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Abstract

This paper considers identi�cation and estimation of a nonparametric regression
model with an unobserved discrete covariate. The sample consists of a dependent vari-
able and a set of covariates, one of which is discrete and arbitrarily correlates with the
unobserved covariate. The observed discrete covariate has the same support as the un-
observed covariate, and can be interpreted as a proxy or mismeasure of the unobserved
one, but with a nonclassical measurement error that has an unknown distribution. We
obtain nonparametric identi�cation of the model given monotonicity of the regression
function and a rank condition that is directly testable given the data. Our identi�cation
strategy does not require additional sample information, such as instrumental variables
or a secondary sample. We then estimate the model via the method of sieve maximum
likelihood, and provide root-n asymptotic normality and semiparametric e¢ ciency of
smooth functionals of interest. Two small simulations are presented to illustrate the
identi�cation and the estimation results.
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1 INTRODUCTION

We consider identi�cation and estimation of the nonparametric regression model

Y = m (X�) + �; E[�jX�] = 0 (1.1)

where Y and X� are scalars and X� is not observed. We assume X� is discretely distributed,

so for example X� could be categorical, qualitative, or count data. We observe a random

sample of Y and a scalar X, where X could be arbitrarily correlated with the unobserved

X�, and � is independent of X and X�. The extension to

Y = m (X�;W ) + �; E[�jX�;W ] = 0

where W is an additional vector of observed error-free covariates is immediate (and is in-

cluded in the estimation section) because our assumptions and identi�cation results for model

(1.1) can be all restated as conditional upon W . For convenience we will interpret X as a

measure of X� that is contaminated by measurement or misclassi�cation error, but more

generally X� could represent some latent, unobserved quanti�able discrete variable like a

health status or life expectancy quantile, and X could be some observed proxy such as a

body mass index quantile or the response to a health related categorical survey question.

We will require that X and X� have the same support. Equation (1.1) can be interpreted as

a latent factor model Y = m�+ �, with two unobserved independent factors m� and �, with

identi�cation based on observing the proxy X and on existence of a measurable function

m(�) such that m� = m(X�). Regardless of whether X is literally a �awed measure of X� or
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just some related covariate, we may still de�ne X �X� as a measurement error, though in

general this error will be nonclassical, that is, it will have nonzero mean not be independent

of X�.

Numerous data sets possess nonclassical measurement errors (see, e.g., Bound, Brown and

Mathiowetz (2001) for a review), however, to the best of our knowledge, there is no published

work that allows for nonparametric identi�cation and estimation of nonparametric regression

models with nonclassical measurement errors without parametric restrictions or additional

sample information such as instrumental variables, repeated measurements, or validation

data, which our paper provides. In short, we nonparametrically recover the conditional

density fY jX� (or equivalently, the function m and the density of �) just from the observed

joint distribution fY;X , while imposing minimal restrictions on the joint distribution fX;X�.

The relationship between the latent model fY jX� and the observed density fY;X is

fY;X(y; x) =

Z
fY jX�(yjx�)fX;X� (x; x�) dx�: (1.2)

All the existing published papers for identifying the latent model fY jX� use one of the three

methods: i) assuming the measurement error structure fXjX� belongs to a parametric family

(see, e.g., Fuller (1987), Bickel and Ritov (1987), Hsiao (1991), Murphy and Van der Vaart

(1996), Wang, Lin, Gutierrez and Carroll (1998), Liang, Hardle and Carroll (1999), Taupin

(2001), Hong and Tamer (2003), Liang and Wang (2005)); ii) assuming there exists an ad-

ditional exogenous variable Z in the sample (such as an instrument or a repeated measure)

that does not enter the latent model fY jX�, and exploiting assumed restrictions on fY jX�;Z

and fX;X�;Z to identify fY jX� given the joint distribution of fy; x; zg (see, e.g., Hausman,
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Ichimura, Newey and Powell (1991), Li and Vuong (1998), Li (2002), Wang (2004), Schen-

nach (2004), Carroll, Ruppert, Crainiceanu, Tosteson and Karagas (2004), Mahajan (2006),

Lewbel (2007), Hu (2006) and Hu and Schennach (2006)); or iii) assuming a secondary sam-

ple to provide information on fX;X� to permit recovery of fY jX� from the observed fY;X in

the primary sample (see, e.g., Carroll and Stefanski (1990), Lee and Sepanski (1995), Chen,

Hong, and Tamer (2005), Chen, Hong, and Tarozzi (2007), Hu and Ridder (2006)). Detailed

reviews on existing approaches and results can be found in several recent books and surveys

on measurement error models; see, e.g., Carroll, Ruppert, Stefanski and Crainiceanu (2006),

Chen, Hong and Nekipelov (2007), Bound, Brown and Mathiowetz (2001), Wansbeek and

Meijer (2000), and Cheng and Van Ness (1999).

In this paper, we obtain identi�cation by exploiting nonparametric features of the latent

model fY jX�, such as independence of the regression error term �. Our results are useful be-

cause many applications specify the latent model of interest fY jX�, while often little is known

about fXjX�, that is, about the nature of the measurement error or the exact relationship

between the unobserved latent X� and a proxy X. In addition, our key �rank�condition for

identi�cation is directly testable from the data.

Our identi�cation method is based on characteristic functions. Suppose X and X� have

support X = f1; 2; :::; Jg. Then by equation (1.1), exp (itY ) = exp (it�)
PJ

j=1 1(X
� =

j) exp [im (j) t] for any given constant t, where 1() is the indicator function that equals one if

its argument is true and zero otherwise. This equation and independence of � yield moments

E [exp (itY ) j X = x] = E [exp (it�)]
JX

x�=1

fX�jX(x
�jx) exp [im (x�) t] (1.3)
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Evaluating equation (1.3) for t 2 ft1; :::; tKg and x 2 f1; 2; :::; Jg provides KJ equations in

J2 + J + K unknown constants. These unknown constants are the values of fX�jX(x
�jx),

m (x�), and E [exp (it�)] for t 2 ft1; :::; tKg, x 2 f1; 2; :::; Jg, and x� 2 f1; 2; :::; Jg. Given a

large enough value of K, these moments provide more equations than unknowns. We provide

su¢ cient regularity assumption to ensure existence of some set of constants ft1; :::; tKg such

that these equations do not have multiple solutions, and the resulting unique solution to

these equations provides identi�cation of m() and of fX;X�, and hence of fY jX�.

As equation (1.3) shows, our identi�cation results depend on many moments of Y or

equivalently of �, rather than just on the conditional mean restrictionE[�jX�] = 0 that would

su¢ ce for identi�cation if X� were observed. Previous results, for example, Reiersol (1950),

Kendall and Stuart (1979), and Lewbel (1997), exist that obtain identi�cation based on

higher moments as we do (without instruments, repeated measures, or validation data), but

all these previous results have assumed either classical measurement error or/and parametric

restrictions.

Equation (1.3) implies that independence of the regression error � is actually stronger

than necessary for identi�cation, since e.g. we would obtain the same equations used for

identi�cation if we only had exp (it�) ? X�jX for t 2 ft1; :::; tKg. To illustrate this point

further, we provide an alternative identi�cation result for the dichotomous X� case without

the independence assumption, and in this case we can identify (solve) for all the unknowns

in closed-form.

Estimation could be based directly on equation (1.3) using, for example, Hansen�s (1982)

Generalized Method of Moments (GMM). However, this would require knowing or choos-

ing constants t1; :::; tK . Moreover, under the independence assumption of � and X�, we
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have potentially in�nitely many constants t that solves equation (1.3); hence GMM esti-

mation using �nitely many such t�s will not be e¢ cient in general. One could apply the

in�nite-dimensional Z-estimation as described in Van der Vaart and Wellner (1996), here

we instead apply the method of sieve Maximum Likelihood (ML) of Grenander (1981) and

Geman and Hwang (1982), which does not require knowing or choosing constants t1; :::; tK ,

and easily allows for an additional vector of error-free covariatesW . The sieve ML estimator

essentially replaces the unknown functions f�, m, and fX�jX;W with polynomials, Fourier

series, splines, wavelets or other sieve approximators, and estimates the parameters of these

approximations by maximum likelihood. By simple applications of the general theory on

sieve MLE developed in Wong and Shen (1995), Shen (1997), Van de Geer (1993, 2000) and

others, we provide consistency and convergence rate of the sieve MLE, and root-n asymp-

totic normality and semiparametric e¢ ciency of smooth functionals of interest, such as the

weighted averaged derivatives of the latent nonparametric regression function m(X�;W ), or

the �nite-dimensional parameters (�) in a semiparametric speci�cation of m(X�;W ; �).

The rest of this paper is organized as follows. Section 2 provides the identi�cation results.

