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Abstract

We build and estimate a two-sector (goods and services) dynamic stochastic general equilibrium

model with two types of inventories: materials (input) inventories facilitate the production of �n-

ished goods, while �nished goods (output) inventories yield utility services. The model is estimated

using Bayesian methods. The estimated model replicates the volatility and cyclicality of inventory

investment and inventory-to-target ratios. Although inventories are an important element of the

model�s propagation mechanism, shocks to inventory e¢ ciency or management are not an important

source of business cycles. When the model is estimated over two subperiods (pre and post 1984),

changes in the volatility of inventory shocks or in structural parameters associated with inventories,

such as the input inventory to output ratio, play a small role in reducing the volatility of output.
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1. Introduction

Macroeconomists recognize that inventories play an important role in business cycle �uctuations,

but constructing macroeconomic models that explain this role successfully has been an elusive task.1

Early Real Business Cycle (RBC) models, such as Kydland and Prescott (1982), treated inventories

as a factor of production. However, Christiano (1988) showed that RBC models with aggregate

inventories cannot explain the volatility and procyclicality of inventory investment without including

a more complex information structure and restrictions on the timing of agents�decisions. Moreover,

Christiano and Fitzgerald (1989) concluded, �the study of aggregate phenomena can safely abstract

from inventory speculation.� Nevertheless, the recent empirical literature continues to a¢ rm the

conventional view of inventories as propagating business cycle �uctuations. For example, McConnell

and Perez-Quiros (2000), among others, argue that structural changes in inventory behavior are an

important reason for the decline in the volatility of U.S. GDP since the early 1980s.2

We re-examine the role of inventories in business cycle �uctuations by developing and estimating

a dynamic stochastic general equilibrium (DSGE) model rich enough to explain essential elements

of inventory behavior. To confront the data, the model requires four extensions over existing models

with inventories: 1) two sectors, di¤erentiated by whether they hold inventories; 2) a disaggregation

of inventories into two distinct types, input and output inventories; 3) several modern DSGE features,

which have been shown to be necessary to �t the data; and 4) multiple shocks, which provide a diverse

array of economically interpretable sources of stochastic variation. Because these extensions increase

the complexity of the model, we abstract from other potentially important features � variable

markups, nominal rigidities, intermediate goods with input-output relationships, and nonconvexities

� that others have incorporated in equilibrium models of inventory behavior.3

Studying inventories in an equilibrium framework motivates a natural sectoral decomposition.

Because inventories are goods mostly held by the �rms that produce goods, our model contains

a goods-producing sector that holds inventories and a service-producing sector that does not hold

inventories. This inventory-based sector decomposition yields a broader goods sector than in prior

studies that distinguished goods from services because the model includes industries that distribute

goods (wholesale and retail trade plus utilities).4

1See Blinder and Maccini (1991) and Ramey and West (1999) for surveys. Ramey (1989) and Humphreys, Maccini,

and Schuh (2001) study the importance of inventory investment in the decline of GDP during recessions.
2See also Blanchard and Simon (2001); Kahn, McConnell and Perez-Quiros (2002); Irvine and Schuh (2005a), and

Herrera and Pesavento (2005).
3Papers that incorporate variable markups and/or sticky prices include Bils and Kahn (2000), Hornstein and Sarte

(2001), Boileau and Letendre (2004), Coen-Pirani (2004), Jung and Yun (2006), and Chang, Hornstein, and Sarte

(2006). General equilibrium models with intermediate goods and input-output relationships include Huang and Liu

(2001) and Wen (2005a). Models with nonconvexities include Fisher and Hornstein (2000) and Khan and Thomas

(2007), which incorporate (S,s) policies for retail inventories and intermediate goods inventories respectively.
4Marquis and Trehan (2005a) de�ne goods as manufacturing �rms, while Lee and Wolpin (2006) use the NIPA

de�nition (agriculture, mining, construction, and manufacturing). For multi-sector consumption/investment models,

see Kimball (1994); Greenwood, Hercowitz, and Krusell (2000); Whelan (2003); and Marquis and Trehan (2005b).
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Our model disaggregates inventories into input (materials and work-in-progress) and output (�n-

ished goods) stocks, as suggested by the stage-of-fabrication approach employed in Humphreys,

Maccini and Schuh (2001).5 Wen (2005a) o¤ers an alternative, theoretical analysis of input and

output inventories in an equilibrium model. An advantage of these studies is that they incorporate

the interaction between �rms in a supply-chain, which we do not.

Our estimated model motivates holdings of the two inventory stocks di¤erently. As in earlier

DSGE models, such as Kydland and Prescott (1982) and Christiano (1988), input inventories enter

as a factor in the production of value added, but only in the goods-producing sector. Holding input

inventories is assumed to facilitate production by minimizing resource costs involved in procuring

input materials, guarding against stockouts, and allowing for batch production.

Output inventories pose a di¤erent speci�cation challenge. Most, but not all, of the inventory

literature deals with partial-equilibrium analyses of the inventory-holding problem. Typically, a

�rm is assumed either to hold output inventories to avoid lost sales or stockouts (Kahn 1987) or to

�facilitate� sales (Bils and Kahn 2000). Fisher and Hornstein (2000), instead, study the aggregate

implications of output inventories decisions in a dynamic general equilibrium model with �xed or-

dering costs that generate (S,s) policies. Like Kahn, McConnell and Perez-Quiros (2002), we will

take the shortcut of assuming that output inventories provide a convenience yield to the consumer

and enter the consumers�utility function directly. The convenience yield may re�ect the reduction in

shopping cost associated, for instance, with less frequent stockouts and with the provision of variety

or of other consumer bene�ts associated with the underlying retailing services. Indeed, under some

simplifying assumptions, we can show that the model with output inventories in the utility function

is equivalent to a model in which inventories appear in the budget constraint because they a¤ect

shopping costs, but do not enter the utility function.6 We are fully aware that our modeling choices

for both input and output inventories are shortcuts taken in order to obtain a relatively simple es-

timable model. The judgement whether they are useful ones will partly depend upon the ability of

our model to explain the movement of inventories over the business cycle.

Empirically, the data strongly suggest disaggregating aggregate inventories. We de�ne output

inventories (F ) as stocks held by retailers for �nal sale; all other stocks are input inventories (M).

By these de�nitions, input inventories empirically are more volatile and procyclical than output

inventories. Perhaps more importantly, as implied by the model, the ratios of each inventory type

to its steady-state target exhibit very di¤erent cyclical behavior. Relative to output of goods, input

inventories (M=Yg) are very countercyclical. However, we �nd that relative to the consumption of

goods, output inventories (F=Cg) are mildly procyclical.

Our setup also includes several important features now standard in estimated DSGE models, such

5The importance of stage-of-fabrication inventories dates back to Lovell (1961) and Feldstein and Auerbach (1976).

More recent models include Husted and Kollintzas (1987), Bivin (1988, 1993), Ramey (1989), and Rossana (1990).

Cooper and Haltiwanger (1990) and Maccini and Pagan (2007) examine the linkages between �rms created through

inventories playing di¤erent input and output roles in production.
6The argument mimics the one proposed by Feenstra (1986) to justify the inclusion of money in the utility function.

3



as adjustment costs on all capital stocks (including inventories) and variable utilization of capital.

We also allow for nonzero inventory depreciation (or, equivalently, an inventory holding cost that is

proportional to the total stock).7 This is a relatively novel feature in the inventory literature, except

in models of inventories with highly perishable goods (Pindyck 1994). We allow nonzero depreciation

because it is theoretically plausible and essential to �t the data. The model incorporates six shocks.

We include two (correlated) sector-speci�c technology shocks and one demand-type shock to the

discount rate. A fourth shock captures shifts in preferences between goods and services. Lastly,

we introduce two inventory-speci�c shocks that create roles for unobserved changes in inventory

technologies or preferences to in�uence the model.

We estimate the model using Bayesian likelihood methods. The estimated model �ts the data

well. Parameter estimates are consistent with the theory and are relatively precise. The estimated

model replicates the volatility and procyclicality of inventory investment, and the qualitative di¤er-

ences in the observed cyclicality of the two inventory-target ratios. In particular, the model captures

the countercyclicality of the input inventory ratio and the relatively acyclicality of the output inven-

tory ratio. We also �nd that inventory shocks do explain some of the variation in investment and

consumption, but little of the variation in aggregate output. Altogether, the results are consistent

with the conventional view that inventories are an important part of the propagation mechanism,

but in and of themselves are not an important source of macroeconomic �uctuations.

Our model and �ndings are related to Khan and Thomas (2007), who �nd that a calibrated

equilibrium model with �xed delivery costs and driven by a single technology shock is successful in

reproducing the cyclical properties exhibited by total inventories. We also match the cyclical prop-

erties of inventories, but our model distinguishes inventories by stage of fabrication and emphasizes

the di¤erent cyclical properties of input and output inventories. The multiplicity of shocks in our

model, the inclusion of a services sector (that does not hold inventories), and our use of Bayesian

estimation (rather than calibration) constitute other important di¤erences.

The econometric results shed light on inventory behavior over the business cycle. As in Chris-

tiano (1988), we �nd that the elasticity of substitution between input inventories and �xed capital

in the production function is much smaller than unity. In contrast, the elasticity of substitution

between consumption and output inventories in the utility function is closer to unity. Adjustment

costs on �xed capital are large, while adjustment costs on inventory stocks are small and relatively

insigni�cant. However, estimated depreciation rates for inventories, which might also re�ect holding

costs, are sizeable. Nonzero depreciation rates for inventories, together with �xed capital adjustment

costs, are crucial in explaining the absolute and relative volatility of inventory investment and their

role in the propagation mechanism.

Finally, we provide the �rst data-consistent, structural decomposition of the Great Moderation

using an estimated DSGE model with independent roles for input and output inventories. By esti-

mating the model over the sub-periods 1960�1983 and 1984�2007, we account for the notable changes

7 Inventory carrying costs have however a long history in the operations management literature. See for instance the

book by Stock and Lambert (2001).
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in the steady-state values of the inventory-to-target ratios and for the relatively greater importance

of the service sector since 1984. We �nd that most of the decline in aggregate output volatility is

attributable to the lower volatility of shocks, which occurred primarily in the goods-sector technol-

ogy shock.8 The volatility of the input-inventory technology shock also declined, but this decline

only accounts for a very small reduction in the volatility of aggregate output or goods output. We

also �nd that structural changes in the parameters account for a smaller fraction of the reduction

in aggregate output volatility. The reduced ratio of input inventories to goods output observed in

the data is associated with a decrease in goods-sector output and GDP volatility, but the size of the

decrease is small.9

2. The Model

2.1. Motivating Inventories

To motivate why input inventories (materials for short) are held, we follow the literature that treats

them as a factor of production alongside labor and �xed capital, following a tradition going back to

Kydland and Prescott (1982), Christiano (1988) and Ramey (1989).10 This approach assumes that

the stock of inventories facilitates production �over and above their usage �by minimizing the cost

of procuring input materials, by guarding against stockouts that would reduce productivity, and

by allowing batch production.11 In the Kydland and Prescott and Christiano�s general equilibrium

models, the production function should be interpreted as a value added (gross output minus materials

used) production function. As a factor aiding the production of value added, one can think of

inventory stocks as a type of capital, which are characterized by adjustment and holding costs and

subject to physical depreciation.12 In Section 6, we also consider a version of the model in which we

explicitly model the usage of materials and abstract from their convenience yield.

