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Abstract

Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonpara-
metrically. This paper discusses identification and consistent estimation of the unknown functions
H, M , G and F , where r (x, z) = H [M (x, z)], M (x, z) = G (x) + F (z), and H is strictly mono-
tonic. An estimation algorithm is proposed for each of the model’s unknown components when
r (x, z) represents a conditional mean function. The resulting estimators use marginal integration,
and are shown to have a limiting Normal distribution with a faster rate of convergence than unre-
stricted nonparametric alternatives. Their small sample performance is studied in a Monte Carlo
experiment. We empirically apply our results to nonparametrically estimate generalized homothetic
production functions in four industries within the Chinese economy.
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1 Introduction

For vector x ∈ <d and scalar z, let r (x, z) be a function that, along with its derivatives, can be
consistently estimated nonparametrically. We assume there exist unknown functions H, G and F such
that

r (x, z) = H [M (x, z)] = H [G (x) + F (z)] (1.1)

where M (x, z) ≡ G (x)+F (z) and H is strictly monotonic. This structure can arise from an economic
model and from the statistical objective of reducing the curse of dimensionality as d increases (see, e.g.,
Stone (1980) and Stone (1986)). This paper provides new sufficient conditions for identification of H,
M , G and F . An estimation algorithm is then proposed when r (x, z) represents a conditional mean
function for a given sample {Yi, Xi, Zi}ni=1. We provide limiting distributions for the resulting nonpara-
metric estimators of each component of (1.1), we present evidence of their small sample performance
in some Monte Carlo experiments, and we provide an empirical application.

This framework encompasses a large class of economic models. For example, the function r (x, z)
could be a utility or consumer cost function recovered from estimated consumer demand functions
via revealed preference theory, or it could be an estimated production or producer cost function.
Chiang (1984), Simon and Blume (1994), Bairam (1994), and Chung (1994) review popular parametric
examples of (1.1) with H [m] = m, the identity function. In demand analysis, Goldman and Uzawa
(1964) provide an overview of the variety of separability concepts implicit in such specifications.

Many methods have been developed for the identification and estimation of strongly or addi-
tively separable models, where r (x, z) =

∑d
k=1Gk (xk) + F (z) or its generalized version r (x, z) =

H[
∑d

k=1Gk (xk) + F (z)]. Friedman and Stutzle (1981), Breiman and Friedman (1985), Andrews
(1991), Tjøstheim and Auestad (1994) and Linton and Nielsen (1995) are examples of the former
while Linton and Härdle (1996), and Horowitz and Mammen (2004) provide estimators of the latter
for known H. Horowitz (2001) uses this strong separability to identify the components of the model
when H is unknown, and proposes a kernel–based consistent and asymptotically normal estimator. In
contrast with Horowitz, we obtain identification by assuming the link function H is strictly monotonic
instead of by assuming that G has the additive form

∑d
k=1Gk (xk).

A related result is Lewbel and Linton (2007), who identify and estimate models in the special
case of (1.1) where F (z) = z, or equivalently where F (z) is known. Pinkse (2001) provides a general
nonparametric estimator for G̃ in weakly separable models r (x, z) = H̃[G̃ (x) , z]. However, in Pinkse’s
specification, G̃ is only identified up to an arbitrary monotonic transformation, while our model provides
the unique G and F up to sign–scale and location normalizations.

One derivation of our model comes from ordinary partly additive regression models in which the
dependent variable is censored, truncated, binary, or otherwise limited. These are models in which
Y ∗ = G (X) + F (Z) + ε for some unobserved Y ∗ and ε, where ε is independent of (X,Z) with
an absolutely continuous distribution function, and what is observed is (Y,X,Z), where Y is some
function of Y ∗ such as Y = 1 (Y ∗ ≥ 0), or Y = Y ∗|Y ∗ ≥ 0, or Y = 1 (Y ∗ ≥ 0)Y ∗, in which case
r (x, z) = E [Y |X = x, Z = z] or r (x, z) = med[Y |X = x, Z = z]. The function H would then be
the distribution function or quantile function of ε. Threshold or selection equations in particular are
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commonly of this form, having Y = 1 [G (X) + ε ≥ −Z], where −Z is some threshold, e.g., a price or
a bid, with G (X) + ε equalling willingness to pay or a reservation price; see, e.g., Lewbel, Linton, and
McFadden (2002). Monotonicity of H holds automatically in most of these examples because H either
equals or is a monotonic transformation of a distribution function.

Model (1.1) may arise in a nonparametric regression model with unknown transformation of the de-
pendent variable, F (z) = G (x)+ε, where ε has an absolutely continuous distribution function H which
is independent of x, F is an unknown monotonic transformation and G is an unknown regression func-
tion. It follows that the conditional distribution of Z given X, FZ|X , has the form H (F (z)−G (x)) ≡
r (z, x), where FZ|X ≡ r (z, x). For this model, Ekeland, Heckman, and Nesheim (2004) provide an
identification result that exploits separability between x and z, but not the monotonicity of H as we
do here. Monotonicity of H again holds in this example because H is a distribution function.

The identification result presented here can also be used for identifying copulas nonparametrically.
For example, ‘strict’ Archimedean copulas can be written as in (1.1), where the joint distribution
of (X,Z), FXZ (x, z), is such that FXZ (x, z) = φ−1 (φ (FX (x)) + φ (FZ (z))), where FX (x), FZ (z)
represent the marginal distributions of X and Z respectively, φ is a continuous strictly decreasing
convex function from [0, 1] to [0,∞] such that φ (1) = 0, and φ−1 denotes the inverse. A collection of
Archimedean copulas can be found in Nelsen (2006).

Our methodology also encompasses models of the transformed multiplicative form H [M (x, z)] =
H[G (x)F (z)], which are common in the production function literature. Particularly, if z 6= 0 then a
function r (x̃, z) is defined to be “generalized homothetic” if and only if r (x̃, z) = H [G(x̃/z)F (z)] where
H is strictly monotonic, so by letting x = x̃/z we are providing a nonparametric estimator of generalized
homothetic functions. Ordinary homothetic models, as estimated nonparametrically by Lewbel and
Linton (2007), are the special case in which F (z) = z. Homotheticity and its variants, including the
implied monotonicity of H, are commonly assumed in utility, production, and cost function contexts;
see, e.g., Chiang (1984), Simon and Blume (1994), Chung (1994), and Goldman and Uzawa (1964).

We implement our methodology to estimate generalized homothetic production functions for four
industries in China. For this, we have built an R package (see Ihaka and Gentleman (1996)), JLLprod,
containing the functions that implement the techniques proposed here.

In most of the applications listed above the functions H, G and F are of direct economic interest,
but even when they are not our proposed estimators will still be useful for dimension reduction and for
testing whether or not functions have the proposed separability, by comparing r̂ (x, z) with Ĥ[Ĝ (x) +
F̂ (z)], or in the production theory context, to test whether production functions are homothetic, by
comparing F (z) = z with F̂ (z). In addition, the more general model r (x, z, w) = H [M (x, z) , w]
can also be identified using our methods when M (x, z) is additive or multiplicative and H is strictly
monotonic with respect to its first argument.

Section 2 sets out the main identification results. Our proposed estimation algorithm is presented in
Section 3. Section 4 analyzes the asymptotic properties of the estimators. A Monte Carlo experiment
is presented in section 5 comparing our estimators to those proposed by Linton and Nielsen (1995),
and Linton and Härdle (1996), both of which assume knowledge of H. This section also provides an
empirical illustration of our methodology for the estimation of generalized production functions in four
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industries within the Chinese economy in 2001. Finally, Section 6 concludes and briefly outlines possible
extensions.

2 Identification

The main identification idea is presented in this section. Observe that (1.1) is unchanged if G and F

are replaced by G+ cG and F + cF , respectively, and H (m) is replaced by H̃ (m) = H (m− cG − cF ).
Similarly, (1.1) remains unchanged if G and F are replaced by cG and cF respectively, for some c 6= 0
and H (m) is replaced by H̃ (m) = H (m/c). Therefore, as is commonly the case in this literature,
location and scale normalizations are needed to make identification possible. We will describe and
discuss these normalizations below, but first we state the following conditions which are assumed to
hold throughout our exposition.

Assumption I:

(I1) Let W ≡ (X,Z) be a (d+ 1)-dimensional random vector with support Ψx×Ψz, where Ψx ⊆ <d,
and Ψz ⊆ <, for some d ≥ 1. The distribution of W is absolutely continuous with respect to
Lebesgue measure with probability density fW such that infw=(x,z)∈Ψx×Ψz

fW (w) > 0. There
exists functions r, H, G and F such that r (x, z) = H [G (x) + F (z)] for all w ≡ (x, z) ∈ Ψx×Ψz.

(I2) (i) The function H is strictly monotonic and H, G and F are continuous and differentiable with
respect to any mixture of their arguments. (ii) F has finite first derivative, f , over its entire
support, and f (z0) = 1 for some z0 ∈ int (Ψz). (iii) Let H (0) = r0, where r0 is a constant. In
addition, (iv) Let r (x, z) ∈ Ψr(x,z0) for all w ≡ (x, z) ∈ Ψx × Ψz, where Ψr(x,z) is the image of
the function r (x, z).

