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1 Introduction

It is well known since Plott (1967) that a 50%-majority stable political equilibrium typically

does not exist in a multidimensional voting setup. A way to restore existence of a stable

outcome is to require a super majority rule to overrun the status quo, thus giving rise to

the concept of ρ-majority equilibrium, where ρ ∈ [1/2, 1] is the proportion of the voting
population a challenger must rally to take over. It is widely admitted that the smaller the

rate of super majority needed to secure existence of an equilibrium (i.e., the less conservative

the voting rule), the better.

There is a wide literature on the level of super majority required for existence, both

in deterministic or probabilistic setup (see, e.g., Ferejohn and Grether (1974), Caplin and

Nalebuff (1988, 1991) and Balasko and Crès (1997)). In a standard social choice setup where

agents, endowed with continuous and convex preferences, have to choose among political

alternatives in a non-empty, compact and convex subset of Rn, Greenberg (1979) shows that

a necessary and sufficient condition for the existence of a ρ-majority equilibrium is ρ ≥ n
n+1
.

To show that this bound is tight, Greenberg (1979) constructs a voting configuration

where no incumbent is stable with respect to a super majority rule with rate smaller than
n

n+1
. It follows: Take n + 1 independent points in Rn and interpret them as the ideal

political choices of n + 1 voters endowed with euclidean preferences. Denote Sn the n-

dimensional simplex generated by the voters’ ideal points. Fix an incumbent x /∈ Sn; then
s(x) = argmin {kx− sk, s ∈ Sn} is unanimously preferred to x, hence x is not stable under
any ρ-majority rule with ρ < 1. Now, fix an incumbent x ∈ Sn; then it is always possible
to find a challenger preferred by n out of the n + 1 voters: indeed, denote S̄n the (n − 1)-
dimensional simplex generated by the ideal points of these n voters (S̄n is a face of Sn), then
one can reconduct the previous argument, and show that s̄(x) = argmin {kx− s̄k, s̄ ∈ S̄n}
is preferred to x by all of these n voters.

This example is thus a ‘worst-case’ scenario. One easily sees that if the voters’ ideal

points are taken in a lower dimensional subspace, then the upper bound decreases. But

the gain remains small though. And one gets existence of political equilibria for not too

conservative voting rules only when the number, n, of political issues is very low. This

bound is ρ = 1/2 when n = 1 (the so-called ‘median voter theorem’); ρ = 2/3 when n = 2;

and for n ≥ 3, then the required rate of super majority must be above 3/4 (and converges
the the unanimity criterion when n goes to infinity), a level very rarely observed in practice.

Indeed, constitutions or corporate charters build on super majority rates which are very

rarely above 70%1, although the number of political issues at stake in electoral processes

1For decisions on issues which are delegated to the European Union, the rate was 72% in the Maastrich
Treaty, it was decreased to a mix of 65% —of the States— and 55% —of the population— in the Constitutional
Treaty.
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is obviously often very large: it is not rare, when reading political platforms proposed by

candidates in large elections, to denumerate several dozens of issues2. Hence the question:

why, if there are so many issues, do we observe so reasonable super majority rates in practice?

A first answer might be that one should not believe in Greenberg’s worst-case scenario.

A second answer can be found in the Hinich-Ordeshook spatial voting model3. According

to the latter, there are only a few political dimensions underlying the platforms proposed

by the candidates. These few dimensions are claimed to be ideological. Ideologies imply

linkages4 between political issues and thus span a lower dimensional linear space (dubbed

the ‘campaign space’ in the sequel) on which the original distribution of voters’ ideal points

is projected.

The assumption that political platforms are based on ideology stems from the belief that

the cleavages between candidates separate along simpler, more predictable lines than the

n-dimensional policy space would imply. As Popkin (1994) states it (p. 51): “Ideology

is not the mark of sophistication and education, but of uncertainty and lack of ability to

connect policies with benefits... Parties use ideologies to highlight critical differences between

themselves, and to remind voters of their past successes”. This approach has some empirical

relevance: Poole and Rosenthal (1991, 1996) show that in the USA, with the exception of

the 32nd Congress, two dimensions are always capable of explaining more than 80% and

up to 95% of the variation in the votes of elected officials on most issues. The same, Poole

and Rosenthal (1997) and McCarty, Poole and Rosenthal (1997) test the Hinich-Ordeshook

spatial voting model on post World War II Congressional roll call voting and show that

only two dimensions are required to account for most of the votes: the liberal-conservative

continuum5 and the dimension of conflict over race and civil rights.

But one cannot exclude that the number of underlying ideological dimensions be larger

than 3. In the political debate in France on the referendum for ratification of the European

constitutional treaty during the Spring of 2005, one cannot explain the cleavages between

and within parties through the traditional left-right dimension. One also needs the now

classical ideological dimension ‘sovereignist-federalist’ to explain the split of the gaullist

party; furthermore the possible future entry of Turkey was an element of the debate, and

2Everybody in France recalls the ‘110 propositions’ of the candidate François Mitterrand for the presi-
dential election of 1981.

3This model was first proposed by Cahoon, Hinich and Ordeshook (1976), Ordeshook (1976) and Hinich
and Pollard (1981) and then developed by Enelow and Hinich (1984) and Hinich and Munger (1994).

4These linkages formalize the fundamental insight of Converse (1964) according to which ideology (the
Conversian ‘belief system’) interrelates and bundles the political issues: ideology is fundamentally the knowl-
edge of what-goes-whith-what. As Converse (1964) states it: ideology is “...a configuration of ideas and
attitudes in which the elements are bound together by some form of constraint” (p. 207).

