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Abstract

This note establishes that the fully nonparametric classical errors-in-variables

model is identifiable from data on the regressor and the dependent variable

alone, unless the specification is a member of a very specific parametric family.

This family includes the linear specification with normally distributed variables

as a special case. This result relies on standard primitive regularity conditions

taking the form of smoothness and monotonicity of the regression function and

nonvanishing characteristic functions of the disturbances.
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1 Introduction

The identification of regression models in which both the dependent and independent

variables are measured with error has received considerable attention over the last few

decades. This so-called classical nonlinear errors-in-variables model takes the following

form.

Model 1 Let y, x, x∗,∆x,∆y be scalar real-valued random variables such that

y = g (x∗) +∆y

x = x∗ +∆x.

where only x and y are observed while all remaining variables are not and where x∗,

∆x, ∆y, are mutually independent, E [∆x] = 0 and E [∆y] = 0.

A well-known result is that when g (x∗) is linear while x∗, ∆x and ∆y are nor-

mal, the model is not identified, although the regression coefficients can often be

consistently bounded (Klepper and Leamer (1984)).1 This negative result for what is

perhaps the most natural regression model has long guided the search for solutions

to the errors-in-variables problem towards approaches that rely on additional infor-

mation (beyond x and y), such as instruments, repeated measurements, validation

data, known measurement error distribution, etc (e.g., Hausman, Newey, Ichimura,

and Powell (1991), Newey (2001), Schennach (2004a), Schennach (2004b), Schennach

(2007), Hu and Schennach (2006), Hu and Ridder (2004), among many others).

Nevertheless, since the seminal work of Geary (1942), a large number of authors

(e.g. Reiersol (1950), Kendall and Stuart (1979), Pal (1980), Cragg (1997), Lew-

bel (1997), Erickson and Whited (2002), Dagenais and Dagenais (1997), Erickson

and Whited (2000), Bonhomme and Robin (2006), and the many references therein)

have suggested alternative methods to identify a linear regression with nonnormally

distributed regressors based on the idea that higher order moments of x and y then

provide additional information that can be exploited. However, the question of charac-

terizing the set of identifiable models in fully nonparametric settings while exploiting

the joint distribution of all the observable variables remains wide open.

1Chesher (1998) suggests some settings where a polynomial regression is not identified based on
the knowledge of some of the moments of the observed data.
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We demonstrate that the answer to this question turns out to be surprisingly sim-

ple, although proving so is not. Under fairly simple and natural regularity conditions,

a specification of the form g (x∗) = a+ b ln
¡
ecx

∗
+ d
¢
is the only functional form that

is not guaranteed to be identifiable. Even with this specification, the distributions of

all the variables must have very specific forms in order to evade identifiability of the

model. As expected, this parametric family includes the well-known linear case (with

d = 0) with normally distributed variables. Given that this very specific unidenti-

fied parametric functional form is arguably the exception rather than the rule, our

identification result should have a wide applicability.

2 Identification result

We need a few basic regularity conditions.

Assumption 1 E
£
eiξ∆x

¤
and E

£
eiγ∆y

¤
do not vanish for any ξ, γ ∈ R, where i =√−1.

The type of assumption regarding the so-called characteristic function has a long

history in the deconvolution literature (see Schennach (2004a) and the references

therein). Without it, the measurement error effectively masks information regarding

the true variables that cannot be recovered.2 The only commonly encountered distri-

butions with a vanishing characteristic function are the uniform and the triangular

distributions.

Assumption 2 The distribution of x∗ admits a finite density fx∗ (x∗) with respect to
the Lebesgue measure.

This assumption rules out pathological case such as fractal-like distributions. It

also rules out discrete distributions.3

Assumption 3 The regression function g (x∗) has a continuous, finite and nonvan-

ishing first derivative at each point4 in the interior of the support of x∗.

2Although our approach could probably be extended to the case of characteristic functions van-
ishing at isolated points in R along the lines of Hu and Ridder (2004).

3An extension of our result to purely discrete distributions is straightforward, although such a
result would not be very useful in the context of classical measurement error.

4It need not be uniformly bounded above and below.
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This is a smoothness and monotonicity constraint. Without it, it is difficult to

rule out extremely complex and pathological joint distributions of x and y (including,

once again, fractal-like distributions). In particular, one could imagine an extremely

rapidly oscillating g (x∗), where nearly undetectable changes in x∗ yield changes in

y that are almost observationally indistinguishable from genuine errors in y. Even

relaxing this assumption to include less pathological functional forms that oscillate a

finite number of times is difficult, due to the overlap between the measurement error

distributions in regions where the regression function is not one-to-one and due to

the appearance of divergences in some of the densities entering the model. Many

recent nonparametric identification results also rely on monotonicity assumptions, as

discussed, for instance, in the Handbook of Econometrics chapter by Matzkin (2007).

Our main result can then be stated as follows, after we define the following con-

venient concept.

Definition 1 We say that a random variable r is decomposable with F factor if

r can be written as the sum of two independent random variables (which may be

degenerate), one of which has the distribution F .

Theorem 1 Let Assumptions 1, 2 and 3 hold.

1. If g (x∗) is not of the form

g (x∗) = a+ b ln
¡
ecx

∗
+ d
¢

(1)

for some constants a, b, c, d ∈ R then fx∗ (x
∗) and g (x∗) (over the support of

fx∗ (x
∗)) in Model 1 are identified.