In modeling output inventories, we follow Kahn, McConnell and Perez-Quiros (2002) who assume

that output inventories provide convenience services to the consumer and include them directly in the

8This result is consistent with other aggregate analyses of the Great Moderation. See the VAR-based analyses of

Blanchard and Simon (2001); Stock and Watson (2003); and Ahmed, Levin, and Wilson (2004). See also Khan and

Thomas (2007) and Maccini and Pagan (2007) for analyses based on structural models with inventories. Arias, Hansen,

and Ohanian (2006) use a calibrated RBC model without inventories, and Leduc and Sill (2006) use an equilibrium

model to assess the quantitative importance of monetary policy.
9Ramey and Vine (2006), studying the automobile industry, also do not �nd much evidence of structural change

related to inventories. They emphasize structural change in the persistence of exogenous sales and, to a much lesser

extent, in the costs of adjusting employment.
10See also Feroli (2002).
11Humphreys, Maccini, and Schuh (2001) and Maccini and Pagan (2007) argue that it is important to model the

delivery and usage of input materials in gross production together with the holding of input inventories. However,

absent input-output (supply-chain) relationships among �rms, a representative-�rm approach cannot admit deliveries

of raw materials produced by an upstream supplier.
12 If holding costs are proportional to the stock, then the inventory depreciation rate will include both physical

wastage and the resource cost of holding inventories.
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utility function. The idea we are trying to capture is that a large stock of wine bottles at a local wine

store increases utility beyond that derived from actually consuming the wine. The convenience yield

may re�ect the reduction in shopping cost associated, for instance, with less frequent stockouts and

with the provision of variety or of other consumer bene�ts associated with the underlying retailing

services. Indeed, under some simplifying assumptions, we can show that the model with output

inventories in the utility function is equivalent to a model in which inventories appear in the budget

constraint because they a¤ect shopping costs, but do not enter the utility function. Feenstra (1986)

proves the equivalence, under some (mild) conditions, between including consumption and money in

the utility function; and including only consumption, but with liquidity/shopping costs �increasing

in consumption and decreasing in money balances �appearing in the budget constraint. Feenstra�s

result suggests that our model with output inventories in the utility function, could be reinterpreted

as a model having only consumption in the utility function, but having shopping costs in the budget

constraint that are decreasing in output inventories. When the utility function is additively separable

in consumption of goods and output inventories, on the one hand, and consumption of services, on

the other, we can derive analytically the form of the shopping cost function. We discuss all this more

fully in Section 6.

Our representative agent, perfectly competitive approach to output inventories abstracts from the

decentralized problem of inventory holding by retailers (or by �nal good producers) that is common

in partial-equilibrium analyses of inventories. To address this issue properly, one should model

explicitly the relationship between individual consumers and retailers (or �nal good producers) in an

imperfectly competitive setting. We leave this important task for future research in the context of a

model that also allows for input-output (supply-chain) relationships, which are equally important to

the decentralized problem. We also avoid modeling stockouts of output or input inventories explicitly

and abstract from the presence of �xed ordering costs. We are aware that our modeling choices for

both input and output inventories are shortcuts taken in order to obtain a relatively simple estimable

model. The judgement whether they are useful ones will partly depend upon the ability of our model

to explain the movement of inventories over the business cycle.

2.2. Preferences

The household chooses consumption of goods Cg, services Cs; output inventories F; and hours in the

goods sector Lg and services sector Ls to maximize the following objective function:13

E0

1X
t=0

�t
�
"�t

�
log
�

"
tX

��
t + (1� 
"
t)C��st

��1=�
� � (Lgt + Lst)

��
,

where Xt is a CES bundle of goods and output inventories, and is de�ned as

Xt =
�
�"FtC

��
gt + (1� �"Ft)F

��
t�1

��1=�
(2.1)

13To keep the model manageable, we do not distinguish within Cg between durables and nondurables. On this see,

for instance, Wen (2005b)
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where

0 < 
 < 1, 0 < � < 1 and � � �1.

In this formulation, 1 + � is the inverse elasticity of substitution between the consumption of �nal

goods and output inventories. Similarly, 1+� is the inverse elasticity of substitution between services

and the bundle of goods (consumption-output inventories). Utility is linear in leisure, following

Hansen (1985) and Rogerson (1988), which both assume that the economy is populated by a large

number of identical households that agree on an e¢ cient contract that allocates individuals either

to full-time work or to zero hours.

We allow for three shocks to impact the intertemporal and intratemporal margins of the house-

hold. The shock "�t a¤ects preferences for goods, services, and leisure today versus tomorrow. The

shock "
t a¤ects the relative preference between goods and services.14 Finally, the shock "Ft a¤ects

the preference between the consumption of goods and output inventories: this shock is meant to

capture the reduced�form impact on utility of temporary movements in the �technology�to produce

output inventories occurring in the storage of physical goods: Low�frequency evolution in the storage

and retailing technology (such as the emergence of megastores like Walmart, Internet shopping, and

other key retail developments, especially since the early 1980s) might also be re�ected in changes

in structural parameters such as � and � or in the volatility of the inventory speci�c shock "Ft.

Changes in � and � will a¤ect the ratio between output inventories and consumption. It is di¢ cult

to explicitly model these trends, but, at least, we will allow for discrete changes in the parameters

by estimating the model separately for di¤erent subperiods (pre and post 1984).

2.3. Technology

Following Christiano (1988), value added in the goods sector is a Cobb-Douglas function in labor

Lgt, and a CES aggregate of services from �xed capital and input inventories,

Ygt = (AgtLgt)
1��g �� (zgtKgt�1)

�� + (1� �) ("MtMt�1)
�����g=� , (2.2)

where

0 < � < 1 and � � �1 .

In equation (2:2), Kgt�1 is the end-of-period t � 1 capital in the goods sector (plant, equipment,
and structures), zgt is the time-varying utilization rate of Kgt�1, and Mt�1 is the end-of-period t� 1
stock of input inventories. Here, 1 + � measures the inverse elasticity of substitution between �xed

capital and input inventories. If � > 0; then �xed capital and input inventories will be de�ned here

as complements; if �1 � � � 0 then input inventories and capital are substitutes.
The production function above does not explicitly feature the usage of materials as one of its

arguments. Equation (2:2) describes a value added (gross output minus materials used) production

14For the model to admit a solution, a necessary condition is that 
"
t never exceeds unity for each possible realization

of "
t . Even though we assume that log "
t has an unbounded support, empirically its standard deviation turns out

to be rather small, so that this condition is always satis�ed in practice.

7



function, once materials used have been maximized out. So long as materials can be produced from

gross output using a one-for-one technology, our model generates the same optimality conditions for

primary inputs as a model that treats materials used as an additional factor of production in the

production function of gross output.15

We allow for two disturbances in the goods sector technology: Agt is a technology shock, while

"Mt is a shock that a¤ects the productive e¢ ciency of input inventories, so that "MtMt�1 is input

inventories in e¢ ciency units. "Mt captures, in a reduced-form way, the impact on production

e¢ ciency of changes in the input inventory technology. The (low frequency) evolution over time of

new methods of inventory management like just-in-time production or �exible manufacturing system,

which are characterized by elaborate supply and distribution chains, may be re�ected in changes in

the volatility of "Mt, in the weight of input inventories in the CES aggregate, 1 � �, and in the

parameter governing the elasticity of substitution, �; or, more generally, in the ratio between the

stock of input inventories and goods output.16

Production in the services sector is modeled by a Cobb-Douglas production function only for

labor Lst and capital services:

Yst = (AstLst)
1��s (zstKst�1)

�s , (2.3)

where Kst�1 is the end-of-period t � 1 capital in the service sector and zst is the time-varying

utilization rate of Kst�1. The empirical fact that service-producing �rms do not hold inventories

motivates our model�s di¤erent speci�cation of the services-production technology. We also allow for

one general technology disturbance, Ast, in the services sector.

2.4. Resource Constraints

Output from the goods sector provides consumption goods, new �xed investment in both sectors,

and investment in output and input inventories. Output from the services sector provides services

to the consumer. The resource constraints for the goods and service sectors are, respectively,

Ygt = Cgt +Kgt � (1� �Kg (zgt))Kgt�1 +Kst � (1� �Ks (zst))Kst�1 + Ft � (1� �F )Ft�1 (2.4)

+Mt � (1� �M )Mt�1 + �Kg (Kgt;Kgt�1) + �Ks (Kst;Kst�1) + �F (Ft; Ft�1) + �M (Mt;Mt�1)

and

Yst = Cst . (2.5)

The capital depreciation rates in both sectors, �Kg (zgt) and �Ks (zgt), are increasing functions of

the respective utilization rates. The inventory depreciation rates, �F and �M , are �xed and possibly

15See Rotemberg and Woodford (1995) for a discussion of this issue.
16 Irvine and Schuh (2005a) o¤er evidence that such supply-chain management may have changed. Information and

computing technology may also play an important and related role in these new inventory management techniques, as

argued by Kahn, McConnell, and Perez-Quiros (2002).
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capture inventory holding costs as well. Adjustment costs (denoted by �) are quadratic and given

by the expression:

��t =
 �
2��

�
�t � �t�1
�t�1

�2
�t�1 (2.6)

for �t = (Kgt;Kst;Mt; Ft). It is straightforward to show, log-linearizing around the steady state,

that the elasticity of capital (investment) with respect to its shadow price is ��= � (1= �). For the

utilization function, we choose a parameterization such that the marginal cost of utilization equals

the marginal product of capital in steady state.17 The time t depreciation rate of Kit, de�ned as

�Kit (with i = g; s), is given by

�Kit = �Ki + bKi�Kiz
2
Kit=2 + bKi (1� �Ki) zKit + bKi (�Ki=2� 1) . (2.7)

The parameter �Ki > 0 determines the curvature of the capital-utilization function, where bKi =

1=� � (1� �Ki) is a normalization that guarantees that steady-state utilization is unity.

2.5. Shocks

The shocks Agt; "�t; "Ft; "
t; "Mt and Ast; follow AR(1) stationary processes in logs:

ln (Agt) = �g ln (Agt�1) +
�
1� �2g

�1=2
ugt (2.8)

ln ("�t) = �� ln ("�t�1) +
�
1� �2�

�1=2
u�t (2.9)

ln ("Ft) = �F ln ("Ft�1) +
�
1� �2F

�1=2
uFt (2.10)

ln ("
t) = �
 ln ("
t�1) +
�
1� �2


�1=2
u
t (2.11)

ln ("Mt) = �M ln ("Mt�1) +
�
1� �2M

�1=2
uMt (2.12)

ln (Ast) = �s ln (Ast�1) +
�
1� �2s

�1=2
ust. (2.13)

The innovations ugt; u�t; uFt; u
t; uMt, and ust are serially uncorrelated with zero means and standard

deviations given by �g; ��; �F ; �
 ; �M , and �s. In addition, we allow for correlation between the

two technology innovations, ugt and ust.

2.6. Optimality Conditions and Steady State

Because the two welfare theorems apply, we solve the model as a planner�s problem. The �rst-order

conditions are standard and reported in Appendix A, along with a full characterization of the steady

state. The model�s optimality conditions, together with the market-clearing conditions and the laws

of motion for the shocks, can be used to obtain a linear approximation around the steady state for the

decision rules of the model variables, given the initial conditions and the realizations of the shocks.

Given the model�s structural parameters, the solution takes the form of a state-space econometric

17This way, steady-state depreciation is independent of the curvature of the function. See Christiano (2004).
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model that links the behavior of the endogenous variables to a vector of partially unobservable state

variables that includes the six autoregressive shocks.

In our econometric application, we use observed deviations from the steady state of six variables,

namely, the output of goods and services, the stock of input inventories and output inventories,

the relative price of goods, and total �xed investment to estimate the model�s parameters and the

properties of the shocks. We will also require that the estimated parameters match the steady-state

ratios of the model (proxied by their average values). Before describing the estimation procedure

(Section 4), Section 3 maps the model variables into their data counterparts.