5A judgemental dimension that has been “highly serviceable for simplifying and organizing events in most

Western politics for the past century”, Converse (1964, p. 214).
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religion (the ideological position in the ‘laïcity’ dimension) was clearly the only way to explain

another (orthogonal) split of the gaullist party.

Another type of political debates often builds on more than three underlying dimensions:

proxy fights in publicly traded corporations in a context of market failures6. The stakes are

probably simpler to grasp than in ordinary political debates; moreover, shareholders usually

have access to a more measurable and precise information which is easier to aggregate. Yet

corporate charters rarely choose rates of super majority beyond 65%.

The answer to the question “why do we observe so reasonable super majority rate in

practice?” seems to be: not only the political competition articulates along fewer, simpler

and more predictable lines than the n-dimensional policy space would imply, but also one

should not believe in Greenberg’s worst-case scenario. The present paper goes one step

further. Its main contribution is an aggregation theorem that links the two latter arguments:

one should not believe in Greenberg’s worst-case scenario because the political competition

happens in a lower dimensional subspace spanned by the underlying ideologies. Indeed, if we

randomize on the linkages between issues imputed by ideologies, our main result (Theorem 1)

states that the Hinich-Ordeshook approach almost surely transforms Greenberg’s worst-case

scenario into the best-case scenario of a symmetric distribution of voting characteristics.

And as a consequence we obtain (Theorem 2) a mean-voter theorem: the mean voter
happens to almost always be the unique 50%-majority equilibrium, when the number of

political issues grows large.

The paper is organized as follows: Section 2 introduces the model, first the classical

Downsian spatial voting model (Section 2.1), then its Hinich-Ordeshook sophistication (Sec-

tion 2.2). Then Section 3 states and proves the aggregation theorems. Section 4 computes

a lower bound to the speed of convergence of the expected min-max rate toward 50%; the

computations give upper bounds on the expected rate of super majority necessary to sus-

tain the mean voter as a political equilibrium, for any number of voters, when the number

of underlying ideologies is smaller than 2. Section 5 ends the paper with some concluding

comments.
6The heterogeneity of the shareholders’ opinions can come from imperfect competition, the incompleteness

of financial market structure or the presence of externalities. ‘Ideological’ dimensions in corporate politics
can be: the ‘philosophy’ with respect to debt vs equity, horizontal vs vertical integration, international
diversification, expansion vs concentration...
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2 The model

2.1 Voters, platforms and the majority rule

The setup to model the electoral process and voting mechanism is the classical Downsian

multidimensional spatial voting model (Downs (1957)). There are n measurable criteria of

political activity, so that a political platform in the policy space can be represented as an

n-dimensional vector: x ∈ Rn. There are m voters in a set I. Each voter is endowed with
an euclidean preference relation on Rn: agent i, 1 ≤ i ≤ m, has a preferred choice in
the policy space, xi ∈ Rn, and his/her utility function over the space of political choices is

decreasing with the euclidean distance from his/her preferred choice:

∀x ∈ Rn ui(x) = −kxi − xk

A society is a m-tuple X = (xi)
m
i=1.

We measure the stability of a political platform in a given society through the Simpson-

Kramer approach. Given two political choices (a, b) ∈ Rn×Rn, ρ(b, a) measures the ratio of

the electorate that strictly prefers b to a:

ρ(b, a) =
`{i ∈ I|ui(b) > ui(a)}

m
.

The score of a political choice a ∈ Rn is: ρ(a) = maxb∈Rn ρ(b, a). Clearly, the score of any

political choice taken outside the closed convex hull, hXi, of X will be 1: the challenger b

that minimizes the distance between a and hXi is unanimously preferred to a. Hence looking
for the ‘best’ status quo, i.e., the ones with lowest score, we can reduce our search to hXi.
The min-max rate of society X is: ρ∗ = mina∈Rn ρ(a). The min-max set of society X is:

S∗(X) = {a ∈ Rn|ρ(a) = ρ∗}.
The majority rule with rate ρ ∈ [0, 1] states that candidate b is preferred by society X

to (or defeats) candidate a if and only if ρ(b, a) > ρ. A candidate a is said to be ρ-majority
stable in society X if and only if there is no alternative that defeats it, i.e., if and only if its

score is not larger than ρ: ρ(a) ≤ ρ. Such a candidate is a political equilibrium for the

majority rule with rate ρ.

One knows since the seminal work of Plott (1967) that 50%-majority stable equilibria

generally do not exist when n ≥ 2. To recover existence of political equilibria, one has to
impose a super majority voting rule, i.e., a voting rule with rate ρ > 1/2. This paper deals

with existence of such political equilibrium based on super majority voting. Along that

search, political platforms in the min-max set have this appealing property that they are

equilibria for the lowest rate of super majority, hence the less conservative voting rule.

The super majority rate one has to impose in order to recover existence of equilibrium can

be quite high, though: As extensively explained in the introduction, suppose that m = n+1
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and the m-tuple X are the vertices of an n-dimensional simplex, then obviously any political

choice in hXi has a score of n/(n+1) (it is enough to choose a challenger closer to any of the
n+1 (n− 1)-dimensional faces of the simplex). Therefore, since any political choice outside
hXi has score 1, the min-max rate is n/(n+1) and the min-max set is hXi: one has to impose
a super-majority rule of rate ρ ≥ n/(n+1) to get a stable political choice, and then all choices

in hXi are ρ-majority stable. Greenberg (1979) proves that the condition ρ ≥ n/(n+1)–to

get existence of a ρ-majority stable political equilibrium– is in fact sufficient as soon as

the voter’s preferences satisfy very mild properties of continuity and convexity. Hence, the

latter case is a worst-case scenario, as far as getting not too conservative min-max rate is

concerned. The present paper can be read as an attempt to downside the relevance of this

worst-case scenario.