Section 3 describes the sieve ML estimator and presents its large sample properties. Section

4 provides two small simulation studies. Section 5 brie�y concludes and all the proofs are in

the appendix.

2 NONPARAMETRIC IDENTIFICATION

Our basic nonparametric regression model is equation (1.1) with scalar Y and X� 2 X =

f1; 2; :::; Jg. We observe a random sample of (X; Y ) 2 X �Y, where X is a proxy of X�. The
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goal is to consider restrictions on the latent model fY jX� that su¢ ce to nonparametrically

identify fY jX� and fX�jX from fY jX .

Assumption 2.1 X ? �jX�.

This assumption implies that the measurement errorX�X� is independent of the dependent

variable Y conditional on the true value X�. In other words, we have fY jX�;X(yjx�; x) =

fY jX�(yjx�) for all (x; x�; y) 2 X � X � Y.

Assumption 2.2 X� ? �:

This assumption implies that the regression error � is independent of the regressor X� so

fY jX� (yjx�) = f� (y �m(x�)). The relationship between the observed density and the latent

ones are then:

fY;X(y; x) =
JX

x�=1

f� (y �m(x�)) fX;X� (x; x�) : (2.1)

Assumption 2.2 rules out heteroskedasticity or other heterogeneity of the regression error �,

but allows its density f� to be completely unknown and nonparametric.

Let � denote a characteristic function (ch.f.). Equation (2.1) is equivalent to

�Y;X=x (t) = �� (t)
JX

x�=1

exp (itm(x�)) fX;X� (x; x�) ; (2.2)

for all real-valued t, where �Y;X=x (t) =
R
exp(ity)fY;X(y; x)dy and x 2 X . Since � may not

be symmetric, �� (t) =
R
exp(it�)f�(�)d� need not be real-valued. We therefore let

�� (t) �
���� (t)�� exp (ia (t)) ;
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where ���� (t)�� �q�Ref�� (t)g�2 + �Imf�� (t)g�2; a (t) � arccos
Ref�� (t)g���� (t)�� :

We then have for any real-valued scalar t,

�Y;X=x (t) =
���� (t)�� JX

x�=1

exp (itm(x�) + ia (t)) fX;X� (x; x�) : (2.3)

De�ne

FX;X� =

0BBBBBBBBBB@

fX;X� (1; 1) fX;X� (1; 2) ::: fX;X� (1; J)

fX;X� (2; 1) fX;X� (2; 2) ::: fX;X� (2; J)

::: ::: ::: :::

fX;X� (J; 1) fX;X� (J; 2) ::: fX;X� (J; J)

1CCCCCCCCCCA
;

and for any real-valued vector t = (0; t2; :::; tJ), we de�ne

�Y;X(t) =

0BBBBBBBBBB@

fX(1) �Y;X=1(t2) ::: �Y;X=1(tJ)

fX(2) �Y;X=2(t2) ::: �Y;X=2(tJ)

::: ::: ::: :::

fX(J) �Y;X=J(t2) ::: �Y;X=J(tJ)

1CCCCCCCCCCA
; Dj�j(t) =

0BBBBBBBBBB@

1 0 ::: 0

0
����(t2)�� ::: 0

::: ::: ::: :::

0 0 :::
����(tJ)��

1CCCCCCCCCCA
;

and de�ne mj = m(j) for j = 1; 2; :::; J;

�m;a(t) =

0BBBBBBBBBB@

1 exp (it2m1 + ia (t2)) ::: exp (itJm1 + ia (tJ))

1 exp (it2m2 + ia (t2)) ::: exp (itJm2 + ia (tJ))

::: ::: ::: :::

1 exp (it2mJ + ia (t2)) ::: exp (itJmJ + ia (tJ))

1CCCCCCCCCCA
:
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With these matrix notations, for any real-valued vector t equation (2.3) is equivalent to

�Y;X(t) = FX;X� � �m;a(t)�Dj�j(t): (2.4)

Equation (2.4) relates the known parameters �Y;X(t) (which may be interpreted as re-

duced form parameters of the model) to the unknown structural parameters FX;X�, �m;a(t),

and Dj�j(t). Equation (2.4) provides a su¢ cient number of equality constraints to iden-

tify the structural parameters given the reduced form parameters, so what is required are

su¢ cient invertibility or rank restrictions to rule out multiple solutions of these equations.

To provide these conditions, consider both the real and imaginary parts of �Y;X(t). Since

Dj�j(t) is real by de�nition, we have

Ref�Y;X(t)g = FX;X� � Ref�m;a(t)g �Dj�j(t); (2.5)

and

Imf�Y;X(t)g = FX;X� � Imf�m;a(t)g �Dj�j(t): (2.6)

The matrices Imf�Y;X(t)g and Imf�m;a(t)g are not invertible because their �rst columns

are zeros, so we replace equation (2.6) with

(Imf�Y;X(t)g+�X) = FX;X� � (Imf�m;a(t)g+�)�Dj�j(t); (2.7)
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where

�X =

0BBBBBBBBBB@

fX(1) 0 ::: 0

fX(2) 0 ::: 0

::: ::: ::: :::

fX(J) 0 ::: 0

1CCCCCCCCCCA
and � =

0BBBBBBBBBB@

1 0 ::: 0

1 0 ::: 0

::: ::: ::: :::

1 0 ::: 0

1CCCCCCCCCCA
:

Equation (2.7) holds because FX;X��� = �X and��Dj�j(t) = �. LetCt � (Ref�Y;X(t)g)�1�

(Imf�Y;X(t)g+�X).

Assumption 2.3 (rank).There is a real-valued vector t = (0; t2; :::; tJ) such that: (i) Ref�Y;X(t)g

and (Imf�Y;X(t)g+�X) are invertible; (ii) For any real-valued J � J�diagonal matrices

Dk = Diag (0; dk;2; :::; dk;J), if D1 +Ct �D1 �Ct +D2 �Ct �Ct �D2 = 0 then Dk = 0 for

k = 1; 2.

We call Assumption 2.3 the rank condition, because it is analogous to the rank condition for

identi�cation in linear models, and in particular implies identi�cation of the two diagonal

matrices

D@ lnj�j(t) = Diag

�
0;
@

@t
ln
����(t2)�� ; :::; @@t ln ����(tJ)��

�

and

D@a(t) = Diag

�
0;
@

@t
a(t2); :::;

@

@t
a(tJ)

�
.

Assumption 2.3(ii) is rather complicated, but can be replaced by some simpler su¢ cient

alternatives, which we will describe later. Note also that the rank condition, Assumption

2.3, is testable, since it is expressed entirely in terms of fX and the matrix �Y;X(t), which,

given a vector t, can be directly estimated from data.
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In the appendix, we show that

Re�Y;X(t)� At � (Re�Y;X(t))�1 = FXjX� �Dm �
�
FXjX�

��1
; (2.8)

where At on the left-hand side is identi�ed when D@ lnj�j(t) and D@a(t) are identi�ed, Dm =

Diag (m(1); :::;m(J)), and

FXjX� =

0BBBBBBBBBB@

fXjX� (1j1) fXjX� (1j2) ::: fXjX� (1jJ)

fXjX� (2j1) fXjX� (2j2) ::: fXjX� (2jJ)

::: ::: ::: :::

fXjX� (J j1) fXjX� (J j2) ::: fXjX� (J jJ)

1CCCCCCCCCCA
:

Equation (2.8) implies that fXjX�(�jx�) and m(x�) are eigenfunctions and eigenvalues of an

identi�ed J�J�matrix on the left-hand. We may then identify fXjX�(�jx�) andm(x�) under

the following assumption:

Assumption 2.4 (i) m(x�) < 1 and m(x�) 6= 0 for all x� 2 X ; (ii) m(x�) is strictly

increasing in x� 2 X .

Assumption 2.4(i) implies that each possible value ofX� is relevant for Y , and the monotonic-

ity assumption 2.4(ii) allows us to assign each eigenvalue m(x�) to its corresponding value

x�. If we only wish to identify the support of the latent factor m� = m(X�) and not the

regression function m(�) itself, then this monotonicity assumption can be dropped.

Assumption 2.4 could be replaced by restrictions on fX;X� instead (e.g., by exploiting

knowledge about the eigenfunctions rather than eigenvalues to properly assign each m(x�)
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to its corresponding value x�), but assumption 2.4 is more in line with our other assumptions,

which assume that we have information about our regression model but know very little about

the relationship of the unobserved X� to the proxy X.

Theorem 2.1 Suppose that assumptions 2.1, 2.2, 2.3 and 2.4 hold in equation (1.1). Then

the density fY;X uniquely determines fY jX� and fX;X�.