2.7. Inventory Management Techniques and Steady�State Ratios

Two of the model�s steady�state ratios are worth highlighting. The steady�state ratios of input

inventories to goods output, M=Yg, and output inventories to goods consumption, F=Cg, are:

M=Yg =
�g (1� �)

1� � (1� �M )
�

(1� �) + �
�

�
1��

1��(1��M )
1��(1��Kg)

�� �
1+�

; (2.14)

F=Cg =

�
�

1� �
1� � (1� �F )

�

�� 1
1+�

. (2.15)

These ratios are structural analogues of the reduced-form �inventory-target�ratios that have played

a central role in the inventory literature, which has usually taken a partial equilibrium approach

to modeling inventories. The literature has primarily focused on output inventories, F , and Cg is

normally represented as the �sales�of a �rm(s) �hence the �inventory-sales�ratio or target.

Changes in inventory-target ratios �gure prominently in analyses of the data and hypotheses

about improvements in inventory management techniques, as explained in the next section. Here

we simply highlight the ways such techniques might be manifested through the theoretical model.

Because the model does not explicitly incorporate inventory management techniques, changes in such

techniques mostly likely would appear as changes in the structural parameters that determine the

inventory-target ratios.

The input inventory-target ratio, M=Yg, depends on three production function parameters that

might re�ect the current state of inventory management (�; �; �g), as well as two depreciation rates

(�M ; �Kg). The ratio is increasing in the relative weight of inventories in the non-labor input to

production (1 � �) and in the non-labor share of inputs in production (�g). Thus, new production

techniques that economize on inventories, such as changes in delivery lags or ordering procedures for

material inputs, may contribute to a lower ratio. The target ratio is also likely to be increasing in

the degree of complementarity between inventories and �xed capital (�).18 Investment in new types

of capital associated with inventory management techniques might reduce this complementarity.

18This will be true if the term in the larger parenthesis in the denominator is greater than one, which is almost

certainly the case in practice since capital has a much larger weight in production.
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Finally, the ratio is decreasing in inventory depreciation, �M ; although this parameter is unlikely to

be directly related to inventory management techniques.

The output inventory target-ratio, F=Cg, depends on two utility function parameters (�; �) and

one depreciation rate (�F ). The ratio is increasing in the relative weight of inventories in the goods

aggregator 1 � �. It is also increasing in the degree of complementarity between consumption and

inventories (�) when the term in parenthesis in equation (2:15) is greater than one �a result that

holds in our baseline estimates.19

3. Data

3.1. Sector and Inventory De�nitions

To obtain model-consistent data, we divide the economy into two sectors according to the inventory-

holding behavior of their industries: 1) the �goods�sector, which holds inventories; and 2) the �ser-

vices�sector, which does not hold inventories (at least none as measured by statistical agencies).20

The goods sector includes seven industries: agriculture, mining, utilities, construction, manufactur-

ing, and wholesale and retail trade. All other private-sector industries are in the services sector.21

Table 1 depicts our sectoral classi�cation, compares it with the National Income and Product

Accounts (NIPA) classi�cation, and reports output shares in 2000. The goods sector accounts for a

larger share of output than the NIPA goods sector (35.9 percent versus 21.2 percent). Nevertheless,

under our de�nition, the services sector accounts for about three-�fths of private output (59.1 percent

versus 40.9 percent for private goods), which excludes government but include foreign trade. However,

the private goods sector becomes even larger after adjusting for foreign trade and the leasing of

capital, as explained in the next subsection.

Our goods sector is larger than the NIPA good sector (and larger than conventional wisdom

would suggest) because it includes the utilities, wholesale trade, and retail trade industries � all

of which hold measured inventories. Reclassi�cation of these NIPA�based �services� (utilities and

trade) as �goods� can be motivated by assuming that the �service� provided �distributing goods

from their producers to the �nal destination (consumers or �rms) �can be internalized in a model

of a representative goods producer which makes and distributes goods.22 Nevertheless, separate

19The papers by Kimura and Shiotani (2009) and Maccini and Pagan (2007) interpret changes in inventory-target

ratios as evidence of changes in inventory management techniques, and attempt to map these techniques into particular

parameters of a linear-quadratic inventory model.
20Given our reliance on inventory holding as the de�ning characteristic of sectors, we could equally well label the

sectors �inventory holding�and �non-inventory holding�but we opted for �goods�and �services�because this nomen-

clature is simpler and more traditional. Moreover, in this two-sector model we wish to emphasize the integration of

industries that produce goods (e.g., manufacturing) and those that distribute goods (e.g., retail trade) in the production

of goods.
21See Appendix B for details on data sources, variable de�nitions, and data construction.
22Note that reclassi�cation of utilities as goods production is consistent with other energy production that is included

in the goods sector. Petroleum re�ning is in manufacturing, part of the standard NIPA goods sector.
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treatment of the production and distribution of goods may be preferable in future research that

incorporates multiple stages of processing in the goods sector.

NIPA inventories are classi�ed as input (M) or output (F ) stocks following the stage-of-fabrication

perspective advanced by Humphreys, Maccini, and Schuh (2001). Generally speaking, most goods

production follows an input-output structure in which the output of one industry becomes an input to

the next industry situated along a supply or distribution chain �raw materials, then work-in-process,

and �nally �nished goods. Table 2 depicts this inventory classi�cation scheme by industry, along

with inventory shares in 2000. Inventory-holding industries appear in approximate order according

to their location in the stages of fabrication; industries tending to producing raw materials are listed

�rst, and industries tending to producing �nished goods listed last.23

Prior research focuses on stage-of-fabrication inventories only within manufacturing. However,

manufacturing only accounts for 31 percent of all inventories, so a decision must be made on how

to classify the remaining 69 percent. We de�ne F as retail inventories because they represent the

most �nished stage of goods in supply and distribution chains. By this de�nition, output inventories

account for about one-fourth of all stocks (26.6 percent), hence input inventories account for the

about three-fourths (73.4 percent).24

Our empirical de�nition of F yields a smaller role for output inventories in general equilibrium

than they play within manufacturing. Within manufacturing, output (�nished goods) inventories

account for about 36 percent of all manufacturing inventories (11.1 percent out of 31.1 percent).

In addition, our empirical de�nition of input inventories is heavily oriented toward work-in-process

inventories (54.5 percent), whereas these types of inventories account for only about 29 percent of all

manufacturing stocks (8.9 percent out of 31.1 percent). Thus, one should not necessarily expect the

stylized facts for stage-of-fabrication inventories in our general equilibrium model to be the same as

for stage-of-fabrication inventories in manufacturing.

3.2. Data Construction

We use NIPA data and identities to construct data for the econometric work. For simplicity, we

suppress the notational details associated with chain-weighted aggregation in the equations below

describing the data construction.25 The output and investment data are constructed as follows:

Y data
g = Cg + Ig + Is +�F +�M

23According to the U.S. Census of Construction, inventories in the construction industry are materials and do not

include unsold �nished buildings.
24A reasonable case can be made for output inventories to include manufacturing �nished goods and perhaps wholesale

inventories. However, no clear theoretical (or empirical) justi�cation exists for any particular alternative classi�cation.

For instance, wholesale inventories include construction material supplies, and manufacturing-output inventories contain

goods that do not enter the consumer�s utility function. Moreover, each industry�s inventory investment exhibits

di¤erent cyclical and trend characteristics, and the correlation of inventory investment between industries is low.
25All real data are in chain-weighted 2000 dollars. When constructing the actual real chain-weighted data, we use

the Tornquist index approximation to the Fisher ideal chain index as recommended by Whelan (2002).

12



Ys = Cs

Ig = !(In +NX)

Is = (1� !)(In +NX) + Ir

where In is nonresidential �xed investment, Ir is residential �xed investment, NX is net exports,

and ! is the share of capital installed in the goods sector; NIPA data on Cg and Cs are modi�ed

slightly to match the sectoral de�nitions of the model. In estimating the model we account for the

fact that NIPA output does not include inventory depreciation, whereas model output does: we thus

subtract inventory depreciation from model output of goods, Yg, in order to obtain measured goods

output, Y data
g . GDP is the Tornqvist index of measured output in the two sectors.

All data represent value added (�output� for short) of the private economy, which excludes

government spending. We include net exports as part of investment: �[N]et exports are viewed as

representing additions to, or claims on, the domestic capital stock, depending on whether they are

positive or negative.�(Cooley and Prescott 1995, footnote 13). Another advantage of including net

exports in our de�nition of output is that our sample includes a period in which the U.S. moved

from being a net exporter (before 1984) to running a signi�cant trade de�cit (since 1984): omitting

net exports from our de�nition of goods could signi�cantly bias our assessment of the trends in the

inventory-output ratios.

Because the model and NIPA sectoral de�nitions di¤er, the standard NIPA consumption, in-

vestment, and inventory data require three adjustments to obtain model-consistent variables. First,

consumption of energy services (such as gas and electricity) is reclassi�ed as consumption of goods

(energy) produced by the utilities industry. Second, non-NIPA investment-by-industry data are used

to obtain measures of investment (capital installed) in each sector, which is not available in the NIPA

data. A substantial proportion of investment occurs in the �real estate, rental and leasing�industry,

which is in the services sector, but much of this capital actually is leased back to the goods sector.

Thus, a portion of real estate and leasing investment is reclassi�ed as goods investment. And third,

inventory data from two industrial classi�cation schemes �the old SIC system and the newer NAICS

system �are spliced to obtain consistent time-series data for the entire sample. Appendix B provides

complete details of the data construction and adjustments.

3.3. Output and Investment Data

Figure 1 plots the raw data in real terms (normalized to 100 in 1960). As the �gure illustrates, the

series have grown at di¤erent real rates over the sample period. In particular, output in the services

sector has grown faster than in the goods sector, and input inventories have grown much slower than

output inventories, especially since the early 1980s. Figure 2 plots each variable in nominal terms as

a share of total output. The ratios of total consumption-to-output and total investment-to-output

are roughly constant, except for the slight downward trend in the investment-to-output ratio during

the second half of the sample due to the decline in net exports.
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However, the nominal ratios in each sector are not roughly constant.26 The most noticeable

sector-level trends are the opposing trends in consumption (an upward drift in the share of services

consumption, from 30 percent to 50 percent, and a downward drift in the share of goods consumption

of the reverse magnitude), and the di¤erent trends in inventory stocks (downward drift in the ratio

of input inventories and upward drift in the ratio of output inventories). Similarly, the ratio of

investment-to-output in goods is declining while that ratio in services is roughly constant. These

changing shares of goods and services have been extensively discussed in the literature and re�ect

the slow reallocation of resources from manufacturing to services, a process often referred to as

�structural change�and well documented at least since Kuznets (1957).

The sector-level trends in the data pose a challenge in terms of modeling choices. Standard one-

sector models of the business cycle rely on an important property of U.S. macroeconomic aggregates:

the nominal shares of total consumption and investment in total GDP have been roughly constant

over the post-world-war II period. The plain-vanilla one-sector model, indeed, features �balanced

growth�: output, consumption and investment all grow at about the same rate, and the decentralized

equilibrium features constant relative prices across output, consumption and investment (Whelan,

2003). Extensions of the one-sector model to a multi-sector framework allow for balanced growth

even if the real variables are growing at di¤erent rates over time, so long as preferences and technology

satisfy speci�c functional forms.27 In these extensions, although there is no balanced growth in the

traditional sense, it is possible to �nd a transformation of the model variables that will render them

stationary. This transformation, loosely speaking, is admissible insofar as variables grow at di¤erent

rates in real terms, but relative prices adjust in a way that expenditure shares remain constant.

Hence a necessary condition for balanced growth both in one-sector and multi-sector models is that

nominal ratios are approximately constant over time.28 Our framework, however, features a �ner

level of disaggregation than typical multi-sector models. In particular, it divides consumption into

two categories (goods and services) and investment into three categories (business investment, input

inventory investment, and output inventory investment). The discipline of a model obeying the

balanced growth property would require the shares of Figure 2 to be stationary, but they are not.

Jointly modeling of the trend and the cycle would be fascinating, but the data appear to reject

balanced growth at the level of disaggregation that we propose in the model. Thus, we use standard

�ltering techniques to remove the trends from each variable prior to estimation.