Some convincing arguments along the same line are available in the social choice liter-

ature. One of the most important one is given in Caplin and Nalebuff (1988, 1991). They

give a dimension-free upper bound to the min-max rate under the conditions that preferred

choices of agents are selected from a σ-concave distribution with compact and convex sup-

port. This upper bound (which, asymptotically, is lower than 64%) is given by the score of

the mean voter, the voter whose preferred choice is the barycenter of all xi’s. This litera-

ture can roughly be regarded as looking for multi dimensional versions of the median voter

theorem.

2.2 Ideology, candidates and political campaigns

A central assumption of our model is that, although the number (here: n) of criteria for

political activity can indeed be quite large, the political competition takes place in a subspace

of lower dimension: d < n. In accordance with the Hinich-Ordeshook spatial voting model,

this lower dimensional space is considered to be the ideological space, assumed to be
Rd without loss of generality. According to this approach, the ideologies are linked to the

platforms by a linear map, L, from the ideological space to the policy space: a candidate,

πA ∈ Rd, imputes a platform xA ∈ Rn such that xA = x0+LπA, where x0 is the platform of

status quo policies. Finally, the d-dimensional affine subspace which is the image of Rd by L

translated by x0 is called the campaign space, C ⊂ Rn, in the sequel. Before developing the

strength of the model, let us illustrate through an example how the linear map L operates.

An illustration: Issues of political activity are often precise and technical; consider two

such classical issues like (1) how much of the State’s budget, x1, must be allocated to buy

helicopters, and (2) howmuch of the State’s budget, x2, must be allocated to create more slots

in kindergartens. For the sake of simplicity, we limit the issues to these two, hence n = 2.

The assumption is made that platforms proposed by candidates in this two-dimensional

policy space can be explained through a (say) one-dimensional underlying linear subspace,
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e.g., the classical liberal-conservative (left-right) dimension; hence d = 1. Given a vector of

status quo policies x0, the sensitivity of xj, j = 1, 2, to the position π of the candidate in

the ideological space is a fixed scalar lj ∈ R, therefore xj is an affine function of π:

xj = x0j + ljπ , j = 1, 2 .

Figure 1 (resp. 2) plots the relation between ideology and helicopters (resp. kindergartens).

E.g., the policy regarding kindergarten is almost not sensitive to ideology, and only slightly

decreases (l2 is small and negative) with π: a leftist candidate wants to create slots in

kindergartens because these structures are more used by low-class workers than by wealthy

families; a rightist candidate uses slots’ creation in kindergartens as an incentive to increase

fertility. The policy regarding helicopter is more sensitive to ideology, and increasing (l1 is

positive): rightist candidate are usually more hawkish, and spending on helicopters rises as

ideology moves right, as shown by the plain line L1.

Figure 1 Figure 2

L1

L01

π π

x1 x2

x01 x02

- -

6 6

The sensitivity of policies to ideology as depicted on Figures 1 and 2 implies a linkage

between the two issues in the policy space: the induced campaign space, C (plain line on

Figure 3), is going through the status quo x0 with slope l2/l1. The induced ‘ideal candidate’

x̄i of voter i, whose preferred platform is xi, obtains by orthogonal projection of xi on the

campaign space. And consequently, voter i votes for the candidate whose imputed platform

is closest to his ‘ideal candidate’ x̄i. In the general (n, d) case, the euclidean structure of

the original voting configuration gives rise, through the orthogonal projection on C, to a

social choice problem involving m voters with euclidean preferences in Rd. Hence we are

dealing with a d-dimensional spatial voting problem with m voters and thus we are left with

a combinatorial problem about m-tuples of points in Rd rather than in Rn.

The assumption that political platforms are based on ideology stems from the belief that

the cleavages between candidates separate along simpler, more predictable lines than the

n-dimensional policy space would imply. Simplicity and predictability makes the voter’s
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Figure 3

x1

x2

x01

x02 x0
•

C

C 0

x̄i

x̄0i•
xi•

•

-

6

duty of voting easier. Not only ideology transmits information to voters, but also it creates

enthusiasm for political action. This is a virtue of this approach on the candidate’s side. Of

course, reducing the dimensionality of the campaign space also makes communication easier

and less costly for candidates. But on top of that, the credibility of its commitment is stronger

when his/her actions are perceived by the voters to be based on ideology7 (see Enelow and

Hinich (1984) or Hinich and Munger (1997) for development of these arguments). Last but

not least, as underlined in the introduction, the empirical relevance of this approach has been

underlined by Poole and Rosenthal (1991, 1996, 1997) and McCarty, Poole and Rosenthal

(1997).

If the Hinich-Ordeshook spatial voting model has the virtue of offering a more realistic

view of electoral competition, we argue in the present paper that it moreover has extremely

nice properties as far as aggregation of individual preferences is concerned. Indeed, we prove

in the sequel that the worst-case configuration of the society (worst case as far as aggregation

is concerned) —i.e., when the point-setX is an (n+1)-tuple of points forming a n-dimensional

simplex with equal voting rights on the vertices— transforms almost surely into a best-case

configuration —i.e., the (n+1)-tuples of projected points inRd X is symmetrically distributed.