2. If g (x∗) is of the form (1) with5 d > 0, then neither fx∗ (x∗) nor g (x∗) in Model
1 are identified iff x∗ has a density of the form

fx∗ (x
∗) = A exp

¡−BeCx∗ + CDx∗
¢ ¡

eCx
∗
+E

¢−F
(2)

with6 C ∈ R, A,B,D,E, F ∈ [0,∞[ and ∆x and ∆y are decomposable with a

type I extreme value factor.7

5A case where d < 0 can be converted into a case with d > 0 by permuting the roles of x and y.
6The constants A,B,C,D,E, F depend on a, b, c, d, although this dependence is omitted here for

simplicity. Constants yielding a valid density can be found for any a, b, c, d (with d > 0).
7A type I extreme value distribution has a density of the general form f (u) =

K1 exp (K2 exp (K3u) +K4u). Here, the constant K1,K2,K3,K4 are such that f (u) integrates
to 1 and has zero mean and may depend on a, b, c, d, although this dependence is omitted here for
simplicity.
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3. If g (x∗) is linear (i.e. of the form (1) with d = 0), then neither fx∗ (x∗) nor

g (x∗) in Model 1 are identified iff x∗ is normally distributed and either ∆x or

∆y is decomposable with a normal factor.

The phrasing of Cases 2 and 3 should make it clear that the conclusion of the

theorem remains unchanged if one focuses on identifying g (x∗) only and not fx∗ (x∗),

because the observationally equivalent models ruling identifiablity out have different

regression functions in all of the unidentified cases.

The proof of this result (provided in the Appendix) proceeds in four steps:

1. We reduce the identification problem of a model with errors along x and y into

the equivalent problem of finding two observationally models, one having errors

only along the x axis and one having errors only along the y axis.

2. We rule out a number of pathological cases in which the error distributions do

not admit densities with respect to the Lebesgue measure by showing that such

occurrences would actually imply identification of the model (in essence, any

nonsmooth point gives away the shape of the regression function).

3. We derive necessary conditions for lack of identification that take the form of

differential equations involving all densities. This establishes that the large class

of models where these equations do not hold are identified.

4. Cases that do satisfy the differential equations are then systematically checked

to see if they yield valid densities for all variables, thus pointing towards the

only cases that are actually not identified and securing necessary and sufficient

conditions for identifiability.

It is somewhat unexpected that in a fully nonparametric setting, the nonidentified

family of regression functions would still be parametric with such a low dimension

(only 4 adjustable parameters). It is also surprising that, even in the presumably

difficult case of normally distributed regressors, most nonlinear specifications are ac-

tually identified. While our findings regarding linear regressions (Case 3) coincide

with Reiersol (1950), the functional forms in the other nonidentified models (Case 2)

are hardly trivial and would have been difficult to find without a systematic approach

such as ours.
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Theorem 1 can be extended in various useful directions. For instance, perfectly

observed covariates w can be included simply by conditioning all densities (and ex-

pectations) on these covariates. We then establish identification of fx∗|w (x∗|w) and
g (x∗, w) ≡ E [y|x∗, w] and therefore of fx∗,w (x∗, w) = fx∗|w (x∗|w) fw (w). The above
results do not yet establish identification of the measurement error distributions, but

this can be trivially achieved by deconvolution techniques (once g (x∗) and fx∗ (x
∗)

have been determined) under the additional assumption that E
£
eiξx

∗¤
and E

£
eiγg(x

∗)
¤

do not vanish.

3 Conclusion

This note answers the long-standing question of the identifiability of the nonparamet-

ric classical errors-in-variables model with a rather encouraging result, namely, that

only a specific 4-parameter parametric family of regression functions may exhibit lack

of identifiability. Our identification result is agnostic regarding the type of estimator

to be used in practice. One could use higher-order moment equalities, characteristic

function equalities, or nonparametric sieve-type likelihoods. Finding the most conve-

nient and statistically powerful method remains a nontrivial and important avenue

of future research. It would also be useful to investigate whether these results extend

to the case of nonclassical measurement error (i.e. relaxing some of the independence

assumptions), where the dimensionality of the unknown distributions is greater or

equal to the dimensionality of the observable distributions.

A Proof of Theorem 1

Let Su denote the support of the random variable u and let fu (u) denote its density

(and similarly for the multivariate case).

Consider an alternative observationally equivalent model defined as:

Model 2 Similar to Model 1 with x∗,∆x,∆y, g (·) replaced, respectively, by x̃∗,∆x̃,∆ỹ, g̃ (·).

It is clear that any assumptions (including regularity conditions) made regarding

Model 1 must hold for this alternative model as well.

We first reduce the identification problem to a simpler but equivalent problem

involving only one error term. Consider the following two models:
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Model 3 Let x̄, ȳ, x∗,∆x̄ be scalar real-valued random variables such that

ȳ = g (x∗)

x̄ = x∗ +∆x̄

where x̄ and ȳ are observable (and may differ from x, y in Model 1), where the unob-

servable x∗ and g (x∗) are as in Model 1, and ∆x̄ is independent from x∗, E [∆x̄] = 0

and the distribution of ∆x̄ is a factor8 of the distribution of ∆x in Model 1.

Model 4 Let x̄, ȳ, x̃∗,∆ȳ be scalar real-valued random variables such that

ȳ = g̃ (x̃∗) +∆ȳ

x̄ = x̃∗

where the observables x̄ and ȳ are as in Model 3, where the unobservable x̃∗ and

g (x̃∗) are as in Model 2 and where ∆ȳ is independent from x̃∗, E [∆ȳ] = 0 and the

distribution of ∆ȳ is a factor of the distribution of ∆y in Model 2.

Note that, given the above definitions, ∆x = ∆x̄ + ∆x̃. This assumes, without

loss of generality, that the distribution of ∆x̃ is a factor of the distribution of ∆x

(otherwise, one can just permute the role of Models 1 and 2, which interchanges the

role of tilded and non tilded symbols).

Lemma 1 Under Assumptions 1-3, there exist two distinct observationally equivalent
Models 1 and 2 iff there exist two distinct observationally equivalent models of the form

of Models 3 and 4. Moreover, when two such models exist, the distributions of x̄, ȳ,∆x̄

and ∆ȳ all admit a density with respect to the Lebesgue measure and are supported

on all of R.

