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Abstract

In a Shapley-Shubik assignment problem with a supermodular out-
put matrix, we consider games in which each firm makes a take-it-or-
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the offer is accepted by her. We consider both one-shot and multistage
games. In either game, we show that there can be many equilibrium
salary vectors which are higher or lower than the minimum competi-
tive salary vector. If we exclude artificial equilibria, applicants’ equi-
librium salary vectors are bounded above by the minimal competitive
salary vector, while firms’ equilibrium payoff vectors are bounded be-
low by the payoff vector under the minimum competitive salary vector.
This suggests that adopting the minimum competitive salary vector
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1 Introduction

As is described in Roth (1984), the centralized matching procedure in the
US medical resident market - the National Residency Matching Program
(NRMP) - has been a tremendous success. NRMP uses the deferred-acceptance
matching algorithm developed in Gale and Shapley (1962) with a salary vec-
tor chosen by hospitals prior to the matching procedure in order to assign
senior medical students to residency programs at participating hospitals. The
introduction of NRMP helped reduce the early contract craze and last-minute
congestion that resulted under the decentralized system, and the NRMP par-
ticipation rate by both students and hospitals has been very high.
In 2002, however, a lawsuit against teaching hospitals and NRMP was

filed alleging that the system violated federal antitrust law (in that, for ex-
ample, it restrained competition). This lawsuit could have had a significant
impact on the medical market: one possible consequence was abandonment
of the NRMP and other medical matching programs.1

Recently, Bulow and Levin (2006) set up an interesting matching model
that can compare the centralized matching mechanism that has characteris-
tics of NRMP with a decentralized market. Bulow and Levin (2006) employ
a simplified version of the assignment model in Shapley and Shubik (1972),
and consider a two-stage game. In the first stage, hospitals simultaneously
decide salaries, and in the second stage the Gale-Shapley deferred-acceptance
matching algorithm takes place, using the preferences of hospitals and res-
idents generated by the price vector determined in the first stage. Thus,
their game mimics the matching program of the NRMP. Bulow and Levin
(2006) characterize a mixed-strategy equilibrium of the game, and compare
the expected equilibrium salary of each resident in the game with her min-
imum competitive salary. The minimum competitive salary (vector) is the
lowest market equilibrium salary vector under which the surplus-maximizing
assignment of hospitals and residents is stable (Shapley and Shubik 1972).
The main finding of their paper is that under the centralized system, salaries
and applicants’ payoffs are more suppressed than they are under the decen-
tralized system.
Although the result of Bulow and Levin (2006) appears to suggest the

benefits of a decentralized market,2 the notion of the minimum competitive

1This lawsuit was dismissed in 2004 following the president’s signing a rider law (the
Pension Funding Equity Act of 2004) exempting NRMP from antitrust lawsuits.

2Bulow and Levin (2006) caution that their result does not directly indicate that NRMP

2



salary does not really fit with an equilibrium outcome of a decentralized
resident-hospital matching market. Since each resident is a heterogeneous
commodity, the minimum competitive salary can be attained as a result of
a Vickrey auction in the centralized multi-object auction market. However,
this mechanism clearly also requires a centralized auction market. It is not
clear what kind of decentralized salary vector emerges under a decentralized
market given the typical bilateral job offers in the resident-hospital market.
In this paper, we analyze equilibria of noncooperative games that describe

decentralized markets using the Shapley-Shubik assignment model. Following
Bulow and Levin (2006), we assume that the output matrix is supermodular
(slightly more general than the one in Bulow and Levin), and we consider
games in which each firm chooses an applicant and makes a take-it-or-leave-
it salary offer and a match is made only when the offer is accepted by the
applicant.3 We consider both one-shot and multistage games. Although
these games are too simplistic to describe to be taken to real-world market
institutions, they can be regarded as a first step in an attempt to analyze
the equilibrium salary vectors in a decentralized labor market for entry-level
professionals such as the one for medical interns.
The results of the paper are as follows. In a one-shot simultaneous move

game, in many cases, a mixed strategy equilibrium makes more sense. In
all mixed-strategy equilibria, the highest possible realization of a salary vec-
tor is the minimum competitive equilibrium salary vector: i.e., applicants’
expected utilities are lower than the minimum competitive salaries. On the
other hand, firms get exactly the same expected payoffs under the minimum
competitive salary vector as they do in all mixed-strategy equilibria (Propo-
sition 1). In contrast, a pure strategy equilibrium may not exist (Proposition
2), and even if it does, it is somewhat artificial and weakly dominated, and
the equilibrium vanishes if there is a small cost attached to making offers.
However, when there exists a pure strategy equilibrium, there are many equi-

suppresses the wages of medical residents, since NRMP can use enormous amounts of
information nationally whereas a decentralized system tends to match agents locally.

3We adopt a setup in which firms make only a limited number of offers (constrained
by the number of slots) to applicants, following the literature on timing of transactions
and congestion in market clearing (Roth and Xing, 1994, Niederle and Roth, 2007, and
Niederle, Roth and Ünver, 2006). As examples of those markets, Roth and Xing (1994)
list many entry-level professional labor markets including the US medical intern markets
mentioned in Roth (1984) and Bulow and Levin (2006), and the adopted setup applies
to these markets. The “take-it-or-leave-it” offer assumption is certainly for simplification.
This assumption is also commonly made in the literature.
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libria, and pure strategy equilibrium salaries can be higher or lower than the
minimum competitive salaries (Example 2).
In a multistage model, we show that if each offer has no deadline, that is,

if each offer is valid until it has been accepted or rejected (an “open offer”
assumption),4 there is a stationary Markov perfect equilibrium that achieves
the minimum competitive salary vector (Proposition 3). This equilibrium
actually attains the highest salary vector among all stationaryMarkov perfect
equilibria in pure strategies if we do not allow rejections on the equilibrium
path (Proposition 4).5 If rejections are allowed to occur on the equilibrium
path, then there are many equilibria, and an applicant may get a higher
salary than the minimum competitive salary (Example 4). However, these
rejections on the equilibrium paths have an artificial and pathological nature
(a firm has an incentive to give a candidate an unreasonable offer in order to
get a rejection, since the rejection changes the equilibrium path in the firm’s
favor).6

These results seem to indicate the following. First, in decentralized mar-
kets, if artificial equilibria are allowed, then there are many equilibrium salary
vectors that can be higher or lower than the minimum competitive salary vec-
tor. Second, if we exclude artificial equilibria, then the minimum competitive
salary vector is the best-case scenario for applicants in the decentralized mar-
ket. That is to say, the reference salary vector adopted by Bulow and Levin
(2006) for the decentralized market outcome might not have a strong justifi-
cation, and could be regarded as rather optimistic.
The rest of the paper is organized as follows. In the rest of the intro-

duction, we briefly discuss the relevant literature. Section 2 presents the

4An offer is called open if the offer is valid until it has been accepted or rejected by
the applicant who received it. In contrast, an offer is called exploding if an applicant who
receives it needs to either accept or reject it immediately, and she will not be able to
receive another offer from the same firm in future if she rejects it. In the literature of
congestion in market clearing, using open offers seems to make the market more efficient
than using exploding offers, so we are adopting a conservative assumption.

5There are stationary Markov perfect equilibria with lower salaries including a zero-
salary vector without rejections on the equilibrium path (when the number of firms is less
than the one applicant).

6Although these equilibria are somewhat artificial, they are robust equilibria in the
sense that their strategies are not weakly dominated and they survive small costs of mak-
ing offers. Thus, one way to interpret this result is that without further restrictions on
strategies, many different outcomes can be supported as stationary Markov perfect equi-
libria even under the open offer assumption.
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Shapley-Shubik model with a supermodular and increasing output matrix.
In Section 3, a simultaneous-move game is analyzed. In Section 4, a multi-
stage game with open offers is analyzed. Section 5 concludes, and Section 6
collects all proofs.

1.1 Literature Review

The conclusion of this paper, that the minimum competitive salary vector
may not be a good approximation of equilibrium outcome in decentralized
markets, can be interpreted as at odds with the result of Bulow and Levin
(2006), that the centralized matching program tends to suppress applicants’
salaries, since they use the minimum competitive salary vector as the decen-
tralized market outcome. In contrast, Kojima (2006) and Niederle (2006)
question the policy implications of Bulow and Levin (2006) regarding the
NRMP from different viewpoints. Keeping the minimum competitive salary
as the reference for decentralized markets, they modify the centralized match-
ing market in a way that is more appropriate to the NRMP. Kojima (2006)
extends the Bulow-Levin model to a many-to-one matching problem, and
presents an example in which the unique equilibrium salary vector domi-
nates the minimum competitive salary vector. Niederle (2006) notes that
the NRMP allows for ordered contracts, or reverting positions. Programs
that try to fill a position under a certain contract can, if they do not find a
suitable candidate, change that contract to one under a different contract.
Given this feature, she finds that there is a pure strategy Nash equilibrium in
which the equilibrium salary vector coincides with the minimum competitive
salary vector when hospitals use ordered contracts. Thus, these papers and
the current paper may complement each other.
There is an extensive literature on the labor market with frictions.7 Shimer

(2005) in particular is related to the static model of the current paper. He
considers a model in which there are heterogeneous types of firms and ap-
plicants, and there is a continuum of clones in each type. In his setup, each
individual firm posts salaries for all types of applicants simultaneously, then
applicants apply for posted positions with symmetric mixed strategies.8 Each

7See a nice survey by Rogerson, Shimer and Wright (2005).
8Shimer (2005) calls it an "anonymity" restriction which means that identical type

workers use identical mixed strategies in the second stage of the game. Thus, identical
type workers apply for each individual firm of an identical type with an equal likelihood.
That is, Shimer concentrates on symmetric strategies within identical types of workers.
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individual firm chooses one from its applicant pool. Rejected applicants and
(ex post) no-applicant firms are unmatched. With this setup, Shimer (2005)
proves that there is a unique equilibrium that achieves constrained efficiency.9

Moreover, Shimer finds an imperfectly assortative matching as the unique
equilibrium outcome in the case of multiplicative output matrices. In our
static game, there are also frictions due to the usage of mixed strategies, and
there is ex post mismatch in otherwise assortative matching. However, there
are differences. First, whereas in Shimer (2005) the source of inefficiency is
the social planner’s technology constraint motivated by large markets, the
inefficiency in our match equilibrium comes from each firm’s exercising its
monopoly power and the resulting strategic interactions.10 Second, more
importantly, in our model, we assume that firms make offers to applicants
and applicants accept or reject the offers. This setup is more appropriate
to describing professional labor markets with heterogeneous applicants, such
as the market for medical interns (Roth, 1984, and Bulow and Levin, 2006).
Roth and Xing (1994), Niederle and Roth (2007), and Niederle, Roth, and
Ünver (2006) discuss how such markets for professionals work and adopt a
setup in which firms make one offer at each time in one-to-one matching
problems. The most familiar example may be the market for fresh Ph.D.
economists. In contrast, Shimer’s wage posting game is probably more ap-
propriate to describing standard large labor markets with less heterogeneous
applicants, since wage posting make more sense with many anonymous ap-
plicants within the same type.11

Related to our dynamic model, there are papers that formalize decentral-
ized markets in more realistic ways than ours. Roth (1984) describes how the

Firms also do not distinguish individual workers of the same type (offer the same wages). In
contrast, he does not impose a symmetry restriction on identical firms’ strategies: instead,
he proves that identical firms play identical strategies in the equilibrium.