The first step of our argument is to qualify what we mean by ‘almost surely’. Let us go

7As Hinich and Munger puts it, “classical spatial theory assumes that each politician chooses the position
that maximizes his or her vote share given the expected platform of the opponents. (...) Such an approach
(...) may be of little use in describing real world politics. For such an approach to work, voters must believe
that a candidate who takes a position is likely to deliver that position. (...) The candidate’s promise must
be ‘credible’.

8



back to the above illustration. Suppose now that an exogenous historical shock occurs, e.g.,

a terrorist attack. Most probably this event is going to impact the sensitivity of the first issue

(helicopters) to ideology: all candidates become hawkish and want to invest more into such a

modern defense tool as helicopters, independently of his/her ideology. Hence a new line L01,

with a much smaller sensitivity rate: l01 < l1 (see the –almost flat– dotted line on Figure 1).

It is probably going to be the case that everybody in the society, candidates and voters are

going to prefer an absolute increase∆x1 > 0 in the political platform; we assume that in such

an event the perturbed status quo becomes: x
00
1 = x01+∆x1, and that for all i, the preferred

platform’s first component becomes: x0i1 = xi1 +∆x1. Hence this general absolute increase

∆x1 results in a global (rightward) translation of the spatial point-set configuration, and this

translation has no impact on the geometric properties of our problem. Therefore, without

loss of generality, we can consider ∆x1 to be zero, and the only impact of this exogenous

historical event is a drop in the sensitivity rate l1. This results into a new campaign space

C 0 (dotted on Figure 3) going through the status quo x0 with slope l2/l01. The new induced

‘ideal candidate’ x̄0i of voter i obtains by orthogonal projection of xi on the new campaign

space C 0.

The idea is that such random shocks always happen, although fortunately not all as

dramatic as a terrorist attack, and that their ‘media’ treatment and destiny can change

the sensitivities of various issues to ideology. Then the central question is: How is this

d-dimensional campaign space chosen? In the present paper, we take a purely Laplacian

perspective and assume that C is selected at random, according to a ‘uniform’ distribution

on the natural underlying space. We define C as an element in the Grassmanian G(n, d) of

oriented d-subspaces in Rn. Random historical and mediatic shocks generate a probability

distribution over G(n, d). Among the latter ones, one arises ‘naturally’: the unique rotation-

invariant probability measure, μ(n, d) (known as the Haar probability measure), on G(n, d),

which intuitively selects all d-dimensional campaign spaces ‘with equal probability’. Hence

μ(n, d) will be dubbed impartial in the sequel. The idea behind impartiality is that the
main themes at stake in a political campaign depend heavily on the exogenous shocks of

recent history, and the exogenous treatment by the media of these shocks.

3 Main result

For any selected campaign space C, the original social choice problem characterized by the

point set X in Rn gives rise to a lower dimensional social choice problem characterized by

the (orthogonally projected) point set X in Rd. Suppose X is a m− 1 dimensional simplex
in Rn, such that for each i, xi (a column vector in Rn) is the ith vertex of simplex X. We

say that X is regular if kxi − xjk = kxi − xkk for any i, j, k. The simplex is O-centered if
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P
i xi = 0. Note that for an O-centered regular simplex, we have xTi xj = xTi xk < 0 for any

i, j, k. In this section, we mute the translational part of the political shock as explained in

the previous section and focus on the rotational shock to the campaign space. First, we

will consider rotations pivoted at the center of gravity of the simplex X, that is, when the

mean-voter is the status-quo (i.e. it is always on the campaign space). Center of gravity is

normalized to O, center of the coordinate system. As we will show, this has no cost in our

approach, since the center of gravity is the unique 50%-political equilibrium (Theorem 2).

Theorem 1 Let the campaign space C be impartially randomly selected. The point set X

coincides in distribution with a negatively correlated sample from a symmetric probability

distribution in Rd which becomes asymptotically independent as n→∞ with the rate 1
n
when

X is a regular O-centered simplex.

Proof of Theorem 1: Let n ≥ m > d. Take a regular (m− 1)-dimensional O-centered simplex
in Rn whose vertices are column vectors of an n ×m matrix X = [x1 x2 ... xm].8 We have

xTi xj < 0 for any i and j. Let Π be d × n with πii = 1 for i ∈ {1, 2, ..., n} and all other
entries of Π are 0. We can denote the random d−subspace by C =ΠR where R is a random

rotation matrix distributed with the Haar probability measure among the n × n rotation

matrix group denoted by R(n), that is, every n × n rotation matrix is chosen with equal

probability as a draw of R. Note that C is distributed with probability measure μ (n, d)

in Grassmanian G (n, d) . Note that every rotation matrix is an orthogonal matrix. Let

O (n) denote the n×n orthogonal matrix group. First, we will consider orthogonal matrices

instead of rotation matrices. Let C∗ = ΠA be such that A is a random orthogonal matrix

distributed with the Haar probability measure inO (n) , that is, every n×n orthogonal matrix
is chosen with the same probability as a draw of A. Note that orthogonal transformations

include rotoinversions (where det (A) = −1) and rotations (det (A) = 1), we will rule out
rotoinversions later. First note that every column of A has a symmetric distribution and

EA = 0, since if A is orthogonal then −A is orthogonal and both A =A and A = −A are

equally likely events. Since orthogonal transformation preserves the inner-product of two

vectors, we have
P

i aijaik = 0 for j 6= k and
P

i a
2
ij = 1 for any orthogonal matrix A. Since

every row permutation and column permutation of A is equally likely to occur, E
¡
a2ij
¢
and

E (aijakc) is constant for every i, j, k and c. First,
P

iE
¡
a2ij
¢
= 1 implies E

¡
a2ij
¢
= 1

n
.