Proof. (1) The joint characteristic function of x and y, defined as E
£
eiξxeiγy

¤
,

conveys the same information as the joint distribution of x and y. Under Model 1,

E
£
eiξxeiγy

¤
= E

£
eiξx

∗
eiγg(x

∗)eiξ∆xeiγ∆y
¤
.

The independence conditions stated in Model 1 then imply that

E
£
eiξxeiγy

¤
= E

£
eiξx

∗
eiγg(x

∗)¤E £eiξ∆x
¤
E
£
eiγ∆y

¤
. (3)

8A distribution F is said to be a factor of a distribution H if there exists a distribution G (which
may be degenerate) such that the random variable h = f + g has distribution H, where f, g are
independent random variables drawn from F,G respectively.
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We seek an alternative observationally equivalent model (Model 2, denoted with ∼)
also satisfying:

E
£
eiξxeiγy

¤
= E

£
eiξx̃

∗
eiγg̃(x̃

∗)¤E £eiξ∆x̃
¤
E
£
eiγ∆ỹ

¤
. (4)

Define

α (ξ) ≡ E
£
eiξ∆x

¤
E [eiξ∆x̃]

β (γ) ≡ E
£
eiγ∆ỹ

¤
E [eiγ∆y]

and note that α (ξ) and β (γ) are everywhere continuous, nonvanishing and finite.9

Also, α (0) = 1, α0 (0) = 0 and β (0) = 1, β0 (0) = 0. Rearranging, we obtain

E
£
eiξ∆x̃

¤
=

E
£
eiξ∆x

¤
α (ξ)

E
£
eiγ∆ỹ

¤
= β (γ)E

£
eiγ∆y

¤
.

Substituting these expressions into (4), yields

E
£
eiξxeiγy

¤
=

µ
E
£
eiξx̃

∗
eiγg̃(x̃

∗)¤ β (γ)
α (ξ)

¶
E
£
eiξ∆x

¤
E
£
eiγ∆y

¤
.

But, by (3), this is also equal to E
£
eiξx

∗
eiγg(x

∗)
¤
E
£
eiξ∆x

¤
E
£
eiγ∆y

¤
and therefore

E
£
eiξx

∗
eiγg(x

∗)¤E £eiξ∆x
¤
E
£
eiγ∆y

¤
=

µ
E
£
eiξx̃

∗
eiγg̃(x̃

∗)¤ β (γ)
α (ξ)

¶
E
£
eiξ∆x

¤
E
£
eiγ∆y

¤
.

Since E
£
eiξ∆x

¤
, E
£
eiγ∆y

¤
and α (ξ) are finite and nonvanishing, we can multiply each

side by α (ξ) /
¡
E
£
eiξ∆x

¤
E
£
eiγ∆y

¤¢
to yield:

E
£
eiξx

∗
eiγg(x

∗)¤α (ξ) = E
£
eiξx̃

∗
eiγg̃(x̃

∗)¤β (γ) (5)

or

E
£
eiξx

∗
eiγg(x

∗)¤α (ξ)E £eiγ0¤ = E
£
eiξx̃

∗
eiγg̃(x̃

∗)¤E £eiξ0¤β (γ) .
In other words, Models 1 and 2 are observationally equivalent iff there exists a model

with errors only in the regressor (Model 3, where α (ξ) is the characteristic function

of ∆x̄) that is observationally equivalent to a model with errors in the dependent

variable (Model 4, where β (γ) is the characteristic function of ∆ȳ). This completes

the first part the proof.

9That is, finite at each point, though not necessarily uniformly bounded.
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(2) It remains to be shown that we can indeed limit ourselves to α (ξ) and β (γ)

that are valid characteristic functions and, more specifically, to characteristic func-

tions of densities supported on R. Define y∗ ≡ g (x∗) and h (y∗) ≡ g−1 (y∗) and

note that y∗ admits a density.fy∗ (y∗) = fx∗ (h (y
∗)) /g0 (h (y∗)) since g0 (x∗) 6= 0 by

assumption. We can then rewrite Equation (5) as

E
£
eiξh(y

∗)eiγy
∗¤
α (ξ) = E

£
eiξx̃

∗
eiγg̃(x̃

∗)¤β (γ) . (6)

We now calculate the inverse Fourier transform (FT) of each side using the convolution

theorem. To this effect, we calculate the FT of each term individually. Since we can

write

E
£
eiξh(y

∗)eiγy
∗¤
=

Z Z
δ (x∗ − h (y∗)) fy∗ (y∗) eiξx

∗
eiγy

∗
dx∗dy∗

E
£
eiξx̃

∗
eiγg̃(x̃

∗)¤ = Z Z
δ (ỹ∗ − g̃ (x̃∗)) f̃x̃∗ (x̃∗) eiξx̃

∗
eiγỹ

∗
dx̃∗dỹ∗,

the inverse FT ofE
£
eiξh(y

∗)eiγy
∗¤
andE

£
eiξx̃

∗
eiγg̃(x̃

∗)
¤
are, respectively, δ (x∗ − h (y∗)) fy∗ (y∗)

and δ (ỹ∗ − g̃ (x̃∗)) f̃x̃∗ (x̃∗), where δ (·) denotes a delta function.
Let W∆x̄ denote the set where the inverse FT of α (ξ) is well-defined and finite10

and let f∆x̄ (∆x̄) denote this inverse FT for ∆x̄ ∈ W∆x̄. Similarly define W∆ȳ and

f̃∆ȳ (∆ȳ) for β (γ). Note that the setsW∆x̄ andW∆ȳ cannot be empty since it would

then be impossible for α (ξ) and β (γ) to be finite everywhere.11 By (6) and the

convolution theorem, we haveZ
δ (x∗ − h (ȳ)) fȳ (ȳ) f∆x̄ (x̄− x∗) dx∗ =

Z
δ (ỹ∗ − g̃ (x̄)) fx̄ (x̄) f̃∆ȳ (ȳ − ỹ∗) dỹ∗

where we have used the equivalence y∗ = ȳ (under Model 3) and x̄ = x̃∗ (under Model