Assumption (I1) specifies the model. The functions M , G and F may not be nonparametrically
identified if (X,Z) has discrete elements, so we rule this out, which is a common restriction in non-
parametric models with unknown link function (see Horowitz (2001)). Assumption (I2) defines the
location and scale normalizations required for identification. It also requires that the image of r (x, z)
over its entire support is replicated once r is evaluated at z0 for all x. This assumption implies that
s (x, z) ≡ ∂r (x, z) /∂z is a well defined function for all w ∈ Ψx × Ψz. Then, for the random variables
r (X,Z) and s (X,Z), define the function q (t, z) by

q (t, z) = E [s (X,Z)| r (X,Z) = t, Z = z] . (2.1)

The assumed strict monotonicity of H ensures that H−1, the inverse function of H, is well defined
over its entire support. Let h be the first derivative of H.

Theorem 2.1 Let Assumption I hold. Then,

M (x, z) ≡ G (x) + F (z) =

r(x,z)∫
r0

dt

q(t, z0)
. (2.2)
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Proof. It follows from Assumption (I1) that s (x, z) = h [M (x, z)] f (z), so

E [s (X,Z)| r (X,Z) = t, Z = z0] = E [h [M (X,Z)] f (Z)| r (X,Z) = t, Z = z0]

= E
[
h
[
H−1 (r (X,Z))

]
f (Z)

∣∣ r (X,Z) = t, Z = z0

]
= h

[
H−1 (t)

]
f (z0) , and

q (t, z0) = h
[
H−1 (t)

]
f (z0). Then using the change of variables m = H−1 (t), and noticing that

h
[
H−1 (t)

]
= h (m) and dt = h (m) dm, we obtain

r(x,z)∫
r0

dt

q(t, z0)
=

r(x,z)∫
r0

dt

h [H−1 (t)] f (z0)
=

H−1[r(x,z)]∫
H−1[r0]

h (m) dm
h (m) f (z0)

=
(
H−1 [r (x, z)]−H−1 [r0]

)
(1/f (z0)) = M (x, z) ≡ G (x) + F (z) ,

as required.
In the special case of an identity link function, i.e. H (m) = m, q has a simple form q (t, z0) =

f (z0) ≡ q(z0) which is constant over all t and equals 1 by Assumption (I2). It is clear from the
proof of this theorem that without knowledge of z0 and r0 in Assumptions (I2)(ii) and (I2)(iii), the
function M (x, z) could only be identified up to a sign–scale factor 1/f (z0) and a location constant
H−1(r0) (1/f (z0)), provided |f (z0)| > 0 and

∣∣H−1 [r0]
∣∣ < ∞. In addition, (I2)(iv) assumes a range

of (X,Z) that is large enough to obtain the function r (X,Z) everywhere in the interval r0 to r (x, z).
This ensures that q exists everywhere on Ψr(x,z) ×Ψz, making M (x, z) identifiable for all x and z.

For the multiplicative model, M (x, z) = G (x)F (z), which is a more natural representation of the
model in some contexts such as production functions as discussed in the introduction, the following
alternative assumption and corollary provides the necessary identification.

Assumption I∗:

(I∗1) Let W ≡ (X,Z) be a (d+ 1)-dimensional random vector with support Ψx×Ψz, where Ψx ⊆ <d,
and Ψz ⊆ <, for some d ≥ 1. The distribution of W is absolutely continuous with respect to
Lebesgue measure with probability density fW (w) such that infw=(x,z)∈Ψx×Ψz

fW (w) >0. There
exists functions r, H, G and F such that r (x, z) = H [G (x)F (z)] for all w ≡ (x, z) ∈ Ψx ×Ψz.

(I∗2) (i) The function H is strictly monotonic, continuous and differentiable. G and F are strictly
positive continuous functions and differentiable with respect to any mixture of their arguments.
(ii) F has finite first derivative, f , such that F (z0) /f (z0) = 1 for some z0 ∈ int (Ψz). (iii) Let
H (1) = r1, where r1 is a constant. In addition, (iv) Let r (x, z) ∈ Ψr(x,z0) for all w ≡ (x, z) ∈
Ψx ×Ψz, where Ψr(x,z) is the image of the function r (x, z).

Corollary 2.1 Let Assumption I∗ hold. Then,

M (x, z) = G (x)F (z) = exp

 r(x,z)∫
r1

dt

q(t, z0)

 . (2.3)
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Proof. See the appendix.
If rl is greater than r (x, z), for any nonnegative constant, then the integrals of the form ∫ r(x,z)rl above

are to be interpreted as −∫ r(x,z)rl , for l = 0, 1. The normalization quantities z0 and r1 can often arise
from economic theory. For example, the neoclassical production function of two inputs (say, capital
K and labor L) with positive, decreasing marginal products with respect to each factor and constant
returns to scale, requires positive inputs of both factors for a positive output. If r (K,L) represents such
a function, r1 = r (0, L) = r (K, 0) ≡ min

K,L
r (K,L) is a natural choice of normalization. Furthermore, if

the production function has a multiplicative structure (see Section 5) with F (L) = L, then f (L) = 1
and any L0 > 0 may be chosen, thereby providing all the normalizations needed for full identification.

Once M (x, z) has been pulled out of the unknown (but strictly monotonic) function H in (2.2)
or (2.3), we may recover G and F by standard marginal integration as in Linton and Nielsen (1995).
Let P1 and P2 be deterministic discrete or continuous weighting functions with Stieltjes integrals∫

Ψz
dP1 (z) = 1 and

∫
Ψx
dP2 (x) = 1. Let p1 and p2 be the densities of P1 and P2 with respect to

Lebesgue measure in < and <d respectively. Then

αP1 (x) =
∫

Ψz

M (x, z) dP1 (z) , and αP2 (z) =
∫

Ψx

M (x, z) dP2 (x) .

In the additive model, αP1 (x) = G (x) + c1 and αP2 (z) = F (z) + c2, where c1 =
∫

Ψz
F (z) dP1 (z)

and c2 =
∫

Ψx
G (x) dP2 (x). While in the multiplicative case, αP1 (x) = c1G (x) and αP2 (z) = c2F (z).

Hence, αP1 (x) and αP2 (z) are, up to identification normalizations, the components of M in both the
additive (c = c1 + c2) and multiplicative structures1 (c = c1 × c2).

Given the definition of r (x, z), it follows that H (M (x, z)) = E [r (X,Z)|M (X,Z) = M (x, z)],
which shows that the function H is identified since we have already identified M . If r (x, z) ≡
E [Y |X = x, Z = z] for some random Y , then the equality H (M (x, z)) = E [Y |M (X,Z) = M (x, z)]
may also be used to identify2 H.

Strict monotonicity of the link function H plays an important role in these results. Because of this
property, the conditional mean of s (x, z) given r and z is a well-defined function, with a known structure
which is separable in z. This monotonicity may often arise from the theory underlying the model, for
example, strict monotonicity of H follows from strict monotonicity of latent error distribution functions
in the limited dependent variable examples described in the introduction, and this monotonicity may
follow as a consequence of technology or preference axioms in production, utility, or cost function
applications

1Similarly, F can be recover directly the right-hand side of equations ∂F (z) /∂z = s (x, z) /q(r (x, z) , z0), and

∂ ln F (z) /∂z = s (x, z) /q(r (x, z) , z0) in the additive and multiplicative case. We thank an anonymous referee for pointing

this out.
2Alternatively, H can be identified directly using the reciprocal of H−1 (r), where H−1 (r) =

∫ r

r0
dt/q(t, z0) and

H−1 (r) = exp
∫ r

r1
dt/q(t, z0) for the additive and multiplicative cases respectively. We thank an anonymous referee for

pointing this out.
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3 Estimation

In this section, for the case r (x, z) ≡ E [Y |X = x, Z = z], we describe estimators of M , G, F and
H based on replacing the unknown functions r (x, z), s (x, z) and q (t, z) in (2.2) by multidimensional
regression smoothers. Since an estimator of the partial derivative of the regression surface, r (x, z)
with respect to z is needed, a natural choice of smoother will be the local polynomial estimator, which
produces estimators for r and s simultaneously. Relative to other nonparametric regression estimators,
local polynomials also have better boundary behavior and the ability to adapt to non–uniform designs,
among other desirable properties; see e.g. see Fan and Gijbels (1996).

For a given random sample {Yi, Xi, Zi}ni=1, we propose the following steps to estimate M , G, F and
H in the additive case:

1) Obtain consistent estimators r̂i = r̂ (Xi, Zi) and ŝi = ŝ (Xi, Zi) of r (Xi, Zi) and s (Xi, Zi) for
i = 1, . . . , n by local p1-th order polynomial regression of Yi on Xi and Zi with corresponding
kernel K1, and bandwidth sequence h1 = h1 (n).

2) Obtain a consistent estimator of q (t, z), given z0 for all t, by local p2-th order polynomial regres-
sion of ŝi on r̂i and Zi for i = 1, . . . , n with corresponding kernel K2 and bandwidth sequence
h2 = h2 (n). Denote this estimate as q̂ (t, z0) = Ê[ ŝ(X,Z)|r̂(X,Z) = t, Z = z0].