Given our model, de�ned by assumptions 2.1 and 2.2, Theorem 2.1 shows that assump-

tions 2.3 and 2.4 guarantee that the sample of (Y;X) is informative enough to identify ��,

m(x�) and fX;X� in equation (2.2), meaning that all the unknowns in equation (2.1) are

nonparametrically identi�ed. This identi�cation is obtained without additional sample in-

formation such as an instrumental variable or a secondary sample. Of course, if we have

additional covariates such as instruments or repeated measures, they could exploited along

with Theorem 2.1. Our results can also be immediately applied if we observe an additional

covariate vector W that appears in the regression function, so Y = m (X�;W )+ �, since our

assumptions and results can all be restated as conditioned upon W .

Now consider some simpler su¢ cient conditions for assumption 2.3(ii) in Theorem 2.1.

Denote CTt as the transpose of Ct. Let the notation "�" stand for the Hadamard product,

i.e., the element-wise product of two matrices.

Assumption 2.5 The real-valued vector t = (0; t2; :::; tJ) satisfying assumption 2.3(i) also

satis�es: Ct � CTt + I is invertible and all the entries in the �rst row of the matrix Ct are

nonzero.

Assumption 2.5 implies assumption 2.3(ii), and is in fact stronger than assumption 2.3(ii),

since if it holds then we may explicitly solve for D@ lnj�j(t) and D@a(t) in simple closed form.
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Another alternative to assumption 2.3(ii) is the following:

Assumption 2.6 (symmetric rank) a (t) = 0 for all t and for any real-valued J�J�diagonal

matrix D1 = Diag (0; d1;2; :::; d1;J), if D1 + Ct �D1 � Ct = 0 then D1 = 0.

The condition in assumption 2.6 that a (t) = 0 for all t is the same as assuming that the

distribution of the error term � is symmetric. We call assumption 2.6 the symmetric rank

condition because it implies our previous rank condition when � is symmetrically distributed.

Finally, as noted in the introduction, the assumption that the measurement error is inde-

pendent of the regression error, assumption 2.2, is stronger than necessary. All independence

is used for is to obtain equation (1.3) for some given values of t. More formally, all that is

required is that equation (2.4), and hence that equations (2.6) and (2.7) hold for the vector

t in assumption 2.3. When there are covariates W in the regression model, which we will

use in the estimation, the requirement becomes that equation (2.4) hold for the vector t in

assumption 2.3 conditional on W . Therefore, Theorem 2.1 holds replacing assumption 2.2

with the following, strictly weaker assumption.

Assumption 2.7 For the known t = 0; t2; :::; tJ that satis�es assumption 2.3, ��jX�=x� (t) =

��jX�=1 (t) and
@
@t
��jX�=x� (t) =

@
@t
��jX�=1 (t) for all x

� 2 X .

This condition permits some correlation of the proxy X with the regression error �, and

allows some moments of � to correlate with X�

2.1 THE DICHOTOMOUS CASE

We now show how the assumptions required for Theorem 2.1 can be relaxed and simpli�ed in

the special case where X� is a 0-1 dichotomous variable, i.e., X = f0; 1g. De�ne mj = m(j)
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for j = 0; 1. Given just assumption 2.1, the relationship between the observed density and

the latent ones becomes

fY jX(yjj) = fX�jX (0jj) f�jX�(y �m0jj) + fX�jX (1jj) f�jX�(y �m1jj) for j = 0; 1: (2.9)

With assumption 2.2, equation (2.9) simpli�es to

fY jX(yjj) = fX�jX (0jj) f�(y �m0) + fX�jX (1jj) f�(y �m1) for j = 0; 1; (2.10)

which says that the observed density fY jX(yjj) is a mixture of two distributions that only

di¤er in their means. Studies on mixture models focus on parametric or nonparametric re-

strictions on f� for a single value of j that su¢ ce to identify all the unknowns in this equation.

For example, Bordes, Mottelet and Vandekerkhove (2006) shows that all the unknowns in

equation (2.10) are identi�ed for each j when the distribution of � is symmetric. In contrast,

errors-in-variables models typically impose restrictions on fX�jX (or exploit additional infor-

mation regarding fX�jX such as instruments or validation data) along with equation (2.9) or

(2.10) to obtain identi�cation with few restrictions on the distribution f�.

Now consider assumptions 2.3 or 2.5 in the dichotomous case. We then have for any

real-valued 2� 1�vector t = (0; t),

�Y;X(t) =

0BB@ fX(0) �Y jX=0(t)fX(0)

fX(1) �Y jX=1(t)fX(1)

1CCA
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Ref�Y;X(t)g =

0BB@ fX(0) Re�Y jX=0(t)fX(0)

fX(1) Re�Y jX=1(t)fX(1)

1CCA
det (Ref�Y;X(t)g) = fX(0)fX(1)

�
Re�Y jX=1(t)� Re�Y jX=0(t)

�

Imf�Y;X(t)g+�X =

0BB@ fX(0) Im�Y jX=0(t)fX(0)

fX(1) Im�Y jX=1(t)fX(1)

1CCA
det (Imf�Y;X(t)g+�X) = fX(0)fX(1)

�
Im�Y jX=1(t)� Im�Y jX=0(t)

�
Also,

Ct � (Ref�Y;X(t)g)�1 � (Imf�Y;X(t)g+�X)

=
1

det (Ref�Y;X(t)g)

2664 Re�Y jX=1(t)fX(1) �Re�Y jX=0(t)fX(0)

�fX(1) fX(0)

3775
0BB@ fX(0) Im�Y jX=0(t)fX(0)

fX(1) Im�Y jX=1(t)fX(1)

1CCA

=

2664 1
fX(0)fX(1)[Im�Y jX=0(t)Re�Y jX=1(t)�Re�Y jX=0(t) Im�Y jX=1(t)]

det(Ref�Y;X(t)g)

0
det(Imf�Y;X(t)g+�X)
det(Ref�Y;X(t)g)

3775 ;

thus

�
Ct � CTt

�
+ I =

2664 2 0

0

�
det(Imf�Y;X(t)g+�X)
det(Ref�Y;X(t)g)

�2
+ 1

3775 ;
which is always invertible. Therefore, for the dichotomous case, assumption 2.3 and assump-

tion 2.5 become the same, and can be expressed as the following rank condition for binary

data:

Assumption 2.8 (binary rank) (i) fX(0)fX(1) > 0; (ii) there exist a real-valued scalar t

such that Re�Y jX=0(t) 6= Re�Y jX=1(t), Im�Y jX=0(t) 6= Im�Y jX=1(t), Im�Y jX=0(t) Re�Y jX=1(t) 6=
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Re�Y jX=0(t) Im�Y jX=1(t).

It should be generally easy to �nd a real-valued scalar t that satis�es this binary rank

condition.

In the dichotomous case, instead of imposing Assumption 2.4, we may obtain the ordering

of mj from that of observed �j � E(Y jX = j) under the following assumption:

Assumption 2.9 (i) �1 > �0; (ii) fX�jX (1j0) + fX�jX (0j1) < 1:

Assumption 2.9(i) is not restrictive because one can always rede�ne X as 1 �X if needed.

Assumption 2.9(ii) reveals the ordering of m1 and m0, by making it the same as that of �1

and �0 because

1� fX�jX (1j0)� fX�jX (0j1) =
�1 � �0
m1 �m0

;

so m1 � �1 > �0 � m0. Assumption 2.9(ii) says that the sum of misclassi�cation prob-

abilities is less than one, meaning that, on average, the observations X are more accurate

predictions of X� than pure guesses. See Lewbel (2007) for further discussion of this as-

sumption.

The following Corollary is a direct application of Theorem 2.1; hence we omit its proof.

Corollary 2.2 Suppose that X = f0; 1g, equations (1.1) and (2.10), assumptions 2.8 and

2.9 hold. Then the density fY;X uniquely determines fY jX� and fX;X�.

2.1.1 IDENTIFICATION WITHOUT INDEPENDENCE

We now show how to obtain identi�cation in the dichotomous case without the independent

regression error assumption 2.2. Given just assumption 2.1, Equation (2.9) implies that
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the observed density fY jX(yjj) is a mixture of two conditional densities f�jX�(y �m0jj) and

f�jX�(y �m1jj).

Instead of assuming the independence between X� and �, we impose the following weaker

assumption:

Assumption 2.10 E
�
�kjX�� = E ��k� for k = 2; 3.

Only these two moment restrictions are needed because we only need to solve for two un-

knowns, m0 and m1. Identi�cation could also be obtained using other, similar restrictions

such as quantiles or modes. For example, one of the moments in this assumption 2.10 might

be replaced with assuming that the density f�jX�=0 has zero median. Equation (2.9) then

implies that

0:5 =
�1 �m0

�1 � �0

Z m0

�1
fY jX=0(y)dy +

m0 � �0
�1 � �0

Z m0

�1
fY jX=1(y)dy

which may uniquely identifym0 under some testable assumptions. An advantage of Assump-

tion 2.10 is that we obtain a closed-form solution for m0 and m1.

