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Rabin [22] proved that a low level of risk aversion with respect
to small gambles leads to a high, and absurd, level of risk aver-
sion with respect to large gambles. Rabin’s arguments strongly
depend on expected utility theory, but we show that similar ar-
guments apply to general non-expected utility theories.
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1 Introduction

About ten years ago, Rabin [22] offered a very convincing argument against
using expected utility theory by showing how reasonable levels of risk aversion
with respect to small lotteries imply absurdly high levels of risk aversion with
respect to large lotteries. Our aim is to show that this analysis challenges
not only expected utility theory, and similar results can be obtained for all
(smooth) preferences.

We assume the following two properties of preferences throughout this
paper:
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D1 Actions are evaluated by considering possible final wealth levels.

D2 Risk aversion: If lottery Y is a mean preserving spread of lottery X,
then X is preferred to Y .

Given these assumptions, we explore the quantitative relationship between
the following two additional behaviors.

B3 Rejection of a small actuarially favorable lottery in a certain range. For
example, rejection of the lottery (−100, 1

2
; 105, 1

2
) at all wealth levels

below 300,000.

B4 Acceptance of large, very favorable lotteries. For example, acceptance
of the lottery (−5,000, 1

2
; 10,000,000, 1

2
).

Specifically we explore how the size and form of actuarially favorable lotteries
that are rejected and the range of wealth on which they are rejected relate
to the size of large lotteries that can be accepted.

Rabin [22] shows the tension between these properties within expected
utility theory. If for given small and relatively close ℓ < g, the decision
maker rejects (−ℓ, 1

2
; g, 1

2
) at all wealth levels x ∈ [a, b], then he also rejects

(−L, 1
2
; G, 1

2
) at x∗ for some L, G, and x∗ ∈ [a, b] where G is huge while L

is not. Rabin shows how stunning these numbers can be. For example, if
a risk averse decision maker is rejecting the lottery (−100, 1

2
; 105, 1

2
) at all

positive wealth levels below 300,000, then at wealth level 290,000 he will also
reject the lottery (−10,000, 1

2
; 5,503,790, 1

2
). 1 Rabin’s arguments rely on the

properties of expected utility theory and are understood to be a major attack
on this theory. 2

The hypothesis that in risky environments decision makers evaluate ac-
tions by considering possible final wealth levels is widely used in expected

1For an earlier claim that a low level of risk aversion in the small implies huge risk
aversion at the large, although without detailed numerical estimates, see Hansson [14] and
Epstein [9].

2Palacios-Huerta and Serrano [20] object to this conclusion and claim that expected
utility decision makers do not satisfy B3 on such large intervals. But Theorems 1 and 2
show that the intervals needed are much smaller than Rabin’s (see Tables 1 and 2 below).
In another approach, where decision makers do not maximize expected utility but are
rather concerned with not going below a certain wealth level, Foster and Hart [11] show
that in Rabin’s example, B4 may not be implied by B3 if decision makers consider infinitely
many repetitions of the gamble.
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utility theory as well as in its applications. Moreover, many of the new al-
ternatives to expected utility, alternatives that were developed during the
last twenty five years in order to overcome the limited descriptive power of
expected utility, are also based on the hypothesis that only final wealth levels
matter.

The final-wealth hypothesis is analytically tractable as it assumes that
decision makers behave according to a unique, universal preference relation
over final-wealth distributions. Suggested deviations from this hypothesis
require much more elaborate and complex analysis. For example, postulat-
ing that decision makers ignore final wealth levels and, instead, care about
possible gains and losses may require using many preference relations and
will necessitate the need for a mechanism that defines the appropriate refer-
ence points. However, the poor descriptive power of some of the final-wealth
models and, in particular, of final-wealth expected utility, have increased the
popularity of gain-losses models such as prospect theory [16], [30] and its
offsprings. Using Rabin’s results, Cox and Sadiraj [7] and Rubinstein [24]
conclude that the final-wealth approach should be dropped.

A less radical conclusion from Rabin’s argument is that final-wealth ex-
pected utility should be replaced with more general final-wealth theories (see
e.g. Rabin [22, p. 1288] and Rabin and Thaler [23]). For example, rank-
dependent utility with linear utility (Yaari [31]) is capable of exhibiting both
a relatively strong aversion to small gambles and a sensible degree of risk
aversion with respect to large gambles (see Section 4 below). The present
paper confronts this claim. We show that with small modifications of B3
and B4 one can still show that a rejection of small lotteries with positive
expected value leads to the rejection of very attractive large lotteries even
if the expected utility hypothesis is dropped. 3 Yaari’s model, for example,
is inconsistent with our extended requirement for a moderate level of risk
aversion in the small (see Proposition 2 in Section 4 below).

The technical tool we use is local utilities (Machina [17]). Theorem 1
shows how to use local utilities to obtain calibration results. But the condi-
tions of this theorem are too strong in the sense that they are not satisfied
by some non expected utility preferences and by some empirical tests. The
main results of the paper show how to obtain inconsistency of the four de-
sired properties with weaker assumptions than those used in Theorem 1. In

3Our claims hold provided some minimal degree of smoothness of preferences is as-
sumed. Formally, we assume that preferences are Gâteaux differentiable.
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section 3 we show the inconsistency of the four properties under some as-
sumptions concerning the way local utilities change from one distribution to
another. In section 4 we modify properties B3 and B4 to get general results.
The paper’s analysis applies to all (Gâteaux) differentiable models, includ-
ing Chew’s [3] weighted utility, (the differentiable versions of) betweenness
(Dekel [8], Chew [3]), quadratic utility (Machina [17], Chew, Epstein, and Se-
gal [4]), and rank-dependent utility (Quiggin [21]). In Section 4 we also show
that non expected utility models satisfying constant absolute and relative
risk aversion cannot satisfy our modified version of property B3.

The analysis of the paper leaves us with the choice between several con-
troversial conclusions. People do not reject small risks, people reject excellent
large risk, or, explanations that seem to be more likely, people are not glob-
ally risk averse or people do not utilize just one preference relation.

2 Calibration and Local Utilities

We assume throughout that preferences over distributions are represent-
able by a functional V which is risk averse with respect to mean-preserving
spreads, monotonically increasing with respect to first order stochastic dom-
inance, continuous with respect to the topology of weak convergence, and
Gâteaux differentiable (see below).4 Denote the set of all such functionals by
V.

According to the context, utility functionals are defined over lotteries (of
the form X = (x1, p1; . . . ; xn, pn)) or over cumulative distribution functions
(denoted F, H). Degenerate cumulative distribution functions are denoted δx.
For x,ℓ, and g, Hx,ℓ,g denotes the distribution of the lottery (x−ℓ, 1

2
; x+g, 1

2
).

When ℓ and g are fixed, we write Hx instead.
The functional V is Gâteaux differentiable if for every F and H , the

derivative

∂

∂ε
V ((1 − ε)F + εH)

∣
∣
∣
∣
ε=0

exists and is linear in H (see Zeidler [32]). If V is Gâteaux differentiable then

4It is of course possible to create non-differentiable examples (see e.g. Dekel [8]), but
all the standard models in the literature are Gâteaux (if not Fréchet) differentiable.
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there are local utilities u(·; F ) 5 such that for all F and H

V ((1−ε)F +εH)−V (F ) = ε

[∫

u(x; F )dH−

∫

u(x; F )dF

]

+o (‖ε‖) (1)

Throughout the paper, the local utilities enable us to carry over accumulated
levels of risk aversion from one point to another. Proposition 1 links risk
attitudes of the functional V with properties of the local utilities u(·; F ).

The following lemma is needed since the calibration results for expected
utility rely on the concavity of the vNM function. It extends Machina’s [17]
result for Fréchet differentiable functionals to the class of all Gâteaux differ-
entiable functionals.

Lemma 1 All local utilities of a Gâteaux differentiable functional V ∈ V are
concave.

Suppose that V is expected utility with the vNM utility u. For every F ,
the function u is also the local utility function of V at F . If the decision
maker rejects the lottery (−ℓ, 1

2
; g, 1

2
) at a given x, that is, if

u(x) > 1
2
u(x − ℓ) + 1

2
u(x + g) (2)

then by the nature of expected utility theory, for every distribution F and
ε > 0,

V ((1 − ε)F + εδx) > V ((1 − ε)F + εHx) (3)

Proposition 1 shows that the equivalence of eqs. (2) and (3) holds for the
local utilities of general functionals V as well.

Proposition 1 Let V ∈ V and x ∈ ℜ. The following conditions are equiva-
lent:

1. For every F , u(x; F ) > 1
2
u(x − ℓ; F ) + 1

2
u(x + g; F ).

2. For every F and ε > 0, V ((1 − ε)F + εδx) > V ((1 − ε)F + εHx).

This Proposition leads to the following behavioral conclusion:

5The concept of local utilities was introduced by Machina [17]. Machina assumed the
stronger notion of Fréchet differentiability.

5



Theorem 1 Let V ∈ V, g > ℓ > 0, and G > b − a, and let

L >

[

(ℓ + g)
1−( ℓ

g )
b−a
ℓ+g

1− ℓ
g

+ (G + a − b)
(

ℓ
g

) b−a
ℓ+g

]

(1 − p)

p
(4)

If for every F with support in [a − L, a + G], x ∈ [a, b], and ε > 0,

V ((1 − ε)F + εδx) > V ((1 − ε)F + εHx)

then
V (a, 1) > V (a − L, p; a + G, 1 − p).

Table 1 offers the minimal values of L for different levels of G, b − a,
and g when ℓ = 100 and p = 1

2
. For example, if the decision maker re-

jects (−100, 1
2
; 110, 1

2
) on a range of 40,000, then he also rejects the lottery

(−2,310, 1
2
; 10,000,000,1

2
). If p 6= 1

2
, the values should be multiplied by 1−p

p
.

For 1−p = 1
100,000

, we obtain that this decision maker will refuse to pay even
three cents for a 1:100,000 chance of winning 10 million dollars!

The “if” condition of this theorem is stronger then the one used by Rabin
(which is formally obtained when ε = 1), although within expected utility
theory they are equivalent, as by the independence axiom, V (δx) > V (Hx)
iff for all F and ε > 0, V ((1− ε)F + εδx) > V ((1− ε)F + εHx). This condi-
tion is quite strong and behaviorally questionable. The common ratio effect
(Allais [1]) shows that preferences may be reversed when the choice is condi-
tioned on a small probability. For example, let F = δ0, x = 100, ℓ = 100, and
g = 110. The fact that V (100, 1) > V (0, 1

2
; 210, 1

2
) does not imply, for pref-

erences exhibiting this effect, that V (100, 0.1; 0, 0.9) > V (210, 0.05; 0, 0.95).
Although the “then” part of Theorem 1 is as strong as Rabin’s original claim,
we consider weaker hypothesis at the cost of obtaining weaker conclusion. We
offer such results in the next two sections.

G b − a g = 101 g = 105 g = 110 g = 125

1,000,000 20,000 376,873 12,662 2,421 1,125
5,000,000 30,000 1,141,280 8,241 2,316 1,125
10,000,000 40,000 1,392,440 5,035 2,310 1,125

Table 1: If the decision maker rejects (−100, 1
2 ; g, 1

2) at all wealth levels between

a and b, then at a he also rejects (−L, 1
2 ;G, 1

2 ), values of L entered in the table.
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3 Hypothesis 2

Machina [17] introduced the following notion.

Definition 1 Suppose all local utilities are twice differentiable. The func-
tional V ∈ V satisfies Hypothesis 2 if for all F and H such that F dominates
H by first order stochastic dominance and for all x

−
u′′(x; F )

u′(x; F )
> −

u′′(x; H)

u′(x; H)

Machina [17, 18] shows that Hypothesis 2 conforms with many violations
of expected utility like the Allais paradox, the common ratio effect [1], and
the mutual purchase of insurance policies and lottery tickets. Hypothesis
2 implies that for given x > y > z, indifference curves in the probability
triangle {(x, p; y, 1 −p − q; z, q) : p + q 6 1} become steeper as one moves
from δz to δx.

6 Note that expected utility preferences satisfy Hypothesis 2
with equality, as all local utility functions are identical and equal to the vNM
utility u.

Assuming Hypothesis 2 we get the following result.

Theorem 2 Let V ∈ V and assume that it satisfies Hypothesis 2. Let 0 <
ℓ < g < L and let b− a = L + g. Then there exists ε̂ > 0 such that for p 6 ε̂
and for all G satisfying

G <
p

1 − p
(ℓ + g)

(
g

ℓ

) b−a
ℓ+g − 1

g

ℓ
− 1

, (5)

if for all x ∈ [a, b], V (x, 1) > V (x − ℓ, 1
2
; x + g, 1

2
), then

V (b, 1) > V (b − g − L, p; b − g + G, 1 − p).

6The experimental evidence concerning this hypothesis, even on the probability tri-
angle, is inconclusive. Battalio, Kagel, and Jiranyakul [2] and Conlisk [6] suggest that
indifference curves become less steep as one moves closer to either δx or δz. But Con-
lisk’s lotteries do not satisfy the requirements of Hypothesis 2. Battalio, Kagel, and
Jiranyakul [2] did find some violations of Hypothesis 2, but as most of their subjects were
consistent with expected utility theory, only a small minority of them violated this hypoth-
esis. For a further discussion of violations of Hypothesis 2, see Starmer [29, Sec. 5.1.1].
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Observe that if for all x ∈ [a, b], V (x, 1) > V (x − ℓ, 1
2
; x + g, 1

2
), then, by

continuity, there exists ε̂ > 0 such that for all p ∈ (0, ε̂] and for all x ∈ [a, b],

V (a, p; x, 1 − p) > V (a, p; x − ℓ, 1−p

2
; x + g, 1−p

2
)

This is the value of ε̂ used in the theorem. To understand the implication of
the theorem, first consider expected utility preferences. By the independence
axiom ε̂ = 1 and, as is explained in the beginning of the theorem’s proof,
the lottery rejected is (−L, p; G, 1 − p) (a rightward shift by g of the lottery
(−g − L, p;−g + G, 1 − p) rejected by general preferences).

In Table 2, ℓ = 100 and the wealth level is b. The table presents, for dif-
ferent combinations of L = b−a, G, and g, values of p such that a rejection of
(−100, 1

2
; g, 1

2
) at all x ∈ [b−L, b] by an expected utility decision maker leads

to a rejection at b of the lottery (−L, p; G, 1−p). For example, if the decision
maker rejects (−100, 1

2
; 110, 1

2
) on a range of 30,000, then he also rejects the

lottery (−30,000, 1
1700

; 1,000,000,1699
1700

).

L G g = 101 g = 105 g = 110 g = 125

20,000 100,000 0.7462 0.1740 0.0054 2.7 · 10−7

30,000 1,000,000 0.9357 0.1621 5.8 · 10−4 1.3 · 10−10

50,000 100,000,000 0.9978 0.1421 6.6 · 10−6 3.2 · 10−17

Table 2: If the expected utility decision maker rejects (−100, 1
2 ; g, 1

2 ) at all wealth

levels between b − L and b, then at b he also rejects (−L, p;G, 1 − p), values of p

entered in the Table.

For general preferences, Theorem 2 implies, for example, the following
behavior (where the numbers are taken from Table 2). Let g = 110 and
L = 30,000. If for all x ∈ [a, b], V (x, 1) > V (x − 100, 1

2
; x + 110, 1

2
) and if

ε̂ = 0.006, then

V (b, 1) > V (b − 30,110, 0.006; b + 106 − 110, 0.994)

We provide here an outline of the proof of the Theorem. In the first part
of the proof we use the fact that the rejection of the small lottery (−ℓ, 1

2
; g, 1

2
)

at x implies, by differentiability, that at some distribution on the line segment
connecting δx and Hx, the local utility function at this distribution prefers
(x, 1) to the lottery (x − ℓ, 1

2
; x + g, 1

2
). Observe that if x < b − g then δb
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dominates by first-order stochastic dominance all distributions on the line-
segment connecting δx and Hx. Hence, if (−ℓ, 1

2
; g, 1

2
) is rejected at all x ∈

[a, b−g], then, by Hypothesis 2, the local utility function u(·; δb) prefers (x, 1)
to the lottery (x− ℓ, 1

2
; x + g, 1

2
) for all such x. Hence u(·; δb) rejects some of

the attractive large lotteries of Table 2. Next we show that a similar property
holds along the line segment connecting (b, 1) and (b−g−L, ε; b−g+G, 1−ε).
By Gâteaux differentiability, the decision maker rejects the large lottery as
well.

By definition, Hypothesis 2 needs differentiability of the local utility func-
tions. This is not a trivial assumption, and it is closely associated with orders
of risk aversion: The functional V represents first [second] order risk aver-
sion if the risk premium the decision maker is willing to pay to avoid playing
t⊗X := (tx1, p1; . . . ; txn, pn) for E[X] = 0 converges to zero at the same rate
as t [t2]. Indifference curves of preferences satisfying first order risk aversion
are not differentiable at δx, and the local utilities u(·; δx) are not differen-
tiable at x (see Segal and Spivak [27, 28], Epstein and Zin [10], and Safra
and Segal [26]). The next section deals with general functionals, including
those not satisfying Hypothesis 2.

4 Stochastic B3

The previous section dealt with preferences satisfying the restrictive Hy-
pothesis 2. Even when local utilities are differentiable, not all functionals
satisfy this assumption (for example, some versions of Chew’s [3] weighted
utility theory and Gul’s [13] disappointment aversion theory). And there are
many models where local utilities are not differentiable, among them rank-
dependent utility (Quiggin [21]), the most popular alternative to expected
utility theory. This functional is given by V (F ) =

∫
u(x)df(F ). For finite

lotteries with x1 6 . . . 6 xn, the value of this functional is given by

V (x1, p1; . . . ; xn, pn) = u(x1)f(p1) +
n∑

i=2

u(xi)

[

f

(
i∑

j=1

pj

)

−f

(
i−1∑

j=1

pj

)]

Risk aversion implies concave f and the local utilities of this functional are
given by u(x; F ) =

∫ x
u′(z)f ′(F (z))dz (see Chew, Karni, and Safra [5]).
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Hence for δa we have

u(z; δa) =







u(z)f ′(0) z ≤ a

u(a)f ′(0) + (u(z) − u(a))f ′(1) z ≥ a

This local utility is not differentiable at a unless f ′(0) = f ′(1). Concavity
now implies f ′ ≡ 1 and V is reduced to expected utility. Hypothesis 2 is
violated because at a, u(a; δa) represents an infinite level of risk aversion,
while for a′ > a, u(a; δa′) represents a finite level of risk aversion.

A special case of the rank-dependent utility family is Yaari’s [31] dual the-
ory, given by V (F ) =

∫
xdf(F ). This functional seems to solve the problem

raised by Rabin’s analysis. Assume that f is concave (hence risk aversion)
and that f(1

2
) = 11

21
. Clearly, the decision maker rejects (−ℓ, 1

2
; g, 1

2
) at all

wealth levels for all g < 1.1ℓ, but accepts (−L, 1
2
; G, 1

2
) at all wealth levels for

all G > 1.1L. Properties D1 and D2 are satisfied and although small lotter-
ies are rejected (B3), attractive large lotteries are accepted even for modest
gains (B4). Moreover, the dual theory is a member of the larger class of
constant risk aversion preferences (that is, constant absolute and constant
relative risk aversion) which display similar behavior.

Definition 2 The functional V satisfies constant risk aversion (CRA) if for
all α > 0, β, F , and H,

V (F ) > V (H) ⇐⇒ V (α ⊗ F ⊕ β) > V (α ⊗ H ⊕ β)

where F ⊕β is obtained from F by adding β to all its outcomes and as before,
α ⊗ F is obtained from F by multiplying all outcomes by α.

If for some wealth level the CRA decision maker is indifferent between
accepting and rejecting the lottery (−ℓ, 1

2
; g, 1

2
), then for all ε > 0: 1. he

rejects the lottery (−ℓ, 1
2
; g − ε, 1

2
) at all wealth levels, and 2. he accepts the

lottery (−Kℓ, 1
2
; Kg + ε, 1

2
), K > 0 at all wealth levels. The four properties

D1–B4 are thus satisfied.
Like risk-averse rank-dependent preferences, CRA preferences have dif-

ferentiable local utilities only when they are reduced to expected utility
(see Safra and Segal [25]. In the case of CRA, expected utility means ex-
pected value). To analyze general preferences — preferences with nondiffer-
entiable local utilities and preferences that violate Hypothesis 2 — we con-
sider a stochastic version of B3 where the decision maker rejects the lottery
(−ℓ, 1

2
; g, 1

2
) at both deterministic and stochastic wealth levels.
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Definition 3 (Stochastic B3): The functional V satisfies (ℓ, g) stochastic B3
on [a, b] if for all F with support in [a, b], V (F ) > V (1

2
[F ⊖ ℓ] + 1

2
[F ⊕ g]). 7

The distribution F in the above definition serves as background risk —
risk to which the binary lottery (−ℓ, 1

2
; g, 1

2
) is added. Since initial wealth is

usually stochastic, an observed rejection of the lottery (−ℓ, 1
2
; g, 1

2
) indicates

behavior according to the stochastic version of B3.
For functionals satisfying stochastic B3 we have the following result.

Theorem 3 Let V ∈ V satisfy (ℓ, g) stochastic B3 on [a, b] and let n = b−a
ℓ+g

.

Then there is F ∗ with support in [a, b] and ε∗ > 0 such that for all ε < ε∗,

V ((1 − ε)F ∗ + εδa) > V ((1 − ε)F ∗ + εH)

for all H = (a − L, 1
2
; a + G, 1

2
) where

L >
ℓ(ℓ + g)

g − ℓ
+ 1 and G =

L − 1

ℓ
[(n − 1)(g − ℓ) + g] (6)

Table 3 offers some examples for values of n and G that satisfy the condi-
tions of Theorem 3 for ℓ = 100 and L = 25,000. For example, if the decision
maker rejects the stochastic risk (−100, 1

2
; 110, 1

2
) at all lotteries with final

outcomes between 100,000 and 325,000, then there is a distribution F ∗ on
this support such that for a sufficiently small ε he prefers the distribution
(1 − ε)F ∗ + εδ100,000 to (1 − ε)F ∗ + εH , where H is the distribution of the
lottery (100,000 − 25,000, 1

2
; 100,000 + 2,703,571, 1

2
).

b − a g = 101 g = 105 g = 110 g = 125

45,000 80,970 299,390 560,714 1,275,000
112,500 164,925 710,975 1,364,285 3,150,000
225,000 304,850 1,396,951 2,703,571 6,275,000
450,000 584,701 2,768,902 5,382,142 12,525,000

Table 3: If the decision maker rejects 1
2 [F ⊖100]+ 1

2 [F ⊕ g] for all distributions F

with outcomes between a and b, then he also prefers (1−ε)F ∗ +εδa to (1−ε)F ∗ +

εHa, 25,000,G (Ha, 25,000,G is the distribution of (a − 25,000, 1
2 ; a + G, 1

2)) for some

distribution F ∗ and for a sufficiently small ε, values of G entered in the table.

7F ⊖ ℓ = F ⊕ (−ℓ).
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Clearly, Stochastic B3, the “if” condition of Theorem 3, is weaker than
the “if” condition of Theorem 1: if, for every x, the decision maker objects to
replacing the single outcome x with the distribution Hx, then, by constructing
a sequence of such changes, it is evident that he objects to replacing all
outcomes x by the corresponding lotteries Hx.

Empirical evidence seems to support stochastic B3 (see, e.g., Guiso, Jap-
pelli and Terlizzese [12], Paiella and Guiso [19], and Hochguertel [15]). 8 Note
that for expected utility functionals the stochastic version of B3 is equiva-
lent to the deterministic one: A rejection of (−ℓ, 1

2
; g, 1

2
) at all deterministic

wealth levels implies its rejection at all stochastic wealth levels. Likewise,
this definition is satisfied by risk averse rank-dependent functionals with a
sufficiently concave utility function u.

Rabin’s logic does not imply rejection of large attractive lotteries, but
that the decision maker cannot simultaneously reject small actuarially fa-
vorable lotteries and accept all large attractive ones. Theorem 3 provides
similar results. It does not suggest that all functionals reject attractive lot-
teries — Yaari’s [31] theory, for example, accepts even moderately attractive
large lotteries (−L, 1

2
; G, 1

2
), provided G > f

(
1
2

)
L/
[
1 − f

(
1
2

)]
. But then

preferences cannot satisfy stochastic B3 for small values of ℓ and g. In fact,
the next proposition shows that CRA functionals do not satisfy stochastic
B3 for any g > ℓ.

Proposition 2 If V ∈ V satisfies constant risk aversion and is continuously
Gâteaux differentiable, 9 then for g > ℓ, V cannot exhibit (ℓ, g) stochastic B3
on [a, b] for a sufficiently large b − a.

Consider the CRA functional V (F ) =
∫

xdf(F (x)) (Yaari [31]). Let
f(p) = pη and let F be the uniform distribution over [a, b]. For η = 0.5, ℓ =
100, and g = 110, the decision maker enjoys the additional risk (−ℓ, 1

2
; g, 1

2
)

whenever b − a > 19,461 and for ℓ = 100, g = 105, and η = 0.7, whenever
b − a > 7,482.

8Rabin and Thaler [23] on the other hand seem to claim that a rejection of a small
lottery is likely only when the decision maker is unaware of the fact that he is exposed to
many other risks.

9That is, for every F and H , ∂
∂α

V ((1 − α)F + αH)
∣
∣
α=0

exists, is linear in H , and
continuous in F .
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Appendix

Proof of Lemma 1 Suppose u(·; F ) is not concave. Then there exist H∗

and H such that H is a mean preserving spread of H∗, but
∫

u(x; F )dH∗(x) <
∫

u(x; F )dH(x). For every ε, (1 − ε)F + εH is a mean preserving spread of
(1−ε)F +εH∗, hence, by risk aversion, V ((1−ε)F +εH) 6 V ((1−ε)F +εH∗).
As this inequality holds for all ε, it follows that ∂

∂ε
V ((1 − ε)F + εH)

∣
∣
ε=0

6 ∂
∂ε

V ((1 − ε)F + εH∗)
∣
∣
ε=0

. Hence, by equation (1),
∫

u(x; F )dH(x) 6
∫

u(x; F )dH∗(x), a contradiction. �

Proof of Proposition 1

(1) =⇒ (2): Let Fα = (1 − ε)F + ε[(1 − α)δx + αHx]. For ζ > 0 we obtain

Fα+ζ =
(
1 − ζ

1−α

)
Fα + ζ

1−α
((1 − ε)F + εHx)

From eq. (1) we have 10

∂

∂α
V (Fα) = lim

ζ→0

1
ζ
[V (Fα+ζ) − V (Fα)]

= lim
ζ→0

1
ζ

[
V
((

1 − ζ

1−α

)
Fα + ζ

1−α
((1 − ε)F + εHx)

)
− V (Fα)

]

= lim
ζ→0

1
ζ

{
ζ

1−α

[∫
u(y; Fα)d((1 − ε)F + εHx)−

∫
u(y; Fα)dFα

]
+ o(‖ ζ

1−α
‖)
}

= lim
ζ→0

1
ζ

{
ζε[1

2
u(x − ℓ; Fα) + 1

2
u(x + g; Fα) − u(x; Fα)] + o(ζ)

}

= ε[1
2
u(x − ℓ; Fα) + 1

2
u(x + g; Fα) − u(x; Fα)]

6 0

Hence V ((1 − ε)F + εδx) = V (F0) > V (F1) = V ((1 − ε)F + εHx).

(2) =⇒ (1): By eq. (1),

V ((1 − ε)F + εδx) > V ((1 − ε)F + εHx)

⇐⇒ ε

[∫

u(y; F )dδx−

∫

u(y; F )dF

]

+o (‖ε‖) >

ε

[∫

u(y; F )dHx−

∫

u(y; F )dF

]

+o (‖ε‖)

10In eq. (1) notation, ζ
1−α

is ε, Fα is F , and (1 − ε)F + εHx is H .
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=⇒

∫

u(y; F )dδx−

∫

u(y; F )dF >

∫

u(y; F )dHx−

∫

u(y; F )dF

⇐⇒ u(x; F ) > 1
2
u(x − ℓ; F ) + 1

2
u(x + g; F )

The third line follows from the second by letting ε → 0. �

Proof of Theorem 1 We first show that if an expected utility maximizer
with utility u rejects at all wealth levels x between a and b the lottery
(−ℓ, 1

2
; g, 1

2
), then when his wealth level is a, he will also reject any lottery of

the form (−L, p; G, 1−p), G > b−a, provided that inequality (4) is satisfied.
Rejecting the lottery (−ℓ, 1

2
; g, 1

2
) at a+ ℓ implies u(a+ ℓ)−u(a) > u(a+

ℓ + g) − u(a + ℓ). By concavity, u′(a) > [u(a + ℓ) − u(a)] /ℓ and

u′(a + ℓ + g) 6
u(a + ℓ + g) − u(a + ℓ)

g
<

u(a + ℓ) − u(a)

ℓ

ℓ

g
6

ℓ

g
u′(a)

Similarly, suppose for simplicity that b = a + k(ℓ + g) where k = b−a
ℓ+g

is an
integer and obtain

u′(b) < u′(a)

(
ℓ

g

) b−a
ℓ+g

(7)

Concavity implies that for every c, u(c + ℓ + g) 6 u(c) + (ℓ + g)u′(c), hence

u(b) 6 u(a) + (ℓ + g)u′(a)

b−a
ℓ+g∑

i=1

(
ℓ

g

)i−1

(8)

Normalizing u(a) = 0 and u′(a) = 1 we obtain from eqs. (7) and (8)

u′(b) 6

(
ℓ

g

) b−a
ℓ+g

and u(b) 6 (ℓ + g)
1 −

(
ℓ
g

) b−a
ℓ+g

1 − ℓ
g

(9)

For concave u we now obtain that for every x 6∈ [a, b]

u(x) 6







−(a − x) x < a

u(b) + (x − b)
(

ℓ
g

) b−a
ℓ+g

x > b

(10)
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Inequalities (9) and (10) imply that if for all wealth levels x between a and b
the decision maker rejects the lottery (−ℓ, 1

2
; g, 1

2
), then when his wealth level

is a, he will also reject any lottery of the form (−L, p; G, 1 − p), G > b − a,
provided that inequality (4) is satisfied.

Let H be the distribution of the lottery (a−L, p; a+G, 1−p) and denote
Fα = (1−α)δa + αH . Similarly to the proof of Proposition 1 we obtain that

∂

∂α
V (Fα) = pu(a − L; Fα) + (1 − p)u(a + G; Fα) − u(a; Fα)

Since for all x ∈ [a, b], V ((1 − ε)Fα + εδx) > V ((1 − ε)Fα + εHx), then
similarly to the proof of (2) =⇒ (1) in Proposition 1, for all x ∈ [a, b] and
α, u(x; Fα) > 1

2
u(x − ℓ; Fα) + 1

2
u(x + g; Fα). Therefore it follows by the

statement at the beginning of this proof that the expression pu(a−L; Fα) +
(1 − p)u(a + G; Fα) − u(a; Fα) is nonpositive. As F0 = δa and F1 = H , it
follows that V (a, 1) > V (H). �

Proof of Theorem 2 Similarly to the proof of Theorem 1, it can be shown
that if an expected utility maximizer with utility u rejects at all wealth levels
the lottery (−ℓ, 1

2
; g, 1

2
), then when his wealth level is b, he also rejects the

lottery (−L, p; G, 1 − p), provided inequality (5) is satisfied. By concavity,
for every c, u(c − ℓ − g) 6 u(c) − (ℓ + g)u′(c), hence

u(a) 6 u(b) − (ℓ + g)u′(b)

b−a
ℓ+g∑

i=1

(g

ℓ

)i−1

(11)

Normalizing u(b)=0 and u′(b)=1 we obtain by (7) and (11)

u′(a) >

(g

ℓ

) b−a
ℓ+g

and u(a) 6 −(ℓ + g)
1 −

(
g

ℓ

) b−a
ℓ+g

1 − g

ℓ

(12)

and hence, for every x 6∈ [a, b]

u(x) 6







u(a) − (a − x)
(

g

ℓ

) b−a
ℓ+g x < a

x − b x > b

(13)

Inequalities (12) and (13) imply that if for all wealth levels x between a and
b the decision maker rejects the lottery (−ℓ, 1

2
; g, 1

2
), then

u(b) > pu(b − L) + (1 − p)u(b + G) (14)
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provided that p and G satisfy inequality (5) and L > b − a. Examples of
numbers satisfying this inequality are given in Table 2. Similarly, the decision
maker rejects the same lottery at b− g, a fact that is used in inequality (16)
below.

Let ε̂ be as in the discussion following Theorem 2 and let L, G, and
p satisfy the requirements of the theorem. Consider x ∈ [a, b − g]. As
V (x, 1) > V (x − ℓ, 1

2
; x + g, 1

2
), it follows by Gâteaux differentiability that

there is q∗ ∈ (0, 1) such that ∂
∂q

V (x, 1−q; x−ℓ, q

2
; x+g, q

2
) is strictly negative

at q∗. Hence

u(x; Kx) > 1
2
u(x − ℓ; Kx) + 1

2
u(x + g; Kx) (15)

where Kx is the distribution of (x, 1 − q∗; x − ℓ, q∗

2
; x + g, q∗

2
).

Obviously, δb dominates Kx by first order stochastic dominance whenever
b > x+ g. Hence, by Hypothesis 2, u(x; δb) > 1

2
u(x− ℓ; δb)+ 1

2
u(x+ g; δb) for

all x ∈ [a, b − g]. The increasing monotonicity of u(·; δb) and inequality (14)
now imply

u(b; δb) > u(b − g; δb) > (16)

pu(b − g − L; δb) + (1 − p)u(b − g + G; δb)

By Gâteaux differentiability and continuity, this implies that for sufficiently
small µ, the decision maker with wealth level b prefers not to participate in
the lottery X(µ) = (−g − L, µp; 0, 1 − µ;−g + G, µ(1 − p)). We now show
that µ = 1, which is the claim of the theorem.

Let µ̄ = max{µ : V (b, 1) > V (b + X(µ))} and suppose that µ̄ < 1.
Denote by F̄ the distribution of b + X(µ̄). Our next step is to show that for
all x ∈ [b − g − L, b − g],

u(x; F̄ ) > 1
2
u(x − ℓ; F̄ ) + 1

2
u(x + g; F̄ ) (17)

We defined a = b − g − L, therefore, as µ̄p < p and by the construction
of ε̂, V (X̂x) > V (X̃x), where X̂x = (b − g − L, µ̄p; x, 1 − µ̄p) and X̃x =
(b−g−L, µ̄p; x−ℓ, 1−µ̄p

2
; x+g, 1−µ̄p

2
). Let F̂x and F̃x denote the distributions of

X̂x and X̃x, respectively. Similarly to the derivation of eq. (15), it follows by
Gâteaux differentiability that there exists F on the line segment connecting
F̂x and F̃x for which

u(x; F ) > 1
2
u(x − ℓ; F ) + 1

2
u(x + g; F )
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As F̄ dominates both F̂x and F̃x by first order stochastic dominance it dom-
inates F as well and eq. (17) follows by Hypothesis 2.

Similarly to the derivation of eq. (16), the local utility at F̄ satisfies

u(b; F̄ ) > pu(b − g − L; F̄ ) + (1 − p)u(b − g + G; F̄ ) (18)

Let H denote the cumulative distribution function of (b − g − L, p; b − g +
G, 1 − p). Then, by Gâteaux differentiability and eq. (18),

∂

∂t
V ((1 − t)F̄ + tH) =

(1 − µ̄)[pu(b − g − L; F̄ ) + (1 − p)u(b − g + G; F̄ ) − u(b; F̄ )] < 0

But this means that ∃µ ∈ (µ̄, 1) such that V (b − g − L, µp; b, 1 − µ; b − g +
G, µ(1 − p)) < V (b − g − L, µ̄p; b, 1 − µ̄; b − g + G, µ̄(1 − p)) 6 V (b, 1); a
contradiction. Hence µ̄ = 1 and

V (b, 1) > V (b − g − L, p; b − g + G, 1 − p) �

Proof of Theorem 3 Eq. (6) is equivalent to

G > (n − 1)(ℓ + g) +
g(ℓ + g)

g − ℓ
and L =

ℓG

(n − 1)(g − ℓ) + g
+ 1 (19)

In the proof of the theorem we will use the following lemma. Its proof appears
after the proof of Theorem 3.

Lemma 2 Let u be a concave vNM function such that u(a − ℓ) = 0 and
u(a) = ℓ. Let X = (a, 1

n
; . . . ; a + (n − 1)(ℓ + g), 1

n
). If E[u(X)] > E[u(X −

ℓ, 1
2
; X + g, 1

2
)], then for G satisfying inequality (19) we obtain

u(a + G) 6
ℓG

(n − 1)(g − ℓ) + g
+ ℓ �

Let F be the distribution of X of the Lemma and let F ′ = 1
2
[F⊖ℓ]+ 1

2
[F⊕

g] be the distribution of (X−ℓ, 1
2
; X+g, 1

2
). By stochastic B3, V (F ) > V (F ′).

There is therefore F ∗ = (1 − α)F + αF ′ such that V ((1 − α)F + αF ′) is
strictly decreasing in α at F ∗, hence

E[u(F ; F ∗)] > E[u(F ′; F ∗)]
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Normalize u(·; F ∗) such that u(a − ℓ; F ∗) = 0 and u(a; F ∗) = ℓ. As u(·; F ∗)
is concave (see Lemma 1), it follows that u(a−L; F ∗) 6 ℓ−L. By Lemma 2
and eq. (19),

E[u(H ; F ∗)] =
1

2
u(a − L; F ∗) +

1

2
u(a + G; F ∗)

6
1

2
(ℓ − L) +

1

2

[
ℓG

(n − 1)(g − ℓ) + g
+ ℓ

]

= ℓ −
1

2
< u(a; F ∗)

For sufficiently small ε it thus follows by Gâteaux derivative that V ((1 −
ε)F ∗ + εδa) > V ((1 − ε)F ∗ + εH), hence the theorem. �

Proof of Lemma 2 Observe first that

(X − ℓ, 1
2
; X + g, 1

2
) =

(
a − ℓ, 1

2n
; a + g, 1

n
; . . . ; a + (n − 1)(ℓ + g) − ℓ, 1

n
;

a + (n − 1)(ℓ + g) + g, 1
2n

)

Denote ai = a + (i − 1)(ℓ + g), i = 1, . . . , n, bi = ai − ℓ, i = 1, . . . , n, and
bn+1 = an + g. Let ci = u(ai) and di = u(bi). We assumed that d1 = 0 and
c1 = ℓ, hence

c1 − d1

ℓ
= 1

As u is concave it has at each point x right and left derivatives denoted u′
−(x)

and u′
+(x). By concavity, u′

− > u′
+(b1) > 1. Also,

u′
+(bn+1) 6 u′

−(bn+1) 6
dn+1 − cn

g

and

u(a + G) 6 dn+1 + (a + G − bn+1)
dn+1 − cn

g

(see Fig. (1)). Our aim is to solve
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a − ℓ = b1 a1 = a an bn+1 a+G

ℓ = c1

cn

dn+1

u(G)

︷︸︸︷
g

︷︸︸︷
ℓ

Figure 1: The function u and its value at a + G

max
c2,...,cn,d2,...,dn+1

dn+1 + (a + G − bn+1)
dn+1 − cn

g
(20)

s.t.
1

n

n∑

i=1

ci >
1

2n
d1 +

1

n

n∑

i=2

di +
1

2n
dn+1 (21)

d1 6 c1 6 . . . 6 cn 6 dn+1 (22)

c1 − d1

ℓ
> . . . >

dn+1 − cn

g
(23)

Constraint (21) represents the rejection of the lottery (−ℓ, 1
2
; g, 1

2
) that is

added to the original lottery. Constraints (22) follow by the monotonicity of
u, while constraints (23) represent the concavity of u.

The target function is linear and there are 2n − 1 variables. As d1 = 0
and c1 = ℓ, constraints (22) and (23) consist of 2n − 1 inequalities each,
hence, together with (21), there are 4n−1 linear constraints. At least one of
the inequalities of line (23) must be strict, otherwise u is linear and inequal-
ity (21) is not satisfied. Since no subgroup of the other constraints follows
from any other subgroup of these constraints, at least 2n − 1 of them must
be satisfied with equality. In other words, no more than 2n of the constraints
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are satisfied with strict inequality, and one of them belongs to (23).
Suppose that the constraint (21) is satisfied with a strict inequality. One

can then multiply by γ > 1 all the values of c and d from a strict inequal-
ity of (23) on without violating any of the constraints, thus increasing dn+1,
dn+1 − cn, and ultimately the value of the target function. Therefore the
first constraint must be satisfied with equality. Let û be an increasing con-
cave function that obtains the values of ci and di solving the optimization
problem (20) at the points ai and bi.

Case 1: Assume first that the function û is strictly increasing. Then the
2n− 1 constraints (22) are satisfied with strict inequalities, and therefore no
more than one of the constraints (23) is strict. In other words, the function
û on [b1, a + G] is linear on both sides of one of the points ai or bi. Its
slope is first 1 and then s, such that constraint (21) is satisfied with equality.
Obviously such a kink cannot happen at a point bi, or the lottery (−ℓ, 1

2
; g, 1

2
)

is not rejected. When the kink is at the point aj we obtain

• ci = ℓ + (i − 1)(ℓ + g), i = 1, . . . , j

• ci = ℓ + (j − 1)(ℓ + g) + s(i − j)(ℓ + g), i = j + 1, . . . , n

• di = (i − 1)(ℓ + g), i = 1, . . . , j

• di = ℓ + (j − 1)(ℓ + g) − sℓ + s(i − j)(ℓ + g), i = j + 1, . . . , n + 1

The equality in line (21) now yields

2

n∑

i=1

ci = d1 + 2

n∑

i=2

di + dn+1 =⇒

2nℓ + [(2n − j) (j − 1) + s (n − j) (n − j + 1)] (ℓ + g) =
[
(2n − j + 1) (j − 1) + s (n − j + 1)2

]
(ℓ + g) +

[2 (n − j) + 1] (1 − s)ℓ =⇒

2nℓ = [(j − 1) + s(n − j + 1)] (ℓ + g) + [2 (n − j) + 1] (1 − s)ℓ =⇒

s =
2nℓ − (j − 1)(ℓ + g) − [2(n − j) + 1]ℓ

(n − j + 1)(ℓ + g) − [2(n − j) + 1]ℓ
=

jℓ − jg + g

−nℓ + jℓ + ng − jg + g
=

jℓ − jg + g

(n − j)(g − ℓ) + g
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We thus obtain that

û(a + G) =

jℓ + (j − 1)g + s(a + G − aj) =

jℓ + (j − 1)g +

[
jℓ − jg + g

(n − j)(g − ℓ) + g

]

(G − (j − 1)(ℓ + g)) (24)

Differentiate this last expression with respect to j to obtain

ℓ + g −







(g − ℓ) [(n − j)(g − ℓ) + g] +
[j(g − ℓ) − g](g − ℓ)

[(n − j)(g − ℓ) + g]2






× [G − (j − 1)(ℓ + g)] −

jℓ − jg + g

(n − j)(g − ℓ) + g
× (ℓ + g) =

n(g − ℓ) ×

{
−(g − ℓ)[G − (j − 1)(ℓ + g)]+

(ℓ + g)[(n − j)(g − ℓ) + g]

}

[(n − j)(g − ℓ) + g]2
=

n(g − ℓ) ×

{
−(g − ℓ)[G + ℓ + g]+
(ℓ + g)[n(g − ℓ) + g]

}

[(n − j)(g − ℓ) + g]2
6 0

where the last inequality follows from

G > (n − 1)(ℓ + g) +
g(ℓ + g)

g − ℓ

(which was assumed by the Lemma). It follows that û(G) is decreasing in j.
For j = 1 we obtain from eq. (24) that

û(a + G) =
ℓG

(n − 1)(g − ℓ) + g
+ ℓ

hence the claim of the Lemma.

Case 2: Assume now that the function û is not strictly increasing, and one of
the constraints (22) is satisfied with equality. As the function û is increasing,
it must be flat from that point on. By constraint (21), this point must be
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one of the ai points. Suppose not, that is, suppose that there is a point bi

such that ci−1 < di = ci. Define

ũ(y) =







û(y) y 6 bi

di + 1
g
(y − bi)(di − ci−1) bi < y < ai

di + 1
g
(ai − bi)(di − ci−1) ai 6 y

As the function û satisfies constraint (21), so does the function ũ, and obvi-
ously ũ(a + G) > û(a + G).

As before, we must assume that constraint (21) is satisfied with equality,
otherwise û can be replaced with a higher function still satisfying this con-
straint. Therefore we now have to solve the optimization problem under the
constraints

max
c2,...,ci∗ ,d2,...,di∗

ci∗

s.t.
1

n

i∗−1∑

i=1

ci +
1

2n
ci∗ =

1

2n
d1 +

1

n

i∗∑

i=2

di (25)

d1 < c1 < . . . < di∗ < ci∗ (26)

c1 − d1

ℓ
> . . . >

ci∗ − di∗

ℓ
(27)

This problem has 2(i∗ − 1) variables (recall that d1 = 0 and c1 = ℓ) and
4(i∗ − 1) + 1 constraints. Of these, the 2(i∗ − 1) constraints of (26) are
satisfied with strict inequalities. Therefore at most one of the constraints
of (27) is strict. In other words, û has slope 1 up to either a point bi or a
point ai, then slope s up to point ai∗ , and slope zero thereafter. It is easy to
verify that the highest value of ci∗ is obtained when s = 1, in which case, by
constraint (25), ci∗ is bounded by g

g−ℓ
.

For G satisfying inequality (19) it is easy to verify that for ℓ > 1,

ℓG

(n − 1)(g − ℓ) + g
+ ℓ >

g

g − ℓ

hence the lemma. �

22



Proof of Proposition 2 Let F be the uniform distribution over [a, b], that
is,

F (x) =







0 x < a
x−a
b−a

a 6 x < b

1 b 6 x

Let F̃ = 1
2
(F ⊕ (−ℓ)) + 1

2
(F ⊕ g). Then

F̃ (x) =







0 x < a − ℓ
x−a+ℓ
2(b−a)

a − ℓ 6 x < a + g
x−a−g

b−a
+ ℓ+g

2(b−a)
a + g 6 x < b − ℓ

x
2(b−a)

+ 1 − b+g

2(b−a)
b − ℓ 6 x < b + g

1 b + g 6 x

Also define H and Hb by

H(x) =







0 x < a
x − a a 6 x < a + 1
1 a + 1 6 x

Hb(x) =







0 x < a − ℓ
b−a

x
2
− 1

2
(a − ℓ

b−a
) a − ℓ

b−a
6 x < a + g

b−a

x − a − g−ℓ

2(b−a)
a + g

b−a
6 x < a + 1 − ℓ

b−a
x+1−a

2
− g

2(b−a)
a + 1 − ℓ

b−a
6 x < a + 1 + g

b−a

1 a + 1 + g

b−a
6 x

(See Fig. 2). By CRA, V (F ) > V (F̃ ) iff V (H) > V (Hb), for all b. We now
show that it is impossible to have V (H) > V (Hb) for all b.

Suppose V (H) > V (Hb). Then there is λb such that the local utility at
Kb := (1 − λb)H + λbHb prefers H to Hb. We obtain

∫ a+1

a

u(x; Kb)dH(x) >

∫ a+1+ g
b−a

a− ℓ
b−a

u(x; Kb)dHb(x) ⇐⇒

∫ a+ ℓ
b−a

a− ℓ
b−a

u(x; Kb)d[H − Hb](x) >

∫ a+1+ g
b−a

a+ ℓ
b−a

u(x; Kb)d[Hb − H ](x) ⇐⇒

∫ a+ ℓ
b−a

a− ℓ
b−a

[Hb − H ](x)du(x; Kb) >

∫ a+1+ g
b−a

a+ ℓ
b−a

[H − Hb](x)du(x; Kb)
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where the last inequality is obtained by integration by parts of the second
line. Since u(·; Kb) is concave, this last inequality implies that

u′
+

(

a −
ℓ

b − a
; Kb

)

D1 > u′
−

(

a + 1 +
g

b − a
; Kb

)

D2 (28)

where D1 and D2 are the sizes of the areas S1 and S2 marked in Fig. 2. We
obtain

D1 =
1

2

(
ℓ

b − a

)2

D2 =
g − ℓ

2(b − a)

(

1 −
ℓ + g

b − a

)

Clearly, as b → ∞, D1/D2 → 0, hence, by inequality (28),

lim
b→∞

u′
+

(
a − ℓ

b−a
; Kb

)

u′
−

(
a + 1 + g

b−a
; Kb

) = ∞

By concavity of the local utility functions, for a given b∗ where u′(a− ℓ
b∗−a

; H)
and u′(a + 1 + g

b∗−a
); H) both exist, 11

∞ = lim
b→∞

u′
+

(
a − ℓ

b−a
; Kb

)

u′
−

(
a + 1 + g

b−a
; Kb

) 6

lim
b→∞

u′
+

(
a − ℓ

b∗−a
; Kb

)

u′
−

(
a + 1 + g

b∗−a
; Kb

) = (29)

u′
(
a − ℓ

b∗−a
; H
)

u′
(
a + 1 + g

b∗−a
; H
)

The last equation sign follows by the continuity of the Gâteaux derivative
and by the fact that all local utilities are concave. Since a− ℓ

b∗−a
is not the left

end of the domain of u(·; H), concavity implies that u′
(
a − ℓ

b∗−a
; H
)

< ∞.
On the other hand, as a + 1 + g

b∗−a
is not the right end of the domain on

that function, first order stochastic dominance and concavity imply that
u′
(
a + 1 + g

b∗−a
; H
)

> 0, a contradiction to the fact that in eq. (29) the limit

in ∞. Hence V (Hb) > V (H) and V (F̃ ) > V (F ) �

11As u(·; H) is concave, u′(·; H) exists almost everywhere.
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© ©©© © © ©1 2 3 4 5 6 7

©1 a − ℓ/(b − a)

©2 a

©3 a + ℓ/(b − a)

©4 a + g/(b − a)

©5 a + 1 − ℓ/(b − a)

©6 a + 1

©7 a + 1 + g/(b − a)

Figure 2: H and Hb
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