Moreover,
P

iE (aijaik) = 0 implies E (aijaik) = 0, implying with the symmetry argument

that E (aijakc) = 0 for every i, j, k, c such that i 6= k or j 6= c. We are interested in the

distribution of the columns ofP = C∗X = ΠAX, the projection ofX to the random subspace

C∗. We will show that each column vector has identical symmetric distribution and each pair

of column vectors are negatively correlated. The two events P =ΠAX and P =Π (−A)X
8Let (i, j)th entry of a matrix H be denoted by hij and jth column vector of H be denoted by hj .
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are equally like to occur, therefore each column of P has a symmetric distribution. Since

each xi has the same length, each column vector Axi is an identical random vector. Let

Σij = cov (Axi,Axj) for i 6= j. The (g, h)th entry of Σij is σijgh = E ((
P

k agkxki) (
P

c ahcxcj)).

For g 6= h,

σijgh =
X
k

X
c

E (agkahc)| {z }
=0

xkixcj = 0

For g = h,

σijhh =
X
k

X
c

E (ahkahc)xkixcj =
X
k

E
¡
a2hk
¢| {z }

= 1
n

xkixkj +
X
k

X
c6=k

E (ahkahc)| {z }
=0

xkixcj =
1

n
xTi xj < 0

Since pi is the first d coordinates of Axi for each i, different coordinates of each pair of

pi and pj are independently sampled and the same coordinates of each pair pi and pj are

negatively correlated, where correlation goes to zero as n → ∞ (or m → ∞ since m ≤ n).

We conclude our proof by observing that by Theorem 1 of Baryshnikov and Vitale (1994),

above matrix A can be swapped with a random rotation matrix R, and point set X consists

of draws of columns of P = CX. ¥

Our next result states that there is a unique political equilibrium at the mean voter for

50%-majority rule as the number of voters goes to infinity.

Theorem 2 (Mean Voter Theorem) Fix d. Take m → ∞ then almost surely O, the

mean voter, is the unique political equilibrium for the 50%-majority rule.

Proof of Theorem 2: Let f : Rd → R+ be the underlying limiting marginal probability density
function (p.d.f.) for the columns of limm→∞X. Let Eρ (w) denote the expected value of the

score of any point w ∈ Rn.

First, we show that O (∈ Rn), the mean voter, is a political equilibrium for the 50%

majority rule. Negatively correlated sampling of political positions has a smaller min-max

rate than independent sampling of political positions from the same symmetric marginal

distribution. Let Y be a set of points independently sampled from p.d.f. f . Under indepen-

dent sampling, by Theorem 3 in Caplin and Nalebuff (1988) the min-max rate of O for Y

converges almost surely to the min-max rate of f at O ∈ Rd when m → ∞. The min-max
rate of O for f is 0.5, since f is symmetric around O

¡
∈ Rd

¢
by Theorem 1. Since min-max

rate cannot smaller than 0.5, min-max rate of O for X also almost surely converges to 0.5,

that is, limm→∞Eρ (O) = 0.5, implying O (∈ Rn), the mean voter, is an equilibrium point

for the 50%-majority rule.

Next, we prove that O (∈ Rn) is the unique equilibrium issue. Take any issue vector

w ∈ Rn\ {O} when m and n→∞. For finite n, let the first n entries of w be relevant. We
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will show that limm→∞Eρ (w) >0.5. Let C = ΠR be the random campaign space spanned

by the Haar measure, like in the proof of Theorem 1 where R is the n×n impartial random

rotation matrix distributed with Haar measure on R(n) and Π is the d × n matrix with

πii = 1 for i ≤ d and all other entries of Π are zero. The random projection of the issue

vector w on the campaign space is ΠRw. Note that ΠRw = O ∈ Rd with probability 0 and

ΠRw 6= O ∈ Rd with probability 1, since w 6= O ∈ Rn. Hence, the only relevant draws of

R for the calculation of Eρ (w) are all R ∈ R(n) such that ΠRw 6= O ∈ Rd. Fix a rotation

matrix R ∈ R(n) such that ΠRw 6= O. Since f is symmetric around O ∈ Rd by Theorem 1,

the min-max rate of the point ΠRw for f is greater than 0.5. Hence expected min-max rate

of the projection ΠRw is greater than 0.5 when m → ∞, implying limm→∞Eρ (w) > 0.5

and concluding that w cannot be stable under 50% majority voting rule. ¥

This result is inspired from a modern approach (in the literature from discrete and com-

putational geometry) to generate random points. When dealing with a d-dimensional spatial

voting problem with m voters, one is left with a combinatorial problem about m-tuples of

(random) points in Rd. Many ‘natural’ distributions of these random points have been pro-

posed in the mathematical literature (see Schneider (2004)). Among them, the one described

above takes a central place: Every configuration ofm > d numbered points in general position

in Rd is affinely equivalent to the orthogonal projection of the set of numbered vertices of a

fixed regular (m−1)-dimensional simplex onto a unique d-dimensional linear subspace in Rn.