De�ne vj � E
h�
Y � �j

�2 jX = j
i
, sj � E

h�
Y � �j

�3 jX = j
i
,

C1 �
(v1 + �

2
1)� (v0 + �20)
�1 � �0

; C2 �
1

2
(�1 � �0)

2 +
3

2

�
v1 � v0
�1 � �0

�2
� s1 � s0
�1 � �0

:

We leave the detailed proof to the appendix and present the result as follows:

Theorem 2.3 Suppose that X = f0; 1g, equations (1.1) and (2.9), assumptions 2.9 and

2.10 hold. Then the density fY jX uniquely determines fY jX� and fX�jX . To be speci�c, we
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have

m0 =
1

2
C1 �

r
1

2
C2; m1 =

1

2
C1 +

r
1

2
C2;

fX�jX (1j0) =
�0 � 1

2
C1p

2C2
� 1
2
; fX�jX (0j1) =

1
2
C1 � �1p
2C2

� 1
2
;

and

fY jX�=j(y) =
�1 �mj

�1 � �0
fY jX=0(y) +

mj � �0
�1 � �0

fY jX=1(y):

3 SIEVE MAXIMUM LIKELIHOOD ESTIMATION

This section considers the estimation of a nonparametric regression model as follows:

Y = m0 (X
�;W ) + �;

where the function m0() is unknown and W is a vector of error-free covariates and �

is independent of (X�;W ). Let fZt � (Yt; Xt;Wt)gnt=1 denote a random sample of Z �

(Y;X;W ). We have shown that fY jX�;W and fX�jX;W are identi�ed from fY jX;W . Let

�0 � (f01; f02; f03)
T �

�
f�; fX�jX;W ;m0

�T
be the true parameters of interest. Then the

observed likelihood of Y given (X;W ) (or the likelihood for �0) is

nY
t=1

fY jX;W (YtjXt;Wt) =

nY
t=1

(X
x�2X

f� (Yt �m0(x
�;Wt)) fX�jX;W (x

�jXt;Wt)

)
:

Before we present a sieve ML estimator b� for �0, we need to impose some mild smoothness
restrictions on the unknown functions �0 �

�
f�; fX�jX;W ;m0

�T
. The sieve method allows for
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unknown functions belonging to many di¤erent function spaces such as Sobolev space, Besov

space and others; see e.g., Shen and Wong (1994), Wong and Shen (1995), Shen (1997) and

Van de Geer (1993, 2000). But, for the sake of concreteness and simplicity, we consider the

widely used Hölder space of functions. Let � = (�1; :::; �d)
T 2 Rd, a = (a1; :::; ad)

T be a

vector of non-negative integers, and

rah(�) � @jaj

@�a11 � � � @�
ad
d

h(�1; :::; �d)

denote the jaj = a1 + � � � + ad -th derivative. Let k�kE denote the Euclidean norm. Let

V � Rd and 
 be the largest integer satisfying 
 > 
. The Hölder space �
(V) of order


 > 0 is a space of functions h : V 7! R such that the �rst 
 derivatives are continuous and

bounded, and the 
-th derivative are Hölder continuous with the exponent 
 � 
 2 (0; 1].

The Hölder space �
(V) becomes a Banach space under the Hölder norm:

khk�
 = maxjaj�

sup
�
jrah(�)j+max

jaj=

sup
� 6=�0

jrah(�)�rah(�0)j
(k� � �0kE)


�
 <1:

Denote �
c (V) � fh 2 �
(V) : khk�
 � c <1g as a Hölder ball. Let � 2 R, W 2 W with

W a compact convex subset in Rdw . Also denote

F1 =
�p

f1(�) 2 �
1c (R) : f1(�) > 0,
Z
R
f1(�)d� = 1

�
;

F2 =
�p

f2 (x�jx; �) 2 �
2c (W) : f2 (�j�; �) > 0,
Z
X
f2 (x

�jx;w) dx� = 1 for all x 2 X , w 2 W
�
;
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and

F3 = ff3 (x�; �) 2 �
3c (W) : f3 (i; w) > f3 (j; w) for all i > j, i; j 2 X , w 2 Wg

We impose the following smoothness restrictions on the densities:

Assumption 3.1 (i) all the assumptions in Theorem 2.1 hold; (ii) f�(�) 2 F1 with 
1 > 1=2;

(iii) fX�jX;W (x
�jx; �) 2 F2 with 
2 > dw=2 for all x�; x 2 X � f1; :::; Jg; (iv) m0(x

�; �) 2 F3

with 
3 > dw=2 for all x
� 2 X :

Denote A = F1 � F2 � F3 and � = (f1; f2; f3)T . Let E[�] denote the expectation with

respect to the underlying true data generating process for Zt. Then �0 � (f01; f02; f03)T =

argmax�2AE[`(Zt;�)], where

`(Zt;�) � ln
(X
x�2X

f1 (Yt � f3(x�;Wt)) f2 (x
�jXt;Wt)

)
: (3.1)

Let An = Fn
1 �Fn

2 �Fn
3 be a sieve space for A, which is a sequence of approximating spaces

that are dense in A under some pseudo-metric. The sieve MLE b�n = � bf1; bf2; bf3�T 2 An for
�0 2 A is de�ned as:

b�n = argmax
�2An

nX
t=1

`(Zt;�): (3.2)

We could apply in�nite-dimensional approximating spaces as sieves Fn
j for Fj; j = 1; 2; 3.

However, in applications, we shall use �nite-dimensional sieve spaces since they are easier to

implement. For j = 1; 2; 3, let pkj;nj (�) be a kj;n� 1�vector of known basis functions, such as

power series, splines, Fourier series, etc. Then we denote the sieve space for Fj; j = 1; 2; 3
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as follows:

Fn
1 =

np
f1(�) = pk1;n1 (�)T�1 2 F1

o
;

Fn
2 =

(p
f2 (x�jx; �) =

JX
k=1

JX
j=1

I (x� = k) I (x = j) p
k2;n
2 (�)T�2;kj 2 F2

)
;

Fn
3 =

(
f3 (x

�; �) =
JX
k=1

I (x� = k) p
k2;n
3 (�)T�3;k 2 F3

)
:

We note that the method of sieve MLE is very �exible and we can easily impose prior

information on the parameter space (A) and the sieve space (An). For example, if the func-

tional form of the true regression function m0(x
�; w) is known upto some �nite-dimensional

parameters �0 2 B, where B is a compact subset of Rd� , then we can take A = F1�F2�FB

and An = Fn
1 � Fn

2 � FB with FB = ff3 (x�; w) = m0(x
�; w; �) : � 2 Bg. The sieve MLE

becomes

b�n = argmax
�2An

nX
t=1

`(Zt;�); with `(Zt;�) = ln

(X
x�2X

f1 (Yt �m0(x
�;Wt; �)) f2 (x

�jXt;Wt)

)
:

(3.3)

3.1 Consistency

The consistency of the sieve MLE b�n can be established by applying either Geman and
Hwang (1982) or lemma A.1 of Newey and Powell (2003). First we de�ne a norm on A as

follows:

k�ks = sup
�

���h(�) �1 + �2���=2���+ sup
x�;x;w

jf2 (x�jx;w)j+ sup
x�;w

jf3 (x�; w)j for some � > 0:
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We assume

Assumption 3.2 (i) �1 < E [`(Zt;�0)] < 1, E [`(Zt;�)] is upper semicontinuous on

A under the metric k�ks; (ii) there are a �nite � > 0 and a random variable U(Zt) with

EfU(Zt)g <1 such that sup�2An:k���0ks�� j`(Zt;�)� `(Zt;�0)j � �
�U(Zt).

Assumption 3.3 (i) pk1;n1 (�) is a k1;n�1�vector of spline wavelet basis functions on R, and

for j = 2; 3, pkj;nj (�) is a kj;n � 1�vector of tensor product of spline basis functions on W;

(ii) kn � maxfk1;n; k2;n; k3;ng ! 1 and kn=n! 0.

The following consistency lemma is a direct application of lemma A.1 of Newey and

Powell (2003) or theorem 3.1 (or remark 3.1(4), remark 3.3) of Chen (2006); hence we omit

its proof.

Lemma 3.1 Let b�n be the sieve MLE. Under assumptions 3.1-3.3, we have kb�n � �0ks =
op(1).