4). Using the properties of the delta function δ (·),

fȳ (ȳ) f∆x̄ (x̄− h (ȳ)) = fx̄ (x̄) f̃∆ȳ (ȳ − g̃ (x̄)) (7)

an equality which holds for (x̄, ȳ) such that x̄− h (ȳ) ∈W∆x̄ and ȳ − g̃ (x̄) ∈W∆ȳ.

Suppose that at some point (x̄0, ȳ0) in the interior of the support of (x̄, ȳ), we have

that f̃∆ȳ (ȳ0 − g̃ (x̄0)) changes sign, becomes zero, infinite or undefined. Then the

same behavior must necessarily occur in f∆x̄ (x̄0 − h (ȳ0)) at the same point (x̄0, ȳ0)

10That is, for a given ∆x̄, limt→∞
R t
−t α (ξ) e

iξ∆x̄dξ exists in C.
11If W∆x̄ is empty, f̃∆x̄ (∆x̄) would be undefined or infinite for all points in R, hence its Fourier

transform α (ξ) could not exist.
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because multiplication by a bounded positive number (here, fȳ (ȳ0) and fx̄ (x̄0) are

finite by assumption) does not affect whether a quantity is well-defined, positive,

nonzero or finite. Furthermore, the same behavior would occur along the whole curve

(x̄, ȳ) giving the same value of v ≡ ȳ0 − g̃ (x̄0) = ȳ − g̃ (x̄) or the same value of

u ≡ x̄0 − h (ȳ0) = x̄− h (ȳ). If the curves

Vv = {(x̃∗, g̃ (x̃∗) + v) : x̃∗ ∈ Sx̃∗} and Uu = {(h (y∗) + u, y∗) : y∗ ∈ Sy∗} (8)

did not coincide, then it would be possible to recursively construct the following

sequence of sets

V0 ≡ Vv
U0 ≡ Uu

Vn+1 =
[

v:Vv∩Un 6=∅
Vv

Un+1 =
[

u:Uu∩Vn+1 6=∅
Uu

that is such that Vn → Sx̄ȳ and Un → Sx̄ȳ. This implies that f∆x̄ and f̃∆ȳ are either

everywhere zero, everywhere changing sign, everywhere infinite or everywhere unde-

fined. None of these situations are possible, since the FT of f∆x̄ and f̃∆ȳ, respectively,

α (ξ) and β (γ), are everywhere well-defined and nonzero.

Hence the curves in (8) would have to coincide. We can reparametrize the right-

hand side curve, letting y∗ = g (x∗), to yield {(x∗ + u, g (x∗)) : x∗ ∈ Sx∗} and we must
then have the equality.

(x̃∗, g̃ (x̃∗) + v) = (x∗ + u, g (x∗))

implying that

g̃ (x∗ + u) + v = g (x∗) ,

i.e., g̃ (·) and g (·) are just horizontally and vertically shifted versions of each other.
But any nonzero shift would imply that either one of the models is violating one of the

zero mean assumptions on the disturbances.12 Hence, for any pair of valid models 3

and 4, we must have g̃ (x∗) = g (x∗). The density of x∗ can then be determined (up to

12The only exception in the linear specification, where two nonzero shifts along each axes may
cancel each other. But in this case, the shifted curve is identical to the original one.
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a multiplicative constant determined by the normalization of unit total probability)

from the density fx̄ȳ (x̄, ȳ) along the line ȳ = g (x̄) + u for some u ∈W∆ȳ.

This means that if there are any points where f̃∆ȳ or f∆x̄ are ill-defined, change

sign, become zero or are infinite, then Model 3 and 4 are such that g̃ (x∗) = g (x∗)

and f̃x̃∗ (x
∗) = fx∗ (x

∗). So any pair of distinct but observationally equivalent models

must be such that f̃∆ȳ and f∆x̄ are well-defined densities with respect to the Lebesgue

measure that are nonzero, finite and never change sign (and are positive, since α (0) =

1 and β (0) = 1). Since f̃∆ȳ and f∆x̄ are supported on R, so must fx̄ and fȳ, in light

of Equation (7).

Now, continuing the proof of Theorem 1: Under Model 3, the joint density of x̄

and ȳ can be written as:

fx̄ȳ (x̄, ȳ) = f∆x̄ (x̄− h (ȳ)) fȳ (ȳ) (9)

where h (y) ≡ g−1 (y) (which exists by Assumption 3), while under Model 4, we have

fx̄ȳ (x̄, ȳ) = f̃∆ȳ (ȳ − g̃ (x̄)) fx̄ (x̄) (10)

where the ∼ on the densities emphasizes the quantities that differ under the alterna-
tive model.

Since the two models must be observationally equivalent, we equate (9) and (10):

f∆x̄ (x̄− h (ȳ)) fȳ (ȳ) = f̃∆ȳ (ȳ − g̃ (x̄)) fx̄ (x̄) . (11)

After rearranging (11) and taking logs, we obtain:

ln f̃∆ȳ (ȳ − g̃ (x̄))− ln f∆x̄ (x̄− h (ȳ)) = ln fȳ (ȳ)− ln fx̄ (x̄) , (12)

where these densities are always positive (by Lemma 1), so that the ln (·) are always
well-defined.