This construction builds a one-to-one correspondence between the (orientation-preserving)

affine equivalence classes of such point set configurations and an open dense subset of the

Grassmanian G(n, d) of oriented d-spaces in Rn. The so-called Grassmann approach (some-

times referred as the Goodman-Pollack model) considers the probability distribution on

the set of affine equivalence classes of m-tuples in general position in Rd that stems from

the unique rotation-invariant probability measure on G(n, d). Baryshnikov and Vitale (1994)

(following an observation of Affentranger and Schneider (1992)) proved that under the Grass-

mann approach, the resulting point set coincides in distribution with a standard Gaussian

sample in that subspace. As a consequence, an affine-invariant functional of m-tuples with

this distribution is stochastically equivalent to the same functional taken at an i.i.d. m-tuple

of standard normal points in Rd.

Our model can be seen as giving another interpretation to the Grassmann approach: We

do not use it as a random generation of social choice configurations (m-tuples of points in

Rd) according to a ‘natural’ probability distribution, but as a random generation of a lower

dimensional campaign spaces for any original (higher dimensional) social choice configura-

tion. The latter in particular can be a worst-case scenario as defined in the introduction and

Section 2.
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Remark: A direct consequence of the Grassmann approach is that if we depart from a

(regular) worst-case scenario in Rn and take X to be the vertices of a regular (n − 1)-
dimensional simplex (which can as well be translated to be spherico-regular), then, up to

an affine transformation, the resulting point set X coincides in distribution with a standard

Gaussian sample inRd. In our approach, we do not need linear images and affine translations,

since economically they do not correspond to any interpretations, and mathematically we

do not require stochastic independence and an underlying Gaussian distribution.

4 Low dimensional social choice configurations

Of course, the asymptotic result in Theorem 2 does not give much idea of the rate of super

majority, ρ (O), that one should impose in order to have existence of a political equilibrium

when d and m are ‘small’, nor does it give an idea of its expectation, Eρ (O). In this section,

we give the an upper-bound to distribution-free value of this expected score for d = 1 and

d = 2. We consider independent sampling of m points drawn from a symmetric distribution

about O (∈ Rd for d = 1 and d = 2) which approximate the sampling for n → ∞. In our
approach in Theorem 1, we need negatively-correlated sampling for finite n. Therefore, the

results derived in this section are upper bounds to actual Eρ (O) for finite n when d = 1 and

d = 2 for any n with X is regular and O-centered. Let n→∞ in this section. For uni- and

bidimensional campaigns, these upper-bounds that we derive are plotted at the end of the

section in Figure 7.

Unidimensional campaigns

Proposition 1 Set d = 1. Consider an m-sample independently drawn from a distribution

which is symmetric about O, then the expected value of the score of O is

Eρ(O) =
1

2
+

1

22[
m
2 ]+1

Ã
2
£
m
2

¤£
m
2

¤ !

where [x] denotes the integer part of x.

Proof of Proposition 1: Consider the following process which is due to Wendel (1962): choose

m random points in an interval centered at O: q1, q2, . . ., qm. For each i, 1 ≤ i ≤ m, set pi
equal to qi or to−qi with equal probability 1/2. The points p1, . . ., pm are again i.i.d. random
points in the interval (we ignore the degenerate configurations, occurring with probability

zero, where two points qi and qj would be equal or opposed).

Consider first the case of an even m: m = 2p. The score of O will be the highest ratio

of points on either side of O. Obviously if there are k points on one side (and m − k on
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the other side), 0 ≤ k ≤ p, this number is (m − k)/m, and this happens with probability

2
1

2m

Ã
m

k

!
when 0 ≤ k ≤ p− 1, and with probability 1

2m

Ã
m

k

!
when k = p. Hence

Eρ(O) =
1

2m

Ã
2p

p

!
p

2p
+

1

2m−1

p−1X
k=0

Ã
m

k

!
m− k

m

=
1

2m+1

Ã
2p

p

!
+

1

2m−1

p−1X
k=0

Ã
m− 1
k

!

and the second term on the right-hand side is 1/2. Now if m = 2p+ 1:

Eρ(O) =
1

2m−1

pX
k=0

Ã
m

k

!
m− k

m
=

1

2m−1

pX
k=0

Ã
m− 1
k

!

=
1

2m−1

p−1X
k=0

Ã
m− 1
k

!
+
1

2m

Ã
m− 1
p

!
| {z }

=1
2

+
1

2m

Ã
m− 1
p

!

All we used in this proof was that the original distribution is symmetric about O and that

some degeneracies occur with probability zero. Hence the result, which is distribution-free.

¥

Bidimensional campaigns

We consider the same process as in Proposition 1 and choose m random points in a disk

centered at O: Q1, Q2, . . ., Qm. For each i, 1 ≤ i ≤ m, we set Pi equal to Qi or to −Qi with

equal probability 1/2 (without loss of generality, we can choose the Qi’s on the same side

of a hyperplane through 0 as in Figure 4 below; Figure 5 corresponds to the configuration:

Pi = Qi for i = 1, 3, 4 and Pi = −Qi for i = 2, 5). The points P1, . . ., Pm are again

i.i.d. random points in the disk. The original question answered by Wendel (1962), see

also Wagner and Welzl (2001), was: what is the probability that O is not in the convex

hull of the Pi’s? (In other words, what is the probability that the score of O be 1?) The

answer is: m/2m−1. Indeed, independently of the choice of the Qi’s (again, we ignore the

degenerate configurations, occurring with probability zero, where two vectors Qi and Qj

would be collinear), there are 2m possibilities to choose the signs of the Pi’s such that O

can be separated from these points by a line (every partition of the Qi’s by a line through O

gives two such possibilities). Again, all we used in this line of reasoning was that the original

distribution is symmetric about O and that some degeneracies occur with probability zero.