3.2 Convergence rate under the Fisher metric

Given Lemma 3.1, we can now restrict our attention to a shrinking jj � jjs�neighborhood

around �0. Let A0s � f� 2 A : jj� � �0jjs = o(1); jj�jjs � c0 < cg and A0sn � f� 2 An :

jj�� �0jjs = o(1); jj�jjs � c0 < cg. Then, for the purpose of establishing a convergence rate

under a pseudo metric that is weaker than jj � jjs, we can treat A0s as the new parameter

space and A0sn as its sieve space, and assume that both A0s and A0sn are convex parameter

spaces. For any �1, �2 2 A0s, we consider a continuous path f� (�) : � 2 [0; 1]g in A0s such

that � (0) = �1 and � (1) = �2. For simplicity we assume that for any �; � + v 2 A0s,
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f�+ �v : � 2 [0; 1]g is a continuous path in A0s, and that `(Zt;�+ �v) is twice continuously

di¤erentiable at � = 0 for almost all Zt and any direction v 2 A0s. De�ne the pathwise �rst

derivative as

d`(Zt;�)

d�
[v] � d`(Zt;�+ �v)

d�
j�=0 a.s. Zt;

and the pathwise second derivative as

d2`(Zt;�)

d�d�T
[v; v] � d2`(Zt;�+ �v)

d� 2
j�=0 a.s. Zt:

De�ne the Fisher metric k�k on A0s as follows: for any �1, �2 2 A0s,

k�1 � �2k2 � E
(�

d`(Zt;�0)

d�
[�1 � �2]

�2)
:

We show that b�n converges to �0 at a rate faster than n�1=4 under the Fisher metric k�k
with the following assumptions:

Assumption 3.4 (i) � > 
1; (ii) 
 � minf
1; 
2=dw; 
3=dwg > 1=2:

Assumption 3.5 (i) A0s is convex at �0; (ii) `(Zt;�) is twice continuously pathwise di¤er-

entiable with respect to � 2 A0s.

Assumption 3.6 supe�2A0s sup�2A0sn
���d`(Zt;e�)d�

h
���0

k���0ks

i��� � U(Zt) for a random variable U(Zt)
with Ef[U(Zt)]2g <1.
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Assumption 3.7 (i) supv2A0s:jjvjjs=1E
��

d`(Zt;�0)
d�

[v]
�2�

� c <1; (ii) uniformly over e� 2
A0s and � 2 A0sn, we have

�E
�
d2`(Zt; e�)
d�d�T

[�� �0; �� �0]
�
= k�� �0k2 � f1 + o(1)g:

Assumption 3.4 guarantees that the sieve approximation error under the strong norm jj � jjs

goes to zero at the rate of (kn)�
. Assumption 3.5 makes sure that the twice pathwise

derivatives are well de�ned with respect to � 2 A0s, hence the pseudo metric k�� �0k

is well de�ned on A0s. Assumption 3.6 impose an envelope condition. Assumption 3.7(i)

implies that k�� �0k �
p
c k�� �0ks for all � 2 A0s. Assumption 3.7(ii) implies that

there are positive �nite constants c1 and c2 such that for all � 2 A0sn, c1 k�� �0k2 �

E[`(Zt;�0) � `(Zt;�)] � c2 k�� �0k2, that is, k�� �0k2 is equivalent to the Kullback-

Leibler discrepancy on the local sieve space A0sn. The following convergence rate theorem is

a direct application of theorem 3.2 of Shen and Wong (2004) or theorem 3.2 of Chen (2006)

to the local parameter space A0s and the local sieve space A0sn; hence we omit its proof.

Theorem 3.2 Under assumptions 3.1-3.7, we have

kb�n � �0k = OP  max(k�
n ;rknn
)!

= OP

�
n

�

2
+1

�
if kn = O

�
n

1
2
+1

�
:
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3.3 Asymptotic normality and semiparametric e¢ ciency

Let V denote the closure of the linear span of A0s�f�0g under the Fisher metric k�k. Then�
V; k�k

�
is a Hilbert space with the inner product de�ned as

hv1; v2i � E
��

d`(Zt;�0)

d�
[v1]

��
d`(Zt;�0)

d�
[v2]

��
:

We are interested in estimation of a functional �(�0), where � : A ! R. It is known that

the asymptotic properties of �(�̂n) depend on the smoothness of the functional � and the

rate of convergence of the sieve MLE �̂n. For any v 2 V, we denote

d�(�0)

d�
[v] � lim

�!0
[(�(�0 + �v)� �(�0))=� ]

whenever the right hand-side limit is well de�ned.

We impose the following additional conditions for asymptotic normality of plug-in sieve

MLE �(�̂n):

Assumption 3.8 (i) for any v 2 V, �(�0 + �v) is continuously di¤erentiable in � 2 [0; 1]

near � = 0, and

kd�(�0)
d�

k � sup
v2V:jjvjj>0

���d�(�0)d�
[v]
���

jjvjj <1;

(ii) there exist constants c > 0; ! > 0, and a small " > 0 such that for any v 2 V with

jjvjj � ", we have �����(�0 + v)� �(�0)� d�(�0)d�
[v]

���� � cjjvjj!:
Under Assumption 3.8 (i), by the Riesz representation theorem, there exists �� 2 V such
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that

h��; vi = d�(�0)

d�
[v] for all v 2 V (3.4)

and

jj��jj2 � kd�(�0)
d�

k2 � sup
v2V:jjvjj>0

���d�(�0)d�
[v]
���2

jjvjj2 <1: (3.5)

Under Theorem 3.2, we have jjb�n � �0jj = OP (�n) with �n = n �

2
+1 . In the following we

denote N0 = f� 2 A0s : k�� �0k = O(�n)g and N0n = f� 2 A0sn : k�� �0k = O(�n)g.

Assumption 3.9 (i) (�n)! = o(n�1=2); (ii) there is a ��n 2 An�f�0g such that jj��n���jj =

o(1) and �n � k��n � ��k = o(n�1=2).

Assumption 3.10 there is a random variable U(Zt) with Ef[U(Zt)]2g < 1 and a non-

negative measurable function � with lim�!0 �(�) = 0 such that for all � 2 N0n,

sup
�2N0

����d2`(Zt;�)d�d�T
[�� �0; ��n]

���� � U(Zt)� �(jj�� �0jjs):
Assumption 3.11 Uniformly over � 2 N0 and � 2 N0n,

E

�
d2`(Zt;�)

d�d�T
[�� �0; ��n]�

d2`(Zt;�0)

d�d�T
[�� �0; ��n]

�
= o

�
n�1=2

�
:

Assumption 3.8(i) is critical for obtaining the
p
n convergence of plug-in sieve MLE �(�̂n)

to �(�0) and its asymptotic normality. If Assumption 3.8(i) is not satis�ed, then the plug-in

sieve MLE �(�̂n) is still consistent for �(�0), but the best achievable convergence rate is

slower than the
p
n�rate. Assumption 3.9 implies that the asymptotic bias of the Riesz

representer is negligible. Assumptions 3.10 and 3.11 control the remainder term.



Nonclassical EIV without additional infomation

Applying theorems 1 and 4 of Shen (1997), we immediately obtain

Theorem 3.3 Suppose that assumptions 3.1-3.11 hold. Then the plug-in sieve MLE �(�̂n)

is semiparametrically e¢ cient, and
p
n (�(�̂n)� �(�0))

d! N (0; jj��jj2).

Following Ai and Chen (2003), the asymptotic e¢ cient variance, jj��jj2, of the plug-in

sieve MLE �(�̂n) can be consistently estimated by b�2n:

b�2n = max
v2An

���d�(b�n)d�
[v]
���2

1
n

Pn
t=1

�
d`(Zt;b�n)

d�
[v]
�2 :

Instead of estimating this asymptotic variance, one could also construct con�dence intervals

by applying the likelihood ratio inference as in Murphy and Van der Vaart (1996, 2000).

4 Simulation

This section presents two small simulation studies: the �rst one corresponds to the identi�-

cation strategy, and the second one checks the performance of sieve MLE.

4.1 Moment-based estimation

This subsection applies the identi�cation procedure to a simple nonlinear regression model

with simulated data. We consider the following regression model

y = 1 + 0:25 (x�)2 + 0:1 (x�)3 + �;
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where � � N(0; 1) is independent of x�. The marginal distribution Pr(x�) is as follows:

Pr(x�) = 0:2� [1(x� = 1) + 1(x� = 4)] + 0:3� [1(x� = 2) + 1(x� = 3)]

and the misclassi�cation probability matrix Fxjx� are in Tables 1-2. We consider two exam-

ples of the misclassi�cation probability matrix. Example 1 considers a strictly diagonally

dominant matrix Fxjx� as follows:

Fxjx� =

0BBBBBBBBBB@

0:6 0:2 0:1 0:1

0:2 0:6 0:1 0:1

0:1 0:1 0:7 0:1

0:1 0:1 0:1 0:7

1CCCCCCCCCCA
:

Example 2 has a misclassi�cation probability matrix

Fxjx� = 0:7Fu + 0:3I;

where I is an identify matrix and Fu =
h

uijP
k ukj

i
ij
with uij independently drawn from a

uniform distribution on [0; 1].