We will find necessary conditions for Equation (12) to hold, in order to narrow

down the search for possible solutions that would provide distinct but observationally

equivalent models. Next, we will need to check that these solutions actually lead to

proper densities (i.e. with finite area) for all variables in order to obtain necessary

and sufficient condition for identifiability.

We use the following Lemma:
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Lemma 2 A twice-continuously differentiable function c (x, y) is such that ∂2c (x, y) /∂x∂y =
0 ∀x, y iff it can be written as c (x, y) = a (x) + b (y).

Proof. We may write

c (x, y) = c (0, 0) +

Z x

0

∂c (u, 0)

∂x
du+

Z y

0

∂c (x, v)

∂y
dv

where
∂c (x, v)

∂y
=

∂c (0, v)

∂y
+

Z x

0

∂2c (u, v)

∂x∂y
du =

∂c (0, y)

∂y
+ 0

if ∂2c (x, y) /∂x∂y = 0. Hence,

c (x, y) = c (0, 0) +

Z x

0

∂c (u, 0)

∂x
du| {z }

a(x)

+

Z y

0

∂c (0, v)

∂y
dv| {z }

b(y)

.

Conversely,
∂2c (x, y)

∂x∂y
=

∂2a (x)

∂x∂y
+

∂2b (y)

∂x∂y
= 0.

Note that differentiability of g (x∗), combined with g0 (x∗) 6= 0 implies that h (ȳ) ≡
g−1 (ȳ) is differentiable.

Let F denote the logarithms of the corresponding lowercase density and rewrite

Equation (12) as

F̃∆ȳ (ȳ − g̃ (x̄))− F∆x̄ (x̄− h (ȳ)) = Fȳ (ȳ)− Fx̄ (x̄) .

By Lemma 2, we must then have

∂2

∂x̄∂ȳ
F̃∆ȳ (ȳ − g̃ (x̄))− ∂2

∂x̄∂ȳ
F∆x̄ (x̄− h (ȳ)) = 0

F̃ 00
∆ȳ (ȳ − g̃ (x̄)) g̃0 (x̄)− F 00

∆x̄ (x̄− h (ȳ))h0 (ȳ) = 0 (13)

In the above, we have assumed differentiability of F̃∆ȳ and F̃∆x̄, but if this fails

to hold, we can show that the model is actually identified: The functions g̃0 (x̄) and

h0 (ȳ) are bounded, continuous and nonzero by Assumption 3. Hence, the points (x̄, ȳ)

where F̃∆ȳ (ȳ − g̃ (x̄)) and F̃∆x̄ (x̄− h (ȳ)) and not twice continuously differentiable

must coincide. By the same reasoning as in the second part of the proof of Lemma

12



1, the alternative model would have to be identical to the true model.13 We can

therefore rule out insufficient continuous differentiability for the purpose of finding

models that are not identified. To proceed, we need the following Lemma.

Lemma 3 Let Assumptions 1-3 hold, h (·) ≡ g−1 (·) and let g (·) and g̃ (·) be as
defined in Models 3 and 4, respectively. These models are assumed to be distinct. If

two functions a (·) and b (·) are such that a (ȳ − g̃ (x̄)) = b (x̄− h (ȳ)) ∀ (x̄, ȳ) ∈ R2,
then a (·) and b (·) are constant functions over R. Similarly if a (ȳ − g̃ (x̄)) = 0 ⇔
b (x̄− h (ȳ)) = 0 ∀ (x̄, ȳ) ∈ R2, then a (·) and b (·) are zero over R if either one

vanishes at a single point.

Proof. Note that, by Lemma 1, {(ȳ − g̃ (x̄) , x̄− h (ȳ)) : ∀ (x̄, ȳ) ∈ R2} = R2. It is
therefore possible to vary x̄ and ȳ so that ∆ȳ = ȳ − g̃ (x̄) remains constant while

∆x̄ = x̄ − h (ȳ) varies or vice-versa. Hence, it is possible to vary (x̄, ȳ) in such a

way such that ∆x̄ varies but ∆ȳ remains constant. Having a (∆ȳ) constant implies

that b (∆x̄) also is, even though its argument is varying. This shows that b (∆x̄)

is constant along a one-dimensional slice of constant ∆ȳ. Then, varying (x̄, ȳ) so

that the argument of the b (∆x̄) is constant, we can show that the a (∆ȳ) is constant

along a one-dimensional slice of constant∆x̄. Repeating the process we can show that

a (∆ȳ) and b (∆x̄) are constant for all (∆x̄,∆ȳ) ∈ R2 and therefore for all (x̄, ȳ) ∈ R2.
A similar argument demonstrates the second conclusion of the Lemma.

Continuing with the proof of Theorem 1, we can rearrange Equation (13) to yield

F̃ 00
∆ȳ (ȳ − g̃ (x̄)) =

h0 (ȳ)
g̃0 (x̄)

F 00
∆x̄ (x̄− h (ȳ)) , (14)

where the ratio h0 (ȳ) /g̃0 (x̄) is nonzero and finite by assumption. Hence if F 00
∆x̄ (x̄− h (ȳ))

is zero, then so is F̃ 00
∆ȳ (ȳ − g̃ (x̄)) and vice versa. If either of those two functions van-

ishes at a point, by Lemma 3, they must vanish everywhere. It would follows that

F̃∆ȳ (∆ȳ) and F∆x̄ (∆x̄) would be linear and that the corresponding densities f̃∆ȳ (∆ȳ)

and f∆x̄ (∆x̄) would be exponential over R, which is an improper density. It follows
that our presumption that either F 00

∆x̄ (x̄− h (ȳ)) or F̃ 00
∆ȳ (ȳ − g̃ (x̄)) vanish at some

point is incorrect.
13Note that even if a function is nowhere differentiable to some given order, the singularities

cannot be fully translation-invariant. Informally, if a derivative is “+∞” at every point, then the
function would be infinite everywhere, a situation already ruled out in Lemma 1. Divergence in the
derivatives must change sign to maintain the density finite. These changes in derivative sign could
be exploited to gain identification as in Lemma 1.
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Hence we may assume that F 00
∆x̄ (x̄− h (ȳ)) and F̃ 00

∆ȳ (ȳ − g̃ (x̄)) do not vanish.