3) For a constant r0, define an estimate of M (x, z) ≡ G (x) + F (z) by

M̂ (x, z) =
∫ r̂(x,z)

r0

dt

q̂ (t, z0)
. (3.1)

4) Estimate G (x) and F (z) consistently up to an additive constant by marginal integration,

α̂P1 (x) =
∫

Ψz

M̂ (x, z) dP1 (z) , (3.2)

α̂P2 (z) =
∫

Ψx

M̂ (x, z) dP2 (x) . (3.3)

5) Now for c̃ = (1/2)[
∫

Ψx
α̂P1 (x) dP2 (x) +

∫
Ψz
α̂P2 (z) dP1 (z)], define G̃ (x) = α̂P1 (x) − c̃ , F̃ (z) =

α̂P2 (z) − c̃ and M̃ (Xi, Zi) ≡ G̃ (Xi) + F̃ (Zi) + c̃, then we can obtain a consistent estimator of
H (m) by local p∗-th polynomial regression of Yi or r̂ (Xi, Zi) on M̃ (Xi, Zi) for i = 1, . . . , n with
corresponding kernel k∗ and bandwidth sequence h∗ = h∗ (n). Denote this estimate as Ĥ (m).

For estimating the alternative multiplicative M model instead, replace steps 3–5 above by:

3∗) For a constant r1, define an estimate of M (x, z) ≡ G (x)F (z) by

M̂ (x, z) = exp

(∫ r̂(x,z)

r1

dt

q̂ (t, z0)

)
.
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4∗) Estimate G (x) and F (z) consistently up to a scale factor by marginal integration,

α̂P1 (x) =
∫

Ψz

M̂ (x, z) dP1 (z) ,

α̂P2 (z) =
∫

Ψx

M̂ (x, z) dP2 (x) .

5∗) Now for c̃ = (1/2)[
∫

Ψx
α̂P1 (x) dP2 (x) +

∫
Ψz
α̂P2 (z) dP1 (z)], define G̃ (x) = α̂P1 (x) /c̃, F̃ (z) =

α̂P2 (z) /c̃, and M̃ (Xi, Zi) ≡ G̃ (Xi) F̃ (Zi) c̃, then we can obtain a consistent estimator of H (m)
by local p∗-th polynomial regression of Yi or r̂ (Xi, Zi) on M̃ (Xi, Zi) with corresponding kernel
k∗ and bandwidth sequence h∗ = h∗ (n) for i = 1, . . . , n. Denote this estimate as Ĥ (m).

We can immediately observe how important the joint–unconstrained nonparametric estimation of
r and s is in step 1. They are not only used for estimating q in step 2, but r along with the preset r0

(r1) also define the limits of the integral in (3.1) in step 3 (3∗). Operationally, because of estimation
error in step 1, the function q̂ (t, z0) is only observed for t ∈range(r̂ (Xi, z0)), but we continue it beyond
this support for step 3 (3∗) using linear extrapolation, with slope equal to the derivative of q̂ at the
corresponding end of the support (this choice of extrapolation method does not affect the resulting
limiting distributions). (3.1) is then easily evaluated using numerical integration. Convenient choices
of P1 (z) and P2 (x), in (3.2) and (3.3), are Fz (z) and Fx (x), which are the distribution functions of
Z and X respectively. We can replace them by their empirical analogs, F̂z (z) and F̂x (x), yielding
α̂1 (x) ≡ n−1

∑n
i=1 M̂ (x, Zi) and α̂2 (z) = n−1

∑n
i=1 M̂ (Xi, z). Finally, notice that Ĥ in step 5 (5∗)

involves a simple univariate nonparametric regression.

4 Asymptotic Properties

This section gives assumptions under which our theorems provide the pointwise distribution of our
estimators of M , G, F and H for some z = z0 and r = r0. This is done for the additive case
in conditional mean function estimation as described in the previous section. The technical issues
involving the distribution of M and H are those of generated regressors, see Ahn (1995), Ahn (1997),
Su and Ullah (2006), Lewbel and Linton (2007) and Su and Ullah (2008) for example. The proofs also
use techniques to deal with nonparametrically generated dependent variables, which may be of use
elsewhere. Once the asymptotic expansion of M̂ is established, the asymptotic properties of G and F

will follow from standard marginal integration results.
Assumption E:

(E1) The kernels Kl, l = 1, 2, satisfy K1 = Πd+1
j=1k1 (wj), K2 = Π2

j=1k2 (vj), and kl, l = 1, 2, are
bounded, symmetric about zero, with compact support [−cl, cl] and satisfy the property that∫
< kl (u) du = 1. For l = 1 and 2, the functions Hlj = ujKl (u) for all j with 0 ≤ |j| ≤ 2pl + 1 are

Lipschitz continuous. The matrices Mr and Mq, multivariate moments of the kernels K1 and K2

respectively (defined in the appendix), are nonsingular.

7



(E2) The densities fW of Wi, and fV of Vi for W>i ≡
(
X>i , Zi

)
and Vi ≡ (ri, Zi) respectively are

uniformly bounded, and they are also bounded away from zero on their compact support.

(E3) For some ξ > 5/2, E[|εr,i|ξ] <∞, E[|εq,i|ξ] <∞, and E[|εr,iεq,i|ξ] <∞ where εr,i = Yi−r (Xi, Zi)
and εq,i = Si − q (ri, Zi). Also, E[ε2

r,i|Xi = x, Zi = z] ≡ σ2
r (x, z), be such that νP1 (x) ≡

∫
p2

1 (z)
σ2
r (x, z) f−1

W (x, z) q−2 (r, z0) dz <∞ and νP2 (z) ≡
∫
p2

2 (x)σ2
r (x, z) f−1

W (x, z) q−2 (r, z0) dx <∞.

(E4) The function r (·) is (p1 + 1) times partially continuously differentiable and the function q (·) is
(p2 + 1) times partially continuously differentiable. The corresponding (p1 + 1)-th or (p2 + 1)-th
order partial derivatives are Lipschitz continuous on their compact support.

(E5) The bandwidth sequences h1, and h2 go to zero as n→∞, and satisfy the following conditions:

(i) nhd+1
1 h

2(p2+1)
2 → c ∈ [0,∞),

(ii) n1/2hd+1
1 h2

2/ lnn→∞, n1/2h
2(p1+1)
1 h−2

2 → 0,

(iii) nhd+1
1 h

2(p1+1)
1 → c ∈ [0,∞), and nhd+1

1 h2p1
1 h2

2 → c ∈ [0,∞).

Assumptions (E1)–(E4) provide the regularity conditions needed for the existence of an asymptotic
distribution. The estimation error εq,i, in Assumption (E3), is such that E[εq,i| r (Xi, z) = r, Zi = z] =
0. However, E [εq,i|Xi = x, Zi = z] 6= 0, so we write εq,i = gq (x, z)+ηi, where E [ηi|Xi = x, Zi = z] = 0
by construction. Assumption (E4) ensures Taylor–series expansions to appropriate orders.

Let ν1n = n−1/2h
−(d+1)/2
1

√
lnn+hp1+1

1 and ν2n = n−1/2h−1
2

√
lnn+hp2+1

2 , then by Theorem 6 (page
593) in Masry (1996a), max

1≤j≤n
‖ r̂ (Wj) − r (Wj) ‖= Op (ν1n), max

1≤j≤n
‖ ŝ (Wj) − s (Wj) ‖= Op

(
h−1

1 ν1n

)
and sup

v
‖ q̂ (v)− q (v) ‖= Op (ν2n) if the unobserved {V1, . . . , Vn} were used in constructing q̂. Because

{V̂1, . . . , V̂n} were used instead, the approximation error is accounted for in Assumption (E5)(ii), which
implies that (h−1

2 ν1n)2 = o(n−1/2h−1
2 ) and so h−1

2 ν1n = o (1), where the appearance of h−1
2 is because

of the use of Taylor–series expansions in our proofs. Assumption (E5) permits various choices of
bandwidths for given polynomial orders. For example, if p1 = p2 = 3, we could set h1 ∝ n−1/9, and
h2 = bb×h1 when d = 1, for a nonzero scalar bb, as in our Monte Carlo experiment in Section 5. More
generally, in view of Assumption (E5)(iii), h1 ∝ n−1/[2(p1+1)+d] and h2 ∝ n−1/[2p2+3] will work for a
variety of combinations of d, p1, and p2.

Theorem 4.1 Suppose that Assumption I holds. Then, under Assumption E, there exists a sequence
of bounded continuous function Bn (x, z) with Bn (x, z)→ 0 such that√

nhd+1
1

(
M̂ (x, z)−M (x, z) + Bn (x, z)

)
d→ N

[
0,

σ2
r (x, z)

q2 (r, z0) fW (x, z)
[
M−1

r ΓrM−1
r

]
0,0

]
,

where [A]0,0 means the upper-left element of matrix A.

Proof. The proof of this theorem, along with definitions of each component, is given in the appendix.
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As defined in the appendix, there are four components to the bias term Bn, specifically, Bn (x, z) =
hp1+1

1 B1 (x, z) + hp11 h2B2 (x, z) + hp2+1
2 B3 (x, z)− hp1+1

1 B4 (x, z), where B3 corresponds to the ordinary
nonparametric bias of q̂ if the unobserved r and s were used instead in step 2, and B4 corresponds to
the standard nonparametric bias while calculating r̂ in step 1 weighted by q−1 (r, z0). B1 and B2 arise
from estimation error in the generated regressor r̂ and the generated response ŝ in constructing q̂ in
step 2.

