Thus, during period t, the Þnished goods-producing Þrm chooses yt(i) for all

i ∈ [0, 1] to maximize its proÞts, which are given by

Pt

·Z 1

0
yt(i)

(θt−1)/θtdi
¸θt/(θt−1)

−
Z 1

0
Pt(i)yt(i)di.

The Þrst-order conditions for this problem are

yt(i) = [Pt(i)/Pt]
−θtyt

for all i ∈ [0, 1] and t = 0, 1, 2, ....
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Competition drives the Þnished goods-producing Þrm�s proÞts to zero in equi-
librium. This zero-proÞt condition implies that

Pt =
·Z 1

0
Pt(i)

1−θtdi
¸1/(1−θt)

for all t = 0, 1, 2, ....

1.3. The Representative Intermediate Goods-Producing Firm

During each period t = 0, 1, 2, ..., the representative intermediate goods-producing
Þrm hires ht(i) units of labor from the representative household to manufacture
yt(i) units of intermediate good i according to the constant returns to scale tech-
nology described by

ztht(i) ≥ yt(i). (9)

The aggregate technology shock zt follows the autoregressive process

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (10)

where 1 > ρz > 0, z > 0, and the zero-mean, serially uncorrelated innovation εzt
is normally distributed with standard deviation σz.
Since the intermediate goods substitute imperfectly for one another in produc-

ing the Þnished good, the representative intermediate goods-producing Þrm sells
its output in a monopolistically competitive market; during period t, the interme-
diate goods-producing Þrm sets the nominal price Pt(i) for its output, subject to
the requirement that it satisfy the representative Þnished goods-producing Þrm�s
demand. In addition, the intermediate goods-producing Þrm faces a quadratic
cost of adjusting its nominal price, measured in terms of the Þnished good and
given by

φ

2

"
Pt(i)

πPt−1(i)
− 1

#2
yt,

where φ > 0 and where π > 1 measures the gross steady-state inßation rate.
The cost of price adjustment makes the intermediate goods-producing Þrm�s

problem dynamic; it chooses Pt(i) for all t = 0, 1, 2, ... to maximize its total value,
given by

[(1− τ)/λ0]E
∞X
t=0

βtλt[Dt(i)/Pt],
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where βtλt/Pt measures the marginal utility to the representative household of an
additional unit of proÞts received during period t and where

Dt(i)

Pt
=

"
Pt(i)

Pt

#1−θt
yt −

"
Pt(i)

Pt

#−θt µwtyt
zt

¶
− φ
2

"
Pt(i)

πPt−1(i)
− 1

#2
yt (11)

for all t = 0, 1, 2, .... The Þrst-order conditions for this problem are

0 = (1− θt)λt
"
Pt(i)

Pt

#−θt µ yt
Pt

¶
+ θtλt

"
Pt(i)

Pt

#−θt−1 µwtyt
ztPt

¶
(12)

−φλt
"
Pt(i)

πPt−1(i)
− 1

# "
yt

πPt−1(i)

#

+βφEt

(
λt+1

"
Pt+1(i)

πPt(i)
− 1

# "
yt+1Pt+1(i)

πPt(i)2

#)

for all t = 0, 1, 2, ....

1.4. Symmetric Equilibrium

In a symmetric equilibrium, all intermediate goods-producing Þrms make identical
decisions, so that yt(i) = yt, ht(i) = ht, Pt(i) = Pt, and dt(i) = Dt(i)/Pt =
Dt/Pt = dt for all i ∈ [0, 1] and t = 0, 1, 2, .... In addition, the market-clearing
conditions Mt = Mt−1 + Tt − τ(Wtht +Dt) and Bt = Bt−1 = 0 must hold for all
t = 0, 1, 2, ....
After imposing these equilibrium conditions, (1)-(12) become

yt = ct +
φ

2

µ
πt
π
− 1

¶2
yt, (1)

ln(at) = ρa ln(at−1) + εat, (2)

ln(et) = (1− ρe) ln(e) + ρe ln(et−1) + εet, (3)

atu
0(ct) = λt, (4)

atη = (1− τ)λtwt, (5)

λt = βrtEt(λt+1/πt+1), (6)

atetv
0(mt) = λt − βEt(λt+1/πt+1), (7)

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + εθt, (8)
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ztht = yt, (9)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (10)

dt = yt − wtht − φ
2

µ
πt
π
− 1

¶2
yt, (11)

and

0 = (1− θt)λt + θtλt
µ
wt
zt

¶
− φλt

µ
πt
π
− 1

¶µ
πt
π

¶
(12)