Since these functions are continuous, this means they never change sign. Also note

that, by assumption, h0 (ȳ) and g̃0 (x̄) never change sign or vanish either. We can

thus, without loss of generality, rewrite Equation (13) as:¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
|F 00

∆x̄ (x̄− h (ȳ))| =
|h0 (ȳ)|
|g̃0 (x̄)| (15)

or

ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
− ln |F 00

∆x̄ (x̄− h (ȳ))| = ln |h0 (ȳ)|− ln |g̃0 (x̄)|
Again, since the right-hand side is a difference of functions of ȳ and x̄, respectively,

we must have14 (by Lemma 2)

∂2

∂x∂y
ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
− ∂2

∂x∂y
ln |F 00

∆x̄ (x̄− h (ȳ))| = 0³
ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄´00
g̃0 (x̄)− (ln |F 00

∆x̄ (x̄− h (ȳ))|)00 h0 (ȳ) = 0

By the same argument as before, if
³
ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄´00
= 0 or (ln |F 00

∆x̄ (x̄− h (ȳ))|)00 =
0 at a point then they must vanish everywhere, a situation covered in Case 2 below.

(We can also re-use the argument that lack of sufficient continuous differentiability

implies identification, hence we can assume sufficient continuous differentiability.)

Case 1 If
³
ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄´00
and (ln |F 00

∆x̄ (x̄− h (ȳ))|)00 do not vanish, we may
write ¯̄̄̄³

ln
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄´00 ¯̄̄̄
¯̄
(ln |F 00

∆x̄ (x̄− h (ȳ))|)00¯̄ = |h0 (ȳ)|
|g̃0 (x̄)|

combined with Equation (15) this implies:

¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
|F 00

∆x̄ (x̄− h (ȳ))| =

¯̄̄̄³
ln F̃ 00

∆ȳ (ȳ − g̃ (x̄))
´00 ¯̄̄̄

¯̄
(lnF 00

∆x̄ (x̄− h (ȳ)))00
¯̄¯̄̄̄³

ln F̃ 00
∆ȳ (ȳ − g̃ (x̄))

´00 ¯̄̄̄
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄ =

¯̄
(lnF 00

∆x̄ (x̄− h (ȳ)))00
¯̄

|F 00
∆x̄ (x̄− h (ȳ))| (16)

14The notation
³
ln
¯̄̄
F̃ 00∆ỹ (ȳ − g̃ (x̄))

¯̄̄´00
stands for

³
ln
¯̄̄
F̃ 00∆ỹ (u)

¯̄̄´00
|u=ȳ−g̃(x̄).
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By Lemma 3, each side of this equality must equal a constant, say A. Note that this

equality is only a necessary condition for lack of identifiability. For instance, it does

not ensure that
¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
/ |F 00

∆x̄ (x̄− h (ȳ))| can actually be written as a ratio
of a function of ȳ and a function of x̄, as required by Equation (15). This will need

to be subsequently checked.

We now find densities such that the left-hand (or right-hand) side of Equation

(16) is constant. Letting u = ȳ− g̃ (x̄) and F (·) ≡ F̃∆y (·) (or similarly, u = x̄−h (ȳ)

and F (·) ≡ F∆x (·)), we must have that

(ln |F 00 (u)|)00
F 00 (u)

= ±A
(ln |F 00 (u)|)00 = ±AF 00 (u)

(ln |F 00 (u)|)0 = ±AF 0 (u) +B

ln |F 00 (u)| = ±AF (u) +Bu+ C

F 00 (u) = ± exp (±AF (u) +Bu+ C)

F 00 (u) = − exp (AF (u) +Bu+ C)

where A,B,C are some constants and where one of the “±” has been incorporated
into the constant A and the other has been set to “−”, because the “+” solution does
not lead to a proper density.

Lemma 4 The solution F (u) to

F 00 (u) = − exp (AF (u) +Bu+ C) (17)

is:

F (u) = −B
A
u− C

A
+
1

A
ln

µ
2D2

A
ρ (D (u− u0))

¶
(18)

where

ρ (v) = 1− tanh2 (v) = 4 (exp (v) + exp (−v))−2

and where A,B,C,D, u0 are constants.

Proof. This solution can be verified by substitution into the differential equation
and noting that any initial conditions in F (0) and F 0 (0) can be accommodated by

adjusting the constants D,u0.
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The density corresponding to F (u) is

f (u) = C1 exp

µ
−B
A
u

¶
(ρ (D (u− u0)))

1/A

where C1 is such that the density integrates to 1. To check that is this is valid solution,

we first calculate what the implied forms of g̃ (x̄) and h (ȳ) are. From Equation (14),

we know that
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

F 00
∆x̄ (x̄− h (ȳ))

=
h0 (ȳ)
g̃0 (x̄)

(19)

where we can find an expression for F 00
∆x̄ (·) and F̃ 00

∆ȳ (·), generically denoted F 00 (·)
using Equations (17) and (18):

F 00 (u) = exp

µ
A

µ
−B
A
u− C

A
+
1

A
ln

µ
2D2

A
ρ (D (u− u0))

¶¶
+Bu+ C

¶
=

2D2

A
ρ (D (u− u0)) .