In each repetition, we directly follow the identi�cation procedure shown in the proof of

theorem 2.1. The matrix �Y;X is estimated by replacing the function �Y;X=x (t) with its

corresponding empirical counterpart as follows:

b�Y;X=x (t) = nX
j=1

exp(ityj)� 1(xj = x):
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Since it is directly testable, assumption 2.3 is veri�ed with tj in the vector t = (0; t2; t3; t4)

independently drawn from a uniform distribution on [�1; 1] until a desirable t is found. The

sample size is 5000 and the repetition times is 1000. The simulation results in Tables 1-2

include the estimates of regression function m(x�), the marginal distribution Pr(x�), and

the estimated misclassi�cation probability matrix Fxjx�, together with standard errors of

each element. As shown in Tables 1-2, the estimator following the identi�cation procedure

performs well with the simulated data.

4.2 Sieve MLE

This subsection applies the sieve ML procedure to a semiparametric model as follows:

Y = �1W + �2 (1�X�)W 2 + �3 + �;

where � is independent of X� 2 f0; 1g and W . The unknowns include the parameter of

interest � = (�1; �2; �3) and the nuisance functions f� and fX�jX;W .

We simulate the model from � � N(0; 1) and X� 2 f0; 1g according to the marginal

distribution fX�(x�) = 0:4 � 1(x� = 0) + 0:6 � 1(x� = 1). We generate the covariate W as

W = (1� 0:5X�)� �, where � � N(0; 1) is independent of X�. The observed mismeasured

X is generated as follows:

X =

8>><>>:
0 � (�) � p(X�)

1 otherwise

;

where p(0) = 0:5 and p(1) = 0:3.

The Monte Carlo simulation consists of 400 repetitions. In each repetition, we randomly
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draw 3000 observations of (Y;X;W ), and then apply three ML estimators to compute the

parameter of interest �. All three estimators assume that the true density f� of the regres-

sion error is unknown. The �rst estimator uses the contaminated sample fYi; Xi;Wigni=1 as

if it were accurate; this estimator is inconsistent and its bias should dominate the squared

root of mean square error (root MSE). The second estimator is the sieve MLE using un-

contaminated data fYi; X�
i ;Wigni=1; this estimator is consistent and most e¢ cient. However,

we call it �infeasible MLE�since X�
i is not observed in practice. The third estimator is the

sieve MLE (3.3) presented in Section 3, using the sample fYi; Xi;Wigni=1 and allowing for

arbitrary measurement error by assuming fXjX�;W is unknown. In this simulation study, all

three estimators are computed by approximating the unknown
p
f� using the same Hermite

polynomial sieve; for the third estimator (the sieve MLE) we also approximate
p
fXjX�;W by

another Hermite polynomial sieve. The Monte Carlo results in Table 3 show that the sieve

MLE has a much smaller bias than the �rst estimator ignoring measurement error. Since

the sieve MLE has to estimate the additional unknown function fXjX�;W , its b�j, j = 1; 2; 3
estimate may have larger standard error compared to the other two estimators. In summary,

our sieve MLE performs well in this Monte Carlo simulation.

5 Discussion

We have provided nonparametric identi�cation and estimation of a regression model in the

presence of a mismeasured discrete regressor, without the use of additional sample informa-

tion such as instruments, repeated measurements or validation data, and without parame-

terizing the distributions of the measurement error or of the regression error.
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Identi�cation mainly comes from the monotonicity of the regression function, the lim-

ited support of the mismeasured regressor, su¢ cient variation in the dependent variable,

and from some independence related assumptions regarding the regression model error. It

may be possible to extend these results to continuously distributed nonclassically mismea-

sured regressors, by replacing many of our matrix related assumptions and calculations with

corresponding linear operators.

APPENDIX. MATHEMATICAL PROOFS

Proof. (Theorem 2.1) Notice that @
@t

���� (0)�� = 0 and @
@t
a (0) = 0. we de�ne

@

@t
�Y;X(t) =

0BB@
iE [Y jX = 1] fX(1)

@
@t
�Y;X=1(t2) ::: @

@t
�Y;X=1(tJ)

iE [Y jX = 2] fX(2)
@
@t
�Y;X=2(t2) ::: @

@t
�Y;X=2(tJ)

::: ::: ::: :::
iE [Y jX = J ] fX(J)

@
@t
�Y;X=J(t2) ::: @

@t
�Y;X=J(tJ)

1CCA :
By taking the derivative with respect to scalar t, we have from equation (2.3)

@

@t
�Y;X=x (t) =

�
@

@t

���� (t)���X
x�

exp (itm(x�) + ia (t)) fX;X� (x; x�) (A.1)

+i

�
@

@t
a (t)

� ���� (t)��X
x�

exp (itm(x�) + ia (t)) fX;X� (x; x�)

+i
���� (t)��X

x�

exp (itm(x�) + ia (t))m(x�)fX;X� (x; x�) :

Equation (A.1) is equivalent to

@

@t
�Y;X(t) = FX;X� � �m;a(t)�D@j�j(t) (A.2)

+i� FX;X� � �m;a(t)�Dj�j(t)�D@a(t) + i� FX;X� �Dm � �m;a(t)�Dj�j(t);

where

D@j�j(t) =

0BB@
0 0 ::: 0
0 @

@t

����(t2)�� ::: 0
::: ::: ::: :::
0 0 ::: @

@t

����(tJ)��
1CCA ;

D@a(t) =

0BB@
0 0 ::: 0
0 @

@t
a(t2) ::: 0

::: ::: ::: :::
0 0 ::: @

@t
a(tJ)

1CCA ; Dm =

0BB@
m1 0 ::: 0
0 m2 ::: 0
::: ::: ::: :::
0 0 ::: mJ

1CCA :
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Since by de�nition, D@j�j(t) and D@a(t) are real-valued, we also have from equation (A.2)

Ref @
@t
�Y;X(t)g = FX;X� � Ref�m;a(t)g �D@j�j(t) (A.3)

�FX;X� � Imf�m;a(t)g �Dj�j(t)�D@a(t)

�FX;X� �Dm � Imf�m;a(t)g �Dj�j(t):

In order to replace the singular matrix Imf�m;a(t)g with the invertible (Imf�m;a(t)g+�),
we de�ne

�E[Y jX] =

0BB@
E [Y jX = 1] fX(1) 0 ::: 0
E [Y jX = 2] fX(2) 0 ::: 0

::: ::: ::: :::
E [Y jX = J ] fX(J) 0 ::: 0

1CCA = FX;X� �Dm ��:

We then have�
Ref @

@t
�Y;X(t)g ��E[Y jX]

�
= FX;X� � Ref�m;a(t)g �D@j�j(t) (A.4)

�FX;X� � (Imf�m;a(t)g+�)�Dj�j(t)�D@a(t)

�FX;X� �Dm � (Imf�m;a(t)g+�)�Dj�j(t);

where ��Dj�j(t)�D@a(t) = 0 and � = ��Dj�j(t). Similarly, we have

Imf @
@t
�Y;X(t)g = FX;X� � Imf�m;a(t)g �D@j�j(t)

+FX;X� � Ref�m;a(t)g �Dj�j(t)�D@a(t) + FX;X� �Dm � Ref�m;a(t)g �Dj�j(t)

= FX;X� � (Imf�m;a(t)g+�)�D@j�j(t)

+FX;X� � Ref�m;a(t)g �Dj�j(t)�D@a(t) + FX;X� �Dm � Ref�m;a(t)g �Dj�j(t);

where ��D@j�j(t) = 0. De�ne �Y jX�(t) = �m;a(t)�Dj�j(t). We then have

Ref�Y jX�(t)g = Ref�m;a(t)g�Dj�j(t);
�
Imf�Y jX�(t)g+�

�
= (Imf�m;a(t)g+�)�Dj�j(t):

In summary, we have

Ref�Y;X(t)g = FX;X� � Ref�Y jX�(t)g; (A.5)

(Imf�Y;X(t)g+�X) = FX;X� �
�
Imf�Y jX�(t)g+�

�
; (A.6)�

Re
@

@t
�Y;X(t)��E[Y jX]

�
= FX;X� � Re�m;a(t)�D@j�j(t) (A.7)

�FX;X� �
�
Im�Y jX�(t) + �

�
�D@a(t)

�FX;X� �Dm �
�
Im�Y jX�(t) + �

�
;

Im
@

@t
�Y;X(t) = FX;X� � (Im�m;a(t) + �)�D@j�j(t) (A.8)

+FX;X� � Re�Y jX�(t)�D@a(t) + FX;X� �Dm � Re�Y jX�(t):
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The left-hand sides of these equations are all observed, while the right-hand sides contain all
the unknowns. Assumption 2.3(i) also implies that FX;X�, Ref�m;a(t)g and (Imf�m;a(t)g+�)
are invertible in equations (2.5) and (2.7). Recall the de�nition of the observed matrix Ct;
which by equations (A.5) and (A.6) equals