+βφEt

"
λt+1

µ
πt+1
π

− 1
¶µ
πt+1
π

¶Ã
yt+1
yt

!#

for all t = 0, 1, 2, ....
Use (3)-(5), (7), (9), and (11) to eliminate et, λt, wt, mt, ht, and dt. Then the

system consisting of (1)-(12) can be written more compactly as

yt = ct +
φ

2

µ
πt
π
− 1

¶2
yt, (1)

ln(at) = ρa ln(at−1) + εat, (2)

atu
0(ct) = βrtEt[at+1u0(ct+1)/πt+1], (6)

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + εθt, (8)

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt, (10)

and

θt − 1 =
µ

η

1− τ
¶"

θt
ztu0(ct)

#
− φ

µ
πt
π
− 1

¶µ
πt
π

¶
(12)

+βφEt

("
at+1u

0(ct+1)
atu0(ct)

#µ
πt+1
π

− 1
¶µ
πt+1
π

¶Ã
yt+1
yt

!)

for all t = 0, 1, 2, ....
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1.5. The Steady State

In the absence of shocks, the economy converges to a steady state, in which yt = y,
ct = c, πt = π, rt = r, at = a, zt = z, and θt = θ. The steady-state values a = 1,
z, and θ are determined by (2), (8), and (10), while the steady-state value π will
be determined by the central bank.
The steady-state values c and r are determined by (1) and (6) as

c = y

and
r = π/β.

Finally, the steady-state value y is determined by (12) as the solution to

u0(y) =
µ
η

z

¶µ
1

1− τ
¶Ã

θ

θ − 1
!
.

1.6. The Linearized System

The system consisting of (1), (2), (6), (8), (10), and (12) can be log-linearized
around the steady state to describe how the economy responds to shocks. Let
�yt = ln(yt/y), �ct = ln(ct/c), �πt = ln(πt/π), �rt = ln(rt/r), �at = ln(at/a), �zt =
ln(zt/z), and �θt = ln(θt/θ). A Þrst-order Taylor approximation to (1) reveals that
�ct = �yt, allowing �ct to be eliminated from the system. First-order approximations
to (2), (6), (8), (10), and (12) then yield

�at = ρa�at−1 + εat, (2)

�yt = Et�yt+1 − (1/σ)(�rt −Et�πt+1) + (1/σ)(1− ρa)�at, (6)

�θt = ρθ�θt−1 + εθt, (8)

�zt = ρz�zt−1 + εzt, (10)

and
φ�πt = βφEt�πt+1 + (θ − 1)(σ�yt − �zt)− �θt, (12)

for all t = 0, 1, 2, ..., where

σ = −yu00(y)/u0(y) > 0.
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1.7. Efficient and Inefficient Shocks

A social planner for this economy chooses yt, mt, and ht(i) for all i ∈ [0, 1] and
t = 0, 1, 2, ... to maximize

E
∞X
t=0

βtat

·
u(yt) + etv(mt)− η

Z 1

0
ht(i)di

¸
,

subject to

zt

·Z 1

0
ht(i)

(θt−1)/θtdi
¸θt/(θt−1)

≥ yt
for all t = 0, 1, 2, .... The Þrst-order conditions for this problem are

v0(m∗
t ) = 0 (13)

and
η = ztu

0(y∗t ) (14)

for all t = 0, 1, 2, ....
Equation (13), of course, indicates that the representative household should

be satiated with real balances, which can be produced at zero nominal cost. Since
(4), (6), and (7) imply that

etv
0(mt) = u

0(ct)
µ
1− 1

rt

¶
in equilibrium, implementing this part of the optimal allocation requires that the
central bank follow the Friedman (1969) rule by setting rt = 1 for all t = 0, 1, 2, ....
Now consider (14), which deÞnes the efficient level of output y∗t . In a steady

state, y∗t = y
∗, where

u0(y∗) = η/z.