The constants D and u0 may differ for F 00
∆x̄ (·) and F̃ 00

∆ȳ (·) and we distinguish them
by subscripts ∆x̄ or ∆ȳ. The constant A is the same, however. Next, we calculate

the ratio:

F̃ 00
∆ȳ (ȳ − g̃ (x̄))

F 00
∆x̄ (x̄− h (ȳ))

=

2D2
∆ȳ

A
ρ (D∆ȳ (ȳ − g̃ (x̄)− u0∆ȳ))

2D2
∆x̄

A
ρ (D∆x̄ (x̄− h (ȳ)− u0∆x̄))

=
D2

∆ȳ (exp (D∆ȳ (ȳ − g̃ (x̄)− u0∆ȳ)) + exp (−D∆ȳ (ȳ − g̃ (x̄)− u0∆ȳ)))
−2

D2
∆x̄ (exp (D∆x̄ (x̄− h (ȳ)− u0∆x̄)) + exp (−D∆x̄ (x̄− h (ȳ)− u0∆x̄)))

−2

=
D−2

∆x̄ (2 + exp (2D∆x̄ (x̄− h (ȳ)− u0∆x̄)) + exp (−2D∆x̄ (x̄− h (ȳ)− u0∆x̄)))

D−2
∆ȳ (2 + exp (2D∆ȳ (ȳ − g̃ (x̄)− u0∆ȳ)) + exp (−2D∆ȳ (ȳ − g̃ (x̄)− u0∆ȳ)))

and note that it cannot be written as a ratio of a function of ȳ and a function of x̄

(unless g̃ (x̄) or h (ȳ) are constant, a situation ruled out by Assumption 3). Hence

Equation (15) cannot possibly hold and this solution is not valid. Hence, except

possibly when (lnF 00 (u))00 = 0, there exists no pair of observationally equivalent

models of the forms of Model 3 and 4.

Case 2 We now consider the (so far excluded) case where (lnF 00 (u))00 = 0 for F =

16



F∆x̄ and F̃∆ȳ. We have

(ln |F 00 (u)|)00 = 0

|F 00 (u)| = exp (Au+B) (20)

F 00 (u) = ± exp (Au+B)

F 0 (u) = ±A−1 exp (Au+B) + C

F (u) = −A−2 exp (Au+B) + Cu+D (21)

for some adjustable constants A,B,C,D with A 6= 0 (the case A = 0 is covered in

case 3 below). We have selected the negative branch of the “±” of since it is the only
one yielding a proper density. The density corresponding to (21) is of the form

f (u) = exp
¡−A−2 exp (Au+B) + Cu+D

¢
(22)

where the constants A,B,C,D are selected so as to satisfy the normalization con-

straint and the zero mean assumption. In the sequel, we will distinguish the constants

A,B,C,D by subscripts ∆x̄,∆ȳ corresponding to the densities of ∆x̄ and ∆ȳ, respec-

tively. We first determine h (ȳ) and g (x̄) through relationship (15):

|h0 (ȳ)|
|g̃0 (x̄)| =

¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
|F 00

∆x̄ (x̄− h (ȳ))| =
exp (A∆ȳ (ȳ − g̃ (x̄)) +B∆ȳ)

exp (A∆x̄ (x̄− h (ȳ)) +B∆x̄)

=
exp (A∆x̄h (ȳ) +A∆ȳȳ +B∆ȳ)

exp (A∆ȳg̃ (x̄) +A∆x̄x̄+B∆x̄)

Rearranging, we must have

|h0 (ȳ)|
exp (A∆x̄h (ȳ) +A∆ȳȳ +B∆ȳ)

=
|g̃0 (x̄)|

exp (A∆ȳg̃ (x̄) +A∆x̄x̄+B∆x̄)

and each side must be equal to the same constant (say, −Ahg) since they depend on

different variables. The solution to the differential equation

h0 (ȳ) = ±Ahg exp (A∆x̄h (ȳ) +A∆ȳȳ +B∆ȳ) (23)

is

h (y) = −B∆ȳ

A∆x̄
− 1

A∆x̄
ln

µ
±A∆x̄Ahg

A∆ȳ

¡
eA∆ȳ ȳ + C1∆ȳA∆ȳ

¢¶
, (24)

where C1∆ȳ is a constant. (This can be shown by substitution of (24) into (23) and

by noting that any initial condition h (0) can be accomodated by adjusting C1∆ȳ.)

Similarly,

g̃0 (x̄) = ±Ahg exp (A∆ȳg̃ (x̄) +A∆x̄x̄+B∆x̄)
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and

g̃ (x̄) = −B∆x̄

A∆ȳ
− 1

A∆ȳ
ln

µ
±A∆ȳAhg

A∆x̄

¡
eA∆x̄x̄ + C1∆x̄A∆x̄

¢¶
(25)

where C1∆x̄ is a constant. From Equations (11), (22) (24) and (25), we have

fȳ (ȳ)

fx̄ (x̄)
=

f̃∆ȳ (ȳ − g̃ (x̄))

f∆x̄ (x̄− h (ȳ))
=
exp

¡
A−2∆ȳ exp (A∆ȳ (ȳ − g̃ (x̄)) +B∆ȳ) + C∆ȳ (ȳ − g̃ (x̄)) +D∆ȳ

¢
exp

¡
A−2∆x̄ exp (A∆x̄ (x̄− h (ȳ)) +B∆x̄) + C∆x̄ (x̄− h (ȳ)) +D∆x̄

¢
=
exp

³
A−2∆ȳ exp (A∆ȳȳ +B∆x̄ +B∆ȳ)

³
±A∆ȳAhg

A∆x̄

¡
eA∆x̄x̄ + C1∆x̄A∆x̄

¢´
+ C∆ȳ (ȳ − g̃ (x̄)) +D∆ȳ

´
exp

³
A−2∆x̄ exp (A∆x̄x̄+B∆ȳ +B∆x̄)

³±A∆x̄Ahg
A∆ȳ

(eA∆ȳ ȳ + C1∆ȳA∆ȳ)
´
+ C∆x̄ (x̄− h (ȳ)) +D∆x̄

´

=
exp

³
exp (B∆x̄ +B∆ȳ)

±Ahg

A∆ȳA∆x̄
exp (A∆ȳȳ) exp (A∆x̄x̄)

´
exp

³
exp (B∆x̄ +B∆ȳ)

±Ahg

A∆x̄A∆ȳ
exp (A∆ȳȳ) exp (A∆x̄x̄)

´ ×
×
exp

³
A−2∆ȳ exp (B∆x̄ +B∆ȳ)

±A∆ȳAhg

A∆x̄
exp (A∆ȳȳ) (C1∆x̄A∆x̄) + C∆ȳ (ȳ − g̃ (x̄)) +D∆ȳ

´
exp

³
A−2∆x̄ exp (B∆x̄ +B∆ȳ)

±A∆x̄Ahg

A∆ȳ
exp (A∆x̄x̄) (C1∆ȳA∆ȳ) + C∆x̄ (x̄− h (ȳ)) +D∆x̄

´
=

exp
³
exp (B∆x̄ +B∆ȳ)

±AhgC1∆x̄
A∆ȳ

exp (A∆ȳȳ) + C∆ȳȳ +D∆ȳ

´
exp (C∆x̄h (ȳ))

exp
³
exp (B∆x̄ +B∆ȳ)

±AhgC1∆ȳ
A∆x̄

exp (A∆x̄x̄) + C∆x̄x̄+D∆x̄

´
exp (C∆ȳg̃ (x̄))

=
exp

³
exp (B∆x̄ +B∆ȳ)

±AhgC1∆x̄
A∆ȳ

exp (A∆ȳȳ) + C∆ȳȳ +D∆ȳ

´
exp

³
exp (B∆x̄ +B∆ȳ)

±AhgC1∆ȳ
A∆x̄

exp (A∆x̄x̄) + C∆x̄x̄+D∆x̄

´ ×
×
exp

³
−C∆x̄B∆ȳ

A∆x̄

´³
±A∆x̄Ahg

A∆ȳ

´−C∆x̄
A∆x̄

¡
eA∆ȳ ȳ + C1∆ȳA∆ȳ

¢−C∆x̄
A∆x̄

exp
³
−C∆ȳB∆x̄

A∆ȳ

´³
±A∆ȳAhg

A∆x̄

´−C∆ȳ
A∆ȳ (eA∆x̄x̄ + C1∆x̄A∆x̄)

−C∆ȳ
A∆ȳ

,

implying that

fȳ (ȳ) = An∆ȳ exp

µ
exp (B∆x̄ +B∆ȳ)

±AhgC1∆x̄

A∆ȳ
exp (A∆ȳȳ) + C∆ȳȳ

¶¡
eA∆ȳ ȳ + C1∆ȳA∆ȳ

¢−C∆x̄
A∆x̄

fx̄ (x̄) = An∆x̄ exp

µ
exp (B∆x̄ +B∆ȳ)

±AhgC1∆ȳ

A∆x̄
exp (A∆x̄x̄) + C∆x̄x̄

¶¡
eA∆x̄x̄ + C1∆x̄A∆x̄

¢−C∆ȳ
A∆ȳ .

where the constants An∆ȳ and An∆x̄ incorporate any prefactor that would have can-

celled in the ratio fȳ (ȳ) /fx̄ (x̄) as well as the constants exp (D∆ȳ) exp (−C∆x̄B∆ȳ/A∆x̄)

(±A∆x̄Ahg/A∆ȳ)
−C∆x̄
A∆x̄ and exp (D∆x̄) exp (−C∆ȳB∆x̄/A∆ȳ) (±A∆ȳAhg/A∆x̄)

−C∆ȳ
A∆ȳ , re-

spectively. The constants An∆ȳ and An∆x̄ are determined by the fact that these
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densities must integrate to 1. It can be readily, albeit tediously, verified that it is

possible to set the signs of all constants so as to obtain valid densities for all variables.

Hence, we have found one special case where Model 1 is not identified. This is case

2 in the statement of Theorem 1.

Case 3 In the special case where A = 0 in Equation (20) (not included in Case 2),
we let B2 = exp (B) and write, for F = F∆x, F̃∆y:

F 00 (u) = B2

F (u) = B2u
2 + Cu+D

for some constants B2, C, D (that differ for F∆x and F̃∆y) to conclude that f (u) is a

normal and therefore that ∆x̄ and ∆ȳ are normally distributed. Since under Model

3 the distribution of ∆x̄ is a factor of the distribution of ∆x and under model 4 the

distribution of ∆ȳ is a factor of the distribution of ∆y, we conclude that either ∆x

must have a normal factor.or ∆y must have a normal factor. Next,

|h0 (ȳ)|
|g̃0 (x̄)| =

¯̄̄
F̃ 00
∆ȳ (ȳ − g̃ (x̄))

¯̄̄
|F 00

∆x̄ (x̄− h (ȳ))| = B3

where B3 is the ratio of the constants B2 obtained for F∆x and F̃∆y. Rearranging, we

obtain

|h0 (ȳ)| = B3 |g̃0 (x̄)|
and it follows that h0 (ȳ) and g̃0 (x̄) must be constant, i.e., that h (ȳ) and g̃ (x̄) are

linear. From fȳ(ȳ)
fx̄(x̄)

=
f̃∆ȳ(ȳ−g̃(x̄))
f∆x̄(x̄−h(ȳ)) , we can show that fȳ (ȳ) and fx̄ (x̄) must also be

normal. Either Model 3 or 4 then implies that x∗ must be normal. So we recover the

more familiar unidentified case 3 in the statement of Theorem 1.
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