Hence the result is, once more, distribution-free.
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We now proceed along this line of reasoning and compute the probability that the score

of O be j/m. E.g., in the social choice configuration shown on Figure 5, the score of O is

4/5 as shown by the dotted separation line.

Each social choice configuration can be described as a (q, p)-sequence (or random walk)
of plus ones and minus ones, according to whether Pi is equal to Qi (then +) or not (then -),

1 ≤ i ≤ m: �1, . . . , �m, with, say, q plus ones and p minus ones, q+p = m. The configuration

on Figure 5 corresponds to the (3,2)-sequence: +−++−. The partial sum sk = �1+ . . .+ �k

represents the difference between the number of pluses and minuses occurring at the first k

places, 0 ≤ k ≤ m, with s0 = 0 and sm = q − p. Define: s̄ = maxk sk and s = mink sk.

Lemma 1 In the social choice configuration represented by a (q, p)-sequence (�1, . . . , �m),

the score of O is ρ(O) =
max{q − s, p+ s̄}

m
.

Proof of Lemma 1: Consider a line which separates the +Qi’s from the −Qi’s and passing

through O. It has q of the Pi’s on one side and p on the other side. Now turn this line

by pivoting at O so that it goes in-between Q1 and Q2: it has now q − s1 of the Pi’s on

one side and p + s1 on the other side. Now turn it by pivoting at O so that it goes in-

between Q2 and Q3: it has now q − s2 of the Pi’s on one side and p + s2 on the other

side. And so on. The maximum number of Pi’s on one side of a line through O is therefore

max{. . . , q − sk, . . . , p+ sk, . . .} = max{q − s, p+ s̄}. Hence the result. 2

To compute the probability that the score of O be j/m, we need to compute the number
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of (q, p)-sequences such thatmax{q−s, p+s̄} = j. To do that, we follow a classical geometric

method in the standard orthonormal basis where the x-axis in horizontal and the y-axis is

vertical. Following Feller (1968), the sequence (�1, . . . , �m) is identified with a path from
the origin to the point (m, q − p): this path is a polygonal line whose vertices have abscissa

0, 1, . . . ,m and ordinates s0, s1, . . . , sm = q − p; s̄ is the highest point of the path and s the

lowest. Obviously there are9
Ã

m

p

!
such paths from the origin to the point (m, q − p): as

many as there are ways of choosing the p places for the minuses out of the m possibilities.

Note that for a (q, p)-sequence, s̄ ≥ max{0, q − p} and s ≤ min{0, q − p} entail that
max{q − s, p + s̄} ≥ max{q, p}, therefore we restrict attention to j ≥ max{q, p}. And
in the case when m is even and p = q = m/2, obviously max{q − s, p + s̄} ≥ m/2 + 1

therefore we restrict attention in that case to j ≥ m/2 + 1. Hence we consider j such that

[m/2] + 1 ≤ j ≤ m.

A (q, p)-sequence is such that max{q−s, p+ s̄} = j whenever the associated path remains

in the corridor between the lines y = j − p and y = q− j, and hits at least one of them (see

Figure 6 drawn for the configuration of Figure 5 and j = 4).

Figure 6

•

••

•

•

•

(m, q − p)[= (5, 1)]

y = j − p[= 2]

y = q − j[= −1]

O -

Lemma 2 Fix j, [m/2]+1 ≤ j ≤ m. The number of (q, p)-paths such thatmax{q−s, p+s̄} =
j is

am,q,j =

(
Am,q,j+1 −Am,q,j if m− j ≤ q ≤ j

0 otherwise

where for m− j ≤ q ≤ j

Am,q,j =
X
k

"Ã
m

q + k(2j −m)

!
−
Ã

m

j + k(2j −m)

!#
(1)

9By convention, the combination number will be set to zero in case p < 0 or p > m.
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(the series extending over all integers k from −∞ to +∞, but having only finitely many non-
zero terms) is the number of (q, p)-paths such that max{q − s, p + s̄} < j: those which hit

neither y = j−p nor y = q− j, and the number of (q, p) paths such that max{q−s, p+ s̄} <
m+ 1 is given by

Am,q,m+1 =

Ã
m

q

!
. (2)

Proof of Lemma 2: The equation relating the am,q,j’s to the Am,q,j’s is immediate. The

computation of the Am,q,j’s relies on repeated applications of the ‘reflection principle’ due to

Désiré André (see, e.g., Feller (1968), Chapter III) and is done in the appendix. ¥

Proposition 2 Consider an m-sample independently drawn from distribution which is sym-
metric about O, then the probability that the score of O be expected value of the score of O

be j/m, [m/2] + 1 ≤ j ≤ m is

ām,j =
1

2m

jX
q=m−j

am,q,j

and the expected value of the score of O is

Eρ(O) =
mX

j=[m/2]+1

jām,j

m
.

Proof of Proposition 2: Immediately follows from Lemma 2. ¥

17



0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Expected min−max rate upper bound for d=1 and d=2, and Greenberg’s min−max rate

E
xp

ec
te

d 
m

in
−

m
ax

 u
pp

er
 b

ou
nd

m: number of voters

d=1
d=2
(m−1)/m

Figure 7: The min-max rate for n→∞ when d = 1 and d = 2. For finite n, these figures

are upper bounds for the actual min-max rates.

