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Abstract

We give two new approaches to testing a conditional form of exogeneity. This condition
ensures unconfoundedness and identi�cation of e�ects of interest in structural systems. As
these approaches do not rely on the absence of causal e�ects of treatment under the null,
they complement earlier methods of Rosenbaum (1987) and Heckman and Hotz (1989).
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1 Introduction

This note describes two new approaches for testing a conditional form of exogeneity ensuring

unconfoundedness. Suppose data are generated by the structural equation

Y = r(D;Z;U); (1)

where Y is a scalar response of interest, r is the unknown structural function, and D; Z; and U

are drivers of Y: U is unobserved and may have any countable dimension. D and Z are observed

and of �nite dimension. We are interested in the e�ect of D on Y but not necessarily that of Z:

D may contain binary, categorical, or continuously distributed elements.

As discussed by Altonji and Matzkin (2005), Hoderlein (2005, 2007), Hoderlein and Mammen

(2007), White and Chalak (2008), and Imbens and Newey (2009), among others, a su�cient

condition for identifying various e�ects of D on Y is that D is independent of U given X; where

X � (W 0; Z 0)0 is a vector of covariates (also known as control variables). When present, W
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represents other observables that are not driven by Y or D; but that may be driven by U or

that may drive D or U: As in Dawid (1979) ("D79"), we write

D ? U j X: (2)

We refer to (2) as conditional exogeneity of D, since it is a conditional form of the classical

exogeneity condition, D ? U:
It can also be shown that conditional exogeneity is, in a precise sense, necessary for identi�-

cation of causal e�ects of interest (e.g., White and Chalak, 2008, theorem 4.1). Accordingly, it is

important to have tests of this critical identifying condition. With Yd � r(d; Z; U) representing
potential responses, conditional exogeneity ensures the general unconfoundedness condition (see

Hirano and Imbens, 2004)

fYd; d 2 supp(D)g ? D j X

ensuring identi�cation of various treatment e�ects, where supp(D) is the support of D.

Thus, to test conditional exogeneity, one can test unconfoundedness, as rejecting unconfound-

edness implies rejecting conditional exogeneity. Rosenbaum (1987, section 3.2) and Heckman

and Hotz (1989, section 4) propose tests for unconfoundedness for the case of a binary treat-

ment D (supp(D) = f0; 1g). These tests rely on estimating a causal e�ect known to be zero; the
�nding of an apparent causal e�ect is then evidence against unconfoundedness. As suggested

by Rosenbaum (1984) and Imbens (2004, section V.A), such tests can be divided into two cat-

egories. The �rst tests for an apparent causal e�ect across "una�ected units" of two control

groups for which treatment is suppressed. The second tests for an apparent causal e�ect on

"una�ected responses," variables known to be una�ected by the treatment.

Here, we propose two complementary new methods for testing conditional exogeneity that

do not rely on the absence of causal e�ects of treatment. The �rst relies on an observable

response R to D that is unrelated to the confounders U; conditional on X. If (2) holds, then

R is independent of Y given D and X, a testable condition. The second relies on additional

observable covariates S driven by the confounders U; covariates X; and other unobservables V

that are independent of D given U and X, such as measurement errors. If (2) holds, then S

is independent of D given X, a testable condition. An attractive feature of these methods is

that they do not require D to be binary or r to be linear, separable between observables and

unobservables, or monotonic in a scalar unobservable, as is often done in the literature.

2 Main results

Our �rst result permits using a variable R a�ected by treatment to test conditional exogeneity.
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Proposition 1 Suppose that Y is generated by (1) and that there exist observable �nitely

dimensioned random vectors W and R such that, with X = (Z 0;W 0)0;

R = p(D;X; V );

for some measurable p; where V is a countably dimensioned unobservable vector such that

V ? U j (D;X): (3)

Then D ? U j X implies Y ? R j (D;X):

The conclusion that Y ? R j (D;X) generalizes the notion that, under the null, the linear
regression of Y on R;D; and X should have zero coe�cients for R:

Now consider the implications of a rejection, Y 6? R j (D;X) : either (i) D 6? U j X; (ii)
V 6? U j (D;X); (iii) (1) does not hold, i.e., R appears in r; or (iv) any combination of these.
Thus, to reject (2) given a �nding that Y 6? R j (D;X); we must maintain not only that R does
not determine Y; but also that V ? U j (D;X):

This latter condition is often plausible. Speci�cally, when V is a measurement error, it is

plausible that V ? (U;D;X); this implies (2) by D79 lemma 4.2(ii): For example, we may have
R = D + V; in which case R and D denote "essentially equivalent treatments" (Rosenbaum,

1984). Thus, Proposition 1 supports general tests for unconfoundedness based on the availability

of several equivalent treatment measures.

Our next result permits using covariates S driven by U to test conditional exogeneity.

Proposition 2 Suppose that Y is generated by (1) and that there exist observable �nitely

dimensioned random vectors W and S such that, with X = (Z 0;W 0)0;

S = q(X;U; V );

for some measurable q; where V is a countably dimensioned unobservable vector such that

D ? V j (U;X):

Then D ? U j X implies D ? S j X:

The conclusion that D ? S j X generalizes the notion that, under the null, the linear regression

of D on S and X should have zero coe�cients for S:

Now consider the implications of a rejection, D 6? S j X : either (i) D 6? U j X; (ii)
D 6? V j (U;X); (iii) (1) does not hold, i.e., S appears in r; or (iv) any combination of these.
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Thus, to reject (2) given a �nding that D 6? S j X; we must maintain both that S does not
determine Y and that D ? V j (U;X):

This latter condition is often plausible. A leading example occurs when S is an error-laden

function of U , e.g., S = U + V or S = q0(U) + V; where V is a measurement error. As above,

it is then plausible that V ? (U;D;X); this implies D ? V j (U;X) by D79 lemma 4.2(ii). For
example, U can represent intellectual ability, and S can be a test score not already in W:

Comparing the assumptions of these results, we note that although neither R or S determine

Y; their roles di�er signi�cantly: In Proposition 1, R is a response to D; in Proposition 2, S

is a vector of "supplemental" covariates. (We further discuss this below.) In particular, it is

important that S depend on U; either directly or indirectly (e.g., through W ), to ensure that

the resulting test can have power. In contrast, R does not depend on U either directly, since U

does not appear in p; or indirectly through V; as (3) must hold.

Tests based on either Y ? R j (D;X) or D ? S j X are straightforward, as only observables

are involved. One can apply any of a growing number of parametric or nonparametric methods

available in the literature. Su and White (2009) give a useful survey; White