And since, as shown above,

u0(y) =
µ
η

z

¶µ
1

1− τ
¶Ã

θ

θ − 1
!
,

the efficient level of steady-state output can be achieved by setting

τ = − 1

θ − 1 < 0
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that is, by subsidizing production.
Next, let �y∗t = ln(y∗t /y

∗). A Þrst-order Taylor approximation to (14) then
yields

y∗t = (1/σ
∗)�zt (14)

for all t = 0, 1, 2, ..., where

σ∗ = −y∗u00(y∗)/u0(y∗).
Assume from now on that σ∗ = σ, either because production is subsidized so as
to make y = y∗ or because the representative household�s utility function over
consumption takes the constant relative risk aversion form. Under either of these
two conditions, (14) simpliÞes to

y∗t = (1/σ)�zt. (14)

Now deÞne the output gap gt as the ratio of the equilibrium and efficient levels
of output,

gt = yt/y
∗
t , (15)

and deÞne the natural real rate of interest qt based on the household�s intertem-
poral marginal rate of substitution, evaluated at the efficient levels of output,

atu
0(y∗t ) = βqtEt[at+1u

0(y∗t+1)]. (16)

Once again, let gt = g and qt = q in steady state, and let �gt = ln(gt/g) and
�qt = ln(qt/q). Continuing under the assumption that σ∗ = σ, Þrst-order Taylor
approximations to (15) and (16) yield

�gt = �yt − �y∗t = �yt − (1/σ)�zt (15)

and
�qt = (1− ρa)�at − (1− ρz)�zt (16)

for all t = 0, 1, 2, ....
In terms of these new variables, the IS curve (6) and the Phillips curve (12)

can be rewritten as

�gt = Et�gt+1 − (1/σ)(�rt −Et�πt+1 − �qt) (6)

and
φ�πt = βφEt�πt+1 + (θ − 1)σ�gt − �θt (12)
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for all t = 0, 1, 2, ....
Equations (6) and (12) reveal that in the absence of markup shocks, when

�θt = 0 for all t = 0, 1, 2, ..., the central bank can stabilize both inßation and the
output gap, with �πt = 0 and �gt = 0 for all t = 0, 1, 2, ..., by letting the nominal
interest rate track movements in the natural rate, with

�rt = �qt

for all t = 0, 1, 2, .... More specially, in light of (16), the nominal rate should rise in
response to the preference shock �at and fall in response to a technology shock �zt.
However, unlike �at and �zt, which impact on the efficient level of output �y∗t and the
natural rate of interest �qt, the markup, or cost-push, shock �θt generates a trade-off
between inßation and output-gap stabilization. For details, see Clarida, Gali, and
Gertler (1999), Gali (2002), and Woodford (2001a). Gali (2002) and Woodford
(2001b) show how a stochastic term like �θt appears in New Keynesian Phillips
curves like (12) when nominal wages, as well as nominal prices, adjust sluggishly
to the shocks that hit the economy, as in Kim (2000) and Erceg, Henderson, and
Levin (2000); in this case, however, the additional term is no longer exogenous.
Rotemberg and Woodford (1995) is an earlier paper in which exogenous markup
shocks are considered, albeit in the context of a purely real business cycle model;
exogenous markup shocks also play a key role in Mankiw and Reis� (2002) sticky-
price model. Finally, inefficient shocks of another kind appear in Dupor�s (2002)
sticky-price model.

1.8. The Central Bank

The central bank conducts monetary policy by adjusting the short-term nominal
interest rate according to the modiÞed Taylor (1993) rule

�rt = ρr�rt−1 + ρy�yt−1 + ρπ�πt−1 + εrt. (17)

The lagged interest rate �rt−1 is included among the determinants of the current-
period interest rate �rt, to allow for a gradual response of policy to changes in
output and inßation. A sufficiently vigorous long-run response of the interest rate
to inßation, as measured by ρπ/(1−ρr), is required to insure that this policy rule
is consistent with the existence of a unique rational expectations equilibrium; for
details, see Parkin (1978), McCallum (1981), Kerr and King (1996), and Clarida,
Gali, and Gertler (2000). Finally, in (17), the zero-mean, serially uncorrelated
innovation εrt is normally distributed with standard deviation σr.
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1.9. Equilibrium Conditions

The workings of the model can now be summarized by the system consisting of
the IS curve

�yt = Et�yt+1 − (1/σ)(�rt −Et�πt+1) + (1/σ)(1− ρa)�at, (6)

the Phillips curve

φ�πt = βφEt�πt+1 + (θ − 1)(σ�yt − �zt)− �θt, (12)

and the policy rule

�rt = ρr�rt−1 + ρy�yt−1 + ρπ�πt−1 + εrt. (17)

together with the laws of motion for the three exogenous shocks

�at = ρa�at−1 + εat, (2)

�θt = ρθ�θt−1 + εθt, (8)

and
�zt = ρz�zt−1 + εzt. (10)

More speciÞcally, these 6 equations determine the behavior of the 6 variables �yt,
�rt, �πt, �at, �θt, and �zt.

2. Solving the Model

Let
f0t =

h
�rt
i0
,

s0t =
h
�rt−1 �yt−1 �πt−1 �yt �πt

i0
,

and
vt =

h
�at �θt �zt εrt

i0
.

Then (17) can be written as

Af0t = Bs
0
t + Cvt, (18)

where A is 1× 1, B is 1× 5, and C is 1× 4. More speciÞcally, (17) implies
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a11 = 1

b11 = ρr

b12 = ρy

b13 = ρπ

c14 = 1

Equations (6) and (12) can be written as

DEts
0
t+1 + FEtf

0
t+1 = Gs

0
t +Hf

0
t + Jvt, (19)

where D and G are 5× 5, F and H are 5× 1, and J is 5× 4.
Equation (6) implies

d14 = 1

d15 = 1/σ

g14 = 1

h11 = 1/σ

j11 = −(1/σ)(1− ρa)

Equation (12) implies

d25 = βφ

g24 = −(θ − 1)σ
g25 = φ

j22 = 1

j23 = θ − 1

The presence of lagged values in s0t implies

d31 = 1
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h31 = 1

d42 = 1

g44 = 1

d53 = 1

g55 = 1

Equations (2), (8), and (10) can be written as

vt = Pvt−1 + εt, (20)

where

P =


ρa 0 0 0
0 ρθ 0 0
0 0 ρz 0
0 0 0 0


and

εt =
h
εat εθt εzt εrt

i0
.

Rewrite (18) as
f0t = A

−1Bs0t +A
−1Cvt.

When substituted into (19), this last result yields

(D + FA−1B)Ets0t+1 = (G+HA
−1B)s0t + (J +HA

−1C − FA−1CP )vt
or, more simply,

Ets
0
t+1 = Ks

0
t + Lvt, (21)

where
K = (D + FA−1B)−1(G+HA−1B)

and
L = (D + FA−1B)−1(J +HA−1C − FA−1CP ).

If the 5×5matrixK has three eigenvalues inside the unit circle and two eigenvalues
outside the unit circle, then the system has a unique solution. If K has more than
two eigenvalues outside the unit circle, then the system has no solution. If K has
less than two eigenvalues outside the unit circle, then the system has multiple
solutions. For details, see Blanchard and Kahn (1980).
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Assuming from now on that there are exactly two eigenvalues outside the unit
circle, write K as

K =M−1NM,

where

N =

"
N1 0
0 N2

#
and

M =

"
M11 M12

M21 M22

#
.

The diagonal elements of N are the eigenvalues of K, with those in the 3 × 3
matrix N1 inside the unit circle and those in the 2× 2 matrix N2 outside the unit
circle. The columns of M−1 are the eigenvectors of K; M11 is 3× 3, M12 is 3× 2,
M21 is 2× 3, and M22 is 2× 2. In addition, let

L =

"
L1
L2

#
,

where L1 is 3× 4 and L2 is 2× 4.
Now (21) can be rewritten as"
M11 M12

M21 M22

#
Ets

0
t+1 =

"
N1 0
0 N2

# "
M11 M12

M21 M22

#
s0t +

"
M11 M12

M21 M22

# "
L1
L2

#
vt

or
Ets

1
1t+1 = N1s

1
1t +Q1vt (22)

and
Ets

1
2t+1 = N2s

1
2t +Q2vt, (23)

where

s11t =M11

 �rt−1�yt−1
�πt−1

+M12

"
�yt
�πt

#
, (24)

s12t =M21

 �rt−1�yt−1
�πt−1

+M22

"
�yt
�πt

#
, (25)

Q1 =M11L1 +M12L2,

14



and
Q2 =M21L1 +M22L2.

Since the eigenvalues in N2 lie outside the unit circle, (23) can be solved
forward to obtain

s12t = −N−1
2 Rvt,

where the 2× 4 matrix R is given by

vec(R) = vec
∞X
j=0

N−j
2 Q2P

j =
∞X
j=0

vec(N−j
2 Q2P

j)

=
∞X
j=0

[P j ⊗ (N−1
2 )

j]vec(Q2) =
∞X
j=0

[P ⊗N−1
2 ]

jvec(Q2)

= [I(8×8) − P ⊗N−1
2 ]

−1vec(Q2)

Use this result, along with (25), to solve for

"
�yt
�πt

#
= S1

 �rt−1�yt−1
�πt−1

+ S2vt, (26)

where
S1 = −M−1

22 M21

and
S2 = −M−1

22 N
−1
2 R.

Equation (24) now provides a solution for s11t:

s11t = (M11 +M12S1)

 �rt−1�yt−1
�πt−1

+M12S2vt.