5 Concluding Comments

The present paper proposes a theorem of aggregation of individual preferences through the

50% majority rule in a multidimensional spatial voting model. Of course, the result is

obtained at a non-negligible cost in terms of assumptions: first the regularity of the simplicial

distribution of voters’ ideal points; second the ‘uniform distribution’ on the set of linkages

between issues imputed by ideologies (the Haar probability measure on G(n, d)). Of course,

the robustness of the results when one relaxes these two assumptions should be studied.

But on the other hand it is quite strong since it gives existence for the 50% majority rule.

Another important aspect is that it fingers the mean voter as the candidate most likely to

be stable in the voting process. Mean voter theorems are very welcome in public economics

because in many contexts the mean voter is the one who has the right incentives as far as

making an economically efficient choice is concerned.

We would like to stress one last point. An important property of the approach chosen

here is that it is compatible with the idea that politicians “die in their ideological boots”.
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Poole (2003) shows a variety of evidence that members of the US Congress are ideologically

consistent: they adopt an ideological position and maintain it over time. An interpretation

of Theorem 2 is that in the long run, ignoring the historical, sociological and mediatic shocks

which are going to shape the linkages between political issues, this might be a good strategy

not to change one’s mind! A strategic politician should choose an ideological position that

he/she believes will place, as frequently as possible over the years, his/her imputed platform

at the center of gravity of the voters’ ideal points. Different ideological positions come

from different tastes, but also from different priors on the distribution of historical shocks

(the so-called ‘sens de l’histoire’) and therefore of linkages between issues. Maintaining that

ideological position over time is essential for their credibility, and thus an important asset for

future political successes. Now, what is a good strategy in the short-run? A strategy here

is neither the choice of an ideological position (basically chosen once for all at the beginning

of one’s career –although there might be more than one beginning...) nor the choice of a

political platform (automatically imputed by the ideological position), but an action that

impacts the linkages between issues in a way that places the candidate at the center of gravity

of the projected set of voters’ ideal points. This is left for future work.
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Appendix

Proof of Lemma 2: The numbers Am,q,j of (q, p)-paths such that max{q − s, p + s̄} < j

remain to be computed. These computations are based on the ‘reflection principle’ due to

Désiré André (see, e.g., Feller (1968), Chapter III). Let A = (α, a) and B = (β, b) be points

in the positive orthant: β > α ≥ 0, a > 0, b > 0. By reflection of A on the x-axis is meant

the point A0 = (α,−a) (see Figure 8).

Figure 8

•

•

•

•
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B

T
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-

Reflection principle: The number of paths from A to B which touch or cross the x-axis

equals the number of all paths from A0 to B.

Let N(m, c) =

Ã
m
m−c
2

!
= N(m,−c) denote the number of paths from O = (0, 0)

to (m, c). Let a and b be positive, and −b < c < a. By the reflection principle, the

number of paths from (0, 0) to (m, c) which touch or cross y = a is equal to the number

of paths from (0, 2a) (the reflection of O on the axis y = a) to (m, c), i.e., N(m, 2a − c).

By the same argument, the number from (0, 0) to (m, c) which touch or cross y = −b is
N(m, c+ 2b) = N(m, 2a− c− 2(a+ b)).

Now, by a double application of the reflection principle, a path from (0, 0) to (m, c)

which touch or cross y = a and then y = −b (called an ‘(ab)’ path in the sequel) can be first
associated to a path from (0, 2a) to (m, c), itself associated to a path from (0,−2a− 2b) to
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(m, c); hence N(m, c+ 2(a+ b)) of ‘ab’ paths. A triple application allows through the same

line of argument to denumerate the paths which touch or cross y = a, then y = −b, then
y = a again (‘(ab)a’ paths); their number is N(m, 2a − c + 2(a + b)). An extension of this

method gives:

• N(m, c + 2k(a + b)) for the number of paths which touch or cross y = a and then

y = −b k times in a row (‘k(ab)’ paths);

• N(m, 2a− c+2k(a+ b)) for the number of paths which touch or cross y = a and then

y = −b k times in a row and then y = a again (‘k(ab)a’ paths);

• N(m, c − 2k(a + b)) for the number of paths which touch or cross y = −b and then
y = a k times in a row (‘k(ba)’ paths);

• N(m, 2a− c − 2(k + 1)(a + b)) for the number of paths which touch or cross y = −b
and then y = a k times in a row and then y = −b again (‘k(ba)b’ paths).

Our aim is to compute the number of paths from (0, 0) to (m, c) which touch or cross

neither y = a nor y = −b. This comes first by exclusion of paths which touch or cross
y = a and paths which touch or cross y = −b. But thus ‘(ab)’ and‘(ba)’ paths are excluded
twice and must be reincluded once. But then ‘(ab)a’ and‘(ba)b’ are excluded twice, then

reincluded twice, and therefore must be re-excluded once... This standard application of the

inclusion-exclusion principle (see Comtet (1974), Chapter IV), leads to the formula:

N(m, c) − N(m, 2a− c) +
X
k>0

[N(m, c+ 2k(a+ b))−N(m, 2a− c+ 2k(a+ b))]

−
X
k>0

[N(m, c− 2k(a+ b))−N(m, 2a− c− 2k(a+ b))]

for the concerned number, which can be rewritten:X
k

[N(m, c+ 2k(a+ b))−N(m, 2a− c+ 2k(a+ b))]

(over all integers k from −∞ to +∞, but only finitely many non-zero terms). The formula
1 obtains readily by substitution of the right parameters. ¥
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