Given this result, E[M̂ (x, z)] −M (x, z) = O(hp1+1
1 ) + O(hp11 h2) + O(hp2+1

2 ) and var[M̂ (x, z)] =
O(n−1h

−(d+1)
1 ), and these orders of magnitude also hold at boundary points by virtue of using local

polynomial regression in each step. By employing generic marginal integration of this preliminary
smoother, as described in step 4, we obtain by straightforward calculation the following result:

Corollary 4.1 Suppose that Assumption I holds. Then, under Assumption E√
nhd1

(
α̂P1 (x)− αP1 (x) +

∫
Bn (x, z) dP1 (z)

)
d→ N

[
0, νP1 (x)

[
M−1

r Γ1
rM
−1
r

]
0,0

]
, (4.1)√

nh1

(
α̂P2 (z)− αP2 (z) +

∫
Bn (x, z) dP2 (x)

)
d→ N

[
0, νP2 (z)

[
M−1

r Γ2
rM
−1
r

]
0,0

]
. (4.2)

where [A]0,0 means the upper-left element of matrix A.

Proof. Given the asymptotic normality of M̂ , the proof follows immediately from results in Linton
and Nielsen (1995) and Linton and Härdle (1996), and therefore is omitted.

Our procedure is similar to many other kernel-based multi-stage nonparametric procedures in that
the first estimation step does not contribute to the asymptotic variance of the final stage estimators,
see, e.g. Linton (2000) and Xiao, Linton, Carroll, and Mammen (2003). However, the asymptotic
variances of M̂ (x, z), α̂P1 (x) and α̂P2 (z) reflect the lack of knowledge of the link function H through
the appearance of the function q in the denominator, which by Assumption I is bounded away from
zero and depends on the scale normalization z0, and on the conditional variance σ2

r (x, z) of Y . These
quantities can be consistently estimated from the estimates of r (x, z0), q (r, z0) in steps 1 and 2, and
σ2
r (x, z). For example, if Pi, l = 1, 2, are empirical distribution functions, the standard errors of
α̂P1 (Xi) and α̂P2 (Zi) can be computed as

ψ1 (k1) σ̂2
rn
−1

n∑
j=1

[
f̂W (Xi, Zj) q̂2 (r (Xi, Zj) , z0)

]−1
f̂Z (Zj) , and

ψ2 (k1) σ̂2
rn
−1

n∑
j=1

[
f̂W (Xj , Zi) q̂2 (r (Xj , Zi) , z0)

]−1
f̂X (Xj)

respectively, in which ψl (k1) ≡
[
M−1

r ΓlrM
−1
r

]
0,0

for l = 1, 2, f̂W , f̂X and f̂Z are the corresponding
kernel estimates of fW , fX and fZ , while σ̂2

r = n−1
∑n

i=1 [Yi − r̂ (Xi, Zi)]
2 or σ̂2

r = n−1
∑n

i=1[Yi −
Ĥ(M̃ (Xi, Zi))]2.

Our estimators are based on marginal integration of a function of a preliminary (d+ 1)-dimensional
nonparametric estimator, hence the smoothness of G and F we require must increase as the dimension
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of X increases to achieve the rate n−p1/(2p1+1), which is the optimal rate of convergence when G and
F have p1 continuous derivatives, see e.g. Stone (1985) and Stone (1986).

Now consider H. Define ΨM(x,z) = {m : m = G (x) + F (z) , (x, z) ∈ Ψx ×Ψz}. If G and F were
known, H could be estimated consistently by a local p∗–polynomial mean regression of Y on M (X,Z) ≡
G (X) + F (Z). Otherwise, H can be estimated with unknown M by replacing G (Xi) and F (Zi)
with estimators in the expression for M (Xi, Zi). This is a classic generated regressors problem as in
Ahn (1995). Denote these by α̂P1 (Xi) and α̂P2 (Zi), with M̃i ≡ α̂P1 (Xi) + α̂P2 (Zi) − c̃ and Mi ≡
αP1 (Xi) + αP2 (Zi)− c. Let h† = max(hp1+1

1 , hp2+1
2 , hp11 h2), then max

1≤j≤n
‖ M̃j −Mj ‖= Op (ν†n), where

ν†n = n−1/2h
−d/2
1

√
lnn+ h†.

To obtain the limiting distribution of Ĥ, we make the following additional assumption:
Assumption F:

(F1) The kernel k∗ is bounded, symmetric about zero, with compact support [−c∗, c∗] and satisfies the
property that

∫
< k∗ (u) du = 1. The functions H∗j = ujk∗ (u) for all j with 0 ≤ j ≤ 2p∗ + 1 are

Lipschitz continuous. The matrix MH , defined in the appendix, is nonsingular.

(F2) Let fM be the density of M (X,Z), which is assumed to exist, to inherit the smoothness properties
of M and fW and to be bounded away from zero on its compact support.

(F3) The bandwidth sequence h∗ goes to zero as n→∞, and satisfies the following conditions:

(i) nh
2(p∗+1)+1
∗ → c ∈ [0,∞), nh∗h2

† → c ∈ [0,∞),

(ii) n1/2hd1h
3/2
∗ / lnn→∞, and n1/2h2

†h
−3/2
∗ → 0.

Assumptions (F1) to (F3) are similar to those in Assumption E. As before, Assumption (F3)(ii)
implies that

(
h−1
∗ ν†n

)2 = o(n−1/2h
−1/2
∗ ) and also that h−1

∗ ν†n = o (1). Assumption (F3) imposes
restrictions on the rate at which h∗ → 0 as n→∞. They ensure that no contributions to the asymptotic
variance of Ĥ are made by previous estimation stages. Let σ2

H (m) = E
[
ε2
r

∣∣M (X,Z) = m
]
, then we

have the following theorem:

Theorem 4.2 Suppose that Assumption I holds, then, under Assumption E and F, there exists a
sequence of bounded continuous functions BnH (·), such that BnH (m)→ 0 and

√
nh∗

(
Ĥ(m)−H(m)− BnH (m)

)
d→ N

(
0,
σ2
H (m)
fM (m)

[
M−1

H ΓHM−1
H

]
0,0

)
,

for m ∈ ΨM(x,z), where [A]0,0 means the upper-left element of matrix A.

Proof. The proof of this theorem, along with definitions of each component, is given in the appendix.

When p∗ = 1, h∗ admits the rate n−1/5 when h1 and h2 are chosen as suggested above when d = 1,
as it is done in the application and simulations in Section 5. In which case, BnH (·) simplifies to the
standard bias from a univariate local linear regression. Standard errors can be easily computed from the
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formula above. By evaluating Ĥ at each data point, the implied estimator of r̂ (Xi, Zi) = Ĥ[M̃ (Xi, Zi)]
is Op(n−1/2h

−(d−1)/2
1 ), for large h1 and d, which can be seen by a straightforward local Taylor–series

expansion around M (Xi, Zi). That is, our proposed methodology has effectively reduced the curse of
dimensionality in estimating r by 1 with respect to its fully unrestricted nonparametric counterpart.

5 Numerical Results

5.1 Generalized Homothetic Production Function Estimation

Let y be the log output of a firm and (x̃, z) be a vector of inputs. Many parametric production function
models of the form y = r∗ (x̃, z) + εr∗ have been estimated that impose either linear homogeneity
(constant returns to scale) or homotheticity for the function r∗. In the homogenous case, corresponding
to known H (m) = m, examples include Bairam (1994) and Chung (1994) for parametric models, and
Tripathi and Kim (2003) and Tripathi (1998) for fully nonparametric settings. In the nonparametric
framework, Lewbel and Linton (2007) presents an estimator for a homothetically separable function
r∗.

Consider the following generalization of homogeneous and homothetic functions:

Definition 5.1 A function M∗ : Ψw ⊂ <d+1 → < is said to be generalized homogeneous on Ψw if and
only if the equation M∗ (λw) = g (λ)M∗ (w) holds for all (λ,w) ∈ <++ ×Ψw such that λw ∈ Ψw. The
function g : <++ → <++ is such that g (1) = 1 and ∂g (λ) /∂λ > 0 for all λ.

Definition 5.2 A function r∗ : Ψw ⊂ <d+1 → < is said to be generalized homothetic on Ψw if and
only if r∗ (w) = H [M∗ (w)], where H : < → < is a strictly monotonic function and M∗ is generalized
homogeneous on Ψw.

Homogeneity of any degree κ and homotheticity are the special cases of definitions 5.1 and 5.2, re-
spectively, in which the function g takes the functional form g (λ) = λκ. Given a generalized homothetic
production function we have

r∗ (x̃, z) = H [M∗ (x̃, z)] = H
[
M∗ (x̃/z, 1) g (1/z)−1

]
= H [G (x)F (z)] = H [M (x, z)] ≡ r (x, z) , (5.1)

where x = x̃/z and F (z) = 1/g (1/z).
We have constructed an R package, JLLprod, which can be freely downloaded from the first author’s

websites. The package includes access to an Ecuadorian production data set and to the Chinese data
set described below.3 We use this software to estimate generalized homothetic production functions
for four industries in mainland China in 2001. For each firm in each industry we observe the net value
of real fixed assets K, the number of employees L, and Y defined as the log of value-added real output.
K and Y are measured in thousands of Yuan converted to the base year 2000 using a general price

3This is data on 406 firms in the Petroleum, Chemical and Plastics industries in Ecuador in 2002, see Huynh and

Jacho-Chávez (2007) for details.
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deflator for the Chinese economy. For details regarding the collection and construction of this data set,
see Jefferson, Hu, Guan, and Yu (2003).

We consider both nonparametric and parametric estimates of the production function r (k, L) ∈ P,
where k = K/L and P is a set of smooth production functions, so in (5.1), z = L, x̃ = K, and x = k.
To eliminate extreme outliers (which in some cases are likely due to gross measurement errors in the
data) we sort the data by k and remove the top and bottom 2.5% of observations in each industry.
Both regressors are also normalized by their respective median prior to estimation.