26 In real terms, the ratio of investment to output has trended upwards during the sample. However, the relative

price of investment has fallen, so the nominal ratio of output to investment has remained approximately constant.
27Kongsamut, Rebelo and Xie (2001) and Gomme and Rupert (2007) discuss the restrictions on preferences and

technology that are required for balanced growth in multisector models. These restrictions call for production functions

and consumption aggregators to be Cobb-Douglas.
28 In models with endogenous labor, an often stated condition for balanced growth is that hours are stationary. Strictly

speaking, this is not necessary, so long as the real wage rate adjusts in a way that the ratio of total compensation (wage

times hours) to consumption remains constant. For instance, see Chang, Doh and Schorfheide (2007).

14



3.4. Inventory Data and the Inventory Management Hypotheses

Figure 3 (top panel) plots the inventory-target ratios of the model, F=Cg and M=Yg.29 A striking

fact is that input and output inventory-target ratios exhibit opposite trends over the full sample. The

input inventory ratio (M=Yg) declined by about one-third (from about 1.5 to 1.0) and the output

inventory ratio (F=Cg) increased by 50 percent (from about 0.35 to 0.5). Because input inventories

account for most of the inventory stock (73.4 percent, from Table 2), the aggregate inventory-target

ratio �M + F relative to either Yg or Cg �declined.

A more detailed examination of these disparate trends is warranted. The prevailing view in

the literature is that a decline in (M + F ) =Yg and M=Yg likely resulted from improvements in

inventory management and associated production techniques commonly referred to as �Just�in�

Time�production, �Flexible Manufacturing Systems�, �Material Resources Planning,�etc. However,

the literature o¤ers little or no explanation for a rising inventory-target ratio like F=Cg, perhaps

because inventories in the retail industry are not examined much in the literature. Yet measurement

of inventory-target ratios is crucial. Ramey and Vine (2004) rightly point out that the ratios should

have a numerator (inventories) and denominator (target) that are measured for the same sectors of

the economy: they show that the aggregate U.S. inventory-target ratio declines after the early 1980s

when measured in nominal terms, but not in real terms, because: 1) the price of goods relative to

services is declining; and 2) aggregate inventories are goods but aggregate sales are for goods and

services. Ramey and Vine recommend using a target measure pertaining to the goods sector only

(which our model does), and show that the downward trends of the nominal ratio disappears, casting

some doubt on the better inventory management hypothesis.

However, Kahn and McConnell (2005) point out an additional mismatch in the Ramey-Vine

adjusted ratio: it excludes farm inventories (part of the goods sector) from the numerator but not

the denominator. The Ramey-Vine adjusted inventory-target ratio trends upward before 1980 and

downward since, but has no trend over the full sample. Alternatively, Kahn and McConnell focus

on the durable and non-durable goods sectors, in which they claim inventory management changes

were concentrated, and show that the properly measured inventory-target ratio is �at prior to the

1980s and declining since � clearer evidence of a change in inventory technology.30 Our general

equilibrium analysis is applied to the entire economy, so our input inventory-target measure includes

farm inventories and exhibits trends similar to the narrower Kahn-McConnell measure.31

29AlthoughM=Yg is consistent with traditional practice in the inventory literature, such as Lovell (1961) and Feldstein

and Auerbach (1976), F=Cg di¤ers from the traditional inventory-to-sales ratio speci�ed by microeconomic models of

the �rm. In the model, the �sales� measure most analogous to that used in the inventory literature is �nal goods

sales, Sg = Cg + I. Empirically, however, the choice of the scale variable for inventories does not alter the qualitative

properties of inventory-target ratios.
30Our real and nominal inventory-target ratios are similar (for both input and output inventories) because the

inventory and target measures pertain to the same sectors of the economy and thus are not susceptible to changes in

relative prices.
31 Irvine (2005) shows that: (1) the aggregate inventory-target ratio declines since the early 1980s due to shifts in the

mix of sales toward durable goods industries, which have lower inventory-target ratios (presumably because of better
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Numerous authors argue that the downward trend break in the aggregate inventory-target ratio

may be associated with changes in inventory management. McConnell and Perez-Quiros (2000)

observe that the decline in GDP volatility is associated with the inventory-holding sector of the

economy (our goods sector) and deduce that inventory management must have changed but do not

link the change to the inventory-target ratio. Kahn, McConnell, and Perez-Quiros (2002), or KMP,

show that the decline in the inventory-target ratio occurred almost exclusively in the durable goods

portion of the goods sector and argue that it re�ects increased investment in information technology

(IT) capital, which allows �rms to respond faster to changing demand conditions with lower inventory

stocks. However, the KMP model derives an inventory-target ratio from the utility function only,

which does not change as a result of inventory management changes, whereas the actual ratio in the

data does decline.32

The KMP analysis does not distinguish between input and output inventories, but Figure 3

shows a decline in the inventory-target ratio for input inventories only. Looking at manufacturing

data alone, one �nds that the decline in the inventory-target ratio occurred for input inventories in

manufacturing, especially durable goods manufacturing (e.g., Humphreys, Maccini, and Schuh 2001).

In contrast, output inventories in manufacturing are roughly constant relative to their target. Not

surprisingly, adoption of innovative new inventory management and production techniques occurred

most extensively in the supply chains of durable goods manufacturers.

One potentially data-consistent explanation for a decline in the input inventory-target ratio of

durable goods manufacturers, advanced by Davis and Kahn (2008), is a reduction in delivery times

by materials suppliers for manufacturers. Faster delivery times by suppliers makes it possible for

manufacturers, who order and stock materials (or works-in-process) as input inventories, to hold

fewer input inventories relative to their sales. Modeling this feature requires a supply chain of at

least two goods-producing �rms (which our model does not have). Alternatively, holding fewer

inventories relative to sales would be possible if the volatility of demand declined, as predicted by

stockout avoidance models such as Kahn (1987). Because the decline in the input inventory-target

ratio occurred at about the same time that GDP volatility declined �the �Great Moderation��a

connection between these two events is a natural hypothesis to evaluate.

Unlike input inventories, output (retail) inventories have been rising relative to their target

(F=Cg). Much less attention has been devoted to explaining this phenomenon and its implications

for the aggregate economy. However, by separating inventories into input and output components,

we highlight the need to understand the economic factors behind the trend increase in output in-

ventories. The output inventory-target ratio leveled o¤ in the 1990s, much later than the break for

the input inventory-target ratio. This fact may re�ect an e¤ect of inventory management occur-

inventory management); (2) retail and wholesale inventories, relative to their respective industry sales, trend upward;

(3) trend breaks appear in the inventory-target ratios of most industries but the breaks are not all downward, as evident

in aggregate ratios.
32This model is designed primarily to explain a reduction in the volatility of output, especially relative to the volatility

of sales, rather than a decline in the inventory-target ratio.
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ring later than for input inventories, but the evidence for this hypothesis is less clear and warrants

much additional investigation. Finally, a rising output inventory-target ratio may be consistent with

a love-for-variety story, in which �rms are required to keep a larger, more diverse stock of �nished

goods to satisfy greater demand for variety coming from an increase in the number of types of goods

produced.

3.5. Cyclical Properties

For all of the reasons described earlier about the complexity of the sectoral trends, and following

the common procedure in the inventory literature, we detrended all data used in the econometric

work with a conventional bandpass �lter.33 By all measures, output in the goods sector is much more

variable than output in the service sector. For our de�nition of the goods sector (�rst column of Table

1), output �uctuations in the goods sector account for 76 percent of the variance of aggregate output

in real terms. By comparison, the growth rate of goods output in the narrower, more volatile NIPA

de�nition of goods (second column of Table 1, not including the construction industry) accounts

for 89 percent of the variance of real GDP growth, according to Irvine and Schuh (2005b). Our

goods sector accounts for less of aggregate output variance because it includes relatively less volatile

industries, such as wholesale and retail trade.

Moving to inventories, the middle panel of Figure 3 shows how inventory-target ratios exhibit

markedly di¤erent cyclical properties. On average, the output-inventory ratio is roughly acyclical

(the correlation with goods output is 0:10), as can be seen by the lack of consistent movement dur-

ing recessions (shaded regions). Although the output-inventory ratio shot up during the 1973�75

recession, it has not done so during other recessions. In contrast, the input-inventory ratio is very

countercyclical (the correlation with goods output is �0:89), as can be seen by its consistent increase
during recessions. Thus, the existence of countercyclical inventory-target ratios for manufacturing

output inventories, as emphasized by Bils and Kahn (2000), is not evident for all inventories. This re-

sult suggests that successful theories of aggregate inventory behavior must be comprehensive enough

to explain heterogenous behavior among di¤erent types of stocks.

Another key fact, seen in the bottom panel of Figure 3, is that input-inventory investment is

much more volatile than output-inventory investment (the ratio of variances is about 2), when

both investment series are normalized by total output. This relative volatility is comparable to

the analogous variance ratios observed within manufacturing (Blinder and Maccini 1991). However,

the relative volatility of the two types of inventory investment has declined dramatically, from a ratio

of 4:6 in the early sample (1960�1983) to a ratio of 2:5 since then. The volatility of input-inventory

33A trend is removed from the variables in logs, using the band-pass �lter of Baxter and King (1999) that isolates

frequencies between 3 and 32 quarters. Linear quadratic detrending and �rst-di¤erencing are also common in the liter-

ature, but these techniques tend to yield similar cyclical properties in the detrended data. Wen (2005c) shows that the

cyclical properties of detrended inventory investment are sensitive to the cyclical frequency. Business cycle frequen-

cies like ours yield procyclical inventory investment, whereas higher frequencies (2�3 quarters) yield countercyclical

inventory investment.
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investment fell while the volatility of output-inventory investment remained about constant. Both

types of inventory investment are procyclical over the full sample, but input-inventory investment

is more procyclical than output-inventory investment (the correlation with goods output is 0:62 for

input inventories and 0:42 for output inventories). The procyclicality of output-inventory investment

decreased from 0:44 in the early sample (1960�1983) to 0:25 since then, but the cyclical correlation

of input-inventory investment has remained relatively stable.

In sum, the distinctly di¤erent cyclical properties of input- and output-inventory investment

provide additional motivation for disaggregating inventories. Thus, theoretical models that allow

di¤erent inventory-target adjustments and volatility across stocks are likely to have an advantage in

explaining and understanding aggregate inventory behavior.

4. Model Estimation

4.1. Overview

We use observations on the following variables: (1) output from the goods sector; (2) output from

the service sector; (3) the stock of input inventories; (4) the stock of output inventories; (5) total

�xed investment; (6) the relative price of goods to services. We estimate the model for the full

sample from 1960:1�2007:4. We also estimate the model for the two subperiods: 1960:1�1983:4 and

1984:1�2007:4. The breakpoint corresponds to point estimates of when the Great Moderation began,

as indicated in McConnell and Perez-Quiros (2000).

We use Bayesian techniques to estimate the structural parameters.34 For given values of the

parameters, the solution to our linearized model takes the form of a state-space econometric model,

and the Kalman �lter enables to evaluate the likelihood of the observable variables as follows:

L
�
fxtgTt=1 j�

�
,

where � is the vector collecting all the model parameters and xt is the vector of observable variables.

We combine the information observed in the data with prior information on the model parameters

to construct the posterior density function:

p
�
�j fxtgTt=1

�
_ L

�
fxtgTt=1 j�

�
�(�) . (4.1)

Speci�cally, we �rst calculate the posterior mode of the parameters using a numerical optimization

procedure. Then we generate 250,000 draws from the posterior mode using the Metropolis-Hastings

algorithm to obtain the posterior distribution. The mean of the posterior distribution is used to

compute impulse response functions, variance decompositions, and moments of the estimated model.