Ct � (Re�Y;X(t))�1 � (Im�Y;X(t) + �X) =
�
Re�Y jX�(t)

��1 � �Im�Y jX�(t) + �
�
:

Denote At �
�
Re�Y jX�(t)

��1 � Dm � Re�Y jX�(t). With equations (A.5) and (A.7), we
consider

BR � (Re�Y;X(t))
�1 �

�
Re

@

@t
�Y;X(t)��E[Y jX]

�
=

�
Re�m;a(t)�Dj�j(t)

��1 � Re�m;a(t)�D@j�j(t)

�
�
Re�Y jX�(t)

��1 � �Im�Y jX�(t) + �
�
�D@a(t)�

�
Re�Y jX�(t)

��1 �Dm �
�
Im�Y jX�(t) + �

�
= [Dj�j(t)]

�1 �D@j�j(t)� Ct �D@a(t)�
��
Re�Y jX�(t)

��1 �Dm � Re�Y jX�(t)
�
� Ct

� D@ lnj�j(t)� Ct �D@a(t)� At � Ct: (A.9)

Similarly, we have by equations (A.6) and (A.8)

BI � (Im�Y;X(t) + �X)
�1 �

�
Im

@

@t
�Y;X(t)

�
=

�
(Im�m;a(t) + �)�Dj�j(t)

��1 � (Im�m;a(t) + �)�D@j�j(t)

+
�
Im�Y jX�(t) + �

��1 � Re�Y jX�(t)�D@a(t) +
�
Im�Y jX�(t) + �

��1 �Dm � Re�Y jX�(t);

= D@ lnj�j(t) + C
�1
t �D@a(t) + C

�1
t � At (A.10)

We eliminate the matrix At in equations (A.9) and (A.10) to have

BR + Ct �BI � Ct
= D@ lnj�j(t) + Ct �D@ lnj�j(t)� Ct +D@a(t)� Ct � Ct �D@a(t): (A.11)

Notice that bothD@ lnj�j(t) andD@a(t) are diagonal, Assumption 2.3(ii) implies thatD@ lnj�j(t)

and D@a(t) are uniquely identi�ed from equation (A.11).
Further, since the diagonal terms of (D@a(t)� Ct � Ct �D@a(t)) are zeros, we have

diag (BR + Ct �BI � Ct) = diag
�
D@ lnj�j(t)

�
+
�
Ct � CTt

�
� diag

�
D@ lnj�j(t)

�
+D@a(t)� diag (Ct)�D@a(t)� diag (Ct)

=
��
Ct � CTt

�
+ I
�
� diag

�
D@ lnj�j(t)

�
;

where the function diag(�) generates a vector of the diagonal entries of its argument and the
notation "�" stands for the Hadamard product or the element-wise product. By assumption
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2.5(i), we may solve D@ lnj�j(t) as follows:

diag
�
D@ lnj�j(t)

�
=
��
Ct � CTt

�
+ I
	�1 � diag (BR + Ct �BI � Ct) : (A.12)

Furthermore, equation (A.11) implies that

U � BR + Ct �BI � Ct �D@ lnj�j(t)� Ct �D@ lnj�j(t)� Ct (A.13)

= D@a(t)� Ct � Ct �D@a(t);

De�ne a J by 1 vector e1 = (1; 0; 0; :::; 0)T . The de�nition ofD@a(t) implies that eT1�D@a(t) =
0. Therefore, equation A.13 implies

eT1 � U = �eT1 � Ct �D@a(t):

Assumption 2.5(ii) implies that all the entries in the row vector eT1 � Ct are nonzero. Let
eT1 �Ct � (c11; c12; :::; c1J). The vector diag (D@a(t)) is then uniquely determined as follows:

diag (D@a(t)) = �

0BB@
c11 0 ::: 0
0 c12 ::: 0
::: ::: ::: :::
0 0 ::: c1J

1CCA
�1

� UT � e1:

AfterD@ lnj�j(t) andD@a(t) are identi�ed, we may then identify the matrixAt �
�
Re�Y jX�(t)

��1�
Dm � Re�Y jX�(t) from equation (A.10)

At = Ct �
�
BI �D@ lnj�j(t)

�
�D@a(t):

Notice that

Re�Y jX�(t) = (FX;X�)�1 � Re�Y;X(t) =
�
FXjX� � FX�

��1 � Re�Y;X(t)
where

FXjX� =

0BB@
fXjX� (1j1) fXjX� (1j2) ::: fXjX� (1jJ)
fXjX� (2j1) fXjX� (2j2) ::: fXjX� (2jJ)

::: ::: ::: :::
fXjX� (J j1) fXjX� (J j2) ::: fXjX� (J jJ)

1CCA ;

FX� =

0BB@
fX� (1) 0 ::: 0
0 fX� (2) ::: 0
::: ::: ::: :::
0 0 ::: fX� (J)

1CCA :
Therefore, we have

Re�Y;X(t)� At � (Re�Y;X(t))�1 =
�
FXjX� � FX�

�
�Dm �

�
FXjX� � FX�

��1
= FXjX� �Dm �

�
FXjX�

��1
: (A.14)
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Equation (A.14) implies that the unknowns mj in matrix Dm are eigenvalues of a directly
estimatable matrix on the left-hand side, and each column in the matrix FXjX� is an eigen-
vector. Assumption 2.4 guarantees that all the eigenvalues are distinctive and nonzero in
the diagonalization in equation (A.14). We may then identify mj as the roots of

det (At �mjI) = 0:

To be speci�c, mj may be identi�ed as the j-th smallest root. Equation (A.14) also implies
that the j-th column in the matrix FXjX� is the eigenvector corresponding to the eigenvalue
mj. Notice that each eigenvector is already normalized because each column of FXjX� is
a conditional density and the sum of entries in each column equals one. Therefore, each
column of FXjX� is identi�ed as normalized eigenvectors corresponding to each eigenvalue
mj. Finally, we may identify fY;X� through equation (2.1) as follows, for any y 2 Y :�

fY;X� (y; 1) fY;X� (y; 2) ::: fY;X� (y; J)
�T

= F�1XjX� �
�
fY;X (y; 1) fY;X (y; 2) ::: fY;X (y; J)

�T
:

Proof. (Theorem 2.3) First, we introduce notations as follows: for j = 0; 1

mj = m (j) ; �j = E(Y jX = j);

vj = E
h�
Y � �j

�2 jX = j
i
, sj = E

h�
Y � �j

�3 jX = j
i
,

p = fX�jX (1j0) ; q = fX�jX (0j1) ; fY jX=j(y) = fY jX(yjj):

We start the proof with equation (2.9), which is equivalent to�
fY jX(yj0)
fY jX(yj1)

�
=

�
fX�jX (0j0) fX�jX (1j0)
fX�jX (0j1) fX�jX (1j1)

��
f�jX�=0(y �m0)
f�jX�=1(y �m1)

�
: (A.15)

Using the notations above, we have�
fY jX=0(y)
fY jX=1(y)

�
=

�
1� p p
q 1� q

��
f�jX�=0(y �m0)
f�jX�=1(y �m1)

�
:

Since E[�jX�] = 0, we have

�0 = (1� p)m0 + pm1 and �1 = qm0 + (1� q)m1:

We may solve for p and q as follows:

p =
�0 �m0

m1 �m0

and q =
m1 � �1
m1 �m0

: (A.16)
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We also have

1� p� q = 1�
�
m1 �m0 + �0 � �1

m1 �m0

�
=
�1 � �0
m1 �m0

:

Assumption 2.9 implies that
m1 � �1 > �0 � m0:

and �
f�jX�=0(y �m0)
f�jX�=1(y �m1)

�
=

1

1� p� q

�
1� q �p
�q 1� p

��
fY jX=0(y)
fY jX=1(y)

�
:

Plug-in the expression of p and q in equation (A.16), we have

�p
1� p� q =

m0 � �0
�1 � �0

;
�q

1� p� q =
�1 �m1

�1 � �0
;

1� p
1� p� q = 1�

�q
1� p� q ;

1� q
1� p� q = 1�

�p
1� p� q ;

and �
f�jX�=0(y �m0)
f�jX�=1(y �m1)

�
=

 
1� m0��0

�1��0
m0��0
�1��0

�1�m1

�1��0
1� �1�m1

�1��0

!�
fY jX=0(y)
fY jX=1(y)

�

=

 
�1�m0

�1��0
m0��0
�1��0

�1�m1

�1��0
m1��0
�1��0

!�
fY jX=0(y)
fY jX=1(y)

�
:

In other words, we have for j = 0; 1

f�jX�=j(y) =
�1 �mj

�1 � �0
fY jX=0(y +mj) +

mj � �0
�1 � �0

fY jX=1(y +mj): (A.17)