5.1.1 Parametric Modeling

Consider a general production function (P1) in which log output Y = rψP1
(k, L) + εr, where rψP1

is
an unrestricted quadratic function in ln (k) and ln (L+ γ), so

rψP1
(k, L) = θ0 + θ1 ln (k) + θ2 ln (L+ γ) + θ3 [ln (k)]2

+ θ4 ln (k) ln (L+ γ) + θ5 [ln (L+ γ)]2 , (5.2)

and ψP1 = (θ0, θ1, θ2, θ3, θ4, θ5, γ)>. When γ = 0, (5.2) reduces to the ordinary unrestricted Translog
production function. When 2θ1θ5 − θ2θ4 = 0 and θ2

1θ5 − θ2
2θ3 = 0, (5.2) is equivalent to the following

generalized homothetic production function (P2) specification,

M (k, L) = kα (L+ γ)

rψP2
(k, L) = H (M) = β0 + β1 ln (M) + β2 [ln (M)]2 , (5.3)

where ψP2 = (α, β0, β1, β2, γ)>. If we impose both (P2) and γ = 0, then the model reduces to

M (k, L) = kαL

rψP3
(k, L) = H (M) = β0 + β1 ln (M) + β2 [ln (M)]2 , (5.4)

where ψP3 = (α, β0, β1, β2)>, which is the homothetic Translog production function proposed by Chris-
tensen, Jorgenson, and Lau (1973).

Models (P1), (P2), and (P3) are fitted to the data using nonlinear least squares estimation. The
implied parametric estimates of G, F and H are shown in Figures 1 and 2. Various specification tests
justify the use of these models as sensible parametric simplifications for our data, see Jacho-Chávez,
Lewbel, and Linton (2006) for details.

5.1.2 Nonparametric Modeling

Figures 1 and 2 also display generalized homothetic nonparametric estimates M̂ (k, L), Ĝ (k), F̂ (L) and
Ĥ (M). For each industry, we use local quadratic regression with a Gaussian kernel and bandwidths
h1 obtained by a standard unrestricted leave–one–out cross validation method for regression functions.
In the second stage, we set bandwidth h2 to be the same in local linear regressions across industries
and time. We also choose the location and scale normalizations to obtain estimated surfaces M̂ with
approximately the same range, yielding the following normalizations:
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Industry 2001
n lnL0 r0

Chemical 1637 3.06 7.0

Iron 341 4.06 8.0

Petroleum 119 2.27 8.5

Transportation 1230 4.04 7.5

The nonparametric fits of the generalized homogeneous component, M̂ , shown in Figure 1, are quite
similar. They are both increasing in k and L with ranges varying more with labor than with respect to
capital to labor ratios, as we would expect.4 Nonparametric estimates of the functions G and F differ
from the parametric Translog model estimates (P3) in Figures 2, but they are roughly similar to the
parametric generalized homothetic model (P2) at low levels of L.5 The nonparametric estimates are all
strictly increasing in their arguments, but show quite a bit more curvature, departing most markedly
from the parametric models for G in most industries. Comparing the nonparametric estimator of F in
2 with the parametric estimates also provides a quick check for the presence of homotheticity in the
data set. If homotheticity were present, i.e. F (L) = L, all curves would be close to each other, as
happens for the petroleum and transportation industries. In any case, they are all strictly increasing
functions in labor, implying a generalized homogeneous structure for M as conjectured. Figure 1 shows
parametric and nonparametric fits of the unknown link function H, obtained by a local linear regression
of r̂ on M̂ with a normal kernel and bandwidth h∗ given by Silverman’s rule of thumb. It also shows
fits from the unconstrained estimator of the function r used in the construction of our estimator in
the first stage for each (k, L) for which M̂ was calculated. The nonparametric fits of r and those of
H are quite similar in all industries, indicating that the imposition of generalized homotheticity is
reasonable for these industries. The parametric fits are also broadly similar to the nonparametric ones,
but showing more curvature for the chemical and iron industries. However, these similarities do not
always translate into comparable measures of substitutability and returns to scale, see Jacho-Chávez,
Lewbel, and Linton (2006) for details.

5.2 Simulations

In this section, we describe Monte Carlo experiments to study the finite sample properties of the
proposed estimator, and compare its performance with that of direct competitors when the link function
is known. Code for these simulations was written in GAUSS. Our experimental designs are based on the
parametric production function models in Section 5.1. In particular, n observations {Yi, Xi, Zi}ni=1 are
generated from Y = rψP2

(X,Z) + σr · εr, where the distributions of X and Z are U [1, 2], εr is chosen
independently of X and Z with a standard normal distribution, and rψP2

(X,Z) is given by (5.3). We

4It was a similar observation by Cobb and Douglas (1928) that motivated the use of homogeneous functions in pro-

duction theory, see Douglas (1967).
5The means of the observed ranges were subtracted from both sets of curves before plotting.
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consider two designs:
Design 1: ψP2 = (3/2, 0, 1, 0, 0)> ,
Design 2: ψP2 = (3/2, 3, 3/4, 0,−1/2)> ,

and two possible scenarios, σ2
r = 1 and σ2

r = 2. Notice that z0 = 3/2, and r0 = 0, and r0 = 3 provide
the required normalizations in designs 1 and 2 respectively.

In constructing our estimators M̂ , Ĝ, F̂ and Ĥ, we use the second order Gaussian kernel ki (u) =(
1/
√

2π
)

exp
(
−u2/2

)
, i = 1, 2, ∗. The integral in M̂ in step 2 of section 3, is evaluated numerically using

the trapezoid method. We also fix p1 = 3, p2 = 1 and p∗ = 1. We use the bandwidth h1 = k̃ŝWn
−1/9,

where k̃ is a constant term and ŝW is the square root of the average of the sample variances of Xi and
Zi. This bandwidth is proportional to the optimal rate for 3rd order local polynomial estimation in
the first stage, and for simplicity h2 is fixed as 3h1. The bandwidth h∗ is set to follow Silverman’s rule
of thumb (1.06n−1/5 times the squared root of the average of the regressors variances). Three different
choices of k̃ are considered: k̃ ∈ {0.5, 1, 1.5}.

We compare the performance of our estimator to those of Linton and Nielsen (1995) in Design 1,
and Linton and Härdle (1996) in Design 2. These alternative estimators may not be fully efficient, but
they assume the link function H is known, and so they provide strong benchmarks for comparison with
our estimator where H is unknown.

Each function is estimated on a 50× 50 equally spaced grid in [1, 2]× [1, 2] when n = 150, and at
another 60×60 uniform grid on the same domain when n = 600. Two criteria summarizing goodness of
fit, the Integrated Root Mean Squared Error (IRMSE) and Integrated Mean Absolute Error (IMAE),
are calculated at all grid points and then averaged. Tables 1 and 2 report the median of these averages
over 2000 replications for each design, scenario and bandwidth. For comparison, we also report the
results obtained using the estimators proposed by Linton and Nielsen (1995), and Linton and Härdle
(1996) in column (1) in Tables 1, and 2 respectively. These were constructed using the same unrestricted
first stage nonparametric regression r employed by our estimator.

As seen in the Tables, for either sample size, lack of knowledge of the link function increases the
fitting error of our estimator relative to estimates using that knowledge. For each scenario, the IRMSE
and IMAE decline as the sample size is quadrupled for both sets of estimators, at somewhat similar,
less than

√
n-rates. Larger bandwidths produce superior estimates for all functional components in

all designs. In the estimation of the additive components, G and F , the fitting criteria of Linton and
Nielsen (1995) and Linton and Härdle (1996) are of approximately the same magnitude. There does
not seem to be a dramatic difference in estimates of H between estimators in both designs. All sets of
estimates deteriorate as expected when σr is increased.

6 Conclusion

We provide a general nonparametric estimator for a transformed partly additive or multiplicatively
separable model of a regression function. Its small sample properties were analyzed in some Monte
Carlo experiments, and found to compare favorably with respect to other estimators. We have shown
that many popular empirical models implied by economic theory share this partly separable structure.
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We empirically applied our model to estimate generalized homothetic production functions. Possible
extensions include the identification and estimation of 1.1 with additional regressors; the possibility of
endogenous regressors; and a test for homotheticity, see Jacho-Chávez, Lewbel, and Linton (2006) for
more details.
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Appendix A: Main Proofs

Preliminaries

We use the notation as well as the general approach introduced by Masry (1996b). For the sample
{Yi, Xi, Zi}ni=1, let Wi =

(
X>i , Zi

)> so we obtained the p1–th order local polynomial regression of Yi
on Wi by minimizing

Qr,n (θ) = n−1h
−(d+1)
1

n∑
i=1

K1

(
Wi − w
h1

)Yi − ∑
0≤|j|≤p1

θj (Wi − w)j

2

, (A-1)
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where the first element in θ denotes the minimizing intercept of (A-1), θ0, and

θj =
1
j!

∂|j|r (w)
∂j1w1 · · · ∂jdwd∂jd+1wd+1

.