9Frictions are from coordination failure among workers. Shimer (2005) argues that in
large market, it is natural to have coordination failures due to anonymity of participants.
10We thank one of the referees for making this insightful remark.
11If we apply Shimer’s setup to our specialized professional labor market (i.e., one worker

for each type), posting salaries for all types means posting salaries for all individual work-
ers. (This case is the same as dropping "anonymity" among workers: workers are allowed
to use asymmetric pure strategies.) It is almost obvious to see that, in such a case, there
is a pure strategy subgame perfect equilibrium in which efficient matching is achieved
with the minimum competitive salary vector. This may sound like a nice result, but a
wage posting game may be less appropriate to describing a specialized labor market for
professionals.
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decentralized market operated prior to the NRMP period. Due to a shortage
of interns, hospitals attempted to finalize binding agreements with residents
earlier than competitors. As a result, the date by which most contracts had
been finalized crept forward (unraveling). To fix this coordination problem,
the Association of American Medical Colleges (AAMC) prohibited early con-
tracts prior to a certain date. Although this practice proved to be effective
in resolving unraveling, it led to a new problem: a student who got an offer
from one hospital would wait as long as possible before accepting the offered
position in the hope of getting an offer from a preferable hospital. So, to
speed up the matching process, deadlines for accepting offers became shorter
and shorter, leading to exploding offers. From these observations, Roth and
Xing (1994) formulate interesting multiperiod strategic models of bilateral
matching markets with and without endogenous salaries. They show that all
subgame perfect equilibria are inefficient due to inefficient unraveling. Re-
cently, Niederle and Roth (2007) and Niederle, Roth, and Ünver (2006) set up
multiperiod incomplete information models with fixed salaries, and analyze
the conditions (market cultures and demand and supply conditions, respec-
tively) under which unraveling can occur in equilibrium and thus result in
inefficient outcomes. In the current paper, in contrast, we introduce neither
inefficiency due to early contracting nor inefficiency due to exploding offers.
We focus on equilibrium salaries by employing simplifying assumptions. A
possible interpretation of our results in the multistage game (especially Ex-
ample 4) is somewhat negative: even if there is no inefficiency due to early
contracts or exploding offers, and even under perfect and complete informa-
tion, there is a continuum of equilibrium salary vectors that can be above or
below the minimum competitive salary vector, even after refining equilibria
by imposing stationary Markov and weakly dominant restrictions on players’
strategies, or by assuming that making offers is costly.
There are two other loosely related papers on the implementation of stable

matching with endogenous salaries. Alcalde, Pérez-Castrillo, and Romero-
Medina (1998) and Hayashi and Sakai (2004) investigate the implementabil-
ity of the stable matching correspondence in a many-to-one job matching
problem with a gross substitutable preference domain (Kelso and Crawford
1982). Alcalde, Pérez-Castrillo, and Romero-Medina (1998) show that a
stable matching correspondence is implementable in a subgame perfect equi-
librium when there are at least two firms. Hayashi and Sakai (2004), in con-
trast, show that the stable matching correspondence is the minimum Nash-
implementable correspondence satisfying individual rationality and nondis-
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crimination. Our work differs from theirs in two ways. First, the domains
of the problems are different. It may appear that a many-to-one match-
ing model with gross substitutable preferences is more general than ours.
However, since these papers allow each firm to make multiple offers simul-
taneously, firms make offers to all acceptable applicants under the “gross
substitutability” assumption by Kelso and Crawford (1982). In contrast, in
our model firms can make one offer each (at one time). Thus, there is an
opportunity cost of making an offer to an applicant since a firm may miss
the opportunity of hiring the second-best applicant by making an unsuccess-
ful offer to the most preferable applicant. This congestion effect makes our
problem very different from that of these two papers. Second, the purposes
of these two papers is to implement all stable matchings (competitive salary
vectors), whereas we are interested in one particular stable matching: the
minimum competitive salary vector.

2 The Shapley-Shubik Assignment Problem
with Supermodular Output Matrix

There are two disjoint finite sets of agents, applicants and firms, denoted by
A = {a1, ..., am} and F = {f1, ..., fn}, respectively. We assume that each
firm has exactly one position each.
The firm-applicant matching problem is described as an assignment model

by Shapley and Shubik (1972). Each firm hires at most one applicant, and
the output that each pair of firms and applicants can produce is described
in the following n×m output matrix:

Y =

⎛⎜⎜⎜⎝
Y11 Y12 · · · Y1m
Y21 Y22 · · · Y2m
...

...
. . .

...
Yn1 Yn2 · · · Ynm

⎞⎟⎟⎟⎠ ,

where Yij > 0 denotes the amount of output a firm-applicant pair (fi, aj) can
produce together. We assume that every argument of the matrix is positive.
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An assignment matrix is an m× n matrix

X =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠ ,

where (i) for each applicant aj ∈ A and for each firm i ∈ F , we have xji ∈
{0, 1}, and (ii) for each applicant aj ∈ A,

Pn
i=1 xji ≤ 1 and for each firm

fi ∈ F ,
Pm

j=1 xji ≤ 1. This matrix describes the matching between applicants
and firms. An optimal assignment matrix X∗ is an assignment matrix
that maximizes the total production of this industry:

nX
i=1

mX
j=1

x∗jiYij = max
X

nX
i=1

mX
j=1

xjiYij.

An outcome of the assignment problem is a list of an assignment and
profit and salary vectors (X,π, s) such that π = (π1, ..., πm) ∈ Rm

+ , s =
(s1, ..., sn) ∈ Rn

+, and xij = 1 iff πi + sj = Yij and sj = 0 for aj ∈ A withPn
i=1 xij = 0 (zero salaries for applicants who are not assigned to any firm).

An outcome of an assignment problem is stable if for any fi ∈ F and for any
aj ∈ A, πi + sj ≥ Yij. If an outcome (X,π, s) is stable then s is said to be a
competitive salary vector, and s∗ is said to be the minimum compet-
itive salary vector if s∗ is a competitive salary vector, and s∗ ≤ s0 holds
for any competitive salary vector s0. The minimum competitive salary vec-
tor can be determined by a multi-object ascending price auction algorithm
formulated by Demange, Gale, and Sotomayor (1986). Strict supermodu-
larity and strict increasingness give us an explicit formula for the minimum
competitive salary.
In this paper, we additionally assume that the output matrix is strictly

supermodular if for any fi ∈ F and for any aj ∈ A

Yij − Yij+1 > Yi+1j − Yi+1j+1,

and strictly increasing if for any fi ∈ F and for any aj ∈ A

Yij − Yij+1 > 0 and Yij − Yi+1j > 0.
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We assume that Y is strictly supermodular and strictly increasing through-
out the paper.12 These assumptions guarantee that there is a unique optimal
assignment matrix X∗ that is assortative, i.e. xii = 1 for any i = {1, ...,m}.
The following lemma characterizes the minimum competitive salary vector.

Lemma 1. If the output matrix Y is strictly supermodular and strictly
increasing then the minimum competitive salary vector is s∗ = (s∗1, ..., s

∗
m),

where (i) s∗j =
Pn−1

j0=j(Yj0+1j0 − Yj0+1j0+1) for any j ≤ n − 1 and s∗j = 0 for
j ≥ n when n ≤ m, and (ii) s∗j = Ymm +

Pm−1
j0=j (Yj0+1j0 − Yj0+1j0+1) for any

j ≤ m− 1 and s∗m = Ym+1m when n > m.

3 One-Shot Game

Consider a one-shot game. Each firm fi decides which applicant to make an
offer to, and how much salary to offer her. We assume that an offer is a
take-it-or-leave-it offer. All firms make simultaneous offers, and applicants
choose the best offer if they receive multiple offers. We assume the following
tie-breaking rule: if an applicant aj receives offers from fi and fi0 with the
same salaries (i < i0), then aj prefers fi to fi0. If an applicant accepts an offer
a match is made. There is no aftermarket as in Shimer (2005). As we shall
see below, a mixed-strategy equilibrium is more interesting in this game, so
we will start with analyzing mixed-strategy equilibria.

Let G = (Gij)fi∈F,aj∈A be a mixed-strategy profile, where Gij(s) ∈ [0, 1]
is the probability that fi offers a salary s0 ≤ s to applicant aj. Let s̄ij be
the lowest upper bound of the support of Gij: s̄ij ≡ min sij ∈ R+ subject to
Gij(s̄ij) = Gij(∞), and let s̄j = maxfi∈F s̄ij. That is, s̄j is the highest possible
salary realization for applicant aj under a strategy profileG. Given a strategy
profile G, let wij(s) = Πi0 6=i (1− (Gi0j(s̄j)−Gi0j(s))). This function denotes
fi’s winning probability of hiring aj by offering s to aj, since Gi0j(s̄j)−Gi0j(s)
is the probability that fi0 makes a better offer to aj. Let ui(G) and vj(G)
be the equilibrium payoff of fi and aj, respectively (i = 1, ..., n and j =
1, ...,m). The main result of this section is the characterization of mixed-
strategy equilibria.

12The frequently used multiplicative output matrix and semi-multiplicative output ma-
trix in Bulow and Levin (2006) satisfy both supermodularity and increasingness. However,
note that for simplicity, we do not allow indifference (by assuming “strictness”).
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Proposition 1. Suppose that Y is strictly supermodular and strictly in-
creasing, and that n ≥ 2 and m ≥ 2. In any mixed-strategy equilibrium G in
a one-shot game, we have: for all i = 1, ..., n and all j = 1, ...,m, (i) s̄j = s∗j
for all j = 1, ...,m, (ii) ui(G) = Yii − s∗i for all i ≤ min{n,m} and ui(G) = 0
if n > m, and (iii) vj(G) < s∗j for all j ≤ min{n− 1,m} and vj(G) = s∗j = 0
for all j > min{n− 1,m}.

Since a realized outcome of the game may leave some firms and applicants
unmatched under a mixed-strategy equilibrium, it may not be surprising that
applicants’ payoffs are lower than the minimum competitive salaries (result
(iii)). However, it is interesting that the very best realization (with a zero
measure) for each applicant is the minimum competitive salary (result (i)),
and firms earn exactly the same expected profits as under a stable matching
with the minimum competitive salary vector (result (ii)). That is, all costs of
mismatch are levied on applicants in our game. To see what mixed-strategy
equilibrium looks like, we provide a simple example.

Example 1. Consider the case where m = n = 3.

Y =

⎛⎝ Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

⎞⎠ =

⎛⎝ 9 6 3
6 4 2
3 2 1

⎞⎠
In this example, we have a unique mixed-strategy equilibrium. By Propo-

sition 1, the upper bound vector s∗ = (s∗1, s
∗
2, s

∗
3) = (3, 1, 0). Since each firm

is indifferent between playing pure strategies that are supported by its mixed
strategy, we have

w11(s1)(9− s1) = 6

w21(s1)(6− s1) = w22(s2)(4− s2) = 3

w31(s1)(3− s1) = w32(s2)(2− s2) = w33(s3)(1− s3) = 1

Note that given Y , f1 and f2 have no incentive to make offers to a2 or a3,
and to a3, respectively. The equilibrium strategy profile G that satisfies the
above is as follows:13

13This equilibrium is found by a guess-and-verify method. Assume that f3 does not
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• Firm f1 makes an offer to a1 only: s1 = 0 with probability 1
2
, and

s1 ∈ (0, 3] with density 3
(6−s1)2 .

• Firm f2 makes an offer s1 ∈ (0, 3] to a1 with density 6
(9−s)2 , an offer

s2 = 0 to a2 with probability 1
6
, and s2 ∈ (0, 1] with density 1

(2−s)2 .

• Firm f3 does not make an offer to a1, makes an offer s2 ∈ (0, 1] to a2
with density 3

(4−s)2 , and an offer s3 = 0 to a3 with probability
3
4
.

Given these strategies, we can calculate the expected utility of applicants.
First, by Proposition 1, firms get the same expected payoff as they do under
the minimum competitive equilibrium; thus u(G) = (6, 3, 1). Second, given
strategy profile G, firm fi’s winning probability wij(sj) when it makes an
offer with salary sj to aj is as follows:

w11(s1) =
6

9− s1
,

w21(s1) =
3

6− s1
,

w22(s2) =
3

4− s2
,

w32(s2) =
1

2− s2
.

Thus, we have

v1(G) =

Z 3

0

s1
3

(6− s1)2
6

9− s1
ds1 +

Z 3

0

s1
3

(9− s1)2
3

6− s1
ds1

= 1.0478,

make an offer to a1. Then, f1’s rival is only f2. Then, w11(s1) is dictated by f2’s mixed
strategy. Thus, f2’s density function of making an offer to f1 is 3

(6−s1)2 , since the support
of f2’s strategy is (0, 3] by Claims 1, 2 and 4 in the proof of Proposition 1. Similarly,
each firm’s density function of making an offer to each applicant can be calculated. By
our tie-breaking rule, f2 and f3 do not play s1 = 0 and s2 = 0, respectively. Thus, f1
and f2 are the only ones that play s1 = 0 and s2 = 0, respectively. These pin down the
equilibrium strategies. Instead, if we assume that f3 makes an offer to a1 with a positive
probability, we reach a contradiction. Thus, we have a unique mixed-strategy equilibrium
in this example.
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v2(G) =

Z 1

0

s2
1

(2− s2)2
3

4− s2
ds2 +

Z 1

0

s2
3

(4− s2)2
1

2− s2
ds2

= 0.3918

v3(G) = 0

The resulting expected salary vector is v(G) = (1.0478, 0.3918, 0). By
summing up all the payoffs, we obtain

3X
i=1

ui(G) +
3X

j=1

vi(G) = 11.4396.

Under the minimum competitive equilibrium salaries, the total surplus isP3
i=1 Yii = 14. and the efficiency loss is 2.5604 or 18.28%.
It may be interesting to compare our result with the one in Bulow and

Levin (2006). Bulow and Levin (2006) analyzed the performance of a cen-
tralized matching procedure with a preplay stage of a game of salary deter-
mination. They showed that there is only a mixed-strategy equilibrium, and
the equilibrium payoffs for firms are higher while the payoffs for applicants
are mostly lower under the centralized matching procedure than under the
minimum competitive equilibrium salaries. In this example we see

Firms Bulow-Levin’s Centralized Min. Competitive Eq. Our Game
u1 6.67 6.00 6.00
u2 3.67 3.00 3.00
u3 1.00 1.00 1.00

Applicants Bulow-Levin’s Centralized Min. Competitive Eq. Our Game
v1 1.56 3.00 1.05
v2 0.73 1.00 0.39
v3 0.02 0.00 0.00

Thus, applicants’ expected payoffs in the centralized matching procedure in
Bulow and Levin (2006) are mostly worse than in the minimum competitive
equilibrium outcome, but the applicants’ equilibrium payoffs in our one-shot
offer-acceptance game are even worse than Bulow and Levin’s. The sum
of expected payoffs of all players in the centralized matching procedure is
13.65, so the efficiency loss is only 2.5% compared with the 18.28% loss in
our decentralized matching. This is because in the centralized matching
procedure, each applicant is matched with at least some firms (although
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there can be mismatches). In contrast, our decentralized matching leaves
some applicants unmatched with any hospitals.¥

Finally, the reader may wonder about pure strategy equilibria. Unfor-
tunately, there can be pathological pure strategy equilibria that achieve a
higher salary vector than the minimum competitive salary vector in some
cases. Consider the following example.

Example 2. Consider F = {f1, f2, f3, f4} and A = {a1, a2}. Suppose that
f1 and f3 make s1 = Y11 − � − Y12 + Y22 offers to a1, and f2 and f4 make
s2 = Y22 − � offers to a2 with probability one (� is a small positive number).
This is a pure strategy equilibrium, and s1 > s∗1 and s2 > s∗2 hold.

14 This
happens for the following reason. Under this strategy profile, f1 and f2 are
matched with a1 and a2 and get payoffs � + Y12 − Y22 and �, respectively,
while f3 and f4 are unmatched and get zero payoffs. Thus, f3 and f4 do not
lose anything by making unreasonable offers. However, in a pure strategy
equilibrium, these unreasonable offers threaten f1 and f2, and force them to
make good offers.

This example is not robust in the sense that it cannot be an equilibrium
with weakly dominant strategies. Moreover, obviously, if we assume that
making an offer is slightly costly, we can exclude the possibility of a pure
strategy equilibrium. We can also claim the following.

Proposition 2. If n ≥ 2, m ≥ 2, and n < 2m, then there is no pure strategy
equilibrium in a one-shot game.15

This proposition says that even if there is no cost to making an unsuc-
cessful offer, there is no pure strategy equilibrium as long as the number of
firms is less than twice that of applicants. Otherwise, there is a pure strat-
egy equilibrium, but it is not robust in that the equilibrium involves weakly
dominated strategies and does not survive the introduction of low costs to
making offers.

14The inequality s2 > s∗2 is obvious. For the other inequality, note that s
∗
1 = Y21 −

Y22 + Y32. By strict supermodularity, Y11 − Y12 > Y21 − Y22, and by strict increasingness,
Y22 > Y32. Thus, s1 > s∗1 holds, too.
15If m = 1 and/or n = 1, then there is a pure strategy equilibrium. If m = 1, f1 gets a1

with salary Y21 if n ≥ 2. If n = 1, f1 gets a1 with a zero salary.
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4 Multistage Game

In this section, we consider a multistage game with a specific structure. The
process of making and accepting offers in the real world is very complex,
and to simplify it we need to impose many constraints. Moreover, we have
to make detailed assumptions in order to specify a noncooperative game.
Obviously, the equilibrium of a game depends on the set of assumptions we
impose. Our strategy in choosing assumptions is to keep our game as simple
as possible.
The game can be described as follows. We assume that each offer is an

open offer that is valid until the end of the game. This open offer assumption
is not quite realistic, but we still see many possible equilibria even with the
open offer restriction.
There is a large finite number of stages c = 1, 2, ..., L. Each firm fi decides

which applicant to make an offer to, at which stage to make the offer, and
how much salary to offer her. We assume that an offer is a take-it-or-leave-
it offer: each firm fi can make only one offer to aj.16 This assumption
says that once fi is rejected by aj, then fi cannot make any more offers to
aj. Each firm is allowed to have at most one outstanding offer at a time.
This assumption may be viewed as making the cost of multiple applicants
for one position prohibitively high. We assume that if no offer is made by
any firm in a stage, then the game ends at that stage, and unmatched firms
and applicants at that time will not be matched in aftermarket activities. If
this assumption is not in place, then the last stage becomes important (in
the last stage, a mixed-strategy equilibrium is played which was discussed in
the previous section). We also assume that it costs a small amount to make
an offer to an applicant. This assumption discourages firms from making
irrelevant offers.
Each applicant aj can accept or reject the offers she receives from firms.

Once applicant aj accepts an offer from firm fi they are matched and are
out of the game: their contract is final and cannot be renegotiated. Recall
that each applicant cares only about salaries offered by firms, unless the
offered salaries are exactly the same. We retain the same tie-breaking rule
introduced in the previous section: if an applicant aj receives offers from fi
and fi0 with the same salaries (i < i0), then aj prefers fi to fi0. We assume

16This rule was proposed by Roth and Xing (1994) as an equilibrium refinement. If fi
makes an offer and aj rejects it, fi cannot go back to aj making an offer with a higher
salary. That is, there is no room for salary negotiation.
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that if an applicant receives multiple offers, she will reject all offers but one
immediately (i.e., will keep or accept only the most preferable one). This
assumption is made in order to avoid unnecessary delays in the process.
We focus on a restrictive set of stationary Markov strategies, since there

is a lot of freedom even with the above constraints. We first need to intro-
duce a concept: A state is a list of applicants who have not accepted an offer
(active applicants), firms whose offers have not been accepted (active firms),
pending offers among active players (where each pending offer is a list of a
firm, an applicant, and a salary), and rejected offers among active players
(each rejected offer is a list of a firm and an applicant: the proposed salary is
assumed to be irrelevant for a rejected one). A stationary Markov strat-
egy is a strategy for a player that maps a state to an action. That is, each
firm cares only about information such as who is available to it with what
conditions (a pending salary), and which firms are its potential competitors.
Without stationarity, making an irrelevant offer (an offer that would not be
accepted in any case) may bring about a totally different equilibrium in a
subgame, which can affect the equilibrium outcome. A subgame perfect equi-
librium with stationary Markov strategies is called a stationary Markov
perfect equilibrium.
Formally, states are defined in the following manner: in stage c, let F 0 ⊆ F

and A0 ⊆ A be active firms and applicants of the game, that is, players
who have not exited the game by finalizing contracts. That is, F\F 0 and
A\A0 have already been matched up, and F 0 and A0 are the only active
players, and there is no rejected offer or pending offer among F 0 and A0.
With rejected offers and states with pending offers, a state is described as
a list (F 0, A0;R;P ), where R = {(f, a) ∈ F 0 × A0 : a has rejected an offer
from f} and P = {hf, a, si ∈ F 0 × A0 × R+ : a has not accepted an offer
from f with salary s}. Obviously, for any hf, a, si ∈ P , (f, a) /∈ R holds.
Let F 0

P = {f ∈ F 0 : ∃hf, a, si ∈ P} and A0P = {a ∈ A0 : ∃hf, a, si ∈ P}.
We need a little more notation. Let fi(F 0) be the ith best firm among F 0

(i = 1, ..., |F 0|), and let aj(A0) be the jth best firm among A0 (j = 1, ..., |A0|).
A matrix Y |F 0,A0 is a restriction of production matrix Y .
Our first result is that the minimum competitive salary vector s∗ can be

an outcome of a stationary Markov perfect equilibrium. We will support the
following equilibrium path:

in stage c = 1, 2, ...,min{n,m}, fc makes an offer to ac with salary
s∗c , and ac immediately accepts it. At the end of stage min{n,m},
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the game ends.

Thus, after min{n,m} stages, all matchings are made and the assortative
matching is realized with the minimum competitive salary profile. Now, we
will show that this path can be supported as a subgame perfect equilibrium.
We have the following proposition.

Proposition 3. In a multistage game, there is a stationary Markov perfect
equilibrium path such that in stage c = 1, ...,min{n,m}, fc makes an offer
with s∗c to ac and ac accepts the offer immediately. Thus, the resulting payoff
vector for firms is u∗ = (u1, ..., un), where u∗i = Yii− s∗i for all i ≤ min{n,m}
and u∗i = 0 if n > m.

To show this, we need to specify a stationary Markov perfect equilibrium
strategy profile which generates the path described above. Since it is lengthy
and cumbersome, the formal description of strategy profile is provided in an
appendix. The basic idea is as follows: in each stage the best remaining
applicant obtains an offer from the best firm that can make an offer to her
(the firm has not been rejected by her, and has no pending offer). If the
offered salary is more than or equal to the minimum competitive salary given
the constraints of existing rejected and pending offers, then she accepts the
offer. Otherwise, she waits for a better offer. In the latter case, some other
firm has an incentive to counter the original offer, and the original offer will
be rejected. As a result, the best firm eventually receives a lower payoff
than it would by making a minimum competitive salary offer to the best
applicant, since only the second-best applicant is available after the firm is
rejected by the best applicant. Thus, under such a strategy profile, the best
(available) firm should offer exactly the minimum competitive salary to the
best available applicant, and they will be matched up.

Although Proposition 3 says that s∗ is supportable, there are many more
stationary Markov perfect equilibria. To illustrate, we provide two examples.

Example 3. Consider the case where m = n = 2.

Y =

µ
Y11 Y12
Y21 Y22

¶
Consider the following strategy profile. In stage 1, f2 makes a zero salary
offer to a2, and in stage 2, f1 makes a zero salary offer to a1. Offers are
accepted immediately. This is a stationary Markov perfect equilibrium. As
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long as an offer is made in stage 1 by f2, then the game continues, and f2
can make an offer to a1. However, f2 cannot get a1 since f1 would match the
offer and needs to pay an additional cost of making an irrelevant offer.¥

Salary vector s = (0, 0) is not a competitive equilibrium price vector, and
thus it is not in the core. However, in the subgame (F 0, A0) = ({f1}, {a1}),
s1 = 0 is a competitive equilibrium price, and so is in the core. Although
transfers are not allowed, the structure of the above example is similar to
Example 3.1 in Bloch and Diamantoudi (2006), which shows that there is a
noncore allocation that is supported by a stationary Markov perfect equilib-
rium in a sequential move game of a marriage problem.17 Note that such an
equilibrium is very robust. For any game with n ≤ m, there is a zero-salary
equilibrium. If n > m, then s0 = (Ym+1,1, Ym+1,2, ...Ym+1,m) is an outcome of
a stationary Markov perfect equilibrium (fm makes a s0m = Ym+1,m offer to
am in stage 1, since fm+1 can counter; otherwise: the rest is the same).
Unfortunately, this stationary restriction on strategy space is not suffi-

ciently powerful to exclude unintuitive equilibria. A firm can make a useless
offer to an applicant only to be rejected by her, which changes the current
state. Since firms’ strategies depend on the states they are in, the equilibrium
outcome can be affected by such a seemingly irrelevant state switch initiated
by the firm. Thus, with multiple equilibria in subgames, we can still cook up
variety of equilibrium outcomes.

Example 4. Consider the case where m = n = 3.

Y =

⎛⎝ Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

⎞⎠
We can cook up a stationary Markov perfect equilibrium strategy profile.

First f1 and f2 make offers to a1 with the same salaries δ ∈ (s∗1, Y11−Y12), and
a1 rejects f2 but does not immediately accept f1. This delay in acceptance
makes a difference.18 Let us assume that only in state (F,A; (f2, a1); hf1, a1, δi),
17The sequential move game employed by Bloch and Diamantoudi (2006) is the standard

one in coalitional bargaining literature (Chatterjee, Dutta, Ray and Sengupta, 1993, Bloch,
1996, Okada, 1996, and Ray and Vohra, 1999), which is very different from ours.
18If f1’s offer were accepted immediately, then the state is described only by A0 =

{a2, a3} and F 0 = {f2, f3}. Thus, f2’s action cannot affect the outcome with Markov
strategies. It might look irrelevant if a1 holds f1’s offer for one period (and obviously
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f3 moves first to make a zero salary offer to a3, and a1 and a3 accept the offers.
At the same time, in states (F,A; ∅; hf1, a1, δi) and ({f2, f3}, {a2, a3}; ∅; ∅),
f2 makes an s∗2 offer to a2, and a2 (and a1 if a1 is still there) accepts the
offer. The leftover firm offers a zero salary to the leftover applicant. This
is a stationary Markov perfect equilibrium, and the equilibrium path is as
follows: in stage 1 f1 and f2 make a δ offer to a1 with salary δ, and f2 is
rejected (f1’s offer is pending). In stage 2, f3 makes a zero salary offer to a3,
and a1 and a3 accept the offers. In stage 3, f2 makes a zero salary offer to
a2, and a2 accepts it. Although f2 needs to pay for the offer to be rejected,
as long as the cost is less than s∗2, f2 is better off making an offer to a1, since
otherwise, at the next stage f2 will need to make a s∗2 offer to a2, and the
payoff is just Y22 − s∗2. By making an irrelevant offer, in the next stage, f3
moves first, and f2 can get a2 with a zero salary. If f1 does not make an
offer in stage 1, f2 gets a1, and f1 can get at most Y12 (with zero salary for
a2). Thus, f1 has an incentive to make an offer δ ≤ Y11 − Y12 to a2. That
is, depending on f2’s seemingly irrelevant choice in stage 1, the real outcome
can be affected by having a rejection on the equilibrium path.¥

Although the equilibrium in Example 4 is robust (it is not an equilibrium
with weakly dominated strategies, and survives with small costs of making
offers),19 the nature of the equilibrium is still somewhat pathological. Firm
f1 makes a very high salary offer to a1 due to f2’s threat. However, f2’s
motivation to make an offer to a1 is only to be rejected and effect a change
in the following subgames. With a cost attached to making offers, a rejec-
tion on the equilibrium path can occur only under such a situation. Thus,
we next consider a stationary Markov equilibrium without rejections on the
equilibrium path.

Proposition 4. Suppose n ≥ 2 and m ≥ 2. In a multistage game, in any
pure strategy stationary Markov perfect equilibrium without any rejections
on the equilibrium path, the equilibrium salary vector satisfies s ≤ s∗, and
the firms’ payoff vector satisfies u ≥ u∗, where u∗i = Yii − s∗i for all fi ∈ F .

holding an offer is not a weakly dominated strategy), but it makes a big difference in this
(artificial) example.
19In our game, avoiding complexity of strategies does not do much either: i.e., lexico-

graphic minimization of complexity costs à la Gale and Sabourian (2006) does not refine
our stationary Markov equilibrium. We thank Jihong Lee for clarifying this point to us.
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This proposition says that if there is no rejection on the equilibrium path,
then the equilibrium salary vector is not more than the minimum competitive
salary vector. We conclude this section by providing an example in which the
assortative matching is not necessarily the only equilibrium outcome. That
is, there can be an inefficient equilibrium.

Example 5. Consider the case where m = n = 4 with the following multi-
plicative output matrix.

Y =

⎛⎜⎜⎝
16 12 8 4
12 9 6 3
8 6 4 2
4 3 2 1

⎞⎟⎟⎠
Consider the following path: First, firm f1 makes an offer to a2 with s2 = 2.
Then, firm f4 makes a zero salary offer to a4. Then, firm f3 makes a zero
salary offer to a3. Finally, firm f2 makes a zero salary offer to a1. All offers
are accepted by the end of the game. With these actions, the firms’ payoff
vector is u = (10, 12, 4, 1). To make f1 not deviate in making an offer to
a1, we can prepare the following perfect equilibrium in the subgame: If f1
offers s1 < 6, then f2 makes a counteroffer to a1 with s01 = max{s1 + �, 5},
and otherwise, f2 makes an offer to a2 with s2 = 3. Then, f3 and f4 follow
sequentially by making offers to a3 and a4 with s3 = 1 and s4 = 0, respec-
tively. This subsequent path corresponds to the highest salary equilibrium,
and f1 needs to pay s1 = 6 in order to get a1 (the resulting payoff vector is
u∗ = (10, 6, 3, 1)). Thus, f1 is indifferent between deviating and not deviat-
ing.20 Firm f2 has no incentive to deviate, since the equilibrium outcome is
the best-case scenario for it. Firm f3 has no incentive to make a counteroffer
to a2, since it needs to pay s02 > s2 = 2 (the payoff by deviating is less than
4). The same remark applies to f4. Thus, the above path is supportable as
an equilibrium path.¥

5 Conclusion

Bulow and Levin (2006) asserted that salaries are more suppressed under
the centrally planned matching mechanism than under a decentralized mar-
20We can modify the example by reducing Y11 slightly from 16 without damaging strict

supermodularity and strict monotonicity, if we want to give f1 a strict incentive to follow
the equilibrium path.
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ket. However, they used the minimum competitive salary vector (a Vickrey
auction salary vector) as the outcome of the decentralized market. In the
real labor market, a decentralized market will involve a collection of bilateral
offers and applicants’ accept/reject decisions. In this paper, we have com-
pared the equilibrium salary vectors in such situations by specifying games in
tractable manners. We have shown three results. First, under a simultaneous
move game, in any mixed-strategy equilibria, the resulting (expected) salary
vector is dominated by the minimum competitive salary vector (Proposition
1). Second, under a sequential move game with open offers, there is a sta-
tionary Markov perfect equilibrium that attains the minimum competitive
salaries (Proposition 3). If rejections are not allowed on the equilibrium
path, any stationary Markov perfect equilibrium attains at most the mini-
mum competitive salaries (Proposition 4). We also demonstrated that there
are many other stationary Markov perfect equilibria (Examples 3 and 4).
Our games are admittedly too simplistic in comparison with real-world

market institutions. In a simultaneous move game, one of the most problem-
atic issues is that we do not allow after-market job matchings among firms
and applicants who could not be matched in the market. However, it is very
hard to formalize the concept of an “after market” since it is not clear how
it differs from a decentralized bilateral labor market.
In multistage game, the main problem is our “open offer” assumption:

an offer is good for a long period until it has been accepted or rejected by
the applicant. Real-world offers usually have deadlines, sometimes very short
(exploding offers). To evaluate the performance of NRMP in comparison with
the decentralized market, ideally we should use equilibrium salary vectors of
the games that mimic the real-world market institutions as reference salary
vectors of decentralized matching markets. However, exploding offers are
very difficult to analyze especially if they involve endogenized salaries.21 We
hope to extend our analysis by adopting more realistic assumptions in our
future research.
21One simple way to introduce exploding offers is to adopt a framework of sequential

bargaining or coalition bargaining game (see Chatterjee et al. 1993, Bloch 1996, Okada
1996, and Ray and Vohra 1999). In each stage, one firm is selected as a proposer (randomly
or in some order), and it can make an offer to an applicant. However, in such a setting
(only firms can make offers) with exploding offers, the resulting salaries are zeros or very
close to zeros. This is why we adopt the framework provided by Roth and Xing (1994).
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6 Proofs

We collect all the proofs of the lemma and propositions in the main text.

Lemma 1. If the output matrix Y is strictly supermodular and strictly
increasing then the minimum competitive salary vector is s∗ = (s∗1, ..., s

∗
m)

where (i) s∗j =
Pn−1

j0=j(Yj0+1j0 − Yj0+1j0+1) for any j ≤ n − 1 and s∗j = 0 for
j ≥ n when n ≤ m, and (ii) s∗j = Ymm +

Pm−1
j0=j (Yj0+1j0 − Yj0+1j0+1) for any

j ≤ m− 1 and s∗m = Ym+1m when n > m.

Proof : Shapley and Shubik (1972) showed that if an outcome of an as-
signment problem is stable then the assignment matrix associated with it is
an optimal assignment. Under strict supermodularity and strict increasing-
ness, the unique optimal assignment of the output matrix Y is an assortative
matrix X∗. Thus, what is left to show is that the minimum salary vector
that supports this assignment is s∗ where (i) s∗j =

Pn−1
j0=j(Yj0+1j0 − Yj0+1j0+1)

for any j ≤ n − 1 and s∗j = 0 for any j ≥ n when m ≥ n, and (ii)
s∗j = Ym+1m +

Pm−1
j0=j (Yj0+1j0 − Yj0+1j0+1) for any j ≤ m− 1 and s∗m = Ym+1m

when n > m.
Suppose not. Then there is a competitive salary vector s0 with s0j < s∗j for

some j. First assume n ≤ m. Obviously, such j must belong to {1, ...n− 1},
suppose that s0n−1 < s∗n−1, and thus s

0
n−1 < Ynn−1−Ynn. Consider a deviation

by a pair (fn, an−1). Since s0n ≥ s∗n = 0, π0n ≤ Ynn. Now, s0n−1 + π0n <
Ynn−1 − Ynn + Ynn = Ynn−1. This violates stability, and contradicts s0 being
a competitive salary. Thus s0n−1 ≥ s∗n−1. Suppose that s

0
n−2 < s∗n−2, and thus

s0n−2 < Yn−1n−2−(Yn−1n−1−(Ynn−1−Ynn)). From the previous step, we know
s0n−1 ≥ s∗n−1, and thus π

0
n−1 ≤ Yn−1n−1 − s∗n−1 = Yn−1n−1 − (Ynn−1 − Ynn).

Thus, we have

s0n−2 + π0n−1 < Yn−1n−2 − (Yn−1n−1 − (Ynn−1 − Ynn)) + Yn−1n−1 − (Ynn−1 − Ynn)

= Yn−1n−2.

This violates stability, and contradicts s0 being a competitive salary. Thus
s0n−2 ≥ s∗n−2. Repeated applications of the same logic yield that any compet-
itive salary vector s0 satisfies s0 ≥ s∗.
Second, assume n > m. Then obviously such j with s0j < s∗j must satisfy

j ≤ m . Suppose s0m < s∗m = Ym+1m. Then, a deviation by a pair (fm+1, am)
can block the allocation, since in the allocation πm+1 = 0 and s0m < Ym+1m.
This is a contradiction. Thus s0m ≥ s∗m. Since in the allocation firm fm
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gets πm = Ymm − s0m ≤ Ymm − s∗m = 0, we conclude s
0
m = s∗m. Now suppose

s0m−1 < s∗m−1. In this case, a deviation by a pair (fm, am−1) can improve upon
the allocation since πm = 0 and s0m−1 < Ymm + (Ymm−1 − Ymm) = Ymm−1.
This is a contradiction, and we conclude s0m−1 ≥ s∗m−1. Now suppose that
s0m−2 < s∗m−2, thus s

0
m−2 < Ym−1m−2 − Ym−1m−1 + Ymm−1. From the previous

step, we know s0m−1 ≥ s∗m−1 = Ymm−1, and thus π0m−1 ≤ Ym−1m−1 − s∗m−1 =
Ym−1m−1 − Ymm−1. Thus, we have

s0m−2 + π0m−1 < Ym−1m−2 − Ym−1m−1 + Ymm−1 + Ym−1m−1 − Ymm−1

= Ym−1m−2.

This violates stability, and contradicts s0 being a competitive salary. Thus
s0m−2 ≥ s∗m−2. Repeated applications of the same logic show that any com-
petitive salary vector s0 satisfies s0 ≥ s∗. ¥

Proposition 1. Suppose that Y is strictly supermodular and strictly in-
creasing, and that n ≥ 2 and m ≥ 2. In any mixed-strategy equilibrium G in
a one-shot game, we have: for all i = 1, ..., n and all j = 1, ...,m, (i) s̄j = s∗j
for all j = 1, ...,m, (ii) ui(G) = Yii − s∗i for all i ≤ min{n,m} and ui(G) = 0
if n > m, and (iii) vj(G) < s∗j for all j ≤ min{n− 1,m} and vj(G) = s∗j = 0
for all j > min{n− 1,m}.

We will prove Proposition 1 by a sequence of claims.

Claim 1. (No spikes) For all aj, no firm fi plays (aj, s) for any s ∈ (0, s̄j]
with a positive probability when s̄j > 0.

Proof. Suppose that a firm fi makes an offer of salary s > 0 to aj with a
positive probability. Then for all other firms, the winning probability func-
tion wi0j jumps down at s. Thus, no other firm plays (aj, s0) with positive
density for s0 = s − � for � > 0 small enough. This gives fi an incentive to
shift the spike at s slightly lower. Thus, in equilibrium, fi would not play
(aj, s) with a positive probability for any s ∈ (0, s̄j].¥

Claim 2. (No gap for at least a pair of firms) For all aj, and all intervals¡
s0j, s

00
j

¢
⊂ (0, s̄j), there are at least two firms with Gij(s

0
j) < Gij(s

00
j ).

Proof. First note that there is a firm fi such that Gij(s̄j−�) < Gij(s̄j) holds
for all � > 0. Firm fi obtains its expected payoff of Yij− s̄j by this offer since
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wij(s̄j) = 1. Thus, there is another firm that plays (aj, s) for some s ∈ (s00j , s̄j].
Note that s00j < s̄j (by the definition of s̄j). Without loss of generality, we can
let Gi0j(s

00
j + �) −Gi0j(s

00
j ) > 0 for all � > 0 for some fi0. Focus on this firm.

Suppose that there is no firm that offers any of sj ∈ (s0j, s00j ) to aj. Then,
wi0j(s

0
j) = wi0j(s

00
j ), and firm i0 would be better off making an s0j offer to aj,

which is a contradiction. Thus, there is at least one such firm. Moreover, if
firm fi0 is the only such a firm, then again wi0j(s

0
j) = wi0j(s

00
j ) follows. This is

again a contradiction, and we have shown that at least two firms make salary
offers within the interval (s0j, s

00
j ) to aj with positive probabilities.¥

Note that

wij(sj) = Πi0 6=i (1− (Gi0j(s̄j)−Gi0j(sj))) (1)

=
Πn
i0=1 (1− (Gi0j(s̄j)−Gi0j(sj)))

(1− (Gij(s̄j)−Gij(sj)))

This implies

wij(sj) R wi0j(sj) ⇔ Gij(s̄j)−Gij(sj) R Gi0j(s̄j)−Gi0j(sj).

Thus, we have the following:

Claim 3. For all i, i0 = 1, ..., n and all j = 1, ...,m, 0 < s̄ij < s̄i0j = s̄j
implies i0 < i.

Proof. By definition, we have wij(s̄ij) (Yij − s̄ij) = ui(G) ≥ Yij − s̄j. Thus,
we have

wij(s̄ij) ≥
Yij − s̄j
Yij − s̄ij

.

Similarly, since s̄i0j = s̄j, we have wi0j(s̄ij) (Yi0j − s̄ij) ≤ Yi0j − s̄j = ui0(G).
This implies

wi0j(s̄ij) ≤
Yi0j − s̄j
Yi0j − s̄ij

.

Since Gi0j(s̄ij) < Gi0j(s̄j) (from s̄i0j = s̄j) and Gij(s̄ij) = Gij(s̄j), (1) implies
wij(s̄ij) < wi0j(s̄ij). Thus, we have

Yij − s̄j
Yij − s̄ij

<
Yi0j − s̄j
Yi0j − s̄ij

,

or Yij < Yi0j. This completes the proof.¥
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Claim 4. For any j = 1, ..., n − 1, we have (i) s̄j = s̄jj = s̄j+1j and (ii)
s̄kj < s̄j for k 6= j, j + 1.

Proof. By induction. Let j = 1. Then, by Claim 1, at least two firms
make the highest salary offers to a1. By Claim 3, f1 and f2 must satisfy
s̄11 = s̄21 = s̄1.
Suppose to the contrary that f3 also satisfies the same condition: s̄31 = s̄1.

These imply

Y11 − s̄1 ≥ Y1j − s̄j

Y21 − s̄1 ≥ Y2j − s̄j

Y31 − s̄1 ≥ Y3j − s̄j

for all j = 2, ...,m. However, by strict supermodularity, Yı̂ĵ − Yı̂j̃ > Yı̃ĵ − Yı̃j̃
for all ı̂ < ı̃ and all ĵ < j̃. This implies that the first two inequalities need to
be strict, i.e.:

Y11 − s̄1 > Y1j − s̄j

Y21 − s̄1 > Y2j − s̄j

Y31 − s̄1 ≥ Y3j − s̄j

for all j = 2, ...,m. By the above inequalities, firms f1 and f2 must make
offers only to a1. (If f2 makes an offer to aj 6= a1, then s̄2j < s̄j must be
satisfied in order to achieve indifference, since w21(s̄1) = 1. By Claim 3, this
implies s̄1j = s̄1, which is a contradiction.) However, if it were the case, then
there is no mixed-strategy equilibrium. (By Claim 1 and our tie-breaking
rule, there is no spike in the distribution of G21 even at s2 = 0. This implies
that w11(s21) = 0. But then, G11(s21) = 0. But then, w21(s21) = 0 as
well, and we have u2(G) = 0, which cannot happen since there are other
applicants.) This is a contradiction. Thus, we conclude that only f1 and f2
make offers to a1 with the highest salary s̄1. Hence, we have

Y11 − s̄1 > Y1j − s̄j

Y21 − s̄1 ≥ Y2j − s̄j

for all j = 2, ...,m. By supermodularity, an equality holds in the second
inequality only when j = 2.
Now, we move on to a2. We focus on the behavior of f2. In order to see

it, we need to consider f1’s strategy closely. Suppose that G11(0) = 0. Then,
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by Claim 1, G11 has no spikes. Given this, for any s21 ∈ [0, s̄1], w11(s21) = 0
and G11(s21) = 0. But then, w21(s21) = 0 as well, and we get u2(G) = 0.
This cannot happen, so we have w11(0) > 0 and G21(s̄1) < 1 (otherwise, f1
cannot obtain a positive payoff by making a zero salary offer). This shows
that firm f2 makes some salary offers to a2 with a positive probability, and
the maximum offer must be s̄2 by Claim 3 again. By the same argument
above, firms f2 and f3 make offers to a2 with s̄2. The fact that f2’s makes
an offer to a1 gives f3 a positive chance of winning by making a zero salary
offer to a2.
By repeating the same argument, we complete the proof of this Claim.¥

Now, we can complete the proof of Proposition 1.

Proof of Proposition 1. We start with the case n ≤ m. By Claim 4, we
know an gets an offer only from fn with a positive probability. This means
that s̄j = 0 = s∗j for all j ≥ n. Since firm fj+1 is indifferent between making
an offer to aj with salary s̄j and making an offer to aj+1 with a salary s̄j+1,
in either case the winning probability is 1 (wj+1j(s̄j) = wj+1j+1(s̄j+1) = 1).
Thus, Yj+1j − s̄j = Yj+1j+1 − s̄j for all j = 1, ..., n − 1. By Claim 1, we
conclude s̄ = s∗. Thus, applicants’ payoffs are lower since firms play mixed
strategies, and the best-case scenario for each applicant is to get the same
salary as the one under the minimum competitive price.
Now consider the case n > m. By Claim 4, we know am gets offers only

from firms i = m, ..., n. We claim that s̄m = s∗m holds and fm+1 offers to am
a salary Ym+1m with probability one. Suppose that 0 < s̄m < s∗m = Ym+1m.
Since fm+1 obtains a positive expected payoff, the equilibrium must be in
mixed strategies. Thus we have

Ym+1m − s̄m = wm+1m(s
0
m) (Ym+1m − s0m) ,

Ymm − s̄m = wmm(s
0
m) (Ymm − s0m) .

Since Ymm > Ym+1m, we have

wmm(s
0
m) =

Ymm − s̄m
Ymm − s0m

>
Ym+1m − s̄m
Ym+1m − s0m

= wm+1m(s
0
m).

For the outcome to be in equilibrium, we need wmm(smm) > 0. Suppose
that smm = 0. Since Gmm(smm) = 0 by Claim 1, (1) implies Gm+1m(0) > 0.
However, then firm fm+1 gets a zero payoff by the tie-breaking rule. Thus,
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we have smm > 0. Since firm fm+1 gets a positive expected payoff, there
is at least another firm fi with i ∈ {m + 2, ..., n}, which is playing a mixed
strategy over an interval including [0, smm]. By repeating the same argument,
we have sm+1m > 0, and Gim(sm+1m) > 0. This means that there is a firm
fi0 with i0 ∈ {i+ 1, ..., n}, which is playing a mixed strategy over an interval
including [0, sm+1m]. However, there is only a finite number of firms; there is
a firm fi00 with i00 ∈ {m+ 1, ..., n} and si00m = 0, so we have a contradiction.
Hence, s̄m < s∗m cannot happen.
Now, we assume s̄m = s∗m = Ym+1m. In this case, firm fm+1 can make

only zero payoff by making such an offer; the winning probability of fm+1
by offering to am anything less than s̄m = s∗m must be zero (otherwise, fm+1
would not make s̄m = s∗m offer). Thus, we conclude that fm+1 makes an offer
to am with salary s∗m with probability one. Then, firm fm makes an offer to
am with salary s∗m with a positive probability. The rest is the same as the
former case (n ≤ m). We have completed the proof.¥

Proposition 2. If n ≥ 2, m ≥ 2, and n < 2m then there is no pure strategy
equilibrium.22

Proof. Suppose that m ≥ n. In this case, each applicant aj should get at
most one offer, since a rejected firm gets zero payoff and Yij > 0 for all fi and
aj. However, this implies that all applicants who receive offers must get zero
salaries since there is no competition. Since matrix Y is strictly increasing,
any firm which does not get a1 has an incentive to make a positive salary
offer to a1. Thus, this cannot be an equilibrium.
Next suppose that m < n. In this case, each applicant aj gets at least

one offer. If every applicant is getting exactly one offer with zero salary, then
we have a contradiction as we have seen before. Actually, as long as there
is an applicant who gets multiple offers, no applicant can get zero salary,
since a rejected firm has an incentive to make a positive salary offer to a zero
salary applicant. As a result, all applicants must get multiple offers in a pure
strategy equilibrium. However, it cannot happen when n < 2m.¥

Proposition 3. In a multistage game, there is a stationary Markov perfect
equilibrium path such that in stage c = 1, ...,min{n,m}, fc makes an offer
with s∗c to ac and ac accepts the offer immediately.

22If m = 1 and/or n = 1, then there is a pure strategy equilibrium. If m = 1, f1 gets a1
with salary Y21 if n ≥ 2. If n = 1, f1 gets a1 with a zero salary.
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Proof. We need only to show non-profitability of unilateral deviations from
the equilibrium path described above. In stage c, let F 0 ⊆ F and A0 ⊆ A
be active firms and applicants of the game, that is, players who have not
exited the game by finalizing contracts. Note that some of F 0 might have
made offers to applicants before stage c, and some of them might have been
rejected, and others might be outstanding in stage c. However, since we are
considering the supportability of a path against unilateral deviation, we do
not need to exhaust all possible states. State (F 0, A0) describes the situation
where F\F 0 and A\A0 have already been matched up, and F 0 and A0 are the
only active players, and there is no rejected offer or pending offer among F 0

and A0. We also consider states with rejected offers and states with pending
offers. An example of the former is (F 0, A0, (f, a)): the contents of the inner
() is a rejected offer which shows that a rejected f ’s offer and f will not
be able to make another offer to a (after being rejected, the amount of the
salary does not matter, so is omitted. If there are multiple rejected offers,
then a list of rejected offers follows after (F 0, A0). An example of the latter
one is (F 0, A0; hf, a, si): the contents of hi is a pending offer which shows that
f made an offer to a with a salary s but a has not accepted or rejected it.
As before, if there are multiple pending offers then a list of pending offers
follows (F 0, A0). In order to describe all possible states, we need to list both
the set of rejected offers and the one of pending offers after the set of active
players. However, since we are interested in the nonprofitability of unilateral
deviations, we do not need to introduce full notation.
Let s∗(F 0, A0) be the minimum competitive equilibrium salary vector for

an assignment problem (F 0, A0), where the production matrix used is Y |F 0,A0
which is a restriction of the production matrix Y on (F 0, A0): this matrix is
also strictly supermodular and strictly increasing; thus we can apply Lemma
1 for s∗(F 0, A0).
Now, we describe players’ strategies in relevant states.

Firms’ strategies in relevant states.

We let only one firm make an offer in each case.

1. If there is no rejected offer nor pending offer at a state, then f1(F
0)

makes an offer to a1(A0) with salary s∗1(F
0, A0).

2. If a state involves a rejected offer (f, a) = (f1(F 0), a1(A
0)),23 then f2(F 0)

23Given the applicants’ strategies, rejection can occur only by a1(A
0) with unilateral

28



makes an offer to a1(A0) with salary24

s∗1(F
0, A0; (f1(F

0), a1(A
0))) = Y3,1|F 0,A0 − Y3,3|F 0,A0 + s∗3(F

0, A0).

3. If a state involves a pending offer hf, a, si, then there are five cases.25

(a) If hf, a, si = hf1(F 0), a1(A
0), s1i with s1 < s∗1(F

0, A0) then f2(F
0)

makes an offer to a1(A0)with salarymax{s1+�, s∗3(F 0, A0)+Y3,1|F 0,A0−
Y33|F 0,A0},26 where � > 0 is a small number.

(b) If hf, a, si = hf2(F 0), a1(A
0), s1i with s1 ≤ s∗1(F

0, A0) then f1(F
0)

makes an offer to a1(A0) with salarymax{s1, s∗3(F 0, A0)+Y3,1|F 0,A0−
Y33|F 0,A0}.

(c) If hf, a, si = hfk(F 0), ak(A
0), ski with sk < s∗k(F

0, A0) then f1(F
0)

makes an offer to a1(A
0) with salary s∗1(F

0, A0) − s∗k(F
0, A0) +

max{sk+�, s∗k+2(F
0, A0)+Yk+2,k|F 0,A0−Yk+2,k+2|F 0,A0}, where � > 0

is a small number. (Firm f1(F
0) arrives at this by expecting that

fk+1(F
0) will make an offer to ak(A0) with salary s0k = max{sk +

�, s∗k+2(F
0, A0) +Yk+2,k|F 0,A0 −Yk+2,k+2|F 0,A0} at the kth stage from

now. At the k+1th stage from now, rejected fk(F 0) will make an
offer to ak+1(A0) with salary s∗k+1(F

0).)

(d) If hf, a, si = hfk+1(F 0), ak(A
0), ski with sk ≤ s∗k(F

0, A0) then f1(F 0)
makes an offer to a1(A

0) with salary s∗1(F
0, A0) − s∗k(F

0, A0) +
max{sk, s∗k+2(F 0, A0) + Yk+2,k|F 0,A0 − Yk+2,k+2|F 0,A0}. (Firm f1(F

0)
arrives at this by expecting that fk(F 0) will make an offer to ak(A0)

deviations. Thus, we can focus on rejections by a1(A0) only. If there are multiple rejections
by a1(A0), (f1(F 0), a1(A0)), ..., (fi(F 0), a1(A0)), then fi+1(F 0) makes an offer to a1(A0) with
salary

s∗1(F
0, A0; (f1(F

0), a1(A
0)), ..., (fi(F

0), a1(A
0)))

= s∗i+2(F
0, A0) + (Yi+2,1|F 0,A0 − Yi+2,i+2|F 0,A0) .

24After f1(F 0) being rejected by a1(A0), f2(F 0)’s only direct competitor is f3(F 0). Thus,
f2(F

0) can get a1(A0) if f3(F 0) would rather get a3(A0). Note that a2(A0) would be taken
by f1(F 0).
25Even if there are multiple pending offers, we let the best available applicant receive

an offer from the best available firm without a pending offer in a similar manner.
26Firm f1(F

0) can beat f2(F 0) by offering s1. However, f1(F 0) needs to worry about
f3(F

0) challenging to get a1(A0).
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with salary max{sk, s∗k+2(F 0, A0) + Yk+2,k|F 0,A0 − Yk+2,k+2|F 0,A0} at
the kth stage from now.)

(e) If a pending offer takes any other form, f1(A0) makes an offer to
a1(A

0) with salary s∗1(F
0, A0).27

Applicants’ strategies in relevant states.

1. Suppose that there is no rejected offer at the state.

(a) If applicant a1(A0) receives offers with a salary more than or equal
to s∗1(F

0, A0), then she chooses the highest salary offer and imme-
diately accepts it (for multiple highest salary offers, choose the
smallest index firm).

(b) If applicant a1(A0) receives offers with the highest salary s01 <
s∗1(F

0, A0) or with the highest salary s01 = s∗1(F
0, A0) from f 6=

f1(F
0), then she keeps the best offer and waits for a better offer

until there is no other available firm f ∈ F 0 (which has not been
rejected by a1(A0) or has a pending offer to another applicant).

(c) If applicant ai(A0) (i 6= 1) receives offers, then she keeps the best
offer and waits for a better offer until ai(A0) becomes the top
applicant a1(A00) among A00 ⊂ A0 after some states pass (then one
of the cases 1.a. or 1.b. applies), or until the game ends due to
there being no proposer at the stage.

2. Suppose that there is a rejected offer.28 The only relevant case is that
a1(A

0) deviated at the last stage by rejecting the offer from f1(F
0). In

this case, if f2(F 0) offers to a1(A0) salary

s∗1(F
0, A0; (f1(F

0), a1(A
0))) = s∗3(F

0, A0) + (Y3,1|F 0,A0 − Y3,3|F 0,A0) ,
27As a result, unless a pending offer hf, a, si = hfi, aj , sji satisfies i = j or i = j + 1, it

is irrelevant in determining salary.
28Similarly, if in case a1(A0) rejected multiple offers (f1(F 0), a1(A0)), (f2(F 0), a1(A0)),

..., (fi(F 0), a1(A0)), and if fi+1(F 0) offers a1(A0) with salary

s∗1(F
0, A0; (f1(F

0), a1(A
0)), ..., (fi(F

0), a1(A
0)))

= s∗i+2(F
0, A0) + (Yi+2,1|F 0,A0 − Yi+2,i+2|F 0,A0) ,

then a1(A
0) accepts the offer.

30



then a1(A
0) accepts the offer immediately.

3. Suppose that there is a pending offer hf, a, si.

(a) If hf, a, si = hf1(F 0), a1(A
0), s1i with s1 < s∗1(F

0, A0) and if f2(F 0)
makes an offer to a1(A0)with salary more than or equal tomax{s1+
�, s∗3(F

0, A0)+Y3,1|F 0,A0−Y33|F 0,A0}, where � > 0 is a small number,
then a1(A

0) accepts it immediately.

(b) If hf, a, si = hf2(F 0), a1(A
0), s1i with s1 ≤ s∗1(F

0, A0) and if f1(F 0)
makes an offer to a1(A0)with salary more than or equal tomax{s1, s∗3(F 0, A0)+
Y3,1|F 0,A0 − Y33|F 0,A0}, then a1(A

0) accepts it immediately.

(c) If hf, a, si = hfk(F 0), ak(A
0), ski with sk < s∗k(F

0, A0) and if f1(F 0)
makes an offer to a1(A0)with salary more than or equal to s∗1(F

0, A0)−
s∗k(F

0, A0)+max{sk+ �, s∗k+2(F
0, A0)+Yk+2,k|F 0,A0−Yk+2,k+2|F 0,A0},

where � > 0 is a small number, then a1(A0) accepts it immediately.

(d) If hf, a, si = hfk+1(F 0), ak(A
0), ski with sk ≤ s∗k(F

0, A0) and if
f1(F

0) makes an offer to a1(A
0) with salary more than or equal

to s∗1(F
0, A0) − s∗k(F

0, A0) + max{sk, s∗k+2(F 0, A0) + Yk+2,k|F 0,A0 −
Yk+2,k+2|F 0,A0}, then a1(A

0) accepts it immediately.

(e) If a pending offer takes any other form, and if f1(A0) makes an
offer to a1(A0) with salary more than or equal to s∗1(F

0, A0), then
a1(A

0) accepts it immediately.

The above strategy profile generates the equilibrium path. in stage c,
f1(F

0) and a1(A
0) are matched, and in stage c + 1, the game is played by

F 0\{f1(F 0)} and A0\{a1(A0)}, and the above strategies apply to this sub-
game, too. It is easy to see that the above strategies generate the simple
path of firm fc making an offer to ac with salary s∗c(F

0, A0) for all c = 1, ..., n,
and of applicants accepting offers immediately.
Given the above on-equilibrium strategies, the following cases may occur

by having a unilateral deviation by a firm.

1. Firm f1(F
0) deviates at a stage. There are three cases.

(a) f1(F
0) does not make an offer. In this case, the game ends, and

f1(F
0) gets zero payoff. Thus, there is no such incentive.
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(b) f1(F
0) makes an offer to aj(A

0) with j 6= 1. In this case, if
the salary is more than or equal to s∗j(F

0, A0) then aj(A
0) ac-

cepts the offer eventually (after all applicants who are better than
aj(A

0) have accepted offers). Thus, f1(F 0) and aj(A0) are matched
and they exit the game. However, f1(F 0)’s payoff is lower than
on-equilibrium outcome: f1(F 0) being matched with a1(A

0) with
salary s∗1(F

0, A0). It is because s∗(F 0, A0) is a competitive salary
vector. If the salary is less than s∗j(F

0, A0) then the offer is even-
tually rejected, and at this stage the best available applicant is
aj+1(A

0), who demands s∗j+1(F
0, A0). Thus, again f1(F

0)’s payoff
is lowered because s∗(F 0, A0) is a competitive salary vector.

(c) f1(F
0) makes an offer to a1(A

0) with salary s1 that is less than
s∗1(F

0, A0). (If more, then the offer will be accepted immediately,
and f1(F

0) is worse off.) In this case, a1(A0) does not accept the
offer immediately, and f1(F

0) cannot make any offer at this stage
due to the outstanding offer. In this subgame hf1(F 0), a1(A

0), s1i),
the on-equilibrium path is described in the following way. f2(F 0)
makes an offer to a1(A0) with salary max{s1, s∗1(F 0\{f1(F 0)}, A0),
and a1(A

0) accepts the offer from f2(F
0) immediately.29 The rest

of the game is played by F 0\{f2(F 0)} and A0\{a1(A0)}, and the
on-equilibrium strategies described in the beginning of the proof
applies to this subgame, too. Given this, f1(F 0) is matched with
a2(A

0) with salary s∗1(F
0\{f2(F 0)}, A0\{a1(A0)}) = s∗2(F

0, A0), and
it is apparently not beneficial to f1(F 0).

2. Firm fi(F
0) (i 6= 1) also makes an offer to an applicant in addition to

f1(F
0) making an offer to a1(A0). There are two cases.

(a) fi(F
0)makes an offer to aj(A0) with j > i. If the salary is not more

than s∗j(F
0, A0), then the offer is rejected eventually. Moreover, by

then, fi(F 0)’s natural partner ai(A0) is no longer available. Thus,
f 0(F 0) is worse off. If it is more than or equal to s∗j(F

0, A0), then
the offer is accepted eventually, but fi(F 0) is worse off than in the
on-equilibrium outcome.

29More precisely, f2(F 0) needs to make an offer to a1(A0) with a salary slightly higher
than s01 (due to the tie-breaking rule).
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(b) fi(F
0) makes an offer to aj(A

0) with j ≤ i. In this case, this
offer will be outstanding in stage c (if the salary is more than
s∗j(F

0, A0) and if it is accepted, and fi(F 0) is worse off). If i−j ≥ 2
(thus, fi(F 0) is irrelevant in determining on-equilibrium salary of
aj(A

0)) fj(F 0) and fj+1(F
0) would compete for aj(A0) potentially

by offering s∗j(F
0, A0) in expectation that the rejected fi(F 0)makes

an offer to ai(A
0) following the on-equilibrium strategy.30 Thus,

firm fi(F
0)’s payoff is not affected by this irrelevant offer (except

for a cost to make an additional offer). If i = j or i = j + 1,
the resulting salary structure could be affected. Consider the case
i = j. If the offer is above s∗j(F

0, A0), then fi(F
0) is worse off. If

the offer is less than that, then fi+1(F
0) matches (or pays even

more than that if fi+2(F 0) is willing to pay the salary that fi(F 0)
offers: in this case fi+2(F

0) is the real competitor for fi+1(F 0),
so fi+1(F 0) needs to pay more to get aj(A0)), and aj(A

0) accepts
fi+1(F

0)’s offer. As a result, fi(F 0) is worse off. Lastly, consider
the case i = j + 1. If the offered salary is more than or equal
to s∗j(F

0, A0), then it is accepted, but fi(F 0) is worse off. If the
salary is less than s∗j(F

0, A0), then the offer will be outstanding. At
the stage when fj(F

0)’s turn comes, fj(F 0) will offer exactly the
same salary as fi(F 0) did, and aj(A0) accepts fj(F 0)’s offer. Being
rejected, fi(F 0) will make an offer to ai(A0) with salary s∗i (F

0, A0),
ending up with the same payoff as on the equilibrium path (except
for the cost for making an additional offer).

Thus, in any case, a unilateral deviation from the equilibrium strategy
does not improve firms’ payoff. Finally, we need to determine if an ap-
plicant has an incentive to deviate from her equilibrium strategy unilater-
ally. First consider a1(A0). Suppose that a1(A0) gets an on-equilibrium of-
fer s∗1(F

0, A0) from f1(F
0), and suppose to the contrary that she rejects the

offer. Then, since f1(F
0) can no longer make an offer to a1(A

0), it goes
after a2(A0). Now, firm f2(F

0) will have a chance to get a1(A0), and its
primary competitor is f3(A0). Thus, f2(F 0) can offer a1(A0) a salary s021 =
Y31(F

0, A0)−Y33(F 0, A0)+s∗3(F
0, A0). With this offer, f2(F 0) obtains payoff (if

accepted) Y21(F 0, A0)−s021 = Y21(F
0, A0)−Y31(F 0, A0)+Y33(F

0, A0)−s∗3(F 0, A0).
By strict supermodularity, this is higher than Y22(F

0, A0) − s∗2(F
0, A0) =

30If fi(F 0) is better off by deviating at the stage of making an offer to ai(A0), then she
can also be better off by deviation at that stage alone.
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Y22(F
0, A0)− Y32(F

0, A0) + Y33(F
0, A0)− s∗3(F

0, A0). Thus, firm f2(F
0) indeed

makes an offer to a1(A0) instead of a2(A0) (if s021 would be accepted). Now,
let us focus on a1(A

0)’s payoff. If a1(A0) accepted the offer from f1(F
0) then

she gets s∗1(F
0, A0), and if she accepts the offer from a2(A

0), then she gets
s021 = Y31(F

0, A0) − Y33(F
0, A0) + s∗3(F

0, A0). However, by strict supermodu-
larity and strict increasingness, it is easy to see

s∗1(F
0, A0)

= Y21(F
0, A0)− Y22(F

0, A0) + s∗2(F
0, A0)

= Y21(F
0, A0)− Y22(F

0, A0) + Y32(F
0, A0)− Y33(F

0, A0) + s∗3(F
0, A0)

> Y31(F
0, A0)− Y33(F

0, A0) + Y32(F
0, A0)− Y33(F

0, A0) + s∗3(F
0, A0)

> Y31(F
0, A0)− Y33(F

0, A0) + s∗3(F
0, A0) = s021.

This implies that a1(F 0, A0) does not have an incentive to reject an offer
s∗1(F

0, A0) from f1(F
0).31 It is easy to see that it does not make sense for aj(A0)

to reject an offer of a salary more than or equal to s∗j(F
0, A0). If an offer is

made by fi(F 0)with i < j, and if the salary is lower than s∗j(F
0, A0), then there

is no reason to hold such an offer. By waiting, she will receive an offer from
fj(F

0, A0) with salary s∗j(F
0, A0). Thus, rejecting such an offer immediately

does not alter her payoff. Finally, if an offer is made by fi(F 0) with i = j or
j + 1 with salary lower than s∗j(F

0, A0), then she has no incentive to reject
such an offer. Rejecting an offer is a weakly dominated strategy since it
reduces the number of relevant competitors. This proves that applicants also
have no incentive to deviate from the strategy profile unilaterally.¥

Proposition 4. Suppose n ≥ 2 and m ≥ 2. In a multistage game, in any
pure strategy stationary Markov perfect equilibrium without any rejection
on the equilibrium path, the equilibrium salary vector satisfies s ≤ s∗, and
firms’ payoff vector satisfies u ≥ u∗, where u∗i = Yii − s∗i for all fi ∈ F .

Proof of Proposition 4. By induction. First, note that if |F | = 2, then
equilibrium salary vector s satisfies s ≤ s∗, because there are only two equi-
librium salary vectors: one is s∗ and the other is s = (Y31, Y32) if |A| ≥ 3 and
31Here, we assume that a1(A0) would accept an offer s021 from f2(F

0) in the case where
she rejected an offer s∗1(F

0, A0) from f1(F
0). It is easy to see if a1(A0) rejects this offer as

well, then she would be even more worse off.
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s = (0, 0) if |A| = 2 (see Example 3). In order to show that there is no other
equilibrium, we show that a non-assortative matching cannot be an equilib-
rium outcome when |F | = 2. This can be seen as follows. If f1 is matched
with a2, f2 must be matched with a1. Since f1 does not counter the offer by
f2 to a1, f1 must make its offer first. The salary offer for this case is s2 = s∗2:
s∗2 = Y32 if m ≥ 3 (s∗2 = 0 otherwise). Once f1 makes an offer to a2, then f2’s
only rival is f3, so s1 = Y31 if m ≥ 3 (s1 = 0 otherwise). In this allocation,
f1’s payoff is Y12 − Y32, while if f1 gets a1 with salary s∗1 = Y21 − Y22 + Y32,
its payoff is Y11 − s∗1 = Y11 − Y21 + Y22 − Y32. However, by subtracting the
former from the latter, we have

Y11 − s∗1 − (Y12 − s∗2) = Y11 − Y21 + Y22 − Y32 − (Y12 − Y32)

= Y11 − Y12 − (Y21 − Y22)

> 0,

by strict supermodularity. Thus, there are only two equilibria with the as-
sortative matching with s ≤ s∗, and we have u ≥ u∗ in all equilibria.32 Thus,
the induction hypothesis is satisfied when |F | = 2.
Suppose that for all games (F,A) with |F | < k, all equilibria have s ≤ s∗

and u ≥ u∗. Consider a game (F,A) with |F | = k. Suppose that there
is an equilibrium without rejections on the equilibrium path in which aj
receives sj > s∗j . Then, there is a firm fi matched with aj. Let (F 0, A0)
be the set of active players when fi makes an offer to aj.33 There are two
cases: i = j or i 6= j. First assume that i = j. Then, si > s∗i , and there
is a firm fi0 ∈ F 0 which has an incentive to make an offer to ai instead of
its equilibrium partner, say, aj0. That is, ui0 = Yi0i − si < Yi0i − s∗i ≤ u∗i0.
Suppose that firm fi0 makes an offer to aj0 with salary sj0 = Yi0j0−Yi0i+ si in
the same stage that fi makes the offer to ai. This cannot be an equilibrium
since both parties have incentives to reduce salaries. Thus, fi0 makes its offer
in a later stage with an active player. However, by the induction argument,
when fi0 ∈ F 0\{fi} obtains ui0 ≥ u∗i0 in the subgame when fi0 makes an offer
(the number of active players is less than k). This is a contradiction. Second,
assume i 6= j. If ai ∈ A0, then fi can make an offer to ai instead of aj. Since
ui < Yij − s∗j ≤ u∗i = Yii − s∗i , then fi prefers making an offer to ai with s∗i ,

32As is shown in Example 5, if |F | 6= 2, a non-assortative matching can be an equilibrium.
33Since there is no rejection on equilibrium path, firms that have made offers in the past

will not be able to make offers. Thus, F 0 can be considered as the set of firms that have
not made offers.
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if it were accepted by ai. Thus, if fi chooses aj this means that fi’s offer
to ai with s∗i would be countered by some fi0 ∈ F 0. Such fi0 obtains payoff
Yi0i− s∗i ≤ Yi0i0− s∗i0 = u∗i0. Since fi0 needs to have an opportunity to make an
counter offer, it does not make an offer to its equilibrium partner in the same
stage that fi makes an offer. By the induction hypothesis, ui0 ≥ u∗i0, and the
only possible case for this is that Yi0i− s∗i = Yi0i0− s∗i0. This implies i

0 = i+1,
and i < i0. However, then fi0 cannot make an acceptable counteroffer to ai.
This is a contradiction. Thus, s ≤ s∗ must hold. Now, we show u ≥ u∗.
Since s ≤ s∗, if there is fi with ui < u0i, it must be matched with aj with
j > i. However, fi can make an offer to ai with s∗i , which would be accepted
by ai. This is because if any other firm makes a counteroffer, then that firm’s
payoff would be lower by the induction hypothesis. This is a contradiction.
Thus, we conclude s ≤ s∗ and u ≥ u∗ for (F,A) with |F | = k.
By an induction argument, we complete the proof.¥
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