In summary, fX�jX (or p and q) and f�jX� are identi�ed if we can identifym0 andm1. Next, we
show thatm0 andm1 are indeed identi�ed. By assumption 2.10, we have E

�
�kjX�� = E ��k�

for k = 2; 3: For k = 2, we consider

v1 = E
�
(m(X�)� �1)

2 jX = 1
�
+ E

�
�2
�

= E
�
m(X�)2jX = 1

�
� �21 + E

�
�2
�
= qm2

0 + (1� q)m2
1 � �21 + E

�
�2
�
:

Similarly, we have
v0 = (1� p)m2

0 + pm
2
1 � �20 + E

�
�2
�
:

We eliminate E (�2) to obtain,

(1� p)m2
0 + pm

2
1 �

�
v0 + �

2
0

�
= qm2

0 + (1� q)m2
1 �

�
v1 + �

2
1

�
:

That is �
v1 + �

2
1

�
�
�
v0 + �

2
0

�
= (1� p� q)

�
m2
1 �m2

0

�
;
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We have shown that
1� p� q = �1 � �0

m1 �m0

:

Thus, m1 and m0 satisfy the following linear equation:

m1 +m0 =
(v1 + �

2
1)� (v0 + �20)
�1 � �0

� C1:

This means we need one more restriction to identify m1 and m0.We consider

s1 = E
�
(Y � �1)

3 jX = 1
�
= E

�
(m (X�)� �1)

3 jX = 1
�
+ E

�
�3
�

= q (m0 � �1)
3 + (1� q) (m1 � �1)

3 + E
�
�3
�

and
s0 = (1� p) (m0 � �0)

3 + p (m1 � �0)
3 + E

�
�3
�
:

We eliminate E (�2) in the two equations above to obtain,

(1� p) (m0 � �0)
3 + p (m1 � �0)

3 � s0 = q (m0 � �1)
3 + (1� q) (m1 � �1)

3 � s1

Plug in the expression of p and q in equation (A.16), we have

� (m1 � �0) (m0 � �0) (m1 +m0 � 2�0)�s0 = � (m1 � �1) (m0 � �1) (m1 +m0 � 2�1)�s1;

Since m1 +m0 = C1; we have

(C1 �m0 � �0) (m0 � �0) (C1 � 2�0) + s0 = (C1 �m0 � �1) (m0 � �1) (C1 � 2�1) + s1;

that is,

�
�
m2
0 � �20

�
(C1 � 2�0) + (m0 � �0)C1 (C1 � 2�0) + s0

= �
�
m2
0 � �21

�
(C1 � 2�1) + (m0 � �1)C1 (C1 � 2�1) + s1

Moreover, we have

�2m2
0 (�1 � �0) + 2C1 (�1 � �0)m0

= �21 (C1 � 2�1)� �20 (C1 � 2�0)� �1C1 (C1 � 2�1) + �0C1 (C1 � 2�0) + s1 � s0
=

�
�21 � �20

�
C1 � 2

�
�31 � �30

�
� (�1 � �0)C21 + 2

�
�21 � �20

�
C1 + s1 � s0

Since (�1 � �0) > 0, we have

�2m2
0 + 2C1m0 = 3 (�1 + �0)C1 � 2

�31 � �30
�1 � �0

� C21 +
s1 � s0
�1 � �0

:

Finally, we have

�2
�
m0 �

1

2
C1

�2
+ C2 = 0
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where

C2 =
3

2
C21 � 3 (�1 + �0)C1 + 2

�31 � �30
�1 � �0

� s1 � s0
�1 � �0

=
3

2
[C1 � (�1 + �0)]

2 � 3
2
(�1 + �0)

2 + 2
�
�21 + �1�0 + �

2
0

�
� s1 � s0
�1 � �0

=
3

2
[C1 � (�1 + �0)]

2 +
1

2
(�1 � �0)

2 � s1 � s0
�1 � �0

=
1

2
(�1 � �0)

2 +
3

2

�
v1 � v0
�1 � �0

�2
� s1 � s0
�1 � �0

sj = E
h�
Y � �j

�3 jX = j
i

= E
�
Y 3jX = j

�
� 3E

�
Y 2jX = j

�
�j + 3�

3
j � �3j

= E
�
Y 3jX = j

�
� 3E

�
Y 2jX = j

�
�j + 2�

3
j

� �j � 3�j�j + 2�3j ,

C2 =
3

2
C21 � 3 (�1 + �0)C1 + 2

�31 � �30
�1 � �0

� s1 � s0
�1 � �0

=
3

2
C21 � 3 (�1 + �0)C1 + 2

�31 � �30
�1 � �0

� �1 � 3�1�1 + 2�
3
1 � (�0 � 3�0�0 + 2�30)
�1 � �0

=
3

2
C21 � 3 (�1 + �0)C1 �

�1 � 3�1�1 � (�0 � 3�0�0)
�1 � �0

=
3

2
C21 � 3 (�1 + �0)

�1 � �0
�1 � �0

+
3�1�1 � 3�0�0
�1 � �0

� �1 � �0
�1 � �0

=
3

2

�
�1 � �0
�1 � �0

�2
� 3�0�1 � �1�0

�1 � �0
� �1 � �0
�1 � �0

Notice that we also have

�2
�
m1 �

1

2
C1

�2
+ C2 = 0;

which implies that m1 and m0 are two roots of this quadratic equation. Since m1 > m0, we
have

m0 =
1

2
C1 �

r
1

2
C2; m1 =

1

2
C1 +

r
1

2
C2:

After we have identi�ed m0 and m1, p and q (or fX�jX) are identi�ed from equation (A.16),
and the density f�(or fY jX�) is also identi�ed from equation (A.17). Thus, we have identi�ed
the latent densities fY jX� and fX�jX from the observed density fY jX .
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Table 1: Simulation results
Example 1
Value of x�: 1 2 3 4

Regression function m(x�):
�true value 1.3500 2.8000 5.9500 11.400
�mean estimate 1.2984 2.9146 6.0138 11.433
�standard error 0.2947 0.3488 0.2999 0.2957

Marginal distribution Pr (x�):
�true value 0.2 0.3 0.3 0.2
�mean estimate 0.2159 0.2818 0.3040 0.1983
�standard error 0.1007 0.2367 0.1741 0.0153

Misclasi�cation Prob. fxjx� (�jx�):
�true value 0.6 0.2 0.1 0.1

0.2 0.6 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

�mean estimate 0.5825 0.2008 0.0991 0.0986
0.2181 0.5888 0.1012 0.0974
0.0994 0.1137 0.6958 0.0993
0.1001 0.0967 0.1039 0.7047

�standard error 0.0788 0.0546 0.0201 0.0140
0.0780 0.0788 0.0336 0.0206
0.0387 0.0574 0.0515 0.0281
0.0201 0.0192 0.0293 0.0321
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Table 2: Simulation results
Example 2
Value of x�: 1 2 3 4

Regression function m(x�):
�true value 1.3500 2.8000 5.9500 11.400
�mean estimate 1.2320 3.1627 6.1642 11.514
�standard error 0.4648 0.7580 0.7194 0.6940

Marginal distribution Pr (x�):
�true value 0.2 0.3 0.3 0.2
�mean estimate 0.2244 0.3094 0.2657 0.2005
�standard error 0.1498 0.1992 0.1778 0.0957

Misclasi�cation Prob. fxjx� (�jx�):
�true value 0.5220 0.1262 0.2180 0.2994

0.1881 0.4968 0.1719 0.2489
0.1829 0.1699 0.4126 0.0381
0.1070 0.2071 0.1976 0.4137

�mean estimate 0.4761 0.1545 0.2214 0.2969
0.2298 0.4502 0.1668 0.2455
0.1744 0.1980 0.4063 0.0437
0.1197 0.1973 0.2056 0.4140

�standard error 0.1053 0.0696 0.0343 0.0215
0.0806 0.0771 0.0459 0.0262
0.0369 0.0528 0.0573 0.0313
0.0327 0.0221 0.0327 0.0238
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Table 3: Simulation results (n = 3000; reps = 400)

true value of �: �1 = 1 �2 = 1 �3 = 1

ignoring meas. error:
�mean estimate 2.280 1.636 0.9474
�standard error 0.1209 0.1145 0.07547
�root mse 1.286 0.6461 0.09197

infeasible MLE:
�mean estimate 0.9950 1.012 0.9900
�standard error 0.05930 0.08263 0.07048
�root mse 0.05950 0.08346 0.07118

sieve MLE:
�mean estimate 0.9760 0.9627 0.9834
�standard error 0.1366 0.06092 0.1261
�root mse 0.1387 0.07145 0.1272

note: Kn = 3 in bf� and bfXjX�;W (xjx�; w) for each x and x�:


