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Abstract

We study the scope of local indirect least squares (LILS) methods for nonparamet-
rically estimating average marginal e¤ects of an endogenous cause X on a response
Y in triangular structural systems that need not exhibit linearity, separability, or
monotonicity in scalar unobservables. One main �nding is negative: in the fully
nonseparable case, LILS methods cannot recover the average marginal e¤ect. LILS
methods can nevertheless test the hypothesis of no e¤ect in the general nonseparable
case. We provide new nonparametric asymptotic theory, treating both the tradi-
tional case of observed exogenous instruments Z and the case where one observes
only error-laden proxies for Z.
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1 Introduction

This paper studies the scope of indirect least squares-like methods for the identi�cation

and nonparametric estimation of marginal e¤ects of an endogenous cause X on a response

of interest Y without assuming linearity, separability, monotonicity, or the presence of

solely scalar disturbances for the structural equations. As we show, control variables need

not be available in such circumstances, so we rely only on the availability of exogenous

instruments, Z; which may or may not be perfectly observed.

We follow the literature in distinguishing the �instrumental variable�(IV) and �control

variable�approaches for identifying and estimating structural e¤ects of endogenous causes

(see e.g. Blundell and Powell, 2003; Darolles, Florens, and Renault, 2003; and Hahn and

Ridder, 2009). Correspondingly, Chalak and White (2009) (CW) emphasize the structural

origins of instruments yielding (conditional) independence relationships that serve to iden-

tify e¤ects of interest. Classical IV methods make use of exogenous instruments that are

independent of the unobserved causes. On the other hand, control variable methods make

use of conditioning instruments that, once conditioned on, ensure the conditional indepen-

dence of the observed causes of interest and the unobserved causes. In general, neither of

these (conditional) independence relations is su¢ cient for the other.

Using a control variable approach, Altonji and Matzkin (2005) and Hoderlein and Mam-

men (2007) study identifying and estimating local average structural derivatives (marginal

e¤ects) in general structures without specifying how the endogenous cause of interest or con-

ditioning instruments are generated. Hoderlein (2005, 2007) and Imbens and Newey (2009)

derive useful control variables in nonlinear structures where the cause of interest is deter-

mined by exogenous instruments and a scalar unobserved term and is strictly monotonic

(or even additively separable) in this scalar. Chalak and White (2007) and White and

Chalak (2008) discuss identifying and estimating causal e¤ects in structures nonseparable

between observables and multiple unobservables, providing structural conditions ensuring

the availability of useful conditioning instruments more generally.

In the absence of control variables, methods based on classical IVs may provide a way

to conduct structural inference in nonlinear systems. Two extensions of IV to nonlinear
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systems have been studied in the literature. The �rst is based on what Darolles, Florens,

and Renault (2003) call "instrumental regression" (IR), where Y is separably determined

as, say, Y = r(X)+"; with E(" j Z) = 0: Blundell and Powell (2003), Darolles, Florens, and
Renault (2003), Newey and Powell (2003), and Santos (2006), among others, show that IR

methods can reliably identify speci�c e¤ect measures in separable structures. But they lose

their structural interpretation in the nonseparable case unless X is separably determined

(see e.g. Blundell and Powell, 2003; Hahn and Ridder, 2009).

A second extension of IV makes use of exogenous instruments to study e¤ect measures

constructed as ratios of certain derivatives, derivative ratio (DR) e¤ect measures, for short.

In classical linear structural systems with exogenous instruments, these e¤ects motivate and

underlie Haavelmo�s (1943) classical method of indirect least squares (ILS). In the treatment

e¤ects literature, Angrist and Imbens (1994) and Angrist, Imbens, and Rubin (1996) show

that DR e¤ect measures have causal interpretations for speci�c subgroups of the population

of interest. In selection models, such as the generalized Roy model, Heckman (1997),

Heckman and Vytlacil (1999, 2001, 2005), and Heckman, Urzua, and Vytlacil (2006), among

others, show that DR e¤ect measures correspond to a variety of structurally informative

weighted averages of e¤ects of interest; the corresponding estimators are "local IV" or local

ILS (LILS) estimators (see Heckman and Vytlacil, 2005; Carneiro, Heckman, and Vytlacil,

2009). A common feature of the treatment e¤ects and selection papers just mentioned is

their focus on speci�c triangular structures with binary or discrete treatment variables.

Although the work just cited establishes the usefulness of DR e¤ect measures and their

associated LILS estimators in speci�c contexts, an important open question is whether

these methods can be used to learn about the e¤ects of an endogenous cause on a response

of interest in more general triangular structures. We address this question here, studying

general structural equations that need not obey linearity, monotonicity, or separability. Nor

do we restrict the unobserved drivers to be scalar; these can be countably dimensioned.

Our analysis delivers contributions in a number of inter-related areas. The �rst is

a detailed analysis of the properties of DR/LILS methods that a¤ords clear insight into

their limitations and advantages, both inherently and relative to IR and control variable

methods. Our �ndings are a mixture of bad news and good news. One main �nding is
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negative: in the fully nonseparable case, DR methods, like IR methods, cannot recover the

average marginal e¤ect of the endogenous cause on the response of interest. Nor can DR

methods identify local average marginal e¤ects of X on Y of the type recovered by control

variable methods. On the other hand, and also like IR methods, when X is separably

determined, DR methods do recover an instrument-conditioned average marginal e¤ect

more informative than the unconditional average marginal e¤ect.

We also �nd that, despite their failure to recover average marginal e¤ects in the fully

nonseparable case, DR/LILS methods can nevertheless generally be used to test the hy-

pothesis of no e¤ect. This is because DR methods identify a speci�c weighted average

marginal e¤ect that is always zero when the true marginal e¤ect is zero, and that is zero

only if a true average marginal e¤ect is zero given often plausible economic structure.

Thus, DR/LILS methods provide generally viable inference.

In the control variable literature, Imbens and Newey (2009) (see also Chesher (2003)

and Matzkin (2003)) study nonseparable structures in which although X is nonseparably

determined, it is strictly monotonic in a scalar unobserved cause. As we show, this structure

also enables suitably constructed DR ratios to measure average marginal e¤ects based on

IVs rather than control variables. Nevertheless, control variable methods, when available,

are more informative, as these provide local e¤ect measures, whereas DR methods do not.

IV methods based on restrictive functional form assumptions are typical in applications.

But economic theory is often uninformative about the validity of these restrictions, and all

methods (IR, control variable, and DR) are vulnerable to speci�c failures of these assump-

tions. Accordingly, it is important to develop speci�cation tests for critical functional form

assumptions. Thus, a second contribution is to show how DR methods can be used to

test the key hypothesis that X is separably determined. The results of this test inform

the interpretation of results, as a failure to reject implies that not only do LILS estimates

support inference about the absence of e¤ects, but the LILS estimates can be interpreted

as instrument-conditioned average marginal e¤ects. Given space limitations, however, we

leave to future work developing the statistical properties of these tests.

Our third area of contribution is to provide new nonparametric methods for DR/LILS

estimation and inference. We pay particular attention to the fact that in practice, one
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may not be able to observe the true exogenous instruments. Instead, as in Butcher and

Case (1994) or Hausman (1997), one may use proxies for such unobserved instruments. In

linear structures, this poses no problem for structural inference despite the inconsistency

of the associated reduced form estimator, as CW discuss. As we show here, however, the

unobservability of instruments creates signi�cant obstacles to structural inference using DR

IV methods more generally. We introduce new methods that resolve this di¢ culty.

In particular, we study two cases elucidated by CW: the traditional observed exogenous

instrument (OXI) case, where the exogenous instrument is observed without error; and the

proxies for unobserved exogenous instrument (PXI) case, where the exogenous instrument

is not directly observable, but error-contaminated measurements are available to serve

as proxy instruments. Standard IV su¢ ces for both OXI and PXI in the linear case,

but otherwise OXI and PXI generally require fundamentally di¤erent estimation methods.

Generally, straightforward kernel or sieve methods su¢ ce for OXI. The PXI case demands

a novel approach, however. Our PXI results are the �rst to cover the use of instrument

proxies in the general nonlinear nonparametric context.

For the OXI case, we apply in�nite order ("�at-top") kernels (Politis and Romano, 1999)

to estimate functionals of the distributions of the observable variables that we then com-

bine to obtain new estimators of the average marginal e¤ect represented by the DR e¤ect

measure. We obtain new uniform convergence rates and asymptotic normality results for

estimators of instrument-conditioned average marginal e¤ects as well as root-n consistency

and asymptotic normality results for estimators of their unconditional weighted averages.

For the PXI case, we build on recent results of Schennach (2004a, 2004b) to obtain a

variety of new results. Speci�cally, we show that two error-contaminated measurements

of the unobserved exogenous instrument are su¢ cient to identify objects of interest and

to deliver consistent estimators. The proxies need not be valid instruments. Our general

estimation theory covers densities of mismeasured variables and expectations conditional on

mismeasured variables, as well as their derivatives with respect to the mismeasured variable.

We provide new uniform convergence rates over expanding intervals (and, in some cases,

over the whole real line) as well as new asymptotic normality results in fully nonparametric

settings. We also consider nonlinear functionals of such nonparametric quantities and prove

5



root-n consistency and asymptotic normality. We thus provide numerous general-purpose

asymptotic results of independent interest, beyond the PXI case.

The plan of the paper is as follows. In Section 2 we specify a triangular structural sys-

tem that generates the data, and we de�ne the DR e¤ect measures of interest. We study

the structural objects identi�ed by DR e¤ect measures, devoting particular attention to

the interpretation of these DR e¤ect measures in a range of special cases. We also show

how DR measures can be used to test the hypothesis of no causal e¤ect and for struc-

tural separability. We then provide new results establishing consistency and asymptotic

normality for our nonparametric local ILS estimators of DR e¤ects. Section 3 treats the

OXI case. Section 4 develops new general results for estimation of densities and functionals

of densities of mismeasured variables. As an application, we treat the PXI case, ensuring

the identi�cation of the objects of interest and providing estimation results analogous to

those of Section 3. Section 5 contains a discussion of the results, and Section 6 provides a

summary and discussion of directions for future research. All proofs are gathered into the

Mathematical Appendix.

2 Data Generation and Structural Identi�cation

2.1 Data Generation and Marginal E¤ects

We begin by specifying a triangular structural system that generates the data. In such

systems, there is an inherent ordering of the variables: "predecessor" variables may deter-

mine "successor" variables, but not vice versa. For example, when X determines Y , then

Y cannot determine X. In such cases, we say for convenience that Y succeeds X, and we

write Y ( X as a shorthand notation.

Assumption 2.1 Let a triangular structural system generate the random vector U and

random variables fX; Y; Zg such that Y ( (U;X;Z), X ( (U;Z), and Z ( U . Further:

(i) Let �x; �y; and �z be measurable functions such that Ux � �x(U); Uy � �y(U); Uz �
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�z(U) are vectors of countable dimension; (ii) X;Y; and Z are structurally generated as

Z = p(Uz)

X = q(Z;Ux)

Y = r(X;Uy);

where p; q; and r are unknown measurable scalar-valued functions; (iii) E(X) and E(Y ) are

�nite; (iv) The realizations of X and Y are observed; those of U;Ux; Uy; and Uz are not.

We consider scalar X; Y; and Z for simplicity; extensions are straightforward. We

explicitly assume observability of X and Y and unobservability of the U�s. We separately

treat cases in which Z is observable (Section 3) or unobservable (Section 4). An important

feature here is that the unobserved causes U;Ux; Uy; and Uz may be multi-dimensional.

Indeed, the unobserved causes need not even be �nite dimensional.

The response functions p; q; and r embody the structural relations between the system

variables. (Here and throughout, we use the term "structural" to refer to the system of

Assumption 2.1 or to any of its components or properties.) Assuming only measurability for

p; q; and r permits but does not require linearity, monotonicity in variables, or separability

between observables and unobservables. Signi�cantly, separability prohibits unobservables

from interacting with observable causes to determine outcomes; nonseparability permits

this, a generalization of random coe¢ cients structure.

The structure of Assumption 2.1 can arise in numerous economic applications. For

example, when X is schooling and Y represents wages, this structural system corresponds

to models for educational choices with heterogeneous returns, as discussed in Imbens and

Newey (2009), Chesher (2003), and Heckman and Vytlacil (2005), for example. When X is

input and Y is output, the system corresponds to models for the estimation of production

functions (see Imbens and Newey, 2009). When Y is a budget share and X represents

total expenditures, the system corresponds to a nonparametric demand system with a

heterogeneous population, as in Hoderlein (2005, 2007). In all these examples, Z serves as

a driver of X excluded from the structural equation for Y .

Our interest attaches to the e¤ect of X on Y (e.g., the return to education). Speci�-

cally, consider the marginal e¤ect of continuously distributed X on Y , i.e., the structural
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derivative Dxr(X;Uy), where Dx � (@=@x). If r were linear and separable, say,

r(X;Uy) = X�0 + U 0y�y;

thenDxr(X;Uy) = �0. Generally we will not require linearity or separability, soDxr(X;Uy)

is no longer constant but generally depends on both X and Uy. To handle dependence on

the unobservable Uy, we consider certain average marginal e¤ects, de�ned below.

Generally, X and Uy may be correlated or otherwise dependent, in which case X is

�endogenous.�In the linear separable case, when X is endogenous, the availability of suit-

able instrumental variables permits identi�cation and estimation of e¤ects of interest. In

what follows, we study how the DR IV approach performs when linearity and separability

are relaxed. For this, we note that the structure above permits Z to play the role of an

instrument, given a suitable exogeneity condition. To specify this, we follow Dawid (1979)

and write X ? Y when random variables X and Y are independent and X 6? Y otherwise.

Assumption 2.2 Uz ? (Ux; Uy).

Assumption 2.2 permits Ux 6? Uy, which, given Assumption 2.1, implies that X may be

endogenous: X 6? Uy. On the other hand, Assumptions 2.1 and 2.2 imply Z ? (Ux; Uy), so
Z is exogenous with respect to both Ux and Uy in the classical sense.

2.2 Absence of Control Variables

At the heart of the control variable approach are control variables, sayW , such thatX ? Uy

j W; as in Altonji and Matzkin (2005), Hoderlein and Mammen (2007), White and Chalak
(2008), and Imbens and Newey (2009). This conditional independence is neither neces-

sary nor su¢ cient for Assumption 2.2; moreover, as will be apparent from our derivations

below, the structural e¤ects identi�ed under the various exogeneity conditions can easily

di¤er. Which exogeneity condition is appropriate in any particular instance depends on

the speci�cs of the economic structure, as extensively discussed by CW.

In particular, observe that under Assumptions 2.1 and 2.2, control variables ensuring the

conditional independence of X and Uy are generally not available. Assumptions 2.1 and 2.2

do imply Hoderlein�s (2005) assumption 2.3, which states that Z ? Uy j Ux: Assumption 2.1
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further gives that X ? Uy j Ux. Nevertheless, one cannot employ this condition to identify
structural e¤ects of X on Y; since one generally cannot observe the control variables Ux,

either directly or indirectly, due to the multivariate nature of Ux or the lack of monotonicity

or separability in Ux. Given that Z ? Ux; with further structure, such as monotonicity of

q in scalar Ux, one may ensure (see Hoderlein, 2005, p. 5) that Ux is identi�ed and hence

that certain structural e¤ects can be identi�ed, as discussed in Imbens and Newey (2009).

As we do not impose such structure here, this means of identi�cation is foreclosed.

It may be thought that, to the contrary, a nonseparable structure for the generation of

X with a scalar Ux; as in Imbens and Newey (2009), cannot be falsi�ed, because such a

structure can perfectly explain any joint distribution of X and Z. However, this overlooks

an important problem. Consider two structures: �rst, one with a vector-valued Ux such that

q is not monotonic in an index (scalar-valued function) of Ux and that obeys Z ? (Ux; Uy) ;
second, a structure observationally equivalent for (X;Z) with scalar unobservable Vx. In

general, however, the Z-dependence of the mapping between Ux and Vx will cause a violation

of the requirement that Z ? (Vx; Uy) ; even though Z ? Vx is satis�ed by construction,

falsifying the second structure. Further, it will generally be the case that Vx cannot act as

a control variable, as X 6? Uy j Vx. In the appendix, we provide an example to this e¤ect
(see Proposition A.1), a¤ording a concrete demonstration that for the general structures

considered here, control variables need not be available.

Nevertheless, in what follows we examine certain implications of structures separable

or monotonic in scalar Ux; useful for testing separability.

2.3 Identi�cation

2.3.1 Average Derivative Measures of Causal E¤ects

Our object of interest here is the marginal e¤ect of X on Y . We begin our study of this

e¤ect by considering the conditional expectation of Y given X = x,

�(x) � E(Y j X = x) (1)

=

Z
SUy (x)

r(x; uy)dF (uyjx); (2)
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where dF (uyjx) denotes the conditional density of Uy given X = x and SUy(x) denotes the

minimal support of Uy given X = x; i.e., the smallest set S such that P [Uy 2 S j X =

x] = 1: Regardless of any underlying structure, � can be de�ned as in eq. (1) whenever

E(Y ) <1, as it is simply an aspect of the joint distribution of Y and X.

If Assumptions 2.1(i-iii) hold and the conditional distribution of Uy given X is regular

(e.g., Dudley, 2002, ch.10.2), then eq.(2) also holds. (Here, we implicitly assume the reg-

ularity of all referenced conditional distributions.) Eq.(2) provides � with some structural

content: it is an average response. As we discuss shortly, there is nevertheless not yet

su¢ cient content to use � to identify e¤ects of interest.

WhenX does not determine U (recall Assumption 2.1 ensures X ( U), the structurally

informative average counterfactual response of Y to X is given by

�(x) �
Z
r(x; uy) dF (uy); (3)

where dF (uy) denotes the unconditional density of Uy. Here we leave the (unconditional)

minimal support SUy of Uy implicit. Given di¤erentiability of r and an interchange of

integral and derivative (see, e.g., White and Chalak (2008, theorem 2.2(ii)),

��(x) � Dx�(x) =

Z
Dxr(x; uy) dF (uy); (4)

ensuring that ��(x) represents the local average marginal e¤ect of X on Y at x. We are

also interested in averages of these local e¤ects (see e.g. Altonji and Matzkin, 2005), such

as the average marginal e¤ect given by

E[��(X)] �
Z Z

Dxr(x; uy) dF (uy)dF (x);

where dF (x) denotes the density of X.

When X is endogenous (X 6? Uy), dF (uyjx) does not generally equal dF (uy): Con-
sequently, �(x) and �(x) generally di¤er, as do their derivatives1. Further, as we discuss

above, covariates ensuring the conditional exogeneity of X are generally not available under

Assumptions 2.1 and 2.2; a control variable approach is therefore not feasible.

1Note that (@=@x)�(x) generally involves terms contributed by both dF (uy j x) and SUy(x); whereas
(@=@x)�(x) does not.
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2.3.2 Derivative Ratio Measures of Causal E¤ects

In classical linear structures, the e¤ect of endogenous X on Y can be recovered from the

reduced form as the ratio of the e¤ect of Z on Y to that of Z on X; this ratio can then

be estimated using Haavelmo�s (1943) ILS method. In more general cases, can information

about the marginal e¤ect of X on Y be similarly obtained from a derivative ratio, that is,

from the ratio of the marginal e¤ect of Z on Y to that of Z on X?

To address this question, consider �rst the e¤ect of Z on X. We begin with the condi-

tional expectation of X given Z = z,

�X(z) � E(X j Z = z) (5)

=

Z
SUx (z)

q(z; ux)dF (uxjz); (6)

where dF (uxjz) denotes the conditional density and SUx(z) the minimal support of Ux
given Z = z: That E(X) < 1 ensures the existence of �X in eq.(5), although it may

not be structurally informative in the absence of further assumptions. Under Assumptions

2.1(i-iii), the integral representation of eq.(6) holds.

Assumption 2.1 ensures that Z does not determine U . Thus, the structurally informative

average counterfactual response of X to Z is given by

�X(z) �
Z
q(z; ux) dF (ux); (7)

where dF (ux) denotes the unconditional density of Ux. Given di¤erentiability of q and an

interchange of integral and derivative,

Dz�X(z) =

Z
Dzq(z; ux) dF (ux); (8)

ensuring that Dz�X(z) represents the local average marginal e¤ect of Z on X at z.

Our assumptions ensure that Z is exogenous with respect to Ux (i.e., Z ? Ux), so that

dF (uxjz) = dF (ux) and SUx(z) = SUx for all admissible z: Thus,Z
SUx (z)

q(z; ux) dF (uxjz) =
Z
q(z; ux) dF (ux):

That is, �X = �X . Moreover, Dz�X = Dz�X ; so �X now provides access to the structurally

informative Dz�X . When, as is true here, objects like �X are identi�ed with a structurally
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informative object, we say that they are structurally identi�ed (cf. Hurwicz, 1950). If a

structurally identi�ed object admits a unique representation solely in terms of observable

random variables, then we say this object and its structural counterpart are fully identi�ed.

Thus, with �X and Dz�X fully identi�ed, both �X and Dz�X can be estimated from data

under mild conditions.

Similarly, we can write

�Y (z) � E(Y j Z = z) (9)

=

Z
SUx ;Uy (z)

r(q(z; ux); uy) dF (ux; uyjz); (10)

where dF (ux; uyjz) denotes the conditional density and SUx ;Uy (z) the minimal support of
(Ux; Uy) given Z = z. The �niteness of E(Y ) ensures that �Y exists, but in the absence of

further assumptions, �Y may not be structurally informative. Eq.(10) holds under Assump-

tions 2.1(i-iii). The requirement that Z succeeds U and the exogeneity of Z with respect

to (Ux; Uy); ensured by Assumptions 2.1 and 2.2, structurally identify �Y as the average

counterfactual response of Y to Z. That is, �Y = �Y , where

�Y (z) �
Z
r(q(z; ux); uy) dF (ux; uy); (11)

and dF (ux; uy) denotes the unconditional density of (Ux; Uy).

Further, given di¤erentiability, the derivativeDz�Y (z) is structurally identi�ed asDz�Y (z);

the local average marginal e¤ect of Z on Y at z. Speci�cally, given di¤erentiability of q

and r and the interchange of derivative and integral, we have

Dz�Y (z) =

Z
Dz[r(q(z; ux); uy)] dF (ux; uy): (12)

This involves the marginal e¤ect of X on Y as a consequence of the chain rule:

Dz�Y (z) =

Z
Dxr(q(z; ux); uy) Dzq(z; ux) dF (ux; uy)

=

Z
[

Z
Dxr(q(z; ux); uy)dF (uyj ux)] Dzq(z; ux) dF (ux);

where dF (uyjux) denotes the conditional density of Uy given Ux = ux.

The analog of the ratio of reduced form coe¢ cients exploited by Haavelmo�s (1943) ILS

estimator is the derivative ratio

�(z) � Dz�Y (z) = Dz�X(z): (13)
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This ratio is a population analog of the local ILS estimator, introduced by Heckman and

Vytlacil (1999, 2001) as a "local instrumental variable" for a case with X binary and

q(z; ux) = 1fq1(z) � ux � 0g: Note that although �(z) may be a well-de�ned object, we
have not yet established whether it is structurally informative.

Observe that �(z) is well de�ned only when the numerator and denominator are well de-

�ned and the denominator does not vanish. The latter condition is the analog of the classical

requirement that the instrumental variable Z must be "relevant." We thus de�ne the sup-

port of � to be the set on which �(z) is well de�ned, S� � fz : fZ(z) > 0; jDz�X(z)j > 0g;
where fZ (�) is the density of Z. The requirement that fZ(z) > 0 ensures that bothDz�Y (z)

and Dz�X(z) are well de�ned. When X; Y; and Z are observable, we may consistently es-

timate � on its support under mild conditions; this is the subject of Section 3. We show

in Section 4 that we can consistently estimate � even when Z is not observable.

2.4 Interpreting DR E¤ects

When the numerator and denominator of �(z) are structurally identi�ed, �(z) is struc-

turally identi�ed with a speci�c weighted average of the marginal e¤ect of interest,Dxr(X;Uy),

as the expressions above imply � = ��, where

��(z) � Dz�Y (z) = Dz�X(z) (14)

=

Z
[

Z
Dxr(q(z; ux); uy) dF (uyj ux)] &(z; ux) dF (ux); (15)

for z 2 S�� � fz : fZ(z) > 0; jDz�X(z)j > 0g: The weights &(z; ux) are given by

&(z; ux) � Dzq(z; ux) =

Z
Dzq(z; ux) dF (ux);

and for each z 2 S�� ; Z
&(z; ux) dF (ux) = 1:

We can also represent ��(z) and &(z; Ux) in terms of certain conditional expectations.

Speci�cally, under our assumptions, we have

��(z) = E[ E(Dxr(X;Uy) j Z = z; Ux) &(z; Ux) ]

&(z; Ux) = Dzq(z; Ux) = E(Dzq(Z;Ux) j Z = z):
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Thus, ��(z) is a weighted measure of average marginal e¤ect that emphasizes E(Dxr(X;Uy)

j Z = z; Ux) for values of Dzq(z; Ux) that are large relative to E(Dzq(Z;Ux) j Z = z).

This result is not good news for estimating average marginal e¤ects, as this requires

&(z; Ux) = 1; which does not hold generally. Further, as Dzq(z; Ux) cannot generally be

identi�ed, there is no way to o¤set the weighting by &(z; Ux): In fact, &(z; Ux) can even

be negative. Thus, similar to Hahn and Ridder (2009), who �nd that IR methods do not

provide informative estimates of structural e¤ects in the general case, we �nd that DR

methods generally deliver weighted averages that do not provide straightforward measures

of structural e¤ects.

Nevertheless, ��(z) does recover average marginal e¤ects of X on Y in important special

cases, enabling a delineation of the scope of DR methods for informative e¤ect estimation.

2.4.1 Linear r

First, when r is linear, we have r(x; uy) = x�0 + uy: Then regardless of the form of q,

��(z) = ��(x) = �0 for all (z; x) 2 S�� � S�� where S�� denotes the support of ��(x).

2.4.2 Separable q

Next, suppose X is separably determined: q(z; ux) = q1(z) + ux. (There is then no loss of

generality in specifying scalar ux.) Then for all ux in SUx and z 2 S�� ; &(z; ux) � 1. If r is
also separable, so that r(x; uy) = r1(x)+ uy (see, e.g., Newey and Powell, 2003; Darolles,

Florens, and Renault, 2003), then ��(z) = ��ss(z) for z 2 S�� ; where

��ss(z) �
Z
Dxr1(q1(z) + ux) dF (ux)

= E(Dxr1(X) j Z = z):

In fact, separability for r does not play a critical role; when r is nonseparable we have

��(z) = ��ns(z) for z 2 S��, where

��ns(z) �
Z
Dxr(q(z; ux); uy) dF (uy; ux)

= E(Dxr(X;Uy) j Z = z):

Both ��ss and �
�
ns are instrument-conditioned average structural derivatives. Averaging

over Z gives a simple average marginal e¤ect, ��� � E[Dxr(X;Uy)] = E[��ns(Z)]. Signif-
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icantly, ��ss and �
�
ns do not identify local average marginal e¤ects of X on Y similar to

��(x) or to those identi�able using covariates, discussed below; ��ss and �
�
ns are less infor-

mative in this sense. Nevertheless, ��ss and �
�
ns are more informative than ��

�
; as instrument

conditioning ensures better prediction of Dxr(X;Uy) in the sense of mean squared error.

2.4.3 Nonseparable q

It remains to consider nonseparable q. First, when r is separable, we have ��(z) = ��sn(z)

for z 2 S��, where

��sn(z) �
Z
Dxr1(q(z; ux)) &(z; ux) dF (ux)

= E[ E(Dxr1(X) j Z = z) &(z; Ux) ]:

This involves a conditional marginal e¤ect, namely E(Dxr1(X) j Z = z), but now the

nonseparability of q forces the presence of the weights &(z; Ux). When r is nonseparable,

we are back to the general case, with ��nn(z) � ��(z) for z 2 S��.
To gain more insight, let

'(z; Ux) � E(Dxr(X;Uy) j Z = z; Ux);

and note that the independence imposed in Assumption 2.2 ensuresE['(z; Ux)] = E(Dxr(X;

Uy) j Z = z) = ��ns(z): Adding and subtracting this in the expression for �
�
nn(z), we get

��nn(z) = ��ns(z)� E[ '(z; Ux) (1� &(z; Ux)) ]:

Given su¢ cient moments, Cauchy-Schwarz (for example) and E[&(z; Ux)] = 1 give

j��nn(z)� ��ns(z)j � �(z) �&(z);

where

�2(z) � E[ f '(z; Ux) � ��ns(z) g2 ]

measures the conditional variation of Dxr(X;Uy); and

�2& (z) � E[ (1� &(z; Ux))
2 ]
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measures the departure of q from separability. Thus, the smaller are either �(z) or �&(z); the

closer ��nn(z) is to �
�
ns(z): The inequality is tight, as it is an equality when j1� &(z; Ux)j =

j'(z; Ux)j ; there is nothing to rule this out here.
Thus, DR delivers an instrument-conditioned average marginal e¤ect if and only if X is

separably determined or, essentially, Y is linear in X (more precisely, �2(z) = 0). Also, the

departure from a straightforward e¤ect measure is a matter of degree, as DR approaches an

unweighted instrument-conditioned average marginal e¤ect the closer q is to being separable

and/or the smaller the conditional variation of Dxr(X;Uy).

2.5 Testing for Absence of E¤ects

Despite the failure of DRmethods generally to estimate straightforward measures of average

marginal e¤ects, they are still broadly useful for inference about the absence of e¤ects.

Speci�cally, if Dxr(X;Uy) = 0 with probability 1; then ��(z) = 0 for all z; regardless

of nonseparability. Rejecting ��(z) = 0 for some z thus implies rejecting Dxr(X;Uy) =

0 with probability 1: Because both &(z; Ux) and Dxr(X;Uy) can vary in sign, there do

exist alternatives against which such a test can have power equal to level; however, such

cases require fortuitous cancellations that must occur for every z in SZ : Such exceptional

possibilities are not enough to impair inference generally.

Further, suppose q(z; ux) is strictly monotone in z for almost all ux with common

sign for Dzq(z; ux) and r(x; uy) is (weakly) monotone in x for almost all uy with common

sign for Dxr(x; uy). This monotonicity is often plausible in economics (e.g., Milgrom and

Shannon, 1994; see also Angrist, Imbens, and Rubin, 1996, who consider binary Z and X).

Monotonicity in z ensures that the weights &(z; Ux) are positive. Monotonicity in x then

ensures that for every z in SZ ; ��ns(z) = 0 if and only if �
�(z) = 0, as is readily veri�ed.

Testing ��(z) = 0 is thus consistent against any alternative with ��ns(z) non-zero.

The results of Sections 3 and 4 deliver the properties of the relevant test statistics.

2.6 Using DR Measures to Test Separability

Just as separability plays a crucial role for IR methods and the availability of suitable

covariates plays a crucial role for control variable methods, the separable determination of
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X plays a crucial role for DR methods.2 Thus, it is important to have tests for separability;

we now show how to use DR measures to test this.

To proceed, we develop a representation for q in terms of an index for the unobserv-

ables Ux: Recall that X = q(Z;Ux), for vector-valued Ux. There always exist measurable

functions Vx and q2, scalar- and vector-valued respectively, such that Ux = q2(Vx) and q2

is one-to-one, so Vx = q�12 (Ux), a scalar index. Further, Z ? Ux ensures Z ? Vx (and vice

versa). Let q1(Z; Vx) � q(Z; q2(Vx)). Then q(Z;Ux) = q1(Z; q
�1
2 (Ux)) and X = q1(Z; Vx):

This scalar index representation always exists.

If q1(z; vx) is also monotone in vx for each z, we say that index monotonicity holds for

q. This is the �monotonicity of the endogenous regressor in the unobserved component�

assumed in Imbens and Newey (2009) (see also Chesher (2003) and Matzkin (2003), for

example); this always holds when X is separably determined. With index monotonicity, an

explicit expression for q1 can be given along the lines of Hoderlein (2005, 2007) or Imbens

and Newey (2009). Speci�cally, let Vx have the uniform distribution. (This can always be

ensured. If ~Vx is non-uniform with distribution ~F , then Vx = ~F ( ~Vx) is uniform.) Let F (x

j z) denote the conditional CDF of X given Z = z. As Vx = F (XjZ) is uniform and F (� j
z) is invertible, we have X = F�1(Vxj Z), where F�1(� j z) is the inverse of F (� j z) with
respect to its �rst argument. Further, F�1(vxj z) is monotone in vx for each z: As q1 is
monotone in vx for each z, it must be that

q1(z; vx) = F�1(vxj z):

Further, when X and Z are observable, Vx = F (X j Z) can be consistently estimated. The
same is true for q1 and Dzq1.

To examine the identi�cation of e¤ects of interest with index monotonicity, de�ne

~�Y (z; vx) � E(Y j Z = z; Vx = vx) =

Z
SUy (z;vx)

r(q1(z; vx); uy) dF (uyj z; vx) and

~�Y (zjvx) �
Z
SUy (vx)

r(q1(z; vx); uy) dF (uyj vx):

2In this section, we suppose that the possibility that Y is linear in X has been ruled out, justifying
application of nonparametric methods. Otherwise, much simpler parametric methods would be appropriate
to estimate e¤ects.
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When Z is exogenous, structural identi�cation holds: ~�Y = ~�Y : This suggests an alternative

DR e¤ect measure when r and q are nonseparable and Dzq1(z; vx) 6= 0, namely

��m(zjvx) � Dz~�Y (zjvx) = Dzq1(z; vx) =

Z
SUy (vx)

Dxr(q1(z; vx); uy) dF (uyjvx):

Averaging this over Vx (equivalently Ux) gives

��
�
m(z) �

Z
��m(zjvx) dF (vx)

=

Z
Dxr(q1(z; vx); uy) dF (uy; vx) � ��ns(z):

Now let �m(z; vx) � Dz~�Y (z; vx) = Dzq1(z; vx), and de�ne

��m(z) �
Z
�m(z; vx) dF (vxjz):

Under mild conditions, exogeneity ensures ��m = ��
�
m: Thus, full identi�cation of Dz�Y and

index monotonicity for q ensure that we can fully identify and estimate ���m = ��ns, even

when q is nonseparable.

Further, comparing estimators of ���m and �
� gives a test of separability, as ���m = ��ns =

�� under separability and ���m = ��ns 6= ��nn = �� otherwise.

Alternatively, let ~�(x; vx) denote the conditional expectation of Dxr(X;Uy) given X

= x and Vx = vx,

~�(x; vx) �
Z
SUy (x;vx)

Dxr(x; uy) dF (uyjx; vx);

and let ~��(xjvx) denote the average marginal e¤ect on Y of X at x given Vx = vx,

~��(xjvx) �
Z
SUy (vx)

Dxr(x; uy) dF (uyjvx):

Assumptions 2.1 and 2.2 ensure X ? Uy j Ux; the invertibility of q2 implies X ? Uy

j Vx; so Vx is a usable control variable. It follows that dF (uyjx; vx) = dF (uyjvx) and
SUy(x; vx) = SUy(vx). Then ~�(x; vx) is fully identi�ed as ~��(xjvx): This is a local covariate-
conditioned average marginal e¤ect, providing information not revealed by DR measures.

A test of separability can be based on the fact that E[~��(XjVx)] = E[��ns(Z)]; as can

be easily veri�ed. Comparing estimators for E[~��(XjVx)] (using index monotonicity, as
in Imbens and Newey, 2009) and E[��(Z)] delivers another test of separability of q; as
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E[~��(XjVx)] = E[��ns(Z)] = E[��(Z)] under separability, but E[~��(XjVx)] 6= E[��(Z)]

otherwise.

As the analysis of the tests just described requires the new results of Sections 3 and 4

and is quite involved otherwise, we leave this for future research. Analyzing estimators of

��m is also su¢ ciently involved that this is left for future work.

2.7 Formal Identi�cation Results

We now record our identi�cation results as formal statements. These succinctly summarize

our discussion above and serve as a later reference. Proposition 2.1 formalizes existence of

the relevant objects, Proposition 2.2 formalizes structural identi�cation, and Proposition

2.3 formalizes possible forms for ��.

Proposition 2.1 Suppose that (X;Y; Z) are random variables such that E(X) and E(Y )

are �nite. (i) Then there exist measurable real-valued functions �X and �Y de�ned on SZ
by eqs.(5) and (9). (ii) Suppose also that �X and �Y are di¤erentiable on SZ : Then there

exists a measurable real-valued function � de�ned on S� by eq.(13).