4.2. Prior Distributions

We keep some parameters �xed during our estimation exercise. More speci�cally, we set the quar-

terly discount factor at 0:99; implying an annual interest rate of 4 percent. We also calibrate the
34For the solution and the estimation of the model, we use the Dynare toolkit developed by Michel Juillard.
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depreciation rates for �xed capital, which we set at �Kg = �Ks = 0:02.35 Once these values are set,

29 remaining parameters need to be estimated. We partition these into three groups:

1. The autocorrelation parameters (�g; ��; �F ; �
 ; �M ; �s), standard deviations of the innovation

disturbances (�g, �� ; �F , �
 ; �M , �s), and the correlation between the innovations in the

goods-sector technology and the services-sector technology (�g;s).

2. The adjustment cost parameters ( Kg,  Ks;  F , and  M ), and the parameters characterizing

the curvature of the utilization functions for �xed capital (�Kg, �Ks).

3. The inventory depreciation rates (�M and �F ), the elasticities of substitution (�; �, �), the labor

shares (�g; �s), the weight of services in utility (
), the weight of input inventories in the CES

capital aggregator (�), and the weight (�) on consumption in the goods-bundle aggregator.

This third group of parameters a¤ects not only the model�s dynamics, but also the steady-

state values of �xed capital and input- and output-inventory stocks relative to output, as well

as the relative size of the service versus the goods sector. For our sample (and for the two

subsamples), the average values of these ratios are reported in Table 3. One can show that,

for each combination of �M , �F ; �, �, �, it is possible to determine a unique set of values for

�g; �s; 
; �; and � that are consistent with these �ve ratios.36 Accordingly, in the estimation

of the model, for each value of �M , �F ; �, � and �, we set �g; �s; 
; � and � to the values that

match the ratios.37 Intuitively, we let the likelihood function use information on the behavior

around the steady state of our observables to determine values for the depreciation rates, �F
and �M ; and the elasticity of substitution in the CES aggregates in the production and utility

functions, �, �, and � (in addition to the autocorrelation, adjustment costs, and utilization

function parameters). We then use the ratios reported in Table 3 to recover the remaining

parameters. This procedure also enables us to account for the changes in the ratios over the

sample period: when we estimate the model separately for the two subsamples, we use the

average values of the relevant ratios in each period.38

35 In the data, the service sector has a higher proportion of structures in its total capital stock than the goods sector

does. Because structures generally have lower depreciation rates than equipment, we also estimated a model with a

smaller depreciation rate of capital in the service sector, obtaining similar results.
36See Appendix A for additional details.
37Christiano (1988) follows the same strategy: in his model, which includes inventories in the production function,

he chooses � (in our notation) to maximize the likelihood function and � (our notation) to match the steady-state

rental rate of inventories in the data.
38Essentially, what we are doing is to construct degenerate, non-independent priors for a set of parameters

(�g; �s; 
; �; �) with the goal of matching exactly �ve �rst moments of the data that are excluded from the likeli-

hood function (that is, they are not used as part of our estimation exercise). A di¤erent way of putting it is that

these parameters can be more easily identi�ed from steady state relationships among the variables rather than from

the dynamics of the data. Del Negro and Schorfheide (2008) provide and describe a more general approach for forming

priors for steady-state related parameters that allows for the steady-state to be measured with error: we implicitly rule

measurement error out here.
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Our prior distributions are summarized in the �rst three columns of Table 4. For the parameters

measuring adjustment costs  ; we specify a beta prior over  
1+ ; with mean equal to 0.5: this value

corresponds to a prior mean of unity for the elasticity of investment to its shadow price. For the

curvature of the utilization function, we choose a beta prior over �
1+� with mean equal to 0.5. For the

elasticity of substitution between services and the goods bundle, between consumption and output

inventories, and between input inventories and capital, we select priors centered around two thirds.

In other words, our prior goes slightly in favor of complementarity.

The existing literature and the NIPA o¤er little guidance in choosing the inventory depreciation

rates, �F and �M . An assumption in line with the procedures used in the NIPA would be that

inventories do not depreciate. Yet inventories are subject to various forms of �shrinkage,� such as

obsolescence, perishability, wear and tear, and breakage, in addition to incurring holding costs, so

that the depreciation parameter may well be larger than the rate set for �xed capital. For instance,

on a quarterly basis, Ramey (1989) reports inventory holding and storage costs of 4 percent, while

Khan and Thomas (2007) set these costs at 3 percent. We balance NIPA and other studies and

choose a prior mean for the depreciation rates equal to 0:02.

The autoregressive coe¢ cients of the exogenous shocks have beta prior distributions, as in Smets

and Wouters (2003), centered at 0:75. The standard deviations of the shocks are assigned a di¤use

inverse gamma distribution prior. The correlation between ugt and ust is assumed to be normal

and is centered around 0:50. The choices of the mean of the prior distribution for the standard

deviation of the technology and preference shocks are in the ballpark of the �ndings in the literature.39

Preliminary estimation attempts also suggested a higher standard deviation for the input inventory

shock relative to the output inventory shock.

5. Estimation results

5.1. Full sample

Parameter Estimates. We begin by discussing the estimates for the entire sample. Table 4

reports the mean and the 5th and 95th percentiles of the posterior distribution of the parameters

obtained through the Metropolis-Hastings algorithm.40

All shocks are estimated to be quite persistent, with the autoregressive parameters ranging from

0:86 to 0:94. The standard deviation of the shocks ranges from 0:33% (for the output-inventory

shock) to 10:34% (for the input-inventory shock): the quantitative relevance of each shock will be

discussed below in the variance-decomposition exercise.

39See, for instance, Ireland (2004) and Smets and Wouters (2003).
40As is well known (see, for instance, Canova 2007), an important issue concerns the convergence of the simulated

draws from the posterior distribution of the parameters. We �ne tune our estimation algorithm in order to obtain

acceptance rates between 30 and 40 percent, and we check for convergence using the cumulative sum of the draws

statistics. Although convergence typically obtains within 50,000 iterations, we set the number of draws to 250,000 and

calculate the statistics based on the last 75 percent of the draws.
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The elasticity of substitution between M and K (the inverse of 1+ �) equals 0:28. The elasticity

of substitution between F and Cg (the inverse of 1+�) equals 0:77, and is not signi�cantly di¤erent

from unity. Similarly, the elasticity of substitution between services and the CES aggregator for

consumption of goods and output inventories (the inverse of 1 + �) is close to one.

Estimates of the inventory adjustment-cost parameters,  F and  M , are close to zero, while the

bigger values of  Kg and  Ks indicate larger adjustment costs for �xed capital. At the posterior

mean, the estimated values imply an elasticity of investment to the user cost equal to 6 in the

goods sector, and equal to 3:1 in the service sector.41 These di¤erent elasticities con�rm that input

inventories and �xed capital are indeed distinguished by having di¤erent degrees of adjustment costs.

Another important di¤erence between inventories and �xed capital emerges from the estimated

depreciation rates. The depreciation rate for M is 2:2 percent, about the same as capital, but the

depreciation rate for F is 8:1 percent, much larger: as we will show below, the nonzero depreciation

rates are a key feature of the model in generating large and positive responses of inventories to

productivity shocks. Finally, estimates of the convexity of the utilization function suggest that the

marginal cost of capital utilization (in terms of increased depreciation) is more sensitive to changes

in the utilization rate in the service sector than in the good sector.

Impulse Responses and Variance Decompositions. Figure 4 presents the model impulse

responses to the estimated shocks. In Table 6, we report asymptotic variance decompositions. Both

in Figure 5 and in Table 6, we choose an orthogonalization scheme that orders the goods technology

before the services technology shock. As a result, any variation in the responses due to the correlation

between the goods and the services shock is attributed to the goods technology disturbance.

The �rst row plots the responses to a positive goods technology shock.42 This disturbance is

fundamental in generating comovement of quantities in our model, and accounts for a large fraction

of the �uctuations in economic activity. In response to the shock, consumption, business investment

and both types of inventory investment all rise. The goods shock spills over to the service sector (over

and above the e¤ect caused by the correlation of the shocks) because it facilitates the production

of �xed capital that is then used in the service sector. The goods technology shock also accounts

for a non-negligible fraction of the �uctuations in both types of inventory investment �around 11-

12 percent of their asymptotic variance. The responses of output and input inventory investment

are, as a proportion of the respective stocks, larger than the one for �xed investment, relative to

the �xed capital stock. For instance, the impact response of input inventories relative to business

investment is two-thirds as big, when both variables are scaled by goods output. However, since the

stock of business capital is about ten times larger than the stock of input inventories, the response of

41One can interpret  as the inverse elasticity of each type of investment to its shadow price. Our numbers are

slightly higher than microeconometric �ndings based on estimates of investment equations (see Chirinko, 1993).
42To facilitate comparison across all investment categories, we scale the response of inventory investment and business

investment by steady-state goods output (rather than by their own steady state values). This way, the vertical axis

measures the percent growth contribution of each investment category to the response of goods output. Note that in

the �gures and in the tables the measure of Yg is net of inventory depreciation.
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input inventories is between six and seven times larger than that of business investment, when both

variables are scaled by their own steady-state stock. This is not surprising, since �xed capital is more

costly to adjust. In this sense, inventories are an important part of the propagation mechanism, even

if inventory investment counts for a small fraction of average output.

The second row shows the responses to a discount factor shock: this shock moves consumption

and investment in opposite directions, and creates negative comovement between the output of each

sector. It also contributes to �uctuations of input inventories �about 20 percent of the total variance.

The third row shows responses to a shock that shifts preferences away from output inventories

towards goods consumption. The mechanics of this disturbance have the classic implications of a

demand shock. Consumption of goods increases; inventories of �nished goods fall; following the

increase in demand, with a modest lag, the output of the goods sector increases while output of the

service sector is only marginally a¤ected (because the estimated elasticity of substitution implies

an approximate separability in utility between goods and services). This preference-based shock

accounts for a large share (about 80 percent) of the variance in output-inventory investment.

The fourth row shows the response to a shock that shifts preferences away from services and

towards goods. While this shock, which basically re�ects shifts in the composition of demand,

accounts only for a small fraction of GDP �uctuations, it accounts for a quarter of the variance of

output in the service sector. It also accounts for about half of the total variance of sectoral hours,

because the shock causes a reallocation of labor from one sector to the other.

The �fth row plots the response to a positive shock to the e¢ ciency of input inventories. This

shock captures a large fraction (about two�thirds) of the variance in input-inventory investment.

More e¢ cient management of input inventories reduces their usage, increases the demand for �xed

capital, and raises consumption (immediately) and output (with a slight delay). The shock also

accounts for around 10 percent of the variance of �xed investment.

The last row plots responses to a technology shock in the service sector. While it is obviously

important in explaining output of services, the e¤ects of the shock in this sector transmit only

marginally to the rest of the economy, since the services sector does not produce capital.43

The literature has often looked at the cyclical properties of the inventory-target ratios, so Figure

5 reports the impulse responses of GDP and the inventory-target ratios to the four disturbances �

goods technology shock, discount factor shock, output-inventory shock, and input-inventory shock �

that cause most of the variation in GDP and inventories. Following the goods technology shock, the

input-inventory target ratio is strongly countercyclical, as in the data. Input inventories rise, but,

since business capital is costly to adjust, input inventories � which are complementary to business

capital � do not rise enough, so that their ratio to GDP falls. The output inventory-target ratio

is almost acyclical (as in the data), since the household prefers to maintain a relatively constant

43The logic of this result can be interpreted using an analogy to the consumption-technology neutrality result de-

scribed in Kimball (1994). With separable preferences over goods and services (as implied by our estimated model),

technology shocks that only a¤ect the consumption-producing sector (in our model, the service sector) also have no

impact on employment or capital accumulation.
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balance of output inventories to consumption. The second row plots the dynamics following the

discount factor shock: since input inventories falls less than output, the input inventory to GDP

ratio rises, again generating countercyclical behavior of the input inventory to target ratio. The

third and fourth row plot the responses to the inventory-speci�c shocks. While these shocks are

central to reproducing the volatility of inventory investment observed in the data, they mostly a¤ect

the inventory-target ratios through their e¤ects on the numerators, without having large e¤ects on

output or consumption. In other words, inventory-speci�c shocks help �t the volatility of inventory

investment, but they do not in�uence the cyclical properties of the inventory-target ratios, which are

mostly driven by the aggregate productivity shocks.