We also use the following conventions:

j= (j1, . . . , jd, jd+1)> , j! = j1!× . . .× jd × jd+1!, |j| =
d+1∑
k=1

jk

aj = aj11 × . . .× a
jd
d × a

jd+1

d+1 ,
∑

0≤|j|≤p1

=
p1∑
k=0

k∑
j1=0

· · ·
k∑

jd=0

k∑
jd+1=0

j1+...+jd+jd+1=k

where w = (x>, z)>. Let Nr,(l) = (l + k − 1)!/ (l! (k − 1)!) be the number of distinct k−tuples j with
|j| = l, where k = d + 1. After arranging them in the corresponding lexicographical order, we let φ−1

l

denote this one-to-one map. For each j with 0 ≤ |j| ≤ 2p1, let

µj (K1) =
∫
<d+1

ujK1 (u) du, γj (K1) =
∫
<d+1

ujK2
1 (u) du,

γ1
k,l (K1) =

∫
<d

∫
<

∫
<

(ud, u1)k (ud, ũ1)lK1 (ud, u1)K1 (ud, ũ1) du1dũ1, and

γ2
k,l (K1) =

∫
<

∫
<d

∫
<d

(ud, u1)k (ũd, u1)lK1 (ud, u1)K1 (ũd, u1) duddũd,

where ud and u1 represent the first d and last element of the d + 1 vector u respectively. Define the
Nr ×Nr dimensional matrices Mr and Γr, and the Nr ×Nr,(p1+1) matrix Br by

Mr =


Mr;0,0 Mr;0,1 . . . Mr;0,p1

Mr;1,0 Mr;1,1 . . . Mr;1,p1
...

...
...

Mr;p1,0 Mr;p1,1 . . . Mr;p1,p1

 ,

Γr =


Γr;0,0 Γr;0,1 . . . Γr;0,p1
Γr;1,0 Γr;1,1 . . . Γr;1,p1

...
...

...
Γr;p1,0 Γr;p1,1 . . . Γr;p1,p1

 ,Br =


Mr;0,p1+1

Mr;1,p1+1

...
Mr;p1,p1+1

 (A-2)

where Nr =
∑p1

l=0Nr,(l), Mr;i,j and Γr;i,j are Nr,(i)×Nr,(j) dimensional matrices whose (l,m) elements
are µφi(l)+φj(m) and γφi(l),φj(m) respectively. Γ1

r and Γ2
r are defined similarly by the Nr,(i) × Nr,(j)

matrices Γ1
r;i,j , Γ2

r;i,j , whose (l,m) elements are given by γ1
φi(l),φj(m) and γ2

φi(l),φj(m) respectively. The
elements of Mr = Mr (K1, p1) and Br = Br (K1, p1) are simply multivariate moments of the kernel
K1.

Similarly, for the generated sub-sample set {ŝ (Xi, Zi) , r̂ (Xi, Zi) , Zi}ni=1, an estimator of the func-
tion q, defined as q (t, z) = E [S| r (X,Z) = t, Z = z], is obtained by the intercept of the following
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minimizing problem,

Qq,n (θ) = n−1h−2
2

n∑
i=1

K2

(
V̂i − v
h2

)Ŝi − ∑
0≤|j|≤p2

θj

(
V̂i − v

)j

2

,

where V̂i = (r̂i, Zi)> and v = (t, z)>, define Vi = (ri, Zi)> accordingly. Let Nq,(l) = (l + k − 1)!/(l! ×
(k − 1)!) be the number of distinct k−tuples j with |j| = l, where k = 2. After arranging them
in the corresponding lexicographical order, we let φ−1

l denote this one-to-one map. For each j with
0 ≤ |j| ≤ 2p2, let µj (K2) =

∫
<2 u

jK2 (u) du, and γj (K2) =
∫
<2 u

jK2
2 (u) du. Define the Nq × Nq

dimensional matrices Mq and Γq, and the Nq ×Nq,(p2+1) matrix Bq by

Mq =


Mq;0,0 Mq;0,1 . . . Mq;0,p2

Mq;1,0 Mq;1,1 . . . Mq;1,p2
...

...
...

Mq;p2,0 Mq;p2,1 . . . Mq;p2,p2

 ,

Γq =


Γq;0,0 Γq;0,1 . . . Γq;0,p2
Γq;1,0 Γq;1,1 . . . Γq;1,p2

...
...

...
Γq;p2,0 Γq;p2,1 . . . Γq;p2,p2

 ,Bq =


Mq;0,p2+1

Mq;1,p2+1

...
Mq;p2,p2+1

 , (A-3)

where Nq =
∑p2

l=0Nq,(l), Mq;j,k and Γq;j,k are Nq,(j) × Nq,(k) dimensional matrices whose (l,m) el-
ements are µφq;j(l)+φq;k(m) and γφq;j(l),φq;k(m) respectively. The elements of Mq = Mq (K2, p2) and
Bq = Bq (K2, p2) are simply multivariate moments of the kernel K2. To facilitate the proof, let K2,i (v)
be a Nq×1 vector, K(1)

2,i (v) be a Nq×2 matrix, and Mq,n (v) be a symmetric Nq×Nq matrix such that

Mq,n (v) =


Mq,n;0,0 (v) Mq,n;0,1 (v) . . . Mq,n;0,p2 (v)
Mq,n;1,0 (v) Mq,n;1,1 (v) . . . Mq,n;1,p2 (v)

...
...

...
Mq,n;p2,0 (v) Mq,n;p2,1 (v) . . . Mq,n;p2,p2 (v)

 , (A-4)

K2,i (v) =


K2,i;0 (v)
K2,i;1 (v)

...
K2,i;p2 (v)

 , K(1)
2,i (v) =


K(1)

2,i;0 (v)
K(1)

2,i;1 (v)
...

K(1)
2,i;p2

(v)

 ,

where K2,i;l (v) is a Nq,(l) × 1 dimensional subvector whose l0–th element is given by [K2,i;l (v)]l0 =

((Vi − v) /h2)φq;l(l0) K2((Vi − v) /h2). The Nq,(l) × 1 matrix K(1)
2,i;l (v) has l0 element being the partial

derivative of [K2,i;l (t, z)]l0 with respect to r, and Mq,n;j,k (v) is a Nq,(j)×Nq,(k) dimensional submatrix
with the

(
l, l0
)

element given by

[Mq,n;j,k (v)]l,l0 =
1
nh2

2

n∑
i=1

(
Vi − v
h2

)φq;j(l)+φq;k(l0)

K2

(
Vi − v
h2

)
.
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K̂2,i (v) and M̂q,n (v) are defined similarly as K2,i (v) and Mq,n (v) respectively, but with the generated
regressors {r̂i}ni=1 in place of the unobserved variables {ri}ni=1. Let us define the functions K̃2,i (z) =∫
h−1

2 K2,i (t, z) dt and ζ (t, z) = ∂
[
fV (t, z) q2 (t, z)

]−1
/∂t, which are well defined given Assumptions

(E1) and (E2). Thus, by integration by parts, it follows that
r(x,z)∫
r0

h−1
2 K

(1)
2,i (t, z)

[
fV (t, z) q2 (t, z)

]−1
dt =

{
K2,i (r, z)

[
fV (r, z) q2 (r, z)

]−1 −K2,i (r0, z)×

[
fV (r0, z) q2 (r0, z)

]−1
}
−

r(x,z)∫
r0

K2,i (t, z) ζ (t, z) dt

≡ %0
i,1 − %0

i,2. (A-5)

Similarly, let us define dQ (t) = 1 (r0 ≤ t ≤ r (x, z)) dt, so we can write∫
h−1

2 K2,i (t, z)
[
fV (t, z) q2 (t, z)

]−1
dQ (t) ≡ %1

i,1 − %1
i,2,

where %1
i,1 and %1

i,2 are like %0
i,1 and %0

i,2 in (A-5), but with K1
2,i (r, z) replacing K2,i (r, z), where

K1
2,i (r, z) =

∫ r
−∞K2,i (s, z) ds, a Nq × 1 vector with well-defined functions as elements by virtue of As-

sumption (E1). Furthermore, n−1h2
2

∑n
i=1K1

2,i (r, z) converges to M1
q,0fV (r, z) in mean squared, where

M1
q,0 is a Nq × 1 vector with l0 element given by

∫
uφq:l(l

0)K1
2 (u) du, and K1

2 (u) =
∫ u
−∞K2 (v) dv.

Similarly, n−1h2
2

∑n
i=1K2,i (r, z) converges in mean squared to M0

q,0fV (r, z).
Let also arrange the Nr,(m) and Nq,(m) elements of the derivatives

Dmr (w) ≡ ∂mr (w)
∂m1w1, . . . , ∂mkwk

, Dmq (v) ≡ ∂mq (v)
∂m1v1, . . . , ∂mkvk

, for |m| = m

as the Nr,(m) × 1 and Nq,(m) × 1 column vectors r(m) (w) and q(m) (v) in the lexicographical order
mentioned above.

Let ι1 = (1, 0, . . . , 0)> ∈ <Nr and ι∗1 = (0, 1, 0, . . . , 0)> ∈ <Nr , then by equation (2.13) (page 574)
and Corollary 2(ii) (page 580) in Masry (1996a), we can write

r̂ (w)− r (w) = ι>1 [Mrf (w)]−1 {1 + op (1)}

×

n−1h
−(d+1)
1

n∑
j=1

K1,j (w)

εr,j +
∑

|k|=p1+1

1
k!
Dkr(w) (Wi − w)k

+ γn (w)

 , (A-6)

ŝ (w)− s (w) = h−1
1 ι∗>1 [Mrf (w)]−1 {1 + op (1)}

×

n−1h
−(d+1)
1

n∑
j=1

K1,j (w)

εr,j +
∑

|k|=p1+1

1
k!
Dkr(w) (Wi − w)k

+ γn (w)

 (A-7)

uniformly in w, where

γn (w) ≡ (p1 + 1)n−1h
−(d+1)
1

1
k!

∑
|k|=p1+1

K1,j (w) (Wj − w)k

×
∫ 1

0
{Dkr(w + τ (Wi − w))−Dkr(w)} (1− τ)p1 dτ .
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As beforeK1,i (w), aNr×1 dimensional vector, is defined analogously asK2,i (v) in (A-4), with aNr,(l)×1

dimensional subvector with l0–th element given by [K1,i;l (w)]l0 = ((Wi − w)/h1)φr;l(l0)K1((Wi −
w)/h1), such that n−1h

−(d+1)
1

∑n
j=1K1,j (w) converges in mean squared to Mr,0fW (w). Define γ (w) =

E [γn (w)], then by Proposition 2 (page 581) and by Theorem 4 (page 582) in Masry (1996a), it follows
that

sup
w=(x,z)∈Ψx×Ψz

|γ (w) | = o(hp1+1
1 ),

sup
w=(x,z)∈Ψx×Ψz

|h−(p1+1)
1 γn (w)− γ (w) | = hp1+1

1 Op(n−1/2h
−(d+1)/2
1

√
lnn). (A-8)

Let

βn (w) ≡ n−1h
−(d+1)
1

n∑
j=1

K1,j (w)
1
k!

∑
|k|=p1+1

Dkr(w) (Wi − w)k , and

β (w) = Brr
(p1+1)(w)fW (w) ,

then by Theorem 2 (page 579) in Masry (1996a), it follows that

sup
w=(x,z)∈Ψx×Ψz

|h−(p1+1)
1 βn (w)− β (w) | = Op(n−1/2h

−(d+1)/2
1

√
lnn). (A-9)

For the set {Yi, M̃i}ni=1, as discussed in the main text, an estimator of the function H is obtained
by the intercept of the following minimizing problem

QH,n (θ) = n−1h−1
∗

n∑
i=1

k∗

(
M̃i −m
h∗

)Yi − ∑
0≤j≤p∗

θj

(
M̃i −m

)j2

.

Because this is a simple univariate nonparametric regression, its associated matrices MH , M0
H,0, ΓH ,

BH , MH,n(m), M̂H,n(m), and vector K∗,i;l(m) have simpler forms. They are as those previously
described but replacing the responses by Yi and the conditioning variables by Mi or M̃i accordingly.

Proof of Corollary 2.1

As before, given Assumption I∗, it follows that s (x, z) = h [G (x)F (z)]G (x) f (z), consequently
q (t, z0) = h

[
H−1 (t)

]
H−1 (t) [f (z0) /F (z0)], and using the change of variables m = H−1 (t), after

noticing that h
[
H−1 (t)

]
= h (m) and dt = h (m) dm, we obtain

r(x,z)∫
r1

dt

q(t, z0)
=

r(x,z)∫
r1

F (z0)
h [H−1 (t)]H−1 (t) f (z0)

dt

=

H−1(r(x,z))∫
H−1(r1)

F (z0)
h (m)mf (z0)

h (m) dm

=
[
F (z0)
f (z0)

] [
ln
(
H−1 [r (x, z)]

)
− ln

(
H−1 [r1]

)]
= ln (M (x, z)) ≡ ln (G (x)F (z)) .
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This proves the result.

Proof of Theorem 4.1

Rearranging terms, we have

M̂ (x, z)−M (x, z) =
∫ r̂(x,z)

r0

dt

q̂ (t, z0)
−
∫ r(x,z)

r0

dt

q (t, z0)

=

(∫ r̂(x,z)

r0

−
∫ r(x,z)

r0

)
dt

q (t, z0)
−
∫ r̂(x,z)

r0

(
q̂ (t, z0)− q (t, z0)
q̂ (t, z0) q (t, z0)

)
dt.

By mean value expansions of the first term, in the last equality above, and after some manipulation
we obtain,

M̂ (x, z)−M (x, z) =
1

q (r, z0)
(r̂ (x, z)− r (x, z))−

∫ r(x,z)

r0

q̂ (t, z0)− q (t, z0)
q2 (t, z0)

dt (A-10)

−
∫ r̂(x,z)

r(x,z)

q̂ (t, z0)− q (t, z0)
q2 (t, z0)

dt+
∫ r̂(x,z)

r0

(q̂ (t, z0)− q (t, z0))2

q̂ (t, z0) q2 (t, z0)
dt (A-11)

=M1,n (x, z)−M2,n (x, z)−RM,n (x, z) . (A-12)

The terms in (A-10), M1,n (x, z) and M2,n (x, z), are linear in the estimation error from the two
nonparametric regressions, while the remaining terms in (A-11), RMn (x, z), are both quadratic in
such errors, and thus they will be shown to be of smaller order. M1,n (x, z) is just a constant times
the estimation error of r̂ (x, z), the unconstrained first–stage nonparametric estimator of r (x, z), and
under Assumption E, it can be analyzed directly using Theorem 4 (page 94) in Masry (1996b), given
that q (r (x, z) , z) > 0 over Ψx ×Ψz. That is,√

nhd+1
1

(
M1,n (x, z)− hp1+1

1 B4 (x, z)
)

d→ N

[
0,

σ2
r (x, z)

q2 (r, z0) fW (x, z)
[
M−1

r ΓrM−1
r

]
0,0

]
,

B4 (x, z) =
[
M−1

r Brr
(p1+1) (x, z)

]
0,0
q−1 (r, z0) (A-13)

where [A]0,0 is the upper-left element of matrix A. In order to analyze the second term, M2,n (x, z),
we first notice that for any two symmetric nonsingular matrices A1 and A2, we have that A−1

1 −A
−1
2 =

A−1
2 (A2 −A1)A−1

1 , which implies
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q̂ (t, z)− q (t, z)
q2 (t, z)

= ι>2 M̂−1
q,n (v)

[
q2 (v)

]−1
Ṽq,n (v) + ι>2 M̂−1

q,n (v)
[
q2 (v)

]−1
B̂q,n (v)

= ι>2 M̂−1
q,n (v)

[
q2 (v)

]−1
V̂q,n (v) + ι>2 M̂−1

q,n (v)
[
q2 (v)

]−1
V̂ ∗q,n (v)

+ ι>2 M̂−1
q,n (v)

[
q2 (v)

]−1
B̂q,n (v)

= ι>2
[
fV (v) q2 (v) Mq

]−1
V̂q,n (v) + ι>2

[
fV (v) q2 (v) Mq

]−1
V̂ ∗q,n (v)

+ ι>2
[
fV (v) q2 (v) Mq

]−1
B̂q,n (v)

− ι>2
[
fV (v) q2 (v) Mq

]−1
[
M̂q,n (v)− fV (v) Mq

]
M̂−1

q,n (v) V̂q,n (v)

− ι>2
[
fV (v) q2 (v) Mq

]−1
[
M̂q,n (v)− fV (v) Mq

]
M̂−1

q,n (v) V̂ ∗q,n (v)

− ι>2
[
fV (v) q2 (v) Mq

]−1
[
M̂q,n (v)− fV (v) Mq

]
M̂−1

q,n (v) B̂q,n (v)

≡ Tq,n,1 (v) + Tq,n,2 (v) + Tq,n,3 (v)− Tq,n,4 (v)− Tq,n,5 (v)− Tq,n,6 (v)

where Mq is defined in (A-3). We have also defined Ṽq,n (v) = V̂q,n (v) + V̂ ∗q,n (v), where the Nq × 1
vectors V̂q,n (v), V̂ ∗q,n (v), and B̂q,n (v) are

V̂q,n (v) = n−1h−2
n∑
i=1

K̂2,i (v) εq,i,

V̂ ∗q,n (v) = n−1h−2
n∑
i=1

K̂2,i (v) [Ŝi − Si],

B̂q,n (v) = n−1h−2
n∑
i=1

K̂2,i (v) ∆̂q,i (v) , and

∆̂q,i (v) ≡ q(V̂i)−
∑

0≤|m|≤p2

1
m!

(Dmq) (v) (V̂i − v)m.

Consequently,

M2n (x, z) = Tq,n,1 (x, z) + Tq,n,2 (x, z) + Tq,n,3 (x, z) +Rq,n (x, z) ,

where Tq,n,l(x, z) =
∫
Tq,n,l (t, z0) dQ (t) for l = 1, 2, 3 and dQ (t) = 1 (r0 ≤ t ≤ r (x, z)) dt. These terms,

along with the remainder Rq,n (x, z) =
∑6

l=4

∫
Tq,n,l (t, z0) dQ (t) are dealt with in Lemmas B1 to B-4
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in Jacho-Chávez, Lewbel, and Linton (2006), from which we conclude that

M2n (x, z) = hp1+1
1 ι>2 M−1

q M0
q,0ι
>
1 M−1

r Br

[
E
[
r(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
r(p1+1)(X,Z)gq (X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]

+ hp11 h2ι
>
2 M−1

q M1
q,0ι
>
1 M−1

r Br

[
E
[
r(p1+1)(X,Z)

∣∣ r (X, z0) = r, Z = z0

]
q2 (r, z0)

−
E
[
r(p1+1)(X,Z)

∣∣ r (X, z0) = r0, Z = z0

]
q2 (r0, z0)

]

+ hp2+1
2 ι>2 M−1

q Bq

r(x,z)∫
r0

q(p2+1) (t, z0)
q2 (t, z0)

dt+ op(n−1/2h
−(d+1)/2
1 )

= hp1+1
1 B1 (x, z) + hp11 h2B2 (x, z) + hp2+1

2 B3 (x, z) + op(n−1/2h
−(d+1)/2
1 ). (A-14)

Finally, the last term in (A-12), RM,n (x, z) = Op (ν1n)Op(h−1
2 ν1n + h−1

1 ν1n + ν2n) +Op((h−1
2 ν1n +

h−1
1 ν1n+ν2n)2), by Theorem 6 (page 594) in Masry (1996a) and Lemma B-5 in Jacho-Chávez, Lewbel,

and Linton (2006). Therefore, it follows from Assumption (E5) that RM,n (x, z) = op(n−1/2h
(d+1)/2
1 ).

By grouping terms, Bn (x, z) ≡ hp1+1
1 B1 (x, z) + hp11 h2B2 (x, z) + hp2+1

2 B3 (x, z) − hp1+1
1 B4 (x, z), we

conclude the proof of the theorem.

Proof of Theorem 4.2

As before, we can write

Ĥ(m)−H(m) = ι>∗ M̂−1
H,n(m)ṼH,n(m) + ι>∗ M̂−1

H,n(m)B̂H,n(m)

= ι>∗ [fM (m)MH ]−1 ṼH,n(m) + ι>∗ [fM (m)MH ]−1 B̂H,n(m)

− ι>∗ [fM (m)MH ]−1
[
M̂H,n(m)− fM (m)MH

]
M̂−1

H,n(m)ṼH,n(m)

− ι>∗ [fM (m)MH ]−1
[
M̂H,n(m)− fM (m)MH

]
M̂−1

H,n(m)B̂H,n(m)

= ι>∗ [fM (m)MH ]−1 V̂H,n(m) + ι>∗ [fM (m)MH ]−1 V̂ ∗H,n(m)

+ ι>∗ [fM (m)MH ]−1 B̂H,n(m)

− ι>∗ [fM (m)MH ]−1
[
M̂H,n(m)− fM (m)MH

]
M̂−1

H,n(b)V̂H,n(b)

− ι>∗ [fM (m)MH ]−1
[
M̂H,n(m)− fM (m)MH

]
M̂−1

H,n(m)V̂ ∗H,n(m)

− ι>∗ [fM (m)MH ]−1
[
M̂H,n(m)− fM (m)MH

]
M̂−1

H,n(m)B̂H,n(m)

≡ TH,n,1(m) + TH,n,2(m) + TH,n,3(m)− TH,n,4(m)− TH,n,5(m)− TH,n,6(m),
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where

ṼH,n(m) ≡ V̂H,n(m) + V̂ ∗H,n(m),

V̂H,n(m) = n−1h−1
∗

n∑
i=1

K̂∗,i(m)εr,i,

V̂ ∗H,n(m) = n−1h−1
∗

n∑
i=1

K̂∗,i(m)[H(Mi)−H(M̃i)], and

B̂H,n(m) = n−1h−1
∗

n∑
i=1

K̂∗,i(m)∆̂H,i(m), with

∆̂H,i(m) ≡ H(M̂i)−
∑

0≤j≤p∗

1
j!

(∂jH (m) /∂mj)(M̂i −m)j .

We analyze the properties of TH,n,l(b), l = 1, . . . , 6 in Lemmas B-7 to B-10 in Jacho-Chávez, Lewbel,
and Linton (2006), which show that TH,n,1(m) = Op(n−1/2h

−1/2
∗ ) and that TH,n,2(m)

p→ BH2 (m),
TH,n,3(m)

p→ BH3 (m), where

BH2 (m) ≡ −ι>∗M−1
H M0

H,0E
[
H(1) (M (X,Z)) θ (X,Z)

∣∣∣H (M (X,Z)) = m
]

,

BH3 (m) ≡ hp∗+1
∗ ι>∗M−1

H BHH
(p∗+1) (m) ,

with −θ (w) ≡
∫
Bn (x, z) dP1 (z) +

∫
Bn (x, z) dP2 (x)−

∫ ∫
Bn (x, z) dP1 (z) dP2 (x) which is O (h†) by

construction. By defining BnH (m) ≡ BH2 (m) + BH3 (m), the proof is completed.
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Table 1: Median of Monte Carlo fit criteria over grid for Design 1.

σ2 = 1 σ2 = 2
(1) (2) (1) (2)

cc n IRMSE IMAE IRMSE IMAE IRMSE IMAE IRMSE IMAE

G(x) 0.5 150 0.223 0.175 0.621 0.467 0.314 0.247 0.575 0.438
600 0.115 0.090 0.456 0.336 0.160 0.126 0.551 0.409

1 150 0.154 0.123 0.230 0.178 0.219 0.176 0.380 0.281
600 0.082 0.066 0.137 0.107 0.115 0.091 0.212 0.161

1.5 150 0.130 0.105 0.136 0.111 0.187 0.151 0.200 0.163
600 0.071 0.057 0.080 0.064 0.098 0.079 0.116 0.091

F (z) 0.5 150 0.225 0.175 0.632 0.481 0.314 0.245 0.580 0.446
600 0.113 0.089 0.453 0.339 0.161 0.126 0.554 0.425

1 150 0.156 0.124 0.246 0.191 0.216 0.175 0.394 0.309
600 0.083 0.067 0.148 0.117 0.117 0.092 0.218 0.174

1.5 150 0.135 0.110 0.173 0.141 0.185 0.152 0.256 0.209
600 0.073 0.059 0.098 0.078 0.102 0.082 0.137 0.112

M(x, z) 0.5 150 0.343 0.271 1.047 0.826 0.485 0.379 0.936 0.743
600 0.174 0.136 0.737 0.592 0.242 0.191 0.914 0.704

1 150 0.247 0.197 0.386 0.311 0.345 0.277 0.641 0.501
600 0.130 0.104 0.234 0.189 0.181 0.145 0.357 0.292

1.5 150 0.215 0.174 0.260 0.215 0.303 0.247 0.377 0.317
600 0.115 0.092 0.147 0.119 0.162 0.130 0.209 0.169

H(m) 0.5 150 0.343 0.271 0.326 0.258 0.485 0.379 0.401 0.315
600 0.174 0.136 0.208 0.165 0.242 0.191 0.270 0.212

1 150 0.247 0.197 0.228 0.180 0.345 0.277 0.311 0.246
600 0.130 0.104 0.133 0.104 0.181 0.145 0.183 0.144

1.5 150 0.215 0.174 0.184 0.147 0.303 0.247 0.255 0.206
600 0.115 0.092 0.107 0.083 0.162 0.130 0.146 0.115

Note: Results for Linton and Nielsen (1995) are in column (1), and column (2) corresponds to the new
estimator.
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Table 2: Median of Monte Carlo fit criteria over grid for Design 2.

σ2 = 1 σ2 = 2
(1) (2) (1) (2)

cc n IRMSE IMAE IRMSE IMAE IRMSE IMAE IRMSE IMAE

G(x) 0.5 150 0.298 0.234 0.632 0.472 0.419 0.328 0.591 0.461
600 0.153 0.119 0.494 0.375 0.212 0.167 0.542 0.413

1 150 0.206 0.163 0.323 0.249 0.292 0.235 0.507 0.382
600 0.109 0.087 0.189 0.145 0.152 0.121 0.301 0.225

1.5 150 0.173 0.139 0.191 0.154 0.250 0.201 0.276 0.226
600 0.094 0.076 0.108 0.086 0.131 0.105 0.159 0.125

F (z) 0.5 150 0.299 0.233 0.624 0.475 0.419 0.326 0.608 0.471
600 0.151 0.118 0.493 0.382 0.214 0.167 0.564 0.425

1 150 0.206 0.165 0.337 0.257 0.287 0.233 0.549 0.421
600 0.110 0.087 0.204 0.162 0.154 0.122 0.319 0.240

1.5 150 0.178 0.145 0.236 0.191 0.246 0.201 0.348 0.282
600 0.095 0.076 0.130 0.105 0.134 0.107 0.186 0.151

M(x, z) 0.5 150 0.457 0.360 1.027 0.801 0.647 0.504 0.995 0.761
600 0.230 0.180 0.818 0.653 0.322 0.255 0.883 0.690

1 150 0.327 0.262 0.535 0.427 0.458 0.368 0.881 0.688
600 0.171 0.137 0.323 0.261 0.240 0.192 0.522 0.413

1.5 150 0.282 0.230 0.355 0.295 0.402 0.327 0.522 0.434
600 0.150 0.121 0.196 0.160 0.213 0.171 0.285 0.235

H(m) 0.5 150 0.329 0.261 0.291 0.229 0.463 0.367 0.349 0.273
600 0.165 0.130 0.194 0.153 0.231 0.184 0.244 0.192

1 150 0.238 0.192 0.223 0.176 0.334 0.270 0.287 0.228
600 0.125 0.100 0.132 0.104 0.175 0.141 0.181 0.143

1.5 150 0.208 0.170 0.183 0.146 0.294 0.242 0.250 0.201
600 0.110 0.089 0.104 0.082 0.157 0.126 0.144 0.113

Note: Results for Linton and Härdle (1996) are in column (1), and column (2) corresponds to the new
estimator.
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Figure 1: Generalized Homogeneous M , and Strictly Monotonic H.
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Figure 2: Generalized Homogeneous Components G and F .
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