Proposition 2.2 Suppose Assumptions 2.1(i)-(iii) and Assumption 2.2 hold. (i) Then

there exist measurable real-valued functions �X and �Y de�ned on SZ by eqs.(7) and (11)

respectively. Further, eqs.(6) and (10) hold, so that �X and �Y are structurally identi�ed

on SZ as �X = �X and �Y = �Y . (ii) Suppose also that �X and �Y are di¤erentiable on SZ :

Then �X and �Y are di¤erentiable on SZ ; and Dz�X and Dz�Y are structurally identi�ed

on SZ as Dz�X = Dz�X and Dz�Y = Dz�Y . In addition, there exists a measurable real-

valued function �� de�ned on S�� by eq.(14), and � is structurally identi�ed on S� = S��

as � = ��. (iii) If Assumption 2.1(iv) also holds and �X and �Y have representations in

terms of observable random variables, then �X ; �Y ; Dz�X ; and Dz�Y are fully identi�ed on

SZ, and � and �� are fully identi�ed on S� = S�� :

Proposition 2.3 Suppose the conditions of Proposition 2.2 hold and that z ! q(z; ux) is

di¤erentiable on SZ for each ux 2 SUx and x ! r(x; uy) is di¤erentiable on SX for each

uy 2 SUy : (i) If eqs.(8) and (12) hold for each z 2 SZ ; then eq.(15) holds, so ��(z) = ��nn(z)

for all z 2 S��. (ii) Further, for all z 2 S�� : (a) if r is linear, then ��(z) = �0; (b)
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if r and q are separable, then ��(z) = ��ss(z); (c) if q is separable and r is nonseparable,

then ��(z) = ��ns(z); (d) if q is nonseparable and r is separable, then ��(z) = ��sn(z);

and (e) if q and r are nonseparable and an index monotonicity condition holds for q, then

��
�
m(z) = ��ns(z):

Several remarks are in order. First, Proposition 2.1 makes no reference at all to any

underlying structure: it applies to any random variables. Next, note that the identi�cation

results of Propositions 2.1 and 2.2 do not require that X is continuously distributed or that

q or r are di¤erentiable, as these conditions are not necessary for the existence of Dz�X

or Dz�Y . In such cases, the speci�c representations of Proposition 2.3 do not necessarily

hold, as di¤erentiability for q and r is explicitly required there. Nevertheless, �� can

still have a useful interpretation as a generalized average marginal e¤ect, similar to that

analyzed by Carneiro, Heckman, and Vytlacil (2009). For brevity and conciseness, we leave

aside a more detailed examination of these possibilities here. Finally, we need not require

that Z is everywhere continuously distributed; local versions of these results hold on open

neighborhoods where Z is continuously distributed.

2.8 Estimation Framework

In addition to �� (z), we are interested in weighted averages of �� (z) such as

��w �
Z
S��

�� (z)w (z) dz or ��wfZ �
Z
S��

�� (z)w (z) fZ (z) dz;

where w (�) is a user-supplied weight function. Tables 1A and 1B in Heckman and Vytlacil
(2005) summarize the appropriate weights needed to generate policy parameters of interest,

such as the average treatment e¤ect or the e¤ect of treatment on the treated, in latent index

models. Under structural identi�cation, we have ��w = �w and �
�
wfZ

= �wfZ ; where

�w �
Z
S�

� (z)w (z) dz and �wfZ �
Z
S�

� (z)w (z) fZ (z) dz: (16)

We thus focus on estimating the objects �; �w; and �wfZ :

To encompass these, we focus on estimating quantities of the general form

gV;� (z) � D�
z (E [V j Z = z] fZ (z)) ; (17)
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where D�
z � (@�=@z�) denotes the derivative operator of degree �, and V is a generic

random variable that will stand for X; Y; or the constant (V � 1).
Note that special cases of eq.(17) include densities

fZ (z) = g1;0 (z) ;

conditional expectations

�Y (z) = gY;0 (z) = g1;0 (z) ;

and, when they exist, their derivatives

Dz�Y (z) =
gY;1 (z)

g1;0 (z)
� gY;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
:

Once we know the asymptotic properties of estimators of gV;� (z), we easily obtain the

asymptotic properties of estimators of � (z), �w; or �wfZ .

As discussed above, we treat two distinct cases. In the �rst case (OXI), we observe

Z, ensuring that X; Y; and Z permit estimation of � and related objects of interest. In

the second case (PXI), we do not observe Z but instead observe a proxy Z1; structurally

generated as Z1 = Z + U1 (with U1 ? Z). In the absence of further information, � is no

longer empirically accessible.

The di¢ culty can be seen as follows. Suppose that Z1 is a "valid" and "relevant"

standard instrument; thus, for linear r and q; we can structurally identify Dz�Y;1(z)

= Dz�X;1(z) = cov(Y; Z1)=cov(X;Z1) = cov(Y; Z)=cov(X;Z) = Dz�Y (z) = Dz�X(z) as

Dz�Y (z) = Dz�X(z) = �0; where �Y;1(z) � E(Y j Z1 = z) and �X;1(z) � E(X j Z1 = z).

This fails without linearity, as Dz�Y;1(z) = Dz�X;1(z) generally di¤ers from Dz�Y (z) =

Dz�X(z): Thus, even with structural identi�cation of Dz�Y (z) = Dz�X(z), Dz�Y;1(z) =

Dz�X;1(z) is generally not structurally informative. In other words, substituting a proxy

for an instrument, while harmless in fully linear settings, generally leads to inconsistent

estimates of structural e¤ects in nonlinear settings.

As we show, however, � can be estimated if we can observe two error-contaminated

proxies for Z, structurally generated as

Z1 = Z + U1 Z2 = Z + U2;

where U1 and U2 are random variables satisfying assumptions given below.
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3 Estimation with Observed Exogenous Instruments

3.1 Asymptotics: General Theory

We �rst state results for generic Z and V , with gV;� as de�ned above. Our �rst conditions

specify some relevant properties of Z and V . For notational convenience in what follows,

we may write "supz2R" or "infz2R" in place of "supz2SZ" or "infz2SZ". By convention, we

also take the value of any referenced function to be zero except when z 2 SZ .

Assumption 3.1 Z is a random variable with continuous density fZ such that supz2R

fZ (z) <1:

Among other things, this ensures that fZ (z) > 0 for all z 2 SZ :

Assumption 3.2 V is a random variable such that (i) E(jV j) <1; (ii) E(V 2) <1 and

supz2RE [V
2jZ = z] <1; (iii) infz2RE [V 2jZ = z] > 0; (iv) for some � > 0; E

�
jV j2+�

�
<

1 and supz2RE
�
jV j2+�jZ = z

�
<1:

Assumptions 3.1(i) and 3.2(i) ensure that gV;0 (z) is well de�ned. Next, we impose

smoothness on gV;0. Let N � f0; 1; :::g and N � N [ f1g:

Assumption 3.3 gV;0 is continuously di¤erentiable of order � 2 N on R:

Given a sample of n independent and identically distributed (IID) observations fVi; Zig,
a natural kernel estimator for gV;� (z) is

ĝV;� (z; h) = D�
z Ê

�
V

h
k

�
Z � z

h

��
= (�1)� h�1��Ê

�
V k(�)

�
Z � z

h

��
;

where k (�) is a user-speci�ed kernel, k(�) (z) � D�
z k (z), h > 0 is the kernel bandwidth,

and the operator Ê [�] denotes a sample average: for any random variable W , Ê [W ] �
n�1

Pn
i=1Wi, where W1; : : : ;Wn is a sample of random variables, distributed identically as

W: We specify our choice of kernel as follows

Assumption 3.4 The real-valued kernel z ! k (z) is measurable and symmetric,
R
k(z)dz =

1; and its Fourier transform � ! � (�) is such that: (i) � has two bounded derivatives; (ii)

� is compactly supported (without loss of generality, we take the support to be [�1; 1]); and
(iii) there exists �� > 0 such that � (�) = 1 for j�j < �� .
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Requiring that the kernel�s Fourier transform is compactly supported implies that the

kernel is continuously di¤erentiable to any order. Politis and Romano (1999) call a kernel

whose Fourier transform is constant in the neighborhood of the origin, as in (iii), a "�at-

top" kernel. When the derivatives of the Fourier transform vanish at the origin, all moments

of the kernel vanish, by the well-known Moment Theorem. Such kernels are thus also called

"in�nite order" kernels. These have the property that, if the function to be estimated is

in�nitely many times di¤erentiable, the bias of the kernel estimator shrinks faster than any

positive power of h. The use of in�nite order kernels is not essential for the OXI case, but is

especially advantageous in the PXI case, where fast convergence rates are more di¢ cult to

achieve. We use in�nite order kernels in both cases to maintain a fully comparable analysis.

Our �rst result decomposes the kernel estimation error.

Lemma 3.1 Suppose that fVi; Zig is a sequence of identically distributed random variables
satisfying Assumptions 3.1, 3.2(i) and 3.3, and that Assumption 3.4 holds. Then for each

� = 0; :::;�; z 2 SZ ; and h > 0

ĝV;� (z; h)� gV;� (z) = BV;� (z; h) + LV;� (z; h) ; (18)

where BV;� (z; h) is a nonrandom �bias term�de�ned as

BV;� (z; h) � gV;� (z; h)� gV;� (z) ;

with

gV;� (z; h) � D�
zE

�
V

h
k

�
Z � z

h

��
= (�1)�E

�
V h���1k(�)

�
Z � z

h

��
;

and LV;� (z; h) is a �variance term�admitting the linear representation

LV;� (z; h) = Ê [`V;� (z; h;V; Z)] ;

with

`V;� (z; h; v; ~z) � (�1)� h���1vk(�)
�
~z � z

h

�
� E

�
(�1)� h���1V k(�)

�
Z � z

h

��
:

Proofs can be found in the Mathematical Appendix.

To obtain rate of convergence results for our kernel estimators, we impose further

smoothness conditions on gV;0 and specify convergence rates for the bandwidth.
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Assumption 3.5 For � 2 R; let �V (�) � E
�
V ei�Z

�
=
R
gV;0 (z) e

i�zdz: There exist con-

stants C� > 0; �� � 0, �� � 0; and 
� 2 R; such that �� 
� � 0 and

j�V (�)j � C� (1 + j�j)
� exp
�
�� j�j��

�
: (19)

Moreover, if �� = 0, then for given � 2 f0; :::;�g; 
� < ��� 1:

This Fourier transform bound directly relates to conditions on the derivatives of gV;0. If

for some 
� < 0; gV;0 admits � = �
� derivatives that are absolutely integrable over R,
then Assumption 3.5 is satis�ed with �� = 0. The situation where �� < 0 corresponds to

the case where gV;0 is in�nitely many times di¤erentiable (� =1). This Fourier bound is
particularly advantageous when combined with an in�nite order kernel, because the order

of magnitude of the estimation bias is then directly related to the constants �� and ��. A

further advantage is that Assumption 3.5 exactly parallels the assumptions needed for the

PXI case, thus facilitating comparisons.

We choose the kernel bandwidth h according to the next condition.

Assumption 3.6 fhng is a sequence of positive numbers such that as n ! 1; hn ! 0;

and for given � 2 f0; :::;�g; nh2�+1n !1:

Taken together, our moment and bandwidth conditions are standard in the kernel estima-

tion literature (e.g. Haerdle and Linton, 1994; Andrews, 1995; Pagan and Ullah, 1999).

The decomposition of Lemma 3.1 and the assumptions just given enable us to state our

�rst main result. We give this in a form that somewhat departs from the usual asymptotics

for kernel estimators, but that facilitates the analysis for the various quantities of interest

and eases comparisons with the PXI case.

Theorem 3.2 Let the conditions of Lemma 3.1 hold with fVi; Zig IID.
(i) Suppose in addition that Assumption 3.5 holds for given � 2 f0; :::;�g. Then for

h > 0;

sup
z2R

jBV;� (z; h)j = O
��
h�1
�
�;B exp��B �h�1��B�� ;

where �B � ����
�� ; �B � ��; and 
�;B � 
� + 1 + �:
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(ii) For each z 2 SZ and h > 0, E [LV;� (z; h)] = 0; and if Assumption 3.2(ii) also holds
then

E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) ;

where


V;� (z; h) � E
�
(`V;� (z; h;V; Z))

2�
is �nite and satis�es r

sup
z2R


V;� (z; h) = O
�
h���1=2

�
: (20)

Further,

sup
z2R

jLV;� (z; h)j = Op
�
n�1=2h���1

�
: (21)

If in addition hn ! 0 as n!1, then for each z 2 SZ

h2�+1n 
V;� (z; hn)! E
�
V 2jZ = z

�
fZ (z)

Z �
k(�) (z)

�2
dz (22)

and if Assumption 3.2(iii) also holds, then 
V;� (z; hn) > 0 for all n su¢ ciently large.

(iii) If in addition to the conditions of (ii); Assumptions 3.2(iv) and 3.6 for given

� 2 f0; :::;�g also hold, then for each z 2 SZ

n1=2 (
V;� (z; hn))
�1=2 LV;� (z; hn)

d! N (0; 1) : (23)

As we use nonparametric estimators ĝV;� as building blocks for more complex quan-

tities of interest such as �w and �wfZ , we now consider a functional b of a k-vector g �
(gV1;�1 ; : : : ; gVk;�k). Speci�cally, we establish the asymptotic properties of b (ĝ (�; h))�b (g) �
b (ĝV1;�1 (�; h) ; : : : ; ĝVk;�k (�; h))�b (gV1;�1 ; : : : ; gVk;�k). We �rst impose minimum convergence
rates. For conciseness, we state these in a high-level form; primitive conditions obtain via

Theorem 3.2.

Assumption 3.7 For given � 2 f0; :::;�g; supz2R jBV;� (z; hn)j = o
�
n�1=2

�
and supz2R

jLV;� (z; hn)j = op
�
n�1=4

�
.

The following theorem consists of two parts. The �rst part provides an asymptotically

linear representation, useful for analyzing a scalar estimator constructed as a functional of

a vector of estimators. The second part gives a convenient asymptotic normality and root-n
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consistency result useful for analyzing �w and �wfZ . In this result we explicitly consider a

�nite family of random variables fV1; :::; VJg satisfying Assumptions 3.2, 3.3, and 3.5. We
require that these conditions hold uniformly, with the same constants �;�; C�; ��; ��; 
�

for all V in the family. As the family is �nite, this can always be ensured by taking the

constants �;�; C�; ��; ��; 
� to be the worst-case values among all V in the family.

Theorem 3.3 For �; J 2 N, let �1; : : : ; �J belong to f0; :::;�g, and suppose that fV1i; :::; VJi; Zig
is an IID sequence of random vectors such that fVji; Zig satis�es the conditions of Theorem
3.2 and Assumption 3.7 for j = 1; :::; J with identical choices of k and hn.

Let the real-valued functional b be such that for any ~g � (~gV1;�1 ; : : : ; ~gVJ ;�J ) in an L1

neighborhood of the J-vector g � (gV1;�1 ; :::; gVJ ;�J ),

b (~g)� b (g) =
JX
j=1

Z �
~gVj ;�j (z)� gVj ;�j (z)

�
sj (z) dz +

JX
j=1

O
�

~gVj ;�j � gVj ;�j



2
1

�
(24)

for some real-valued functions sj; j = 1; :::; J . If sj is such that supz2R jsj (z)j < 1,R
jsj (z)j dz < 1; and E

��
Vjs

(�j)
j (Z)

�2�
< 1 (with s(�j)j (z) � D

�j
z sj (z)) for each j =

1; :::; J , then

b (ĝ (�; hn))� b (g) =
JX
j=1

Ê
h
 Vj ;�j (sj;Vj; Z)

i
+ op

�
n�1=2

�
;

where

 Vj ;�j (sj; vj; z) �
�
vjs

(�j)
j (z)� E

h
Vjs

(�j)
j (Z)

i�
; j = 1; :::; J:

Moreover,

n1=2 (b (ĝ (�; hn))� b (g))
d! N (0;
b) ;

where


b � E

24 JX
j=1

 Vj ;�j (sj;Vj; Z)

!235 <1:

Interestingly, this result provides �nonparametric �rst step correction terms�,  Vj ;�j (sj; vj; z),

similar to the correction terms � (z) introduced in Newey (1994). Whereas Newey (1994)

provides correction terms for conditional expectations and densities (and derivatives thereof),

we provide correction terms for quantities of the form gV;� (z). Naturally, our correction
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term for g1;0 (z) reduces to Newey�s correction term for densities. Also, applying Theorem

3.3 to a nonlinear functional of the ratio gV;0 (z) =g1;0 (z) recovers Newey�s correction term

for conditional expectations.

3.2 Asymptotics: OXI Case

We now apply our general asymptotic results to our main quantities of interest, eqs.(13)

and (16). First we treat the following nonparametric estimator of � (z):

�̂ (z; hn) � Dz�̂Y (z; hn) = Dz�̂X(z; hn) (25)

for z 2 SZ , where

Dz�̂Y (z; h) � ĝY;1 (z; h)

ĝ1;0 (z; h)
� ĝY;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
and

Dz�̂X(z; h) � ĝX;1 (z; h)

ĝ1;0 (z; h)
� ĝX;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
:

Applying Theorem 3.2 and a straightforward Taylor expansion, we obtain

Theorem 3.4 Suppose that fXi; Yi; Zig is an IID sequence of random variables satisfying

the conditions of Theorem 3.2 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical
choices of k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j < 1, and for
� > 0; de�ne

Z� � fz 2 R : fZ (z) � � and jDz�X(z)j � �g :

Then

sup
z2Z�

����̂ (z; hn)� �(z)
��� = O

�
��4

�
h�1n
�
1;B exp��B �h�1n ��B��+Op

�
��4n�1=2

�
h�1n
�2�

;

and there exists a sequence f�ng such that �n > 0; �n ! 0 as n!1; and

sup
z2Z�n

����̂ (z; hn)� �(z)
��� = op(1):

The delta method secures the next result.

Theorem 3.5 Suppose that fXi; Yi; Zig is an IID sequence satisfying the conditions of

Theorem 3.2 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices for k and
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fhng: Further, suppose maxV=1;X;Y max�=0;1 jgV;� (z)j < 1. Then for all z 2 SZ such that
jDz�X(z)j > 0;

n1=2

�1=2
� (z; hn)

�
�̂ (z; hn)� � (z)

�
p! N (0; 1) ;

provided that
�
maxV=1;X;Y max�=0;1

�
n1=2h

�+1=2
n

�
jBV;� (z; hn)j

�
p! 0 and that


� (z; hn) � E
�
(`� (z; hn;X;Y; Z))

2�
is �nite and positive for all n su¢ ciently large, where

`� (z; h;x; y; z) �
X
�=0;1

(sX;1;� (z) `1;� (z; h; 1; z) + sX;X;� (z) `X;� (z; h;x; z)

+sY;1;� (z) `1;� (z; h; 1; z) + sY;Y;� (z) `Y;� (z; h; y; z)) (26)

sY;Y;1 (z) � 1

Dz�X(z)

1

g1;0 (z)

sY;Y;0 (z) � � 1

Dz�X(z)

g1;1 (z)

g1;0 (z)

1

g1;0 (z)

sY;1;1 (z) � � 1

Dz�X(z)

gY;0 (z)

g1;0 (z)

1

g1;0 (z)

sY;1;0 (z) � 1

Dz�X(z)

�
2
gY;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
� gY;1 (z)

g1;0 (z)

�
1

g1;0 (z)

sX;X;1 (z) � � (z)

Dz�X(z)

1

g1;0 (z)

sX;X;0 (z) � � � (z)

Dz�X(z)

g1;1 (z)

g1;0 (z)

1

g1;0 (z)

sX;1;1 (z) � � � (z)

Dz�X(z)

gX;0 (z)

g1;0 (z)

1

g1;0 (z)

sX;1;0 (z) � � (z)

Dz�X(z)

�
2
gX;0 (z)

g1;0 (z)

g1;1 (z)

g1;0 (z)
� gX;1 (z)

g1;0 (z)

�
1

g1;0 (z)
:

As described in Section 2, weighted functions of �; �w and �wfZ ; de�ned in eq.(16) are

also of interest. We now propose the following estimators for these:

�̂w �
Z
S�̂(�;hn )

�̂ (z; hn)w (z) dz

�̂wfZ �
Z
S�̂(�;hn)

�̂ (z; hn)w (z) ĝ1;0 (z; hn) dz;

where S�̂(�;hn) � fz : ĝ1;0 (z; hn) > 0; jDz�̂X(z; hn)j > 0g: We next restrict the weights.
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Assumption 3.8 Let W be a bounded measurable subset of R: (i) The weighting function

w : R! R is measurable and supported onW ; (ii) infz2W fZ (z) > 0 and infz2W jDz�X(z)j >
0; (iii) maxV=1;X;Y max�=0;1 supz2W jgV;� (z)j <1.

The asymptotic distributions of these estimators follow by straightforward application

of Theorem 3.3, noting that, with probability approaching one, the integrals over the ran-

dom set S�̂(�;hn) equal the same integral over the set W, because under our assumptions
the denominators in the expression for �̂ (z; hn) converge uniformly to functions that are

bounded away from zero over W. Due to the weighted estimators�semiparametric nature,
root-n consistency and asymptotic normality hold.

Theorem 3.6 Suppose the conditions of Theorem 3.3 hold for V = 1; X; Y; and � = 0; 1;

and that Assumption 3.8 also holds. Then

n1=2
�1=2w

�
�̂w � �w

�
d! N (0; 1) ;

provided that


w � E
h�
 �w (X; Y; Z)

�2i
is �nite and positive for all n su¢ ciently large, where

 �w (x; y; z) �
X
�=0;1

( 1;� (wsX;1;�; 1; z) +  X;� (wsX;X;�;x; z)

+ 1;� (wsY;1;�; 1; z) +  Y;� (wsY;Y;�; y; z));

wsA;V;� denotes the function mapping z to w (z) sA;V;� (z) ; and where  V;� (s; v; z) is de�ned

in Theorem 3.3.

Theorem 3.7 Suppose the conditions of Theorem 3.3 hold for V = 1; X; Y; and � = 0; 1;

and that Assumption 3.8 also holds. Then

n1=2

�1=2
�wfZ

�
�̂wfZ � �wfZ

�
d! N (0; 1) ;

provided that


wfZ � E

��
 �wfz (X; Y; Z)

�2�
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is �nite and positive for all n su¢ ciently large, where

 �wfZ
(x; y; z) � f

X
�=0;1

( 1;� (wfZsX;1;�; 1; z) +  X;� (wfZsX;X;�;x; z)

+ 1;� (wfZsY;1;�; 1; z) +  Y;� (wfZsY;Y;�; y; z))g

+ 1;0 (w�; 1; z) ;

wsA;V;� denotes the function mapping z to w (z) fZ(z)sA;V;� (z) ; w� denotes the function

mapping z to w (z) �(z), and where  V;� (s; v; z) is de�ned in Theorem 3.3.

It is straightforward to show that the asymptotic variances in Theorems 3.2, 3.3, 3.5,

3.6, and 3.7 can be consistently estimated, although we do not provide explicit theorems

due to space limitations. In the cases of Theorems 3.2 or 3.5, this estimation can be

accomplished, respectively, by substituting conventional kernel nonparametric estimates

into eq.(22), or by calculating the variance of eq.(26) through a similar technique. In the

case of Theorems 3.3, 3.6, and 3.7, we directly provide an expression for the in�uence

function, from which the asymptotic variance is easy to calculate.

4 Estimation with Proxies for Unobserved Exogenous
Instruments

When Z cannot be observed, the estimators of Section 3 are not feasible. In this section we

consider estimators based on error-laden measurements of Z. This delivers nonparametric

and semi-parametric analogs of the PXI estimators introduced by CW. The results of this

section thus provide a way to conduct inference when instruments derived from economic

theory are unobserved. This holds not only in general structural systems as in Assumption

2.1, but also in special structures such as the Roy model discussed in Heckman and Vytlacil

(2005) where DR e¤ect measures have clear structural interpretations and where exogenous

instruments can often be unobserved.
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4.1 A General Representation Result

We begin by obtaining a representation in terms of observables for gV;� with generic V

when Z is unobserved, using two error-contaminated measurements of Z:

Z1 = Z + U1 Z2 = Z + U2:

We impose the following conditions on Z; V; U1; and U2. For succinctness, some conditions

may overlap those previously given.

Assumption 4.1 E [jZj] <1; E [jU1j] <1; and E [jV j] <1.

Assumption 4.2 E [U1jZ;U2] = 0; U2 ? Z; and E [V jZ;U2] = E [V jZ] :

The next assumption formalizes the measurement of Z.

Assumption 4.3 Z1 = Z + U1 and Z2 = Z + U2:

We now show that gV;� can be de�ned solely in terms of the joint distribution of V; Z1;

and Z2: Thus, if these are observable, then gV;� is empirically accessible. This result gen-

eralizes Schennach (2004b), which focused on the � = 0 case.

Lemma 4.1 Suppose Assumptions 3.1, 4.1 - 4.3, and 3.3 hold. Then for each � 2
f0; :::;�g and z 2 SZ

gV;� (z) =
1

2�

Z
(�i�)� �V (�) exp (�i�z) d�;

where for each real �;

�V (�) � E
�
V ei�Z

�
=
E
�
V ei�Z2

�
E [ei�Z2 ]

exp

 Z �

0

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
d�

!
:

4.2 Estimation

Our estimator is motivated by a smoothed version of gV;� (z).
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Lemma 4.2 Suppose Assumptions 3.1, 4.1, and 3.3 hold, and let k satisfy Assumption

3.4. For h > 0 and for each � 2 f0; :::;�g and z 2 SZ now let

gV;� (z; h) �
Z
1

h
k

�
~z � z

h

�
gV;� (~z) d~z:

Then

gV;� (z; h) =
1

2�

Z
(�i�)� � (h�)�V (�) exp (�i�z) d�:

By lemma 1 of the appendix of Pagan and Ullah (1999, p.362), we have limh!0 gV;� (z; h) =

gV;� (z) ; so we also de�ne gV;� (z; 0) � gV;� (z) : Motivated by Lemma 4.2, we now propose

the estimator

ĝV;� (z; hn) �
1

2�

Z
(�i�)� � (hn�) �̂V (�) exp (�i�z) d�; (27)

with hn ! 0 as n!1, where, motivated by Lemma 4.1,

�̂V (�) �
Ê
�
V ei�Z2

�
Ê [ei�Z2 ]

exp

 Z �

0

iÊ
�
Z1e

i�Z2
�

Ê [ei�Z2 ]
d�

!
; (28)

and Ê [�] denotes a sample average, as above.

4.3 Asymptotics: General Theory

The results of this section extensively generalize those of Schennach (2004a, 2004b), to

include (i) the � 6= 0 case (ii) uniform convergence results and (iii) general semiparametric

functionals of gV;�, and hence will be applicable beyond our PXI case. Parallel to Lemma 3.1,

we �rst decompose the estimation error into components that will be further characterized

in subsequent results.

Lemma 4.3 Suppose that fVi; Zi; U1i; U2ig is a sequence of identically distributed random
variables satisfying Assumptions 3.1, 4.1 - 4.3, and 3.3, and that Assumption 3.4 holds.

Then for each � = 0; :::;�; z 2 SZ ; and h > 0;

ĝV;� (z; h)� gV;� (z) = BV;� (z; h) + LV;� (z; h) +RV;� (z; h) ; (29)

where BV;� (z; h) is a nonrandom �bias term�de�ned as

BV;� (z; h) � gV;� (z; h)� gV;� (z) ;
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LV;� (z; h) is a �variance term�admitting the linear representation

LV;� (z; h) = Ê [`V;� (z; h;V; Z1; Z2)] ;

with

`V;� (z; h; v; z1; z2) �
Z
	V;�;1 (�; z; h)

�
ei�z2 � E

�
ei�Z2

��
d�

+

Z
	V;�;Z1 (�; z; h)

�
z1e

i�z2 � E
�
Z1e

i�Z2
��
d�

+

Z
	V;�;V (�; z; h)

�
vei�z2 � E

�
V ei�Z2

��
d�;

where, for A = 1; Z1; and V; we let �A (�) � E
�
Aei�Z2

�
and de�ne

	V;�;1 (�; z; h) � � 1

2�

�V (�)

�1 (�)
exp (�i�z) (�i�)� � (h�)

� 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�

	V;�;Z1 (�; z; h) � 1

2�

i

�1 (�)

Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�

	V;�;V (�; z; h) � 1

2�

�1 (�)

�1 (�)
exp (�i�z) (�i�)� � (h�) ;

where for a given function � ! f(�), we write
R �1
�

f(�)d� � limc!+1
R c�
�
f(�)d�; and

RV;� (z; h) is an (implicitly de�ned) nonlinear �remainder term.�

We already have conditions su¢ cient to describe the asymptotic properties of the bias

term de�ned in Lemma 4.3.

Theorem 4.4 Let the conditions of Lemma 4.3 hold with fVi; Zi; U1i; U2ig IID, and suppose
in addition that Assumption 3.5 holds for given � 2 f0; :::;�g. Then for h > 0;

sup
z2R

jBV;� (z; h)j = O
��
h�1
�
�;B exp��B �h�1��B�� ;

where �B � ����
�� ; �B � ��; and 
�;B � 
� + 1 + �:

This result is closely parallel to Theorem 3.2(i). Our next result parallels Theorem

3.2(ii) and (iii). For this, we �rst ensure that LV;� (z; h) has �nite variance.
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Assumption 4.4 E [Z21 ] <1; E [V 2] <1.

To obtain the rate for 
V;� (z; h) = var(n1=2LV;� (z; h)), we impose bounds on the tail

behavior of the Fourier transforms involved, as is common in the deconvolution literature

(e.g. Fan, 1991; Fan and Truong, 1993). These rates are analogous to Assumption 3.5.

Assumption 4.5 (i) For each � 2 R, let �1 (�) � E
�
ei�Z

�
satisfy����D��1 (�)

�1 (�)

���� � C1 (1 + j�j)
1 (30)

for some C1 > 0 and 
1 � 0; and for C�; ��; ��; and 
�; as in Assumption 3.5;

j�1 (�)j � C� (1 + j�j)
� exp
�
�� j�j��

�
;

(ii) For each � 2 R, let �1 (�) � E
�
ei�Z2

�
satisfy

j�1 (�)j � C� (1 + j�j)
� exp
�
�� j�j��

�
(31)

for some C� > 0 and �� � 0; �� � �� � 0; and 
� 2 R; such that 
��� � 0.

For conciseness, we express our bounds in the form (1 + j�j)
 exp
�
� j�j�

�
, thereby si-

multaneously covering the ordinarily smooth (� = 0, � = 0) and supersmooth (� 6= 0,

� 6= 0) cases. Note that the lack of a term exp
�
�1 j�j�1

�
in eq.(30) results in a negligible

loss of generality, asD��1 (�) =�1 (�) = D� ln�1 (�) ; and ln�1 (�) is typically a power of � for

large �; even if �1 (�) is associated with a supersmooth distribution. The tail behaviors of

�1 (�) and �V (�) have the same e¤ect on the convergence rate; we may thus impose the same

bound without loss of generality. The lower bound on �1 (�) is implied by separate lower

bounds on E
�
ei�Z

�
and E

�
ei�U2

�
, as independence ensures E

�
ei�Z2

�
= E

�
ei�Z

�
E
�
ei�U2

�
.

By using the in�nite order kernels of Assumption 3.4, we ensure that the rate of conver-

gence of the estimator is never limited by the order of the kernel but only by the smoothness

of the data generating process. This can be especially helpful when the densities of Z2 and

Z are both supersmooth, in which case an in�nite order kernel can often deliver a conver-

gence rate n�r for some r > 0: In contrast a traditional �nite-order kernel only achieves a

(lnn)�r rate. Although our theory can easily be adapted to cover �nite-order kernels, as

in (Schennach, 2004b), we focus on in�nite order kernels to exploit their better rates.
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The next bounds parallel Assumption 3.2(iv) and help to establish asymptotic normality

of the kernel regression estimators.

Assumption 4.6 For some � > 0; E
�
jZ1j2+�

�
<1; supz2RE

�
Z2+�1 jZ2 = z

�
<1; E

�
jV j2+�

�
<

1; and supz2RE
�
V 2+�jZ2 = z

�
<1:

The next assumption imposes a lower bound on the bandwidth that will be used when

establishing asymptotic normality.

Assumption 4.7 If �� = 0 in Assumption 4.5, then for given � 2 f0; :::;�g; h�1n =

O
�
n��n(3=2)=(3�
�+
�+
1+�)

�
for some � > 0; otherwise h�1n = O

�
(lnn)�

�1
� ��

�
for some

� > 0.

Theorem 4.5 Let the conditions of Lemma 4.3 hold with fVi; Zi; U1i; U2ig IID. (i) Then
for each z 2 SZ and h > 0; E [LV;� (z; h)] = 0; and if Assumption 4.4 also holds, then

E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) ;

where


V;� (z; h) � E
�
(`V;� (z; h;V; Z1; Z2))

2� <1:

Further, if Assumption 4.5 holds thenr
sup
z2R


V;� (z; h) = O
��
h�1
�
�;L exp��L �h�1��L�� ; (32)

with �L � ��1(��=��) � ��; �L � ��, and 
�;L � 2 + 
� � 
� + 
1 + �: We also have

sup
z2R

jLV;� (z; h)j = Op

�
n�1=2

�
h�1
�
�;L exp��L �h�1��L�� ;

(ii) If Assumptions 4.6 and 4.7 also hold, and if for each z 2 R; 
V;� (z; hn) > 0 for all
n su¢ ciently large, then for each z 2 SZ

n1=2(
V;� (z; hn))
�1=2LV;� (z; hn)

d! N (0; 1) :

Finally, we establish a bound on the remainder RV;� (z; hn) : For this, we introduce

restrictions on the moments of Z2.
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Assumption 4.8 E [jZ2j] <1; E [jZ1Z2j] <1; and E [jV Z2j] <1:

We provide two bounds for RV;� (z; hn). The �rst is relevant when one requires a limiting

distribution. When instead we only need a convergence rate, a lower bandwidth bound

slightly di¤erent than that of Assumption 4.7 applies.

Assumption 4.9 If �� = 0 in Assumption 4.5, then h�1n = O
�
n��n(2+2
1�2
�)

�1
�
for

some � > 0; otherwise h�1n = O
�
(lnn)�

�1
� ��

�
for some � > 0.

Note that neither of Assumption 4.7 or 4.9 is necessarily stronger than the other.

Theorem 4.6 (i) Suppose the conditions of Theorem 4.5 hold, together with Assumption

4.8. Then

sup
z2R

jRV;� (z; hn)j = Op

�
n(�1=2)+�

�
1 + h�1n

�1+
1�
� exp���� �h�1n �����
� Op

�
n�1=2

�
h�1n
�
�;L exp��L �h�1n ��L��

for some " > 0. (ii) If Assumption 4.9 holds in place of Assumption 4.7, then

sup
z2R

jRV;� (z; hn)j = op

�
n�1=2

�
h�1n
�
�;L exp��L �h�1n ��L�� :

We can now collect Theorems 4.4-4.6 into two straightforward corollaries, one estab-

lishing a convergence rate and one establishing asymptotic normality.

Corollary 4.7 If the conditions of Theorem 4.6(ii) hold, then

sup
z2R

jĝV;� (z; hn)� gV;� (z; 0)j = O
��
h�1n
�
�;B exp��B �h�1n ��B��+

+ Op

�
n�1=2

�
h�1n
�
�;L exp��L �h�1n ��L�� :

The following assumption ensures that the bias and higher-order terms will never dom-

inate the asymptotically linear terms.

Assumption 4.10 For given � 2 f0; :::;�g; hn ! 0 at a rate such that for each z 2
SZ such that 
V;� (z; hn) > 0 for all n su¢ ciently large, we have n1=2 (
V;� (z; hn))

�1=2

jBV;� (z; hn) j
p! 0 and n1=2 (
V;� (z; hn))

�1=2 jRV;� (z; hn)j
p! 0.
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For our next result, it is not su¢ cient to require that BV;� (z; h) and RV;� (z; h) are small

relative to the bound given in eq.(32), because the latter is an upper bound. Instead,

Assumption 4.10 ensures a lower bound on 
V;� (z; hn). While we give this assumption in a

fairly high-level form for clarity, one can state more primitive (but also more cumbersome)

su¢ cient conditions using techniques given in Schennach (2004b).

Corollary 4.8 If the conditions of Theorem 4.6(i) and Assumption 4.10 hold, then for

each z 2 SZ such that 
V;� (z; hn) > 0 for all n su¢ ciently large, we have

n1=2 (
V;� (z; hn))
�1=2 (ĝV;� (z; hn)� gV;� (z; 0))

d! N (0; 1) :

Just as in the OXI case, we now consider the case of a functional b of a �nite vector

g � (gV1;�1 ; : : : ; gVJ ;�J ) of quantities of the general form of eq.(17) and seek the asymptotic

properties of b (ĝ (�; h))� b (g) � b ((ĝV1;�1 (�; h) ; : : : ; ĝVJ ;�J (�; h)))� b ((gV1;�1 ; : : : ; gVJ ;�J )).

We �rst require minimum convergence rates, which we state here in a high-level form

for conciseness � primitive conditions can be obtained via Theorems 4.4-4.6.

Assumption 4.11 For given � 2 f0; :::;�g; supz2R jBV;� (z; hn)j = o
�
n�1=2

�
; supz2R

jLV;� (z; hn)j = op
�
n�1=4

�
; and supz2R jRV;� (z; hn)j = op

�
n�1=2

�
.

The following theorem consists of two parts, one establishing the validity of an as-

ymptotically linear representation, useful for analyzing a scalar estimator constructed as

a functional of a vector of estimators. The second part gives a convenient asymptotic

normality and root-n consistency result useful for analyzing �w and �wfZ .

Theorem 4.9 For given �; J 2 N, let �1; : : : ; �J belong to f0; :::;�g, and suppose that
fV1i; :::; VJi; Zi; U1i; U2ig is an IID sequence of random vectors such that fVji; Zi; U1i; U2ig
satis�es the conditions of Corollary 4.8 and Assumption 4.11 for j = 1; :::; J , with identical

choices of k and hn.

Let the real-valued functional b satisfy, for any ~g � (~gV1;�1 ; : : : ; ~gVJ ;�J ) in an L1 neigh-

borhood of the J�vector g � (gV1;�1 ; :::; gVJ ;�J ),

b (~g)� b (g) =

JX
j=1

Z �
~gVj ;�j (z)� gVj ;�j (z)

�
sj (z) dz +

JX
j=1

O
�

~gVj ;�j � gVj ;�j



2
1

�
(33)
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for some real-valued functions sj; j = 1; :::; J . If sj is such that
R
jsj (z)j dz < 1 andR

�	sj ;Vj ;�j (�) d� <1, where

�	s;V;� (�) � 1

j�1 (�)j

�
1 +

j�Z1 (�)j
j�1 (�)j

��
f
Z 1

j�j
j�s (�)j j�j� j�V (�)j d�g+ j�s (�)j j�j

� j�1 (�)j
�

�Z1 (�) � E
�
Z1e

i�Z2
�

�s (�) �
Z
s (z) ei�zdz;

for each j = 1; :::; J; then

b (ĝ (�; hn))� b (g) =
JX
j=1

Ê
h
 Vj ;�j (sj;Vj; Z1; Z2)

i
+ op

�
n�1=2

�
;

where

 V;� (s; v; z1; z2) �
Z
	s;V;�;1 (�)

�
ei�z2 � E

�
ei�Z2

��
d�

+

Z
	s;V;�;Z1 (�)

�
z1e

i�z2 � E
�
Z1e

i�Z2
��
d�

+

Z
	s;V;�;V (�)

�
vei�z2 � E

�
V ei�Z2

��
d�;

with

	s;V;�;1 (�) � � 1

2�

�V (�)

�1 (�)
�ys (�) (�i�)

� � 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�ys (�) (�i�)
� �V (�) d�

	s;V;�;Z1 (�) � 1

2�

i

�1 (�)

Z �1

�

�ys (�) (�i�)
� �V (�) d�

	s;V;�;V (�) � 1

2�

�1 (�)

�1 (�)
�ys (�) (�i�)

� ;

where y denotes the complex conjugate. Moreover,

n1=2 (b (ĝ (�; hn))� b (g))
d! N (0;
b) ;

where


b = E

24 JX
j=1

 Vj ;�j (sj;Vj; Z1; Z2)

!235 <1:
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4.4 Asymptotics: PXI Case

Having derived general asymptotic results, we now apply them to the main quantities of

interest (eqs.(13) and (16)). Consider the following nonparametric estimator of � (z):

�̂ (z; h) � Dz�̂Y (z; h) = Dz�̂X(z; h) (34)

for z 2 SZ , where, using the kernel estimators ĝ of the preceding section, we have

Dz�̂Y (z; h) � ĝY;1 (z; h)

ĝ1;0 (z; h)
� ĝY;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
and

Dz�̂X(z; h) � ĝX;1 (z; h)

ĝ1;0 (z; h)
� ĝX;0 (z; h)

ĝ1;0 (z; h)

ĝ1;1 (z; h)

ĝ1;0 (z; h)
:

Combining the results from the previous section with a straightforward Taylor expansion

yields the following result.

Theorem 4.10 Suppose that fXi; Yi; Zi; U1i; U2ig is an IID sequence satisfying the condi-
tions of Corollary 4.7 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices
of k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j < 1, and for � > 0;

de�ne

Z� � fz 2 R : fZ (z) � � and jDz�X(z)j � �g :

Then

sup
z2Z�

����̂ (z; hn)� � (z)
��� = O

�
��4

�
h�1n
�
1;B exp��B �h�1n ��B��+

+ Op

�
��4n�1=2

�
h�1n
�
1;L exp��L �h�1��L�� ;

and there exists a sequence f�ng such that �n > 0; �n ! 0 as n!1; and

sup
z2Z�n

����̂ (z; hn)� � (z)
��� = op(1):

The delta method secures the next result.

Theorem 4.11 Suppose that fXi; Yi; Zi; U1i; U2ig is an IID sequence satisfying the condi-
tions of Corollary 4.8 for V = 1; X; Y; with � � 1 and � = 0; 1; and with identical choices of
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k and hn. Further, suppose maxV=1;X;Y max�=0;1 supz2R jgV;� (z)j <1: Then for all z 2 SZ
such that jDz�X(z)j > 0;

n1=2

�1=2
� (z; hn)

�
�̂ (z; hn)� � (z)

�
p! N (0; 1) ;

provided that


� (z; h) = E
�
(`� (z; h;X; Y; Z1; Z2))

2�
is �nite and positive for all n su¢ ciently large, where

`� (z; h;x; y; z1; z2) =
X
�=0;1

(sX;1;� (z) `1;� (z; h; 1; z1; z2) + sX;X;� (z) `X;� (z; h;x; z1; z2)

+sY;1;� (z) `1;� (z; h; 1; z1; z2) + sY;Y;� (z) `Y;� (z; h; y; z1; z2));

and where sX;1;� (z), sX;X;� (z), sY;1;� (z) ; and sY;Y;� (z) for � = 0; 1 are as de�ned in The-

orem 3.5.

We now consider semiparametric functionals taking the forms of eq.(16) and analyze

the estimators

�̂w =

Z
S�̂(�;hn )

�̂ (z; hn)w (z) dz

�̂wfZ =

Z
S�̂(�;hn )

�̂ (z; hn)w (z) ĝ1;0 (z; hn) dz;

where S�̂(�;hn) � fz : ĝ1;0 (z; hn) > 0; jDz�̂X(z; h)j > 0g.
The asymptotic distributions of these estimators follow by straightforward application

of Theorem 4.9, analogously to the OXI case. Thanks to their semiparametric nature,

root�n consistency and asymptotic normality is possible.

Theorem 4.12 Suppose the conditions of Theorem 4.9 hold for V = 1; X; Y and � = 0; 1;

and that Assumption 3.8 holds. Then

n1=2
�1=2w

�
�̂w � �w

�
d! N (0; 1) ;

provided that


w � E
h�
 �w (X; Y; Z1; Z2)

�2i
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is �nite and positive for all n su¢ ciently large, where

 �w (x; y; z1; z2) �
X
�=0;1

( 1;� (wsX;1;�; 1; z1; z2) +  X;� (wsX;X;�;x; z1; z2)

+ 1;� (wsY;1;�; 1; z1; z2) +  Y;� (wsY;Y;�; y; z1; z2));

wsA;V;� denotes the function mapping z to w (z) sA;V;� (z), and where  V;� is de�ned in

Theorem 4.9.

Theorem 4.13 Suppose the conditions of Theorem 4.9 hold for V = 1; X; Y and � = 0; 1;

and that Assumption 3.8 holds. Then

n1=2

�1=2
�wfZ

�
�̂wfZ � �wfZ

�
d! N (0; 1) ;

provided that


wfZ � E

��
 �wfz (X; Y; Z1; Z2)

�2�
is �nite and positive for all n su¢ ciently large, where

 �wfZ
(x; y; z1; z2) � f

X
�=0;1

( 1;� (wfZsX;1;�; 1; z1; z2) +  X;� (wfZsX;X;�;x; z1; z2)

+ 1;� (wfZsY;1;�; 1; z1; z2) +  Y;� (wfZsY;Y;�; y; z1; z2))g

+ 1;0 (w�; 1; z1; z2) ;

wfZsA;V;� denotes the function mapping z to w (z) fZ(z)sA;V;� (z) ; w� denotes the function

mapping z to w (z) �(z); and where  V;� is de�ned in Theorem 4.9.

Although we do not provide explicit theorems due to space limitations, it is straightfor-

ward to show that the asymptotic variances in Theorems 4.9, 4.12, 4.13 can be consistently

estimated, since we provide an explicit expression for the appropriate in�uence functions.

In the cases of Theorems 4.5, 4.8, and 4.11, the bandwidth-dependence of the variance is

nontrivial, and it is not guaranteed that the same bandwidth sequence used for the point es-

timators provides suitably consistent estimators of the asymptotic variance. Consequently,

it may be more convenient to rely on subsampling methods for purposes of inference. For-

tunately, powerful subsampling methods designed to handle generic convergence rates (such
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as ours) are available from Bertail, Politis, Haefke, and White (2004). These require noth-

ing more than the existence of a limiting distribution for a suitably normalized estimator,

precisely as we have already established in our results above.

While the above treatment covers proxies for instruments whose measurement errors

satisfy conditional mean or independence assumptions, more general proxies contaminated

by either �nonclassical�or �Berkson-type�3 measurement errors could be treated by adapt-

ing the techniques of Hu and Schennach (2008) or Schennach (2007), respectively.

5 Discussion

The results of Sections 3 and 4 apply to any random variables satisfying the given regular-

ity conditions, and these do not involve structural relations among X; Y; or Z. Thus, in the

absence of further conditions, these estimators have no necessary structural content. To

interpret estimators of �(z) as measuring a weighted average marginal e¤ect, Assumptions

2.1 and 2.2 su¢ ce, as Proposition 2.2 ensures. When Assumption 2.2 fails, analysis analo-

gous to that of White and Chalak (2008, section 4.1) shows that �(z) = 
(z)��(z) + �(z);

where 
(z) and �(z) are not identi�ed, but generally satisfy 
(z) 6= 1 and �(z) 6= 0: When
Assumption 2.1 fails, then ��(z) is no longer even de�ned. Thus, Assumptions 2.1 and 2.2

are crucial to any structural interpretation of �(z).

As we show, interpreting �(z) as an instrument-conditioned average marginal e¤ect

further relies on X being separably determined or on Y being essentially linear in X: In

contrast, testing the hypothesis of no e¤ect only requires Assumptions 2.1 and 2.2; our

asymptotic distribution results ensure that tests based on our nonparametric estimators

for �(z) can be consistent against (almost) all nonparametric (i.e., arbitrary) alternatives.

Observe that, unlike Z, the proxies Z1 and Z2 need not satisfy Assumption 2.2 (exo-

geneity) and thus need not be valid instruments. In particular, U1, and therefore Z1, need

not be independent of Ux or even Uy: The same holds for Z2, although (U2; Uz)?(Ux,Uy)
su¢ ces for E [V jZ;U2] = E [V jZ] of Assumption 4.2 to hold with V = X and V = Y

respectively; this also su¢ ces for Z2?(Ux; Uy) and thus for Z2 to be valid. This contrasts
3An instrument proxy contaminated by a Berkson-type error can be directly used as an instrument,

unless we wish to identify e¤ects conditional on the true instrument instead of its proxy.
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sharply with the linear PXI case, where a single proxy Z1 uncorrelated with Uy (but corre-

lated with Ux) su¢ ces to structurally identify Dz�Y;1(z) = Dz�X;1(z) as the marginal e¤ect

of X on Y (see CW). The simplicity of the linear case masks the fundamental di¤erences

between OXI and PXI.

Inspecting the measurement assumptions of Section 4 (Assumptions 4.1, 4.2, 4.4, 4.6,

and 4.8) reveals an asymmetry in the properties assumed of Z1 and Z2 and/or U1 and U2:

Although this asymmetry may be important for some applications, in others symmetry

may hold. In the latter situations, one can construct two estimators of �(z), say �̂1(z; hn)

and �̂2(z; hn); by interchanging the roles of Z1 and Z2: Using these, one can construct a

weighted estimator with superior asymptotic e¢ ciency, having the GLS form

[�0�̂(z; hn)
�1�]�1�0�̂(z; hn)

�1�̂(z; hn);

where � � (1; 1)0; and �̂(z; hn) estimates the asymptotic covariance matrix of �̂(z; hn) �
(�̂1(z; hn); �̂2(z; hn))

0 (suitably scaled). �̂(z; hn) can be constructed using subsampling, as

in Section 4. The same approach applies to functionals of �:

More generally, one may have multiple error-laden measurements of an unobserved ex-

ogenous instrument Z, say (Z1; :::; Zk); k > 2. Depending on the measurement properties

plausible for these, one can construct a vector of consistent asymptotically normal estima-

tors �̂(z; hn) � (�̂1(z; hn); :::; �̂`(z; hn))
0; where ` � k. From these, one can construct a

relatively e¢ cient estimator as a GLS weighted combination of the elements of �̂(z; hn),

analogous to the case with ` = 2 given above.

6 Summary and Concluding Remarks

This paper studies derivative ratio instrumental variables estimators for average marginal

e¤ects of an endogenous X on a response Y without assuming linearity, separability,

monotonicity, or scalar unobserved variables, using instruments that may or may not be ob-

served. These estimators are local indirect least squares (LILS) estimators complementary

to those introduced by Heckman and Vytlacil (1999, 2001) for an index model involving

a binary X. We show that DR/LILS methods recover a weighted conditional average of

marginal e¤ects of X on Y . This implies a mixture of bad news and good news. One main
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�nding is negative: in the fully nonseparable case, DR methods, like IR methods, cannot

recover average marginal e¤ects of the endogenous cause on the response of interest. As

we further show, DR methods recover an instrument-conditioned average marginal e¤ect if

and only if X is separably determined or, essentially, Y is linear in X: Unlike control vari-

able methods, DR methods cannot recover local e¤ect measures. Nevertheless, DR/LILS

methods can generally be used to test the hypothesis of no e¤ect. Thus, DR/LILS methods

do provide generally viable inference, regardless of the availability of control variables. We

also show how to test if X is separably determined using DR measures.

We propose new estimators for two distinct cases, the standard OXI case and the PXI

case, where the exogenous instrument cannot be observed, but where as few as two error-

laden proxies are available. The proxies need not be valid instruments. For the OXI case,

we use the in�nite order ("�at-top") kernels of Politis and Romano (1999), obtaining new

uniform convergence rates as well as new asymptotic normality results, establishing root�n
consistency for weighted average e¤ects relevant in practice. For the PXI case, we give new

results for estimating densities and expectations conditional on mismeasured variables, as

well as their derivatives with respect to the mismeasured variable, providing new uniform

convergence rate and asymptotic normality results in fully nonparametric settings. We also

consider nonlinear functionals of these nonparametric quantities and establish new root-n

consistency and asymptotic normality results for estimators applicable to the PXI case.

Previously, only results for the quite special linear PXI case were available. Our results are

the �rst to apply to the general nonlinear nonparametric case where exogenous instruments

must be proxied.

There are a variety of interesting directions for further research. In particular, it is

of interest to develop the proposed tests of the separability of q based on our estimators.

It also appears relatively straightforward to develop estimators analogous to those given

here for average marginal e¤ects of endogenous causes in non-triangular ("simultaneous")

nonseparable systems. Finally, it appears feasible and is of considerable interest to extend

the methods developed here to provide nonparametric analogs of the various extended

instrumental variables estimators analyzed by CW. See Song, Schennach, and White (2009)

for some work in this direction.
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A Appendix

The proofs of Lemma 3.1, Theorem 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 are fairly standard and

can be found in the supplementary material.

Our �rst result provides an example where Assumptions 2.1 and 2.2 hold, but where

control variables are not available.

Proposition A.1 Let (U;X; Y; Z) be generated as in Assumption 2.1, where U := (U1; U2; U3).

Let U1; U2; U3; Z be mutually independent standard normal random variables, Ux = (U1; U2) ;

Uy = U2 + U3, and

X = q (Z;Ux) = U1Z + U2

Y = r (X;Uy) :

(i) Then Z ? (Ux; Uy); i.e., Assumption 2.2 holds; and

X ? Uy j U1; U2;

but U1; U2 are not identi�ed.

(ii) Let F (� j �) denote the CDF of X given Z; and let � be the standard normal CDF.

Then there exists a scalar

Vx := F (XjZ) = �
�
U1Z + U2p
Z2 + 1

�
;

such that Z ? Vx: Nevertheless,

Z 6? Uy j Vx; Z 6? (Vx; Uy); and X 6? Uy j Vx:

Proof. (i) The joint independence assumed for (U1; U2; U3) and Z immediately implies

Z ? (Ux; Uy); or equivalently that Z ? Ux and Z ? Uy j Ux: By Dawid (1979, lemma
4.2(i)), the latter relation and X = U1Z + U2 imply

X ? Uy j U1; U2:

That U1; U2 are not identi�ed follows because X = U1Z + U2 is an under-determined

system of one equation in two unknowns and X = U1Z + U2; Y = r (X;U2 + U3) is an

under-determined system of two equations in three unknowns.
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(ii) Under the given assumptions, X j Z � N (0; Z2 + 1) ;so that

F (XjZ) = �
�
U1Z + U2p
Z2 + 1

�
:

Put Vx := F (XjZ) : As Vx is distributed U [0; 1] (standard uniform) conditional on any
value of Z, it follows that Z ? Vx:

That Z 6? Uy j Vx follows from X 6? Uy j Vx; as Z ? Uy j Vx implies (Z; Vx) ? Uy j Vx;
which in turn implies X ? Uy j Vx; as X =

p
Z2 + 1 ��1(Vx): Together, Z ? Vx and

Z 6? Uy j Vx immediately imply Z 6? (Vx; Uy):
To show X 6? Uy j Vx; we show that E [XUy j Vx] 6= E [X j Vx]E [Uy j Vx] : First,

E [X j Vx] = E [ EfX j Z; Vxg j Vx]

= E[
p
Z2 + 1 ��1(Vx) j Vx]

= ��1(Vx)E[
p
Z2 + 1 j Vx]:

Next,

E [Uy j Vx] = E [ Ef(U2 + U3) j Z; Vxg j Vx]

= E[ Ef(U2 + U3) j Z; (U1Z + U2)g j Vx]:

Now

(U2 + U3) ; (U1Z + U2) j Z � N(0;�Z);

where

�Z =

�
2 1
1 Z2 + 1

�
:

It follows that

Ef(U2 + U3) j Z; (U1Z + U2)g = (U1Z + U2)=(Z
2 + 1)

= ��1(Vx)=
p
Z2 + 1;

so that

E [Uy j Vx] = ��1(Vx)E[1=
p
Z2 + 1 j Vx]:

It follows that

E [X j Vx] E [Uy j Vx] = ��1(Vx)2 E[
p
Z2 + 1 j Vx] E[1=

p
Z2 + 1 j Vx]:
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Similarly,

E [XUy j Vx] = E
hp

Z2 + 1 ��1(Vx) (U2 + U3) j Vx
i

= E
h
Ef
p
Z2 + 1 ��1(Vx) (U2 + U3) j Z; Vxg j Vx

i
= E

hp
Z2 + 1 ��1(Vx) Ef(U2 + U3) j Z; (U1Z + U2)g j Vx

i
= E

hp
Z2 + 1 ��1(Vx) �

�1(Vx)=
p
Z2 + 1 j Vx

i
= ��1(Vx)

2:

The desired result follows, provided E[
p
Z2 + 1 j Vx] E[1=

p
Z2 + 1 j Vx] 6= 1: But the

conditional Jensen inequality ensures that

E[
p
Z2 + 1 j Vx] E[1=

p
Z2 + 1 j Vx] > 1

as a consequence of the strict convexity of the inverse function and the fact that
p
Z2 + 1 is

not a function solely of Vx, almost surely. It follows thatE [XUy j Vx] 6= E [X j Vx]E [Uy j Vx]
and therefore that X 6? Uy j Vx:
Although this is a speci�c example, a similar argument would apply in most cases

where Ux is multivariate and enters nonseparably and where Ux and Uy are correlated in

the original structure.

Proof of Lemma 4.1. Assumption 4.1 ensures that all expectations below exist and are

�nite. Given Assumptions 4.2 and 4.3, we have

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
=

iE
�
Zei�(Z+U2)

�
+ iE

�
E [U1jZ;U2] ei�(Z+U2)

�
E [ei�(Z+U2)]

=
iE
�
Zei�(Z+U2)

�
E [ei�(Z+U2)]

=
iE
�
Zei�Z

�
E [ei�Z ]

E
�
ei�U2

�
E [ei�U2 ]

=
iE
�
Zei�Z

�
E [ei�Z ]

= D� ln
�
E
�
ei�Z

��
:

It follows that for each real �;

�V (�) � E
�
V ei�Z

�
=
E
�
V ei�Z

�
E
�
ei�U2

�
E [ei�Z ]E [ei�U2 ]

E
�
ei�Z

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

E
�
ei�Z

�
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=
E
�
V ei�Z2

�
E [ei�Z2 ]

exp
�
ln
�
E
�
ei�Z

��
� ln 1

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

exp

�Z �

0

D� ln
�
E
�
ei�Z

��
d�

�
=

E
�
V ei�Z2

�
E [ei�Z2 ]

exp

 Z �

0

iE
�
Z1e

i�Z2
�

E [ei�Z2 ]
d�

!
:

For each � 2 f0; :::;�g and z 2 SZ , we have

1

2�

Z
(�i�)� �V (�) exp (�i�z) d� =

1

2�

Z
(�i�)�E

�
V ei�Z

�
exp (�i�z) d�:

The expression on the right is the inverse Fourier transform of (�i�)�E
�
V ei�Z

�
. Integration

by parts, valid under Assumptions 3.1 and 3.3, gives

(�i�)�E
�
V ei�Z

�
= (�i�)�

Z
E [V jZ = z] fZ (z) e

i�zdz

= (�1)�
Z
E [V jZ = z] fZ (z)D

�
z e
i�zdz

=

Z �
D�
z (E [V jZ = z] fZ (z))

�
ei�zdz

=

Z
gV;� (z) e

i�zdz:

As the �nal expression is the Fourier transform of gV;� (z), the conclusion follows.

Proof. Assumptions 3.1, 4.1, 3.3, and 3.4 ensure the existence of

gV;� (z; h) �
Z
1

h
k

�
~z � z

h

�
gV;� (~z) d~z

=

Z
1

h
k

�
~z � z

h

�
D�
~z (E [V jZ = ~z] fZ (~z)) d~z:

By the Convolution Theorem, the inverse Fourier Transform (FT) of the product of � (h�)

and (�i�)�E
�
V ei�Z

�
is the convolution between the inverse FT of � (h�) and the inverse

FT of (�i�)�E
�
V ei�Z

�
. The inverse FT of � (h�) is h�1k (z=h) ; and the inverse FT of

(�i�)�E
�
V ei�Z

�
is D�

z (E [V jZ = z] fZ (z)). It follows that

gV;� (z; h) =
1

2�

Z
� (h�)

�
(�i�)�E

�
V ei�Z

��
exp (�i�z) d�

=
1

2�

Z
� (h�) (�i�)� �V (�) exp (�i�z) d�:
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Proof of Lemma 4.3. Assumptions 3.1, 4.1, 3.3, and 3.4 ensure the existence of gV;� (z)

and gV;� (z; h). Adding and subtracting appropriately gives eq.(29), where for any �gV;� (z; h)

BV;� (z; h) � gV;� (z; h)� gV;� (z)

LV;� (z; h) � �gV;� (z; h)� gV;� (z; h)

RV;� (z; h) � ĝV;� (z; h)� �gV;� (z; h) :

We now derive the form that �gV;� (z; h)must have in order for LV;� (z; h) to be a linearization

of ĝV;� (z; h)� gV;� (z; h).

Recall that for A = 1; Z1; and V; we let �A (�) � E
�
Aei�Z2

�
: Also, write �̂A (�) �

Ê
�
Aei�Z2

�
and ��̂A (�) � �̂A (�)��A (�). We �rst state a useful representation for �̂V (�) =�̂1 (�):

�̂V (�)

�̂1 (�)
=
�V (�) + ��̂V (�)

�1 (�) + ��̂1 (�)
= qV (�) + �q̂V (�) ; (35)

where qV (�) � �V (�) =�1 (�) and where �q̂V (�) can be written as either

�q̂V (�) =

 
��̂V (�)

�1 (�)
� �V (�) ��̂1 (�)

(�1 (�))
2

! 
1 +

��̂1 (�)

�1 (�)

!�1
(36)

or

�q̂V (�) = �1q̂V (�) + �2q̂V (�) ; with (37)

�1q̂V (�) � ��̂V (�)

�1 (�)
� �V (�) ��̂1 (�)

(�1 (�))
2

�2q̂V (�) � �V (�)

�1 (�)

 
��̂1 (�)

�1 (�)

!2 
1 +

��̂1 (�)

�1 (�)

!�1
� ��̂V (�)

�1 (�)

��̂1 (�)

�1 (�)

 
1 +

��̂1 (�)

�1 (�)

!�1
:

Similarly, for Qz (�) �
R �
0
(i�z (�) =�1 (�))d�, �Q̂z (�) �

R �
0
(i�̂z (�) =�̂1 (�))d� � Qz (�) ; and

some random function � �Qz (�) such that
��� �Qz (�)�� � ����Q̂z (�)��� for all �,

exp
�
Qz (�) + �Q̂z (�)

�
= exp (Qz (�))

�
1 + �Q̂z (�) +

1

2
[exp

�
� �Qz (�)

�
]
�
�Q̂z (�)

�2�
: (38)

Substituting eqs.(35) and (38) into

ĝV;� (z; h)� gV;� (z; h)

=
1

2�

Z
� (h�) exp (�i�z) (�i�)� [ �̂V (�)

�̂1 (�)
exp

 Z �

0

i�̂Z1 (�)

�̂1 (�)
d�

!
� �V (�)

�1 (�)
exp

�Z �

0

i�Z1 (�)

�1 (�)
d�

�
]d�
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and keeping the terms linear in ��̂1 (�) or ��̂Z1 (�) gives the linearization of ĝV;� (z; h),

denoted �gV;� (z; h):

�gV;� (z; h)� gV;� (z; h)

=
1

2�

Z
exp (�i�z) (�i�)� � (h�)�V (�) [

Z �

0

 
i��̂Z1 (�)

�1 (�)
� i�Z1 (�) ��̂1 (�)

(�1 (�))
2

!
d�]d�

+
1

2�

Z
exp (�i�z) (�i�)� � (h�)

 
��̂V (�)

�1 (�)
�1 (�)�

��̂1 (�)

�1 (�)
�V (�)

!
d�:

Using the identityZ 1

�1

Z �

0

f (�; �) d�d� =

Z 1

0

Z 1

�

f (�; �) d�d�+

Z 0

�1

Z �1

�

f (�; �) d�d� �
Z Z �1

�

f (�; �) d�d�

for any absolutely integrable function f , we obtain

LV;� (z; h) � �gV;� (z; h)� gV;� (z; h)

=
1

2�

Z Z �1

�

exp (�i�z) (�i�)� � (h�)�V (�) d�
 
i��̂Z1 (�)

�1 (�)
� i�Z1 (�) ��̂1 (�)

(�1 (�))
2

!
d�

+
1

2�

Z
exp (�i�z) (�i�)� � (h�)

 
��̂V (�)

�1 (�)
�1 (�)�

��̂1 (�)

�1 (�)
�V (�)

!
d�

=
X

A=1;Z1;V

Z
	V;�;A (�; z; h) ��̂A (�) d�

=
X

A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d� (39)

= Ê

" X
A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Aei�Z2 � E

�
Aei�Z2

��
d�

#
= Ê [`V;� (z; h;V; Z1; Z2)] ;

where 	V;�;A (�; z; h) and `V;� (z; h;V; Z1; Z2) are de�ned in the statement of the Lemma.

De�nition A.1 We write f (�) � g (�) for f; g : R 7! R when there exists a constant

C > 0, independent of �, such that f (�) � C g (�) for all � 2 R (and similarly for �).
Analogously, we write an � bn for two sequences an; bn when there exists a constant C

independent of n such that an � Cbn for all n 2 N.
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Proof of Theorem 4.4. By Parseval�s identity, we have

jB (z; h)j = jgV;� (z; h)� gV;� (z)j = jgV;� (z; h)� gV;� (z; 0)j

=

���� 12�
Z
(�i�)� � (h�)�V (�) exp (�i�z) d� �

1

2�

Z
(�i�)� �V (�) exp (�i�z) d�

����
=

���� 12�
Z
(�i�)� (� (h�)� 1)�V (�) exp (�i�z) d�

����
� 1

2�

Z
j�j� j� (h�)� 1j j�V (�)j d� =

1

�

Z 1

��=h

j�j� j� (h�)� 1j j�V (�)j d�

�
Z 1

��=h

j�j� j�V (�)j d�;

where we use Assumption 3.4 to ensure � (�) = 1 for j�j � �� and sup� j� (�)j < 1. Thus,
Assumption 3.5 (eq.(19)) yields

jB (z; h)j �
Z 1

��=h

�� (1 + �)
� exp
�
���

��
�
d� = O

��
��=h
�
�+�+1 exp��� ���=h�����

= O
��
h�1
�
�;B exp��B �h�1��B�� :

Lemma A.2 Suppose the conditions of Lemma 4.3 hold. For each � and h, and for A =

1; Z1; V; let 	+V;�;A (�; h) � supz2R j	V;�;A (�; z; h)j ; and de�ne

	+V;� (h) =
X

A=1;Z1;V

Z
	+V;�;A (�; h) d�:

If Assumption 4.5 also holds, then for h > 0

	+V;� (h) = O
��
1 + h�1

�2�
�+
�+�+
1 exp����1 ��� = ��
�
� ��

� �
h�1
����� :

Proof. We obtain rates for each term of 	+V;� (h). First,

	+V;�;1 (�; h) � sup
z2R

j	V;�;1 (�; z; h)j

� sup
z2R

j�V (�)j
j�1 (�)j

jexp (�i�z)j j�j� j� (h�)j

+sup
z2R

j�Z1 (�)j
j�1 (�)j2

Z �1

�

jexp (�i�z)j j�j� j� (h�)j j�V (�)j d�
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� j�V (�)j
j�1 (�)j

j�j� j� (h�)j+ j�Z1 (�)j
j�1 (�)j2

Z �1

�

j�j� j� (h�)j j�V (�)j d�

=
1

j�1 (�)j

�
j�V (�)j j�j

� j� (h�)j+ j�Z1 (�)jj�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�
�

=
1

j�1 (�)j

�
j�V (�)j j�j

� j� (h�)j+ j�
0
1 (�)j

j�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�
�

where we use the fact that

�Z1 (�)

�1 (�)
=

E
�
Z1e

i�Z2
�

E [ei�Z2 ]
=
E
�
(Z + U1) e

i�(Z+U2)
�

E [ei�(Z+U2)]
=
E
�
Zei�(Z+U2)

�
+ E

�
E [U1jZ;U2] ei�(Z+U2)

�
E [ei�(Z+U2)]

=
E
�
Zei�(Z+U2)

�
E [ei�(Z+U2)]

=
E
�
Zei�Z

�
E [ei�Z ]

E
�
ei�U2

�
E [ei�U2 ]

=
�i(d=d�)E

�
ei�Z

�
E [ei�Z ]

= �i(d=d�)�1 (�)
�1 (�)

Integrating 	+V;�;1 (�; h) with respect to � and using Assumption 4.5 givesZ
	+V;�;1 (�; h) d�

�
Z

1

j�1 (�)j

 
j�V (�)j j�j

� 1
�
j�j � h�1

�
+
j�01 (�)j
j�1 (�)j

1
�
j�j � h�1

� Z h�1

j�j
j�j� j�V (�)j d�

!
d�

�
Z
(1 + j�j)�
� exp

�
��� j�j��

�
1
�
j�j � h�1

�
�
 
(1 + j�j)
� exp

�
�� j�j��

�
j�j� + (1 + j�j)
1

Z h�1

0

j�j� (1 + j�j)
� exp
�
�� j�j��

�
d�

!
d�

�
Z h�1

0

(1 + j�j)�
� exp
�
��� j�j��

�
�
 
(1 + j�j)
�+� exp

�
�� j�j��

�
+ (1 + j�j)
1

Z h�1

0

j�j� (1 + j�j)
� exp
�
�� j�j��

�
d�

!
d�

�
�
1 + h�1

�1�
� exp���� �h�1����
�
��
1 + h�1

�
�+� exp��� �h�1����+ �1 + h�1�
1 �1 + h�1��+
�+1 exp��� �h�1�����
�

�
1 + h�1

�1�
� �1 + h�1�
�+� exp���� �h�1���� exp��� �h�1�����1 + �1 + h�1�1+
1�
�

�
1 + h�1

�2�
�+
�+�+
1 exp���� �h�1���� exp��� �h�1���� :
Next,

	+V;�;Z1 (�; h) � sup
z2R

j	V;�;Z1 (�; z; h)j

� sup
z2R

1

j�1 (�)j

Z �1

�

jexp (�i�z)j j�j� j� (h�)j j�V (�)j d�
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� 1

j�1 (�)j

Z �1

�

j�j� j� (h�)j j�V (�)j d�;

so thatZ
	+V;�;Z1 (�; h) d� �

Z
[

1

j�1 (�)j
1
�
j�j � h�1

� Z h�1

�

j�j� j�V (�)j d�] d�

� h�1
�
1 + h�1

��
� exp���� �h�1���� �1 + h�1�
�+�+1 exp��� �h�1����
�

�
1 + h�1

�2�
�+
�+� exp���� �h�1���� exp��� �h�1���� :
Finally,

	+V;�;V (�; h) � sup
z2R

j	V;�;V (�; z; h)j

� sup
z2R

j�1 (�)j
j�1 (�)j

jexp (�i�z)j j�j� j� (h�)j

= sup
z2R

j�1 (�)j
j�1 (�)j

j�j� j� (h�)j

=
j�1 (�)j
j�1 (�)j

j�j� j� (h�)j ;

so thatZ
	+V;�;V (�; h) d� �

Z h�1

0

j�1 (�)j
j�1 (�)j

j�j� d�

� h�1
�
1 + h�1

��
� exp���� �h�1���� �1 + h�1�
�+� exp��� �h�1����
�

�
1 + h�1

�1�
�+
�+� exp���� �h�1���� exp��� �h�1���� :
Collecting together these rates delivers the desired result.

Lemma A.3 For a �nite integer J , let fPn;j (z2)g de�ne a sequence of nonrandom real-

valued continuously di¤erentiable functions of a real variable z2; j = 1; :::; J . Let Aj and

Z2 be random variables satisfying E
�
A2+�j jZ2 = z2

�
� C for some C; � > 0 for all z2 2 SZ ;

j = 1; :::; J; such that supn�N �n <1 and infn�N �n > 0 for some N 2 N+; where

�n �
 
var[

JX
j=1

AjPn;j (Z2)]

!1=2
:

If supz22R jDz2Pn;j(z2)j = O
�
n(3=2)��

�
for some � > 0; j = 1; :::; J , then

��1n n1=2

 
Ê

"
JX
j=1

AjPn;j (Z2)

#
� E

"
JX
j=1

AjPn;j (Z2)

#!
d! N (0; 1) :
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Proof. Apply the argument of Lemma 9 in Schennach (2004b) and the Lindeberg-Feller

central limit theorem.

Proof of Theorem 4.5. (i) The fact that E [LV;� (z; h)] = 0 follows directly from eq.(39).

Next, Assumption 4.4(i) ensures the existence and �niteness of

E
�
(LV;� (z; h))

2� = E

��
Ê [`V;� (z; h;V; Z1; Z2)]

�2�
= n�1E

�
(`V;� (z; h;V; Z1; Z2))

2� = n�1
V;� (z; h) .

Speci�cally, from eq.(39), we have


V;� (z; h) � E
�
n (�gV;� (z; h)� gV;� (z; h))

2� = E

24 X
A=1;Z1;V

Z
	V;A (�; z; h)n

1=2��̂A (�) d�

!235
=

X
A1=1;Z1;V

X
A2=1;Z1;V

Z Z
	V;�;A1 (�; z; h)E

h
n��̂A1 (�) ��̂

y
A2
(�)
i
(	V;�;A2 (�; z; h))

y d�d�

=
X

A1=1;Z1;V

X
A2=1;Z1;V

Z Z
	V;�;A1 (�; z; h)VA1A2 (�; �) (	V;�;A2 (�; z; h))

y d�d�;

where

VA1A2 (�; �) � E
h
n��̂A1 (�) ��̂

y
A2
(�)
i
= E

h
n
�
�̂A1 (�)� �A1 (�)

��
�̂
y
A2
(�)� �yA2 (�)

�i
= E

h�
A1e

i�Z2 � �A1 (�)
� �
A2e

�i�Z2 � �yA2 (�)
�i

= E
�
A1e

i�Z2A2e
�i�Z2

�
� �A1 (�)E

�
A2e

�i�Z2
�
� E

�
A1e

i�Z2
�
�yA2 (�) + �A1 (�) �

y
A2
(�)

= E
�
A1e

i�Z2A2e
�i�Z2

�
� �A1 (�) �

y
A2
(�)� �A1 (�) �

y
A2
(�) + �A1 (�) �

y
A2
(�)

= E
�
A1A2e

i(���)Z2
�
� �A1 (�) �

y
A2
(�)

= �(A1A2) (� � �)� �A1 (�) �A2 (��) :

By Assumption 4.4(i),

jVA1A2 (�; �)j =
���(A1A2) (� � �)� �A1 (�) �A2 (��)

��
� E

�
jA1A2j

��ei(���)Z2���+ E
�
jA1j

��ei�z���E �jA2j ��e�i�Z2���
� E [jA1A2j] + E [jA1j]E [jA2j] � 1:
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It follows that


V;� (z; h) �
X

A1=1;Z1;V

X
A2=1;Z1;V

Z Z
j	V;�;A1 (�; z; h)j jVA1A2 (�; �)j

���(	V;�;A2 (�; z; h))y��� d�d�
�

X
A1=1;Z1;V

X
A2=1;Z1;V

Z Z
j	V;�;A1 (�; z; h)j j(	V;�;A2 (�; z; h))j d�d�

=

 X
A=1;Z1;V

Z
j	V;�;A (�; z; h)j d�

!2
�
 X
A=1;Z1;V

Z
	+V;�;A (�; h) d�

!2
=
�
	+V;� (h)

�2
;

where

	+V;�;A (�; h) = sup
z2R

j	V;�;A (�; z; h)j (40)

	+V;� (h) =
X

A=1;Z1;V

Z
	+V;�;A (�; h) d� (41)

= O
��
1 + h�1

�2�
�+
�+�+
1 exp����1 ��� = ��
�
� ��

� �
h�1
����� :

The last order of magnitude is shown in Lemma A.2. Hence, we have shown eq.(32).

Next, we turn to uniform convergence. From eq.(39), we have

sup
z2R

j�gV;� (z; h)� gV;� (z; h)j = sup
z2R

����� X
A=1;Z1;V

Z
	V;�;A (�; z; h)

�
Ê
�
V ei�Z2

�
� E

�
V ei�Z2

��
d�

�����
�

X
A=1;Z1;V

Z �
sup
z2R

j	V;�;A (�; z; h)j
� ���Ê �V ei�Z2�� E

�
V ei�Z2

���� d�
=

X
A=1;Z1;V

Z
	+V;�;A (�; h)

���Ê �V ei�Z2 � E
�
V ei�Z2

����� d�
where 	+V;�;A (�; h) is as de�ned above and where the integrals are �nite since jÊfV ei�Z2�
E
�
V ei�Z2

�
gj � 1 and since Lemma A.2 implies that

P
A=1;Z1;V

R
	+V;�;A (�; h) d� <1.

We then have:

E

�
sup
z2R

j�gV;� (z; h)� gV;� (z; h)j
�

�
X

A=1;Z1;V

Z
	+V;�;A (�; h)E

"����Ê �V ei�Z2 � E
�
V ei�Z2

�����2�1=2# d�
�

X
A=1;Z1;V

Z
	+V;�;A (�; h)

�
E

����Ê �V ei�Z2 � E
�
V ei�Z2

�����2��1=2 d�
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=
X

A=1;Z1;V

Z
	+V;�;A (�; h)

�
n�1E

h��V ei�Z2 � E
�
V ei�Z2

���2i�1=2 d�
= n�1=2

X
A=1;Z1;V

Z
	+V;�;A (�; h)

�
E
h��V ei�Z2 � E

�
V ei�Z2

���2i�1=2 d�
� n�1=2

X
A=1;Z1;V

Z
	+V;�;A (�; h) d�

= n�1=2	+V;� (h) ;

where	+V;� (h) = O
�
(1 + h�1)

2�
�+
�+�+
1 exp
��
��1

�
�� = ��

�
� ��

�
(h�1)

��
��
, as shown

in Lemma A.2. By Markov�s inequality it follows that

sup
z2R

jLV;� (z; h)j = sup
z2R

j�gV;� (z; h)� gV;� (z; h)j

= Op

�
n�1=2

�
1 + h�1

�2�
�+
�+�+
r exp����1 ��� = ��
�
� ��

� �
h�1
����� :

(ii) To show asymptotic normality, we apply Lemma A.3 to

`V;� (z; hn;V; Z1; Z2) =
X

A=1;Z1;V

Z
	V;�;A (�; z; hn) Ae

i�Z2 d�

with

Pn;A (z2) =

Z
	V;�;A (�; z; hn) e

i�z2d�;

for A = 1; Z1; V; where z is �xed.

Our previous conditions ensure that for some �nite N; supn>N 
V;� (z; hn) = supn>N

var[`V;� (z; hn;V; Z1; Z2)] <1, and we assume infn>N 
V;� (z; hn) > 0: It remains to verify
supz2R jDz2Pn;A (z2)j = O

�
n(3=2)��

�
: For this, we use Lemma A.2. Speci�cally,

sup
z22R

jDz2Pn;A (z2)j = sup
z22R

����Z i�	V;�;A (�; z; hn) e
i�z2d�

����
� sup

z22R

Z
j�j j	V;�;A (�; z; hn)j d�

= 2

Z h�1

0

j�j j	V;�;A (�; z; hn)j d�

� 2

Z h�1

0

j�j	+V;� (�; hn) d�

�
Z h�1

0

j�j
�
1 + h�1n

�2�
�+
�+�+
1 exp����1 ��� = ��
�
� ��

� �
h�1n
���� d�

�
�
1 + h�1n

�3�
�+
�+�+
1 exp����1 ��� = ��
�
� ��

� �
h�1n
���� :
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Assumption 4.7 requires that if �� 6= 0, we have h�1n = O
�
(lnn)1=����

�
for some � > 0, so

sup
z22R

jDz2Pn;A (z2)j �
�
1 + (lnn)1=����

�3�
�+
�+�+
1
exp

��
��1

�
�� = ��

�
� ��

�
(lnn)1����

�
:

The right-hand side grows more slowly than any power of n so we certainly have supz22R

jDz2Pn;A (z2)j = O
�
n(3=2)��

�
.

If �� = 0, Assumption 4.7 requires that h
�1
n = O

�
n��n(3=2)=(3�
�+
�+�+
1)

�
so that

sup
z22R

jDz2Pn;A (z2)j �
�
1 + n��n(3=2)=(3�
�+
�+�+
1)

�3�
�+
�+�+
1
�

�
1 + n��n3=2

�
= Op

�
n(3=2)��

�
:

Lemma A.4 Let A and Z2 be random variables satisfying E
�
jAj2

�
<1 and E [jAj jZ2j] <

1 and let (Ai; Z2;i)i=1;:::;n be a corresponding IID sample. Then, for any u; U � 0 and � > 0,

sup
�2[�Unu;Unu]

���Ê [A exp (i�Z2)]� E [A exp (i�Z2)]
��� = Op

�
n�1=2+�

�
: (42)

Proof. See Lemma 6 in Schennach (2004a).

Proof of Theorem 4.6. We substitute expansions (35) and (38) into

ĝV;� (z; h)� gV;� (z; h) =
1

2�

Z
exp (�i�z) (�i�)� � (h�)

�
 
�̂V (�)

�̂1 (�)
exp

 Z �

0

i�̂Z1 (�)

�̂1 (�)
d�

!
� �V (�)

!
d�

and remove the terms linear in ��̂A (�) for A = 1; Z1; V . For notational simplicity, we write

h instead of hn here. We then �nd that jĝV;� (z; h)� �gV;� (z; h)j � 1
2�

P7
j=1Rj; where

R1 =

Z 1

0

j�j� j� (h�)j j�1q̂V (�)j j�1 (�)j
�Z �

0

j�1q̂Z1 (�)j d�
�
d�

R2 =

Z 1

0

j�j� j� (h�)j j�2q̂V (�)j j�1 (�)j d�

R3 =

Z 1

0

j�j� j� (h�)j j�2q̂V (�)j j�1 (�)j
�Z �

0

j�1q̂Z1 (�)j d�
�
d�
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R4 =

Z 1

0

j�j� j� (h�)j jqV (�)j j�1 (�)j
�Z �

0

j�2q̂Z1 (�)j d�
�
d�

R5 =

Z 1

0

j�j� j� (h�)j j�q̂V (�)j j�1 (�)j
�Z �

0

j�2q̂Z1 (�)j d�
�
d�

R6 =

Z 1

0

j�j� j� (h�)j jqV (�)j j�1 (�)j
1

2
exp

���� �QZ1 (�)����Z �

0

j�q̂Z1 (�)j d�
�2

d�

R7 =

Z 1

0

j�j� j� (h�)j j�q̂V (�)j j�1 (�)j
1

2
exp

���� �QZ1 (�)����Z �

0

j�q̂Z1 (�)j d�
�2

d�:

These terms can then be bounded in terms of 	+V;� (h) ; de�ned in eq.(41), and

�(h) �
�
1 + h�1

� 
sup

�2[�h�1;h�1]

j�01 (�)j
j�1 (�)j

! 
sup

�2[�h�1;h�1]
j�1 (�)j�1

!
= O

��
1 + h�1

�1+
1�
� exp���� �h�1�����
�̂n � max

A=1;Z1;V
sup

�2[�h�1n ;h�1n ]

����̂A (�)� �A (�)
��� = Op

�
n�1=2+�

�
for any � > 0:

The latter order of magnitude follows from Lemma A.4, given Assumptions 4.7 and 4.8.

Also, we note that

sup
�2[�h�1n ;h�1n ]

�̂n= j�1 (�)j � �̂n�(hn)

= Op(n
�1=2+�)O

��
1 + h�1n

�1+
1�
� exp���� �h�1n �����
= op (1) :

Now, we have

R1 �
Z 1

0

j�j� j� (h�)j
�

1

j�1 (�)j
+
j�V (�)j
j�1 (�)j2

�
�̂n j�1 (�)j

�Z �

0

j�1q̂Z1 (�)j d�
�
d�

� �(h) �̂n

Z 1

0

j�j� j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�1 (�)j

�Z �

0

j�1q̂Z1 (�)j d�
�
d�

= �(h) �̂n

Z 1

0

f
Z 1

�

j�j� j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�1 (�)j d�g j�1q̂Z1 (�)j d�

= �(h) �̂n

Z 1

0

f
Z 1

�

j�j� j� (h�)j (j�1 (�)j+ j�V (�)j) d�g j�1q̂Z1 (�)j d�

� �(h) �̂2n

Z 1

0

f
Z 1

�

j�j� j� (h�)j (j�1 (�)j+ j�V (�)j) d�g
�
1 +

j�Z1 (�)j
j�1 (�)j

�
1

j�1 (�)j
d�

� �(h) �̂2n	
+
V;� (h)

= Op

��
1 + h�1

�1+
1�
� exp���� �h�1����n�1+2� �h�1�
�;L exp��L �h�1��L�� ;
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as required for part (i). Below, we show that the remaining terms are similarly behaved.

For part (ii), we note that

�(h) �̂2n	
+
V;� (h) =

�
�(h) �̂2nn

1=2
�
n�1=2	+V;� (h) :

As Lemma A.2 implies that n�1=2	+V;� (h) is Op
�
n�1=2 (h�1)


�;L exp
�
�L (h

�1)
�L
��
, we only

need to show that
�
�(hn) �̂

2
nn

1=2
�
= op (1).

If �� 6= 0, the assumptions of the Theorem ensure that h�1n � (lnn)(1=��)��, so that

�(hn) �̂
2
nn

1=2 = �(hn)Op
�
n�1+2�

�
n1=2

= Op

��
1 + h�1n

�1+
1�
� exp���� �h�1n ����n�1=2+2��
= Op

��
1 + (lnn)(1=��)��

�1+
1�
�
exp

�
��� (lnn)1����

�
n�1=2+2�

�
= Op(exp[��� (lnn)1����

+(�1=2 + 2�) lnn+ (1 + 
1 � 
�) ((1=��)� �) ln (lnn)])

= Op(exp[��� (lnn)1����

+(�1=2 + 2�) lnn+ (1 + 
1 � 
�) ((1=��)� �) ln (lnn)])

= op (1) ;

where the last line follows since lnn dominates (lnn)1��� and ln lnn and since�1=2+2� < 0.
If �� = 0, the assumptions ensure that h

�1
n � n(1+
1�
�)

�1=2��, and with � < �=2,

�(hn) �̂
2
nn

1=2 = Op

��
1 + h�1n

�1+
r�
� n�1=2+2��
= Op

��
1 + n(1+
r�
�)

�1=2��
�1+
r�
�

n�1=2+2�
�

= Op
��
1 + n1=2��

�
n�1=2+2�

�
= op (1) :

The remaining terms are similarly bounded, as all have the leading term �(h) �̂2n	
+
V;� (h):

R2 �
Z 1

0

j�j� j� (h�)j
���� j�V (�)jj�1 (�)j2

1

j�1 (�)j
�̂2n j1 + op (1)j

�1 +
1

j�1 (�)j2
�̂2n j1 + op (1)j

�1
���� j�1 (�)j d�

� �(h) �̂2n j1 + op (1)j
�1
Z 1

0

j�j� j� (h�)j 1

j�1 (�)j

���� j�V (�)jj�1 (�)j
+ 1

���� j�1 (�)j d�
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� �(h) �̂2n j1 + op (1)j
�1

 Z 1

0

j�j� j� (h�)j j�V (�)j
j�1 (�)j

d� +

Z 1

0

j�j� j� (h�)j j�1 (�)j
j�1 (�)j

d�

!
= �(h) �̂2n	

+
V;� (h) (1 + op (1)) ;

R3 � �(h) �̂n

Z 1

0

j�j� j� (h�)j j�2q̂V (�)j j�1 (�)j d�

= �(h) �̂nR2 = op (1)R2;

R4 =

Z 1

0

j�j� j� (h�)j j�V (�)j f
Z �

0

j�2q̂Z1 (�)j d�gd�

� �(h) �̂2n j1 + op (1)j
�1
Z 1

0

R1
�
j�j� j� (h�)j j�V (�)j d�

j�1 (�)j
d�

= �(h) �̂2n	
+
V;� (h) (1 + op (1)) ;

R5 �
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0

j�j� j� (h�)j
�

1
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+
j�V (�)j
j�1 (�)j2

�
�̂n j1 + op (1)j�1 j�1 (�)j f

Z �

0

j�2q̂Z1 (�)j d�gd�

= �(h) �̂n j1 + op (1)j�1
Z h�1

0

j�j� j� (h�)j
�
1 +

j�V (�)j
j�1 (�)j

�
j�1 (�)j f

Z �

0

j�2q̂Z1 (�)j d�gd�

= �(h) �̂n j1 + op (1)j�1
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Z 1

0
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Z �

0
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0
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0
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= � (h) �̂n (1 + op (1))R4 = op (1)R4;
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1

2
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�Z �

0
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��Z �

0
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2
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0

j�j� j� (h�)j j�V (�)j
�Z �

0
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��Z �

0
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�
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2
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2
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�
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0
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�Z �

0

�
1
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+
j�Z1 (�)j
j�1 (�)j2

�
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�
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=
1

2
exp (op (1))� (h) �̂

2
n j1 + op (1)j

�1

�
Z 1

0

f
Z 1

�
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�

1
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+
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�
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2
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+
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R7 �
Z 1

0

j�j� j� (h�)j
�
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j�V (�)j
j�1 (�)j

�
�(h) �̂n j1 + op (1)j�1 j�1 (�)j

�1
2
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�Z �

0

j�q̂Z1 (�)j d�
��Z �

0
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�
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0
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�
1 +

j�V (�)j
j�1 (�)j

�
j�1 (�)j
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�Z �

0
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��Z �

0
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�
Z 1

0
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�Z �

0
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0
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0
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�Z �
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��Z �

0
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� �(h) �̂n j1 + op (1)j�1R6 = op (1)R6:

Proof of Theorem 4.9. The given assumptions clearly ensure that

max
j=1;:::J

sup
z2R

��ĝVj ;�j (z; hn)� gVj ;�j (z)
�� = max

j=1;:::J
sup
z2R

��BVj ;�j (z; hn) + LVj ;�j (z; hn) +RVj ;�j (z; hn)
��

= op
�
n�1=2

�
+ op

�
n�1=4

�
= op

�
n�1=4

�
;

so that when ~gVj ;�j (z) = ĝVj ;�j (z; hn), the remainder in eq.(33) is op
�
n�1=2

�
. Further,

JX
j=1

Z �
ĝVj ;�j (z; h)� gVj ;�j (z)

�
sj (z) dz

=
JX
j=1

Z
LVj ;�j (z; h) sj (z) dz +

JX
j=1

Z �
BVj ;�j (z; h) +RVj ;�j (z; h)

�
sj (z) dz;

where �����
JX
j=1

Z �
BVj ;�j (z; hn) +RVj ;�j (z; hn)

�
sj (z) dz

�����
�

�
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��BVj ;�j (z; hn) +RVj ;�j (z; hn)
��� JX
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Z
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�
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�
;
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since
R
jsj (z)j dz <1 andmaxj=1;:::J supz2Rmax

���BVj ;�j (z; hn)�� ; ��RVj ;�j (z; hn)��	 = op
�
n�1=2

�
by assumption. It follows that

b (ĝ (�; hn))� b (g) =
JX
j=1

Z
LVj ;�j (z; hn) sj (z) dz + op

�
n�1=2

�
:

Next, we note thatZ
LVj ;�j (z; hn) sj (z) dz

= lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz + lim

~h!0

Z �
LVj ;�j (z; hn)� LVj ;�j

�
z; ~h
��

sj (z) dz;

(43)

where the �rst term will be shown to be a standard sample average while the second will

shown to be asymptotically negligible.

By the de�nition of LVj ;�j
�
z; ~h
�
(see Lemma 4.3), we have

lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz
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X
A=1;Z1;Vj

Z
f
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��
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�gsj (z) dz:

Given that
R
�	sj ;Vj ;�j (�) d� < 1, the integrand is absolutely integrable (for any given

sample), thus enabling us to interchange integrals as well as limits in the sequel:
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Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�:

The innermost integrals can be calculated explicitly:
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(�i�)� lim

~h!0
�
�
~h�
�

� 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�Z
exp (�i�z) s (z) dz

�
(�i�)� lim

~h!0
�
�
~h�
�
�V (�) d�

= � 1

2�

�V (�)

�1 (�)
�ys (�) (�i�)

� � 1

2�

i�Z1 (�)

(�1 (�))
2

Z �1

�

�ys (�) (�i�)
� �V (�) d�

� 	s;V;�;1 (�) ;

62



where 	s;V;�;1 (�) is de�ned in the statement of the theorem. Similarly,

lim
~h!0

Z
	V;�;Z1

�
�; z; ~h

�
s (z) dz =

1

2�

i

�1 (�)

Z �1

�

�ys (�) (�i�)
� �V (�) d� � 	s;V;�;Z1 (�)

lim
~h!0

Z
	V;�;V

�
�; z; ~h

�
s (z) dz =

1

2�

�1 (�)

�1 (�)
�ys (�) (�i�)

� � 	s;V;�;V (�) :

It follows that

lim
~h!0

Z
LVj ;�j

�
z; ~h
�
sj (z) dz =

X
A=1;Z1;Vj

Z
	sj ;Vj ;�j ;A (�)

�
Ê
�
Aei�Z2

�
� E

�
Aei�Z2

��
d�

= Ê
h
 Vj ;�j (sj;Vj; Z1; Z2)

i
;

as de�ned in the theorem statement. Because
R
�	sj ;Vj ;�j (�) d� <1; we have��� Vj ;�j (sj; v; z1; z2)��� � Cmax f1; jvj ; jz1jg

Z
�	sj ;Vj ;�j (�) d�

for some C < 1. Since E
�
V 2
j

�
< 1 and E [Z21 ] < 1 by assumption, E[j Vj ;�j(sj;Vj;

Z1; Z2)j2] <1; and it follows by the Lindeberg-Levy central limit theorem that Ê[ Vj ;�j(sj;

Vj; Z1; Z2)] is root�n consistent and asymptotically normal.
The second term of eq.(43) can be shown to be op

�
n�1=2

�
by noting that it can be written

as an hn-dependent sample average Ê
h
~ Vj ;�j (sj;Vj; Z1; Z2; hn)

i
, where ~ Vj ;�j (sj;Vj; Z1; Z2; h)

is such that limh!0E

����~ Vj ;�j (sj;Vj; Z1; Z2; h)���2� = 0. The manipulations are similar to

the treatment of Ê
h
 Vj ;�j (sj;Vj; Z1; Z2)

i
above, replacing �

�
~h�
�
by
�
� (hn�)� �

�
~h�
��

and taking the limit as ~h! 0 and hn ! 0.

Proof of Theorem 4.10. Consider a Taylor expansion of �̂ (z; h)� � (z) in ĝV;� (z; h)�
gV;� (z) to �rst order:

�̂ (z; h)� � (z)

=
X
A=X;Y

X
V=1;A

X
�=0;1

sA;V;� (z) (ĝV;� (z; h)� gV;� (z)) +RA;V;� (�gV;� (z; h) ; (ĝV;� (z; h)� gV;� (z))) ;

(44)

where the sA;V;� (z) are given in the statement of Theorem 3.5 and where RA;V;�
[�gV;� (z; h) ;
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(ĝV;� (z; h)� gV;� (z))] is a remainder term in which for every (z; h); �gV;� (z; h) lies between

ĝV;� (z; h) and gV;� (z). (We similarly use an overbar � to denote any function of gV;� (z) in

which gV;� (z) has been replaced by �gV;� (z; h).)

We �rst note that, by Corollary 4.7,

max
V=1;X;Y

max
�=0;1

sup
z2R

jĝV;� (z; hn)� gV;� (z)j = Op ("n) ;

where "n � (h�1n )

1;B exp

�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )


1;L exp
�
�L (h

�1
n )

�L
�
! 0.

The �rst terms in the summation in eq.(44) can be shown to be Op ("n=� 4) uniformly

for z 2 Z� as follows. Each sA;V;� (z) term consists of products of functions of the form

gV;� (z) (which are uniformly bounded over R by assumption) divided by products of at

most 4 functions of the form g1;0 (z) or Dz�X(z), which are by construction bounded below

by � uniformly for z 2 Z� . It follows that supz2Z� jsA;V;� (z) (ĝV;� (z; hn)� gV;� (z))j =
O (1)Op (�

�4)Op ("n) = Op ("n=�
4).

The remainder terms in eq.(44) can be shown to be op ("n=� 4) uniformly for z 2 Z� as
follows. Without deriving their explicit form, it is clear that these involve a �nite sum of

(i) �nite products of the functions �gV;� (z; h) for V = 1; X; Y and � = 0; 1; (ii) division

by a product of at most 5 functions of the form �g1;0 (z; h) or Dz��X(z); and (iii) pairwise

products of functions of the form (ĝV;� (z; h)� gV;� (z)). The contribution of (i) is bounded

in probability uniformly for z 2 R since

j�gV;� (z; h)j � jgV;� (z)j+ j�gV;� (z; h)� gV;� (z)j

� jgV;� (z)j+ jĝV;� (z; h)� gV;� (z)j

where jgV;� (z)j is uniformly bounded over R by assumption and supz2R jĝV;� (z; hn)
�gV;� (z) j � Op ("n) = op(1). The contribution of (ii) is bounded by noting that for z 2 Z�

�g1;0 (z; hn) = g1;0 (z)

�
1 +

�g1;0 (z; hn)� g1;0 (z)

g1;0 (z)

�
= fZ (z)

�
1 +

�g1;0 (z; hn)� g1;0 (z)

fZ (z)

�
= fZ (z)

�
1 +Op

�"n
�

��
:

Now choose f�ng such that �n > 0; �n ! 0 as n ! 1; and "n=� 4n ! 0. It follows that
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"n=�n ! 0 as well. Hence for z 2 Z�n we have

�g1;0 (z; hn) = fZ (z) (1 + op (1)) :

Since fZ (z) � �n for z 2 Z�n by construction, we also have fZ (z) (1 + op (1)) � �n=2

with probability approaching one (w.p.a. 1). Similar reasoning holds for Dz��X(z). Hence,

the denominator is bounded below by (�n=2)
5 w.p.a. 1, where the power 5 arises from

the presence of up to 5 of such terms. Finally, the contribution of (iii) is simply Op ("2n).

Collecting all three orders of magnitudes, we obtain

Op (1)Op
�
��5n
�
Op
�
"2n
�
= Op

�
"2n
� 5n

�
= Op

�
"n
� 4n

�
Op

�
"n
�n

�
= Op

�
"n
� 4n

�
op (1) = op

�
"n
� 4n

�
;

so that

sup
z2Z�n

����̂ (z; hn)� � (z)
��� = op

�
"n
� 4n

�
= op(1):

Proof of Theorem 4.11. The delta method applies directly to show that the asymptotic

normality of ĝV;� (z; hn)�gV;� (z) provided by Corollary 4.8 carries over to �̂ (z; hn)�� (z),
as a �rst-order Taylor expansion of �̂ (z; hn)� � (z) in ĝV;� (z; hn)� gV;� (z) yields

�̂ (z; hn)� � (z) =
X
A=X;Y

X
V=1;A

X
�=0;1

sA;V;� (z) (ĝV;� (z; hn)� gV;� (z)) +Rn;

where the sA;V;� (z) terms are as de�ned in Theorem 3.5 and where the remainder termRn is

necessarily negligible since, under the assumptions thatmaxV=1;X;Y max�=0;1 jgV;� (z)j <1,
fZ (z) > 0 and jDz�X(z)j > 0, the �rst derivative terms sA;V;� (z) are continuous.
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B Supplementary material

Proof of Lemma 3.1. This result holds by construction.

Lemma B.1 Suppose Assumption 3.4 holds. Then supz2R
��k(�) (z)�� <1;

R ��k(�) (z)�� dz <
1, 0 <

R ��k(�) (z)��2 dz <1, R ��k(�) (z)��2+� dz <1, and jzj ��k(�) (z)��! 0 as jzj ! 1.

Proof. The Fourier transform of k(�) (z) is (�i�)� � (�), which is bounded by assumption
and therefore absolutely integrable, given the assumed compact support of � (�). Hence

k(�) (z) is bounded, since
��k(�) (z)�� = ���R (�i�)� � (�) e�i�zd���� � R j�j� j� (�)j d� < 1. Note

that
R ��k(�) (z)��2 dz > 0 unless k(�) (z) = 0 for all z 2 R, which would imply that k (z) is a

polynomial, making it impossible to satisfy
R
k(z)dz = 1. Hence,

R ��k(�) (z)��2 dz > 0.
The Fourier transform of z2k(�) (z) is�(d2=d�2)

�
(�i�)� � (�)

�
. By the compact support

of � (�), if � (�) has two bounded derivatives then so does (�i�)� � (�) ; and it follows that
�(d2=d�2)

�
(�i�)� � (�)

�
is absolutely integrable. By the Riemann-Lebesgue Lemma, the

inverse Fourier transform of i(d2=d�2)
�
(�i�)� � (�)

�
is such that z2k(�) (z)! 0 as jzj ! 1.

Hence, we know that there exists C such that

��k(�) (z)�� � C

1 + z2
;

and the function on the right-hand side satis�es all the remaining properties stated in the

lemma.

Proof of Theorem 3.2. (i) The order of magnitude of the bias is derived in the proof of

Theorem 4.4 in the foregoing appendix. The convergence rate of BV;� (z; h) is also derived

in Theorem 4.4.

(ii) The facts that E [LV;� (z; h)] = 0 and E
�
L2V;� (z; h)

�
= n�1
V;� (z; h) hold by con-

struction. Next, Assumptions 3.2(ii) and 3.4 ensure that


V;� (z; h) = E

"�
(�1)� h���1V k(�)

�
Z � z

h

��2#
�
�
E

�
(�1)� h���1V k(�)

�
Z � z

h

���2
� E

"�
(�1)� h���1V k(�)

�
Z � z

h

��2#
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= h�2��1E

"
E
�
V 2jZ

�
h�1

�
k(�)

�
Z � z

h

��2#

� h�2��1E

"
h�1

�
k(�)

�
Z � z

h

��2#
(by Assumption 3.2(ii) and Jensen�s inequality)

= h�2��1
Z
h�1

�
k(�)

�
~z � z

h

��2
fZ (~z) d~z

= h�2��1
Z �

k(�) (u)
�2
fZ (z + hu) du

(after a change of variable from ~z to z + hu)

� h�2��1
Z �

k(�) (u)
�2
du (by Assumption 3.1(i)

� h�2��1 (by Lemma B.1)

and hence r
sup
z2R


V;� (z; h) = O
�
h���1=2

�
:

We now establish the uniform convergence rate. Using Parseval�s identity, we have

LV;� (z; h) = Ê

�
(�1)� h���1V k(�)

�
Z � z

h

��
� E

�
(�1)� h���1V k(�)

�
Z � z

h

��
=

1

2�

Z �
Ê
�
V ei�Z

�
� E

�
V ei�Z

��
(�i�)� � (h�) e�i�zd�;

so it follows that

jLV;� (z; h)j �
1

2�

Z ���Ê �V ei�Z�� E
�
V ei�Z

���� j�j� j� (h�)j d�;
and that

E [jLV;� (z; h)j] �
1

2�

Z
E
h���Ê �V ei�Z�� E

�
V ei�Z

����i j�j� j� (h�)j d�
� 1

2�

Z
(E[
�
Ê
�
V ei�Z

�
� E

�
V ei�Z

��
�
�
Ê
�
V ei�Z

�
� E

�
V ei�Z

��y
])1=2 j�j� j� (h�)j d�

� 1

2�

Z �
n�1E

�
V ei�ZV e�i�Z

��1=2 j�j� j� (h�)j d�
= n�1=2

1

2�

Z �
E
�
V 2
��1=2 j�j� j� (h�)j d�
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� n�1=2
Z
j�j� j� (h�)j d�

= n�1=2h�1��
Z
j�j� j� (�)j d�

� n�1=2h���1:

Hence, by the Markov inequality,

sup
z2R

jLV;� (z; h)j = Op
�
n�1=2h���1

�
:

When hn ! 0; lemma 1 in the appendix of Pagan and Ullah (1999, p.362) applies to yield:

h2�+1n 
V;� (z; hn) = E

"
h�1n

�
(�1)� V k(�)

�
Z � z

hn

��2#

� hn

�
E

�
(�1)� h�1n V k(�)

�
Z � z

hn

���2
= E

"
E
�
V 2jZ

�
h�1n

�
k(�)

�
Z � z

hn

��2#

� hn

�
E

�
E [V jZ]h�1k(�)

�
Z � z

hn

���2
! E

�
V 2jZ = z

�
fZ (z)

Z �
k(�) (z)

�2
dz:

By Assumptions 3.1 and 3.2(iii); E [V 2jZ = z] fZ (z) > 0 for z 2 SZ and 3.4 ensuresR �
k(�) (z)

�2
dz > 0 by Lemma B.1, so that h2�+1n 
V;� (z; hn) > 0 for all n su¢ ciently large.

(iii) To show asymptotic normality, we verify that `V;� (z; hn;V; Z) satis�es the hypothe-

ses of the Lindeberg-Feller Central Limit Theorem for IID triangular arrays (indexed by

n). The Lindeberg condition is: For all " > 0,

lim
n!1

Qn;hn (z; ")! 0;

where

Qn;h (z; ") � (
V;� (z; h))�1E
h
1
�
j`V;� (z; h;V; Z)j � " (
V;� (z; h))

1=2 n1=2
�
j`V;� (z; h;V; Z)j2

i
:

Using the inequality E [1 [W � �]W 2] � ���E
�
W 2+�

�
for any � > 0, we have

Qn;h (z; ") � (
V;� (z; h))�1
�
" (
V;� (z; h))

1=2 n1=2
���

E
h
j`V;� (z; h;V; Z)j2+�

i
;
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where Assumption 3.2(iv) ensures that

E
h
j`V;� (z; h;V; Z)j2+�

i
= h��(2+�)h�1��E

"
h�1 jV j2+�

����k(�)�Z � z

h

�����2+�
#

= h��(2+�)h�1��E

"
h�1E

h
jV j2+� jZ

i ����k(�)�Z � z

h

�����2+�
#

� h��(2+�)h�1��E

"
h�1

����k(�)�Z � z

h

�����2+�
#

� h��(2+�)h�1��:

The results above and Assumption 3.2(iv) ensure that for any given z there exist 0 <

A1;z; A2;z < 1 such that A1;zh�2��1n < 
V;� (z; hn) < A2;zh
�2��1
n for all hn su¢ ciently

small. Hence, we have

Qn;hn (z; ") �
�
"h���1=2n n1=2

��� h��(2+�)n h�1��n

h�2��1n

=
�
"h���1=2n n1=2h�nhn

���
= "�� (nhn)

��=2 ! 0

provided nhn !1, which is implied by Assumption 3.6: hn ! 0; nh2�+1n !1.

Proof of Theorem 3.3. The O
�

~gVj ;�j � gVj ;�j



2
1

�
remainder in eq.(24) can be dealt

with as in the proof above of Theorem 4.9. Next, we note thatZ
s (z) (ĝV;� (z; h)� gV;� (z)) dz = L+Bh +Rh;

where

L = Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

�
= Ê

�
 V;� (s;V; Z)

�
Bh =

Z
s (z) (gV;� (z; h)� gV;� (z)) dz

Rh =

Z
s (z) (ĝV;� (z; h)� gV;� (z; h)) dz �

�
Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

��
:

We then have, by Assumption 3.7,

jBhnj �
����Z s (z) (gV;� (z; hn)� gV;� (z)) dz

���� � Z js (z)j jgV;� (z; hn)� gV;� (z)j dz

=

Z
js (z)j jBV;� (z; hn) jdz = op

�
n�1=2

� Z
js (z)j dz = op

�
n�1=2

�
:
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Next,

Rh =

Z
s (z) (ĝV;� (z; h)� gV;� (z; h)) dz �

�
Ê
�
s(�) (Z)V

�
� E

�
s(�) (Z)V

��
= (�1)�

Z
s (z)

�
Ê

�
V

1

h1+�
k(�)

�
Z � z

h

��
� E

�
V

1

h1+�
k(�)

�
Z � z

h

���
dz

�
�
Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

��
=

Z
s(�) (z)

�
Ê

�
V
1

h
k

�
Z � z

h

��
� E

�
V
1

h
k

�
Z � z

h

���
dz

�
�
Ê
�
V s(�) (Z)

�
� E

�
V s(�) (Z)

��
=

Z
(Ê

�
V s(�) (z)

1

h
k

�
Z � z

h

�
� V s(�) (Z)

�
� E

�
V s(�) (z)

1

h
k

�
Z � z

h

�
� V s(�) (Z)

�
)dz

= Ê
�
V
�
s(�) (z; h)� s(�) (Z)

�
� E

�
V
�
s(�) (z; h)� s(�) (Z)

���
where

s(�) (~z; h) =

Z
s(�) (z)

1

h
k

�
~z � z

h

�
dz:

Hence, Rhn is a zero-mean sample average where the variance of each individual IID term

goes to zero, implying that Rhn = op
�
n�1=2

�
.

Proof of Theorem 3.4. This proof is virtually identical to the proof of Theorem 4.10

in the foregoing appendix, with "n = (h�1n )

1;B exp

�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )

2 instead of

"n = (h
�1
n )


1;B exp
�
�B (h

�1
n )

�B
�
+ n�1=2 (h�1n )


1;L exp
�
�L (h

�1
n )

�L
�
.

Proof of Theorem 3.5. This proof is virtually identical to the proof of Theorem 4.11,

invoking Theorem 3.2 instead of Corollary 4.8.
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