Substitute this result into (22) to obtain �rt�yt
�πt

 = S3
 �rt−1�yt−1
�πt−1

+ S4vt, (27)

where
S3 = (M11 +M12S1)

−1N1(M11 +M12S1)
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and
S4 = (M11 +M12S1)

−1(Q1 +N1M12S2 −M12S2P ).

Finally, return to

f0t = A−1Bs0t +A
−1Cvt

= A−1B

"
I(3×3)
S1

# �rt−1�yt−1
�πt−1

+A−1B " 0(3×4)
S2

#
vt +A

−1Cvt,

which can be written more simply as

f0t = S5

 �rt−1�yt−1
�πt−1

+ S6vt, (28)

where

S5 = A
−1B

"
I(3×3)
S1

#
and

S6 = A
−1B

"
0(3×4)
S2

#
+A−1C.

Equations (20) and (26)-(28) provide the model�s solution:

st+1 = Πst +Wεt+1 (29)

and
ft = Ust, (30)

where
st =

h
�rt−1 �yt−1 �πt−1 �at �θt �zt εrt

i0
,

ft =
h
�rt �yt �πt

i0
,

εt =
h
εat εθt εzt εrt

i0
,

Π =

"
S3 S4
0(4×3) P

#
,

W =

"
0(3×4)
I(4×4)

#
,
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and

U =

"
S5 S6
S1 S2

#
.

Notice that, in this solution, the rows of U should simply reproduce the rows of
Π: U1 = Π1, U2 = Π2, and U3 = Π3.

3. Estimating the Model

The model has implications for three observable variables: output, inßation, and
the short-term nominal interest rate. The model�s parameters are β, σ, η, τ , φ,
π, ρr, ρy, ρπ, θ, z, ρa, ρθ, ρz, σa, σθ, σz, and σr.
Since π is the steady-state rate of inßation, its value can be chosen to match the

average inßation rate in the data. And since, according to the model, the steady-
state nominal interest rate is given by r = π/β, a value for β can be chosen so that
the implied value of r equals the average nominal interest rate in the data. The
three parameters η, τ , z serve only to pin down the steady-state level of output;
hence, values for these parameters can be chosen to match the average level of
detrended output in the data. Set σ = 1, implying the same level of relative
risk aversion implied by a utility function that is logarithmic in consumption.
Set θ = 6, implying a steady-state markup of 20 percent, and set φ = 50, the
same value chosen by Ireland (2000, 2002). Finally, since zt corresponds to the
real business cycle model�s technology shock, set ρz = 0.95 and σz = 0.007, as
suggested by Cooley and Prescott (1995).
The model�s remaining 8 parameters, ρr, ρy, ρπ, ρa, ρθ, σa, σθ, and σr, can be

estimated by maximum likelihood. To begin, let {dt}Tt=1 denote the series for the
logarithmic deviations of detrended output, inßation, and the short-term nominal
interest rate from their average, or steady-state, values:

dt =

 �yt�πt
�rt

 =
 ln(yt)− ln(y)ln(πt)− ln(π)
ln(rt)− ln(r)

 .
Equations (29) and (30) then give rise to an empirical model of the form

st+1 = Ast +Bεt+1 (31)

and
dt = Cst, (32)
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where A = Π, B =W , C is formed from the rows of U as

C =

 U2U3
U1

 ,
and the vector of serially uncorrelated innovations

εt+1 =
h
εat+1 εθt+1 εzt+1 εrt+1

i0
is assumed to be normally distributed with zero mean and diagonal covariance
matrix

V = Eεt+1ε
0
t+1 =


σ2a 0 0 0
0 σ2θ 0 0
0 0 σ2z 0
0 0 0 σ2r

 .
The model deÞned by (31) and (32) is in state-space form; hence, the likelihood

function for the sample {dt}Tt=1 can be constructed as outlined by Hamilton (1994,
Ch.13). For t = 1, 2, ..., T and j = 0, 1, let

�st|t−j = E(st|dt−j, dt−j−1, ..., d1),
Σt|t−j = E(st − �st|t−j)(st − �st|t−j)0,

and
�dt|t−j = E(dt|dt−j, dt−j−1, ..., d1).