We conclude this subsection with a note of caution. It is conceivable that our inventory shocks,

which explain a large fraction of the volatility of both inventory types, mask an important endogenous

propagation mechanism. We are however skeptical about this possibility. Our results suggest that

inventory �innovations�are unlikely to be the driving forces of business cycles: this happens mostly

because output inventory shocks generate substitution away from output inventories into consump-

tion, so that their net e¤ect on total output is small; and because input inventory shocks generate

substitution away from input inventories into business investment, so that their net e¤ect on total

output is small. As a consequence, while the inventory shocks might have important consequences

in terms of sectoral reallocation, they are not per se a driving force of business cycle �uctuations.

A Comparison between the Model and the Data. Figure 6 o¤ers a visual check of the model�s

ability to reproduce key features of the data. We compare the empirical impulse responses and the

model responses, which were obtained from the model�s reduced form by ordering and orthogonalizing

the model shocks, as was done in the VAR.44 In the �rst two columns of Table 9, instead, we focus on

some unconditional correlations in the data, and compare these with those of our estimated model.

The central message is that our model accounts well for the volatility and comovement of the key

model variables. In particular, the model simultaneously accounts for the volatility and procyclicality

of inventory investment.45 It successfully mimics the greater volatility of input-inventory investment

and its higher degree of procyclicality as compared to output-inventory investment. This result is

true whether we look at the correlation between inventory investment and goods output, or the

connection between changes in inventory investment and the change in GDP. Moreover, the model

can reproduce the countercyclicality of the input-inventory target ratio, although not its magnitude,

and the relative acyclicality of the output-inventory target ratio. Finally, the model successfully

reproduces the relative volatilities of all types of investment.

44The impulse responses are based on a 6-variable VAR with a constant and two lags and are based on the ordering

shown in Figure 6.
45 In Christiano (1988), it was necessary to rely on a more complex information structure in order to account for

these two features of the data. He assumes that, at the time hours and capital decisions are made, �rms observe the

shocks with noise. Inventory and consumption decisions are, instead, made with full knowledge of the shocks. When

there is no signal-extraction problem, his model can generate enough inventory-investment variability, but at the cost

of a negative correlation between the change in inventory investment and output growth.
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To better gain insights into how our model achieves these results, it is useful to think of a

reference model with zero depreciation rate for inventories.46 With this assumption, the model�s

ability to explain the behavior of inventories worsens dramatically. Figure 7 illustrates this result.

With zero inventory depreciation rates, the response of �xed investment is essentially the same as

in the unrestricted model, but the responses of both types of inventory investment are essentially

zero. The positive response of inventories - relative to this counterfactual - in our estimated model

enhances the ampli�cation mechanism of a given productivity shock: the impact response of GDP

rises from 0.6 to 0.7 percent.

This counterfactual exercise shows that positive depreciation is an essential feature to �t the

volatilities of inventory investment. Di¤erential adjustment costs (greater for �xed capital) are also

important: in their absence, the volatility of business investment would be implausibly large (we do

not report this experiment to avoid cluttering the �gure). Absent depreciation, output inventories

would be smooth due to standard consumption smoothing reasons. The intuition as to why input

inventories become less volatile than �xed capital, if they do not depreciate, can be most easily

provided when there are no adjustment costs. In this case, input inventories would respond to a

productivity shock less than capital because these shocks have a larger e¤ect on the marginal return

to �xed capital. This occurs because a productivity shock has the same e¤ect, percentage-wise, on

the marginal return to �xed capital and inventories. When the depreciation rate on inventories is

zero, and �xed capital must be compensated for the higher depreciation rate with a higher return,

the absolute e¤ect of a shock to the marginal return to capital is much greater in absolute value. As a

result, capital would be more responsive to productivity shocks than input inventories. The bottom

two panels of Figure 7 suggest that this e¤ect is not undone by allowing for greater adjustment costs

for capital at our estimated parameter values.

5.2. Subsamples.

Parameter Estimates. We re-estimate the model (with the same priors) over the subperiods

1960:1�1983:4 and 1984:1�2007:4. We allow �; �; �g; �s; and 
 to di¤er across subsamples to match

the di¤erent sample means for the share of services in the economy and for the investment and the

inventory ratios relative to goods output (reported in Table 3). This exercise allows us to investigate

what lies at the root of the decline in output volatility since 1984, and what role, if any, inventories

may have played in this regard. We should make clear, however, that our approach can only address

a subset of the explanations of the Great Moderation that have been put forward in the literature.

For instance, we cannot properly address the role of changes in policies in reducing output volatility.

Table 7 reports the results of the subsample estimation. With few exceptions, the full-sample

parameter estimates lie between those for the two subsamples. Regarding the structure of the

economy, some results are worth emphasizing. First, the depreciation rate for output inventories,

46This model is closer to Christiano�s (1988) RBC model with inventories as a factor of production. His model

assumes zero inventory depreciation.
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F , is smaller in the second part of the sample, as it goes from 5:6 to 4:6 percent. Second, output

inventories and consumption become less substitutable (� increases). Third, the utilization function

for capital in the service sector becomes more convex (�Ks rises). Fourth, capital in the goods

(service) sector becomes less (more) costly to adjust in the second period.

It is di¢ cult to provide exhaustive explanations for the changes in these �deep�parameters of the

model. Potential reasons for the lower estimate of the depreciation rate �F might be a change in the

inventory mix or better inventory management in general. It is not clear how to interpret the change

in adjustment costs for �xed capital, although the higher costs in the service sector might re�ect:

(1) the increased weight of innovative investment in the second subperiod and the greater associated

costs in terms of learning and disruption; or (2) higher sector (or �rm) speci�city of capital goods.

We also �nd important changes in the parameters measuring the stochastic processes for technol-

ogy and preferences. The most important result is that the volatility of general technology shocks in

the goods and service sectors falls. They also become less correlated with each other. There is also

a decrease in the volatility of the input-inventory shock, consistent with the idea that new methods

of inventory management adopted since the early 1980s have made it easier to control the level of

input inventories in e¢ ciency units. However the decrease is not large.

Standard Deviations, Correlations and Variance Decompositions. Table 9 shows that,

across the two subperiods, the model can reproduce the volatility decline in most macroeconomic ag-

gregates. For instance, in our data, the standard deviation of detrended GDP falls by 0:77 percentage

points between the 1960�1983 and 1984�2007 subperiods (from 1:89 to 1:12 percent). Our subsample

estimates match the volatility decline, showing a reduction in the standard deviation of GDP of 0:76

percentage points. Our model also captures the decrease in the volatility of input inventories but not

the one of output inventories. The model can also account for the reduced procyclicality of output

inventory investment after 1983.

Table 8 shows how, in the second subperiod, output (input) inventory movements depend more

(less) on their own innovations. As for the other variables, a larger fraction of the volatility in

economic activity is due to demand-preference shocks: in the second part of the sample, the share

of GDP variance that can be accounted for by discount rate shocks rises from about 15 percent to

about 40 percent.

5.3. The role of Inventories in the Great Moderation

Prompted by the preceding results, a natural question is to what extent the reduced volatility of

economic activity is due to a reduction in the volatility of the shocks � the �good luck�hypothesis

� or to a change in the economy�s structure. To answer this question, we partition the factors that

can a¤ect the implied volatility of the model variables into the following three sets:

1. Parameters that are estimated without using information on the steady-state ratios. This

parameter set includes the autocorrelation of the shocks, the inventory depreciation rates, the

25



elasticities of substitution, the adjustment costs, and the capital utilization parameters.

2. Parameters that are determined using steady-state information. When we estimate the model

across subsamples, we choose values of �; 
; �; �g, and �s that match the values of the ratios of

input inventories to output and capital investment to output, plus the share of services in GDP,

for each subperiod, conditional on the depreciation rates and the elasticities of substitution.

3. Parameters that measure the unconditional volatility of the shocks.

Table 10 breaks down how the three sets of parameters above contribute to the reduction in

volatility captured by the model. Using the estimates obtained from the 1960�1983 sample as a

reference point, we change one estimated parameter at a time, setting it to the value estimated for

the 1984�2007 sample. This way, we can approximately measure each parameter�s contribution to the

change in volatility. The main result is that most of the reduction in GDP volatility is attributable

to the reduction in the volatility of the underlying shocks � especially of the technology shock

in the goods sector. This is consistent with the conclusions reached by Stock and Watson (2003)

and Justiniano and Primiceri (2008). By themselves, smaller shocks can explain a reduction in

GDP volatility of 0:52 percentage points (as measured by the standard deviation), compared to an

estimated total decline of 0:76 percentage points. Most of the remainder is attributable to larger

capacity-utilization costs, as well as the increased importance (share) of services in the economy.

The latter, for instance, accounts for a quarter in the reduction in GDP volatility.

What about the role inventories may have played in the Great Moderation? There is a reduction in

the volatility of input-inventory shocks, but it is small and it accounts only for about 0:01 percentage

points of the total reduction in volatility of GDP and goods output. We also consider the e¤ect of

changes in �; 
; �; �g, and �s implied by the changes in the steady�state ratios. Consider, for

instance, the consequences of setting M=Yg equal to its post�1984 average value, while keeping all

the other ratios and parameters � except �; 
; �; �g, and �s �at the pre�1984 level: the decline

in M=Yg is likely to be an indicator of better inventory control methods such as �just�in�time�or

��exible manufacturing systems.�Such decline accounts for approximately 0:04 percentage points of

the decrease in the volatility of GDP and 0:09 percentage points of the decrease in the volatility of

output of the goods sector.

To summarize, our estimated model suggests that reductions in the volatility of the model�s tech-

nological shocks account for most of the reduction in GDP volatility � a result generally consistent

with the �good luck�hypothesis. Structural changes in the model�s parameters have contributed to

the reduction in GDP volatility by a smaller amount, working primarily through parameter changes

that reduced the volatility of �xed investment. There is only a small role for inventory investment

in the Great Moderation, associated with the decrease in the input inventories to output ratio.47

47This conclusion is consistent with Khan and Thomas (2007), who consider how aggregate volatility changes in a

general equilibrium model following a decrease in �xed ordering costs.
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6. Input and Output Inventories: More on Motivation and Extensions

In this section we return to the arguments we have used to motivate the holding of inventories. We

�rst explore in more detail the equivalence of the choice of introducing inventories in the utility

function with the choice of including them in the budget constraint on the basis of the assumption

that they a¤ect shopping costs. We then provide a di¤erent model for input inventories that focuses

on the notion that inventories are �used up�during the production process.

6.1. The Role of Inventories in Reducing Shopping Costs

Our formulation that treats output inventories as a good entering the utility function is convenient,

simple and has interesting empirical properties. For example, it can rationalize why the ratio be-

tween output inventories and consumption is essentially acyclical, since the consumer (absent large

�uctuations in the user cost of holding inventories) prefers to hold a relatively constant ratio of

F over Cg over time. However, one might feel uncomfortable about putting output inventories in

the utility function, when what output inventories really do is to make the consumer life easier by

reducing shopping costs. This argument means that output inventories should essentially a¤ect the

consumer through the budget constraint, rather than the utility function. We can show that � at

least for an empirically relevant, simpler version of the utility function � our model is equivalent to

a model where output inventories do not enter the utility function at all, but a¤ect the consumer

via the budget constraint by a¤ecting the cost of purchasing goods. The argument follows Feenstra

(1986) who discusses the functional equivalence of including money in the utility function or liquidity

costs in the budget constraint. These liquidity costs are decreasing in inventories and increasing in

goods consumption and the functional form of the shopping cost function can be explicitly derived.

Assume a unit elasticity of substitution between services and good consumption, as suggested by our

estimates. In this case our utility function becomes:

E0

1X
t=0

�t"�t (
"
t logXt + (1� 
"
t) logCst � � (Lgt + Lst))

with Xt still equal to
�
�"FtC

��
gt + (1� �"Ft)F

��
t�1

��1=�
. It can be shown that this model yields the

same equilibrium conditions as a model where inventories do not appear in the utility function, and

the latter is written as:48
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�t"�t (
"
t logGt + (1� 
"
t) logCst � � (Lgt + Lst)) ;

where Gt denotes goods consumption net of shopping costs, so that Cgt = Gt+� (Gt; Ft) : The term

� (Gt; Ft) denotes the shopping cost function that appears an additional argument in the budget

constraint, equation (2.4), and can be shown to take the following form:

� (Gt; Ft) =

 �
1

�
� 1� �

�

�
Gt
Ft

���� 1
�

� 1
!
Gt. (6.1)

48Appendix C discusses this equivalence in more detail.
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At our model estimates for �; � (and given the steady-state ratios implied by the data), the function

� (Gt; Ft) is decreasing and convex in the stock of output inventories.49. Moreover, one can estimate

the transaction costs to be equal to approximately 2 percent of total goods output, which seems a

reasonable number.

6.2. A �Usage Only�Model of Input Inventories

As we mentioned above, our model allows for a convenience yield of holding a larger stock of input

inventories in producing value added. This convenience yield accrues in production over and above

the usage of inventories, which is maximized out in deriving the value added production function.

In other words, by focusing on value added (gross output minus materials used), one pushes the

material usage decision in the background, but does not abstract from it.

In this section we outline and analyze an alternative model with no additional convenience yield

and that focuses on the usage of material in producing gross output.50 This model is based on the

following assumptions: (1) Only inventories that are �used up�augment society�s ability to produce

more gross output; (2) The usage of inventories depends upon the beginning of period stock. These

considerations lead to a production function for gross output of the form:

Ygt = (AgtLgt)
1��g �� (zgtKgt�1)

�� + (1� �) ("MtzMtMt�1)
�����g=� ; (6.2)

where zMt denotes the utilization rate of inventories, so that the term zMtMt�1 denotes inventories

used in production. We also assume that higher utilization of inventories leads to a greater wastage,

and hence, to higher depreciation in a convex fashion. As a result, the total �depreciation rate�for

inventories is now the sum of three parts:

dMt = �M + zMt + aMt(zMt); (6.3)

where �M is a �xed component of the depreciation rate unrelated to usage and re�ecting wastage

and/or linear holding costs; the term zMt captures the usage of materials (proportional to the stock),

and the term aMt describes the additional component of wastage that depends upon utilization in a

convex fashion: this component re�ects the idea that, at the margin, a higher or faster usage might

provoke collateral damage to the remaining parts of the stock that are not directly used in production.

Namely, we assume that aMt = RM

�
�M
2 � 1 + (1� �M ) zMt

zM
+ �M

2
z2Mt

z2M

�
, where RM = 1

� = 1 � �M .

The function aMt is convex in zMt and is normalized so that it equals zero when zMt equals the

optimal, steady-state choice zM .51 In absence of direct estimates of the fraction of the stock of input
49See the Figure in Appendix C.
50Our Appendix D contains more complete details on this model.
51The assumption of convexity has two appealing properties: �rst, it allows us to solve the model using standard

perturbation methods; second, and most importantly, it captures the idea that, at the margin, a higher utilization rate

leads to a higher depreciation. Note that there are some analogies with the way we write down the utilization function

for �xed capital. For �xed capital, we assume that the optimal (steady state) utilization rate of capital is unity, and

normalize the utilization function so that no resources are wasted at the optimal utilization rate. Instead, here we

normalize the function aMt so that the optimal steady state utilization rate is less than unity.
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inventories that is used in production, we set the steady-state, optimal utilization rate at 20 percent

when taking the model to the data. The resource constraint is now:

Ygt = Cgt +Kgt � (1� �Kg (zgt))Kg
t�1 +Kst � (1� �Ks (zst))Ks

t�1 (6.4)

+Ft � (1� �F )Ft�1 +Mt � (1� (�M + aMt))Mt�1 + zMtMt�1 +ACt.

where ACt denotes total adjustment costs. Value added in the goods sector is then obtained by

subtracting materials used, zMtMt�1 from gross output, Ygt.

We then estimate the model using the same priors of our baseline model (we estimate an additional

parameter, �M ; which measures the convexity of the utilization function). Table 11 reports the

estimates. Figure 8 compares the impulse responses to a technology shock in the goods sector

between the baseline model and the usage only model. The overall conclusion is that the two models

yield similar impulse response functions and, more in general, have very similar implications for the

business cycle properties of the variables of interest. One interesting di¤erence is that the �usage

only�model generates a high steady-state return on the stock of inventories �this happens because

it implies a higher depreciation rate on the stock of inventories that is used in production �, thus

enhancing somewhat the response of inventories to productivity shocks. While valuable and yielding

some interesting results, this model is based on a set of assumptions that some would regard more

stringent that those of our preferred model. Speci�cally, materials purchased in the period cannot

be used immediately in production. Moreover, the assumption that greater use leads to greater

depreciation in a convex fashion may be questioned.

7. Conclusions

The most important lesson of this paper is that an estimated DSGE model can incorporate inventories

and �t the data reasonably well with plausible and interesting estimates of structural parameters that

help characterize the role of input and output inventories. Each type of inventory investment plays

a logically di¤erent role in the model and exhibits di¤erent degrees of volatility and procyclicality.

The model can replicate the observed volatility and cyclicality of both input and output inventory

investment, and particularly the fact that input-inventory investment is more volatile and procyclical

than output-inventory investment. Moreover, the model can reproduce the countercyclicality of the

input-inventory target ratio, and the relative acyclicality of the output-inventory target ratio. This

�nding represents a step forward relative to previous attempts to model inventories in DSGE models,

especially given our model�s ability to �t the data. Thus, our model provides a new, more expansive,

and data-consistent framework for analyzing the cyclical properties of inventories.

When estimated across two subperiods, 1960�1983 and 1984�2007, the model captures the volatil-

ity reduction observed in aggregate variables, as well as the decline in procyclicality of output-

inventory investment. However, the model suggests that the bulk of the Great Moderation is ex-

plained primarily by a reduction in the volatility of the technology shock in the goods sector (and

of the discount rate shock). The reduction in the volatility of inventory shocks accounts for only a
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small portion of the decrease in output volatility. Nevertheless, the model�s framework identi�es sev-

eral dimensions along which the economy�s structure changed in an economically important manner,

and contributed to the reduction in GDP volatility. Some of these structural changes are related to

inventory behavior and in�uence the propagation role inventories play in the macroeconomy, but, at

best, they have only played a minor role in accounting for the reduced volatility of output.

These conclusions are based on an estimated two-sector general equilibrium model that includes

novel features such as the distinction between goods-producing and the services-producing sectors

according to their inventory-holding behavior, and the distinction between input and output invento-

ries. Non-zero inventory depreciation, which in the model provides an incentive to adjust inventories

more in response to shocks, is another novel feature that is empirically important.

Despite the additional complexity, our model precludes an examination of certain aspects of

inventory behavior that may be important to understanding business cycle �uctuations. First, we

eschewed a richer examination of the stage-of-fabrication structure within the goods sector. For

example, classifying inventories into only two types abstracts from the supply and distribution chains

that pervade the actual input-output structure of the goods sector and probably play a vital role

in the propagation of shocks. A second issue is that the model is silent on how markup variations

and nominal features matter for inventory behavior and business cycles. Some inventory research

examines how markup variation or interest rate policies in�uence inventory behavior.52 However,

this work with nominal rigidities generally has not incorporated the stage-of-fabrication inventory

distinction in a general equilibrium setting that we have advanced here. Third, we have sidestepped

the micro-founded motivation for �rms�holding of �nished goods (output inventories): by focusing

on the value of output inventories to households through utility and concentrating on the social

planner�s solution, we have not taken up a more detailed examination of the determinants of a �rm�s

decision to hold output inventories in a market environment. We plan to address these issues in

future work, and we hope that others will too.

52See footnote 3 for detailed references on this issue and on supply and distribution chains.
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Sectors (%) NAICS Industries GDP Share
Model NIPA (%)

Agriculture 1.0
Mining 1.2

Goods (21.2) Manufacturing 14.5
Goods (35.9) Construction 4.4

[Excluding government (40.1)] Utilities 1.9
Wholesale Trade 6.0
Retail Trade 6.7
Transportation 3.1
Information 4.7

Services (78.8) FIREL 19.7
Services (51.8) Services, business 11.6

[Excluding government (59.1)] Education & Health 6.9
Leisure 3.6
Other services 2.3

Government (12.3) Government 12.3

Table 1: Sector De�nitions and Output Shares
Notes: FIREL denotes Finance, Insurance, Real Estate, and Leasing.

Model Inventories NIPA Inventories (NAICS) 2000 Share
Input & Output Stage-of-Fabrication Industry (in percent)

Agriculture 8.6
Mining, utilities, construction (MUC) 2.9

Raw Materials (18.9%) Mining n.a.
Utilities n.a.

Input (73.4%) Construction n.a.
Other 7.4
Manufacturing 31.1
Materials and supplies 11.0

Work-in-process (54.5%) Work-in-process 8.9
Finished goods 11.1
Wholesale trade 23.4

Output (26.6%) Finished goods (26.6%) Retail trade 26.6

Table 2: Inventory Stock De�nitions and Shares
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Full sample 1960�1983 1984�2007
F=Yg 0.34 0.30 0.36
M=Yg 1.16 1.37 1.07
Kg=Yg 4.59 5.26 4.29
Ks=Yg 9.32 8.22 9.82
Y 0s=Yg 0.81 0.54 0.88

Table 3: Target Steady-State Ratios of the Model
Notes: Output is expressed in quarterly units. The last row is the ratio of nominal output of
services over nominal output of the goods sector. The capital output ratios are calculated from the
investment-to-output ratios, assuming depreciation rates of �Kg = :02 and �Ks = :02.

Prior Full Sample
Mean Distribution St.dev. Mean 5% 95%

�F 0.020 beta 0.01 0.081 0.055 0.110
�M 0.020 beta 0.01 0.022 0.013 0.032
1 + � 1.500 norm 0.5 1.30 0.88 1.74
1 + � 1.500 norm 0.5 3.60 3.09 4.13
1 + � 1.500 norm 0.5 1.03 1.01 1.07

 F = (1 +  F ) 0.500 beta 0.2 0.03 0.02 0.04
 Kg=

�
1 +  Kg

�
0.500 beta 0.2 0.20 0.14 0.35

 Ks= (1 +  Ks) 0.500 beta 0.2 0.47 0.28 0.65
 M= (1 +  M ) 0.500 beta 0.2 0.02 0.01 0.04

�g 0.750 beta 0.1 0.86 0.83 0.90
�� 0.750 beta 0.1 0.93 0.90 0.96
�F 0.750 beta 0.1 0.92 0.86 0.96
�
 0.750 beta 0.1 0.86 0.80 0.91
�M 0.750 beta 0.1 0.94 0.91 0.96
�s 0.750 beta 0.1 0.94 0.91 0.96

�Kg=
�
1 + �Kg

�
0.500 beta 0.2 0.95 0.89 0.99

�Ks= (1 + �Ks) 0.500 beta 0.2 0.80 0.62 0.94

�g 0.025 invg Inf 1.49% 1.29% 1.72%
�� 0.025 invg Inf 3.80% 2.57% 5.59%
�F 0.01 invg Inf 0.33% 0.25% 0.42%
�
 0.01 invg Inf 0.65% 0.54% 0.80%
�M 0.05 invg Inf 10.34% 8.00% 13.18%
�s 0.025 invg Inf 1.52% 1.21% 1.92%
�g;s 0.50 norm 0.25 0.72 0.65 0.78

Table 4: Prior Distributions and Parameter Estimates, Full Sample
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Full sample 1960�1983 1984�2007
� 0.9668 0.9768 0.9788

 0.4710 0.5686 0.4407
� 0.9926 0.9843 0.9856
�g 0.1665 0.1934 0.1570
�s 0.3268 0.4408 0.3237

Table 5: Values of the Share Parameters Implied by the Estimation Results

Full Sample
�g �� �F �
 �M �scYg 65.9 28.4 2.1 2.3 1.3 0.001bYs 1.1 0.4 0.01 26.4 0.1 72.0eI 30.3 60.5 0.1 0.3 8.9 0.0g�F 11.3 3.7 83.4 0.4 1.3 0.0g�M 12.4 21.3 0.1 0.0 66.2 0.0cCg 64.6 10.8 5.6 13.4 5.6 0.01

\GDP 66.3 26.0 1.4 0.01 0.8 5.5

Table 6: Variance Decompositions of the Model, Full Sample
Notes: For each variable, the columns indicate the fractions of the total variance explained by each
shock. Variables with a hat are scaled by their steady-state value. Variables with a tilde are scaled
by steady-state goods output.
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Prior 1960�1983 1984�2007
Mean 5% 95% Mean 5% 95%

�F 0.020 beta 0.01 0.056 0.033 0.082 0.046 0.023 0.074
�M 0.020 beta 0.01 0.022 0.013 0.034 0.022 0.013 0.035
1 + � 1.500 norm 0.5 1.13 0.64 1.62 1.40 0.79 2.03
1 + � 1.500 norm 0.5 3.13 2.57 3.70 3.08 2.67 3.56
1 + � 1.500 norm 0.5 0.93 0.82 0.98 1.16 1.07 1.31

 F = (1 +  F ) 0.500 beta 0.2 0.02 0.01 0.03 0.04 0.02 0.06
 Kg=

�
1 +  Kg

�
0.500 beta 0.2 0.27 0.15 0.60 0.16 0.09 0.29

 Ks= (1 +  Ks) 0.500 beta 0.2 0.50 0.23 0.77 0.61 0.30 0.84
 M= (1 +  M ) 0.500 beta 0.2 0.04 0.02 0.06 0.02 0.01 0.04

�g 0.750 beta 0.1 0.84 0.79 0.89 0.92 0.86 0.98
�� 0.750 beta 0.1 0.93 0.89 0.95 0.92 0.87 0.95
�F 0.750 beta 0.1 0.95 0.90 0.98 0.94 0.89 0.97
�
 0.750 beta 0.1 0.85 0.76 0.92 0.88 0.81 0.95
�M 0.750 beta 0.1 0.95 0.92 0.97 0.97 0.95 0.98
�s 0.750 beta 0.1 0.94 0.90 0.97 0.95 0.93 0.98

�Kg=
�
1 + �Kg

�
0.500 beta 0.2 0.91 0.80 0.98 0.90 0.79 0.98

�Ks= (1 + �Ks) 0.500 beta 0.2 0.37 0.17 0.57 0.88 0.74 0.97

�g 0.025 invg Inf 1.91% 1.59% 2.28% 1.51% 1.03% 2.63%
�� 0.025 invg Inf 3.83% 2.47% 5.63% 3.17% 1.91% 4.85%
�F 0.01 invg Inf 0.38% 0.28% 0.50% 0.47% 0.33% 0.62%
�
 0.01 invg Inf 0.51% 0.40% 0.67% 0.78% 0.58% 1.13%
�M 0.05 invg Inf 14.1% 10.5% 18.9% 12.8% 9.4% 16.4%
�s 0.025 invg Inf 1.70% 1.31% 2.26% 1.49% 1.15% 1.96%
�g;s 0.50 norm 0.25 0.72 0.61 0.81 0.44 0.29 0.59

Table 7: Parameter Estimates, Subsamples
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1960�1983
�g �� �F �
 �M �scYg 79.0 17.9 1.8 0.7 0.6 0.001bYs 12.3 0.8 0.0 38.6 1.5 46.8eI 43.9 40.7 0.1 1.2 14.1 0.002g�F 12.7 4.7 81.0 0.1 1.5 0.0g�M 17.4 19.7 0.1 0.0 62.8 0.0cCg 69.0 7.3 5.1 7.4 11.2 0.03

\GDP 81.6 14.9 1.3 0.1 0.4 1.6

1984�2007
�g �� �F �
 �M �scYg 49.4 41.9 3.7 3.7 1.2 0.02bYs 1.3 0.3 0.2 30.8 0.1 67.3eI 21.2 68.7 0.1 0.1 9.9 0.0g�F 2.3 3.7 93.6 0.1 0.3 0.001g�M 7.9 30.7 0.1 0.01 61.3 0.0cCg 65.9 6.6 8.3 12.8 6.2 0.2

\GDP 51.5 39.0 2.5 0.1 0.8 6.2

Table 8: Variance Decompositions, Subsamples
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Value Contribution to change (�100)
Parameter 1960-1983 1984-2007 �

�
\GDP

�
�
�cYg� �

� bYs� �
�eI�

�F 0.056 0.046 0.00 0.00 0.01 -0.01
�M 0.022 0.022 -0.01 -0.02 0.00 -0.01
1 + � 1.13 1.40 -0.01 -0.02 0.00 -0.01
1 + � 3.13 3.08 0.00 -0.01 0.00 0.00
1 + � 0.93 1.16 0.02 -0.03 -0.01 -0.05

 F = (1 +  F ) 0.02 0.04 0.00 -0.01 0.01 0.01
 Kg=

�
1 +  Kg

�
0.27 0.16 0.21 0.36 0.00 0.42

 Ks= (1 +  Ks) 0.50 0.61 -0.08 -0.13 -0.01 -0.16
 M= (1 +  M ) 0.04 0.02 0.03 0.06 0.00 0.00
�Kg=

�
1 + �Kg

�
0.91 0.90 -0.02 -0.02 -0.01 -0.01

�Ks= (1 + �Ks) 0.37 0.88 -0.16 -0.12 -0.24 -0.13
All estimated parameters 0.06 0.19 -0.27 0.14

F=Yg 0.30 0.36 0.01 0.01 0.00 -0.01
M=Yg 1.37 1.07 -0.04 -0.09 0.01 -0.04

(Kg +Ks) =Yg 13.48 14.11 0.06 0.09 -0.04 0.00
Y 0s=Yg 0.54 0.88 -0.20 0.00 0.01 0.00

All steady state parameters -0.16 0.04 -0.01 -0.06

�g 1.91% 1.51% -0.29 -0.40 -0.05 -0.10
�F 0.38% 0.47% 0.01 0.02 0.01 0.00
�M 14.13% 12.77% -0.01 -0.01 -0.01 -0.01

All shocks -0.52 -0.64 -0.06 -0.25

All parameters and shocks -0.76 -0.73 -0.35 -0.30

Table 10: Accounting for the Decline in Volatility
Notes: Columns 2 and 3 indicate the estimated value of the parameter in the �rst column in each
subsample. In the last four columns, we take the period 1960�1983 as the baseline period and
change each parameter to its 1984�2004 value to account for its contribution to reducing volatility.
The columns indicate, for each variable, the change in the standard deviation (times 100) due to
the change in that parameter. Two important caveats are that: (1) standard deviations are not
additive; (2) the e¤ects of each model parameter are not independent from the values of other model
parameters. For this reason, the values in each column do not add up to the last value listed in the
column.
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Prior Usage Model Baseline Model
Mean Distrib. St.dev. Mean 5% 95% Mean

�F 0.020 beta 0.01 0.078 0.053 0.106 0.081
�M 0.020 beta 0.01 0.009 0.003 0.018 0.022
1 + � 1.500 norm 0.5 1.33 0.91 1.76 1.30
1 + � 1.500 norm 0.5 4.20 3.75 4.61 3.60
1 + � 1.500 norm 0.5 1.01 0.86 1.17 1.03

 F = (1 +  F ) 0.500 beta 0.2 0.02 0.01 0.04 0.03
 Kg=

�
1 +  Kg

�
0.500 beta 0.2 0.27 0.19 0.36 0.20

 Ks= (1 +  Ks) 0.500 beta 0.2 0.51 0.39 0.65 0.47
 M= (1 +  M ) 0.500 beta 0.2 0.08 0.05 0.11 0.02

�g 0.750 beta 0.1 0.83 0.79 0.87 0.86
�� 0.750 beta 0.1 0.97 0.95 0.98 0.93
�F 0.750 beta 0.1 0.94 0.91 0.97 0.92
�
 0.750 beta 0.1 0.84 0.78 0.89 0.86
�M 0.750 beta 0.1 0.95 0.93 0.97 0.94
�s 0.750 beta 0.1 0.95 0.92 0.97 0.94

�Kg=
�
1 + �Kg

�
0.500 beta 0.2 0.98 0.96 1.00 0.95

�Ks= (1 + �Ks) 0.500 beta 0.2 0.13 0.06 0.20 0.80
�M= (1 + �M ) 0.500 beta 0.2 0.25 0.14 0.41

�g 0.025 invg Inf 1.49% 1.29% 1.70% 1.49%
�� 0.025 invg Inf 8.95% 5.82% 13.50% 3.80%
�F 0.01 invg Inf 0.35% 0.27% 0.45% 0.33%
�
 0.01 invg Inf 0.66% 0.52% 0.86% 0.65%
�M 0.05 invg Inf 6.68% 5.52% 8.06% 10.34%
�s 0.025 invg Inf 1.34% 1.06% 1.72% 1.52%
�g;s 0.50 norm 0.25 0.49 0.39 0.59 0.72

Table 11: Prior Distributions and Parameter Estimates of the Model with Usage of Inventories
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Figure 1 
Data by Sector. 
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Notes: All series are normalized to 100 in the initial period. 
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Figure 2 
Nominal Shares of Total Output 
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Note: Y denotes total output. Numerators and denominator are all expressed in nominal terms. 
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Figure 3 
Inventory Target Ratios and Inventory Investment 
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Figure 4 
Impulse Responses of the Estimated Model  

 
Notes: Each row shows the impulse responses to an estimated one-standard-deviation shock. X-
axis: Time horizon. Y-axis: Deviation from baseline, multiplied by 100. 
Variable with a hat are scaled by their steady state value. Variables with a tilde are scaled by 
steady state output in the goods sector. 
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Figure 5 

Impulse Responses of the Estimated Model to Selected Shocks  
GDP and inventory-to-target ratios 

 

 
Notes: Each row shows the impulse responses to an estimated one-standard-deviation shock. X-
axis: Time horizon. Y-axis: Deviation from baseline, multiplied by one hundred. 
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Figure 6 
Orthogonalized Impulse Responses of the Estimated Model, Comparison with VAR. 

 

 
 

Notes: VAR based on actual data (dashed lines, with two lags and 95% bootstrapped confidence 
bands) and VAR based on the reduced form representation of the DSGE model. Each row 
represents one shock. Both sets of impulse responses have been orthogonalized in the same 
order. Shocks are one standard deviation. X-axis: Time horizon. Y-axis: Deviation from baseline, 
multiplied by 100. Variables with a hat are scaled by their steady-state values. Variables with a 
tilde are scaled by steady-state output in the goods sector. 
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Figure 7 

Impulse Responses to a Positive Technology Shock in the Goods Sector 
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Notes: Responses to an estimated one-standard-deviation technology shock in the goods sector. 
X-axis: Horizon in quarters. Y-axis: Deviation from baseline, multiplied by 100. 
Output is scaled by its steady-state value. Inventory investment and fixed investment are scaled 
by steady-state output in the goods sector, so that their impulse responses measure the growth 
contribution to goods output. 
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Figure 8 
Impulse Responses to a Positive Technology Shock in the Goods Sector 

Baseline Model and Model with Inventory Usage 
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Notes: X-axis: Time horizon. Y-axis: Deviation from baseline, multiplied by one hundred. 

 