Then, in particular, (31) implies that

�s1|0 = Es1 = 0(7×1) (33)

and
vec(Σ1|0) = vec(Es1s01) = [I(49×49) −A⊗A]−1vec(BV B0). (34)

Now suppose that �st|t−1 and Σt|t−1 are in hand and consider the problem of
calculating �st+1|t and Σt+1|t. Note Þrst from (32) that

�dt|t−1 = C�st|t−1.

Hence
ut = dt − �dt|t−1 = C(st − �st|t−1)

18



is such that
Eutu

0
t = CΣt|t−1C

0.

Next, using Hamilton�s (p.379, eq.13.2.13) formula for updating a linear projec-
tion,

�st|t = �st|t−1 + [E(st − �st|t−1)(dt − �dt|t−1)0][E(dt − �dt|t−1)(dt − �dt|t−1)0]−1ut
= �st|t−1 + Σt|t−1C 0(CΣt|t−1C 0)−1ut.

Hence, from (31),

�st+1|t = A�st|t−1 +AΣt|t−1C 0(CΣt|t−1C 0)−1ut.

Using this last result, along with (31) again,

st+1 − �st+1|t = A(st − �st|t−1) +Bεt+1 −AΣt|t−1C 0(CΣt|t−1C 0)−1ut.

Hence,

Σt+1|t = BV B0 +AΣt|t−1A0 −AΣt|t−1C 0(CΣt|t−1C 0)−1CΣt|t−1A0.

These results can be summarized as follows. Let

�st = �st|t−1 = E(st|dt−1, dt−2, ..., d1)

and
Σt = Σt|t−1 = E(st − �st|t−1)(st − �st|t−1)0.

Then
�st+1 = A�st +Ktut

and
dt = C�st + ut,

where
ut = dt −E(dt|dt−1, dt−2, ..., d1),

Eutu
0
t = CΣtC

0 = Ωt,

the sequences for Kt and Σt can be generated recursively using

Kt = AΣtC
0(CΣtC 0)−1
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and
Σt+1 = BV B

0 +AΣtA0 −AΣtC 0(CΣtC 0)−1CΣtA0,
and initial conditions �s1 and Σ1 are provided by (33) and (34).
The innovations {ut}Tt=1 can then be used to form the log likelihood function

for {dt}Tt=1 as

lnL = −
µ
3T

2

¶
ln(2π)− 1

2

TX
t=1

ln |Ωt|− 1
2

TX
t=1

u0tΩ
−1
t ut.

4. Evaluating the Model

4.1. Variance Decompositions

Begin by considering (31), which can be rewritten as

st = Ast−1 +Bεt,

or
(I −AL)st = Bεt,

or

st =
∞X
j=0

AjBεt−j.

This last equation implies that

st+k =
∞X
j=0

AjBεt+k−j,

Etst+k =
∞X
j=k

AjBεt+k−j,

st+k −Etst+k =
k−1X
j=0

AjBεt+k−j,

and hence

Σsk = E(st+k −Etst+k)(st+k −Etst+k)0
= BV B0 +ABV B0A0 +A2BV B0A20 + ...+Ak−1BV B0Ak−10.
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In addition, (31) implies that
Σs = lim

k→∞
Σsk

is given by
vec(Σs) = [I(49×49) −A⊗A]−1vec(BV B0).

Next, consider (30) and (32), which imply that

Σfk = E(ft+k −Etft+k)(ft+k −Etft+k)0 = UΣskU 0,
Σf = lim

k→∞
Σfk = UΣ

sU 0,

Σdk = E(dt+k −Etdt+k)(dt+k −Etdt+k)0 = CΣskC 0,
and

Σd = lim
k→∞

Σdk = CΣ
sC 0.

Let Θ denote the vector of estimated parameters, and let H denote the covari-
ance matrix of these estimated parameters, so that asymptotically,

Θ ∼ N(Θ0,H).
Note that the elements of Σsk, Σ

s, Σfk , Σ
f , Σdk, and Σ

d can all be expressed as
nonlinear functions of Θ:

Σ = g(Θ),

so that asymptotic standard errors for these elements can be found by calculating

∇gH∇g0.
In practice, the gradient∇g can be evaluated numerically, as suggested by Runkle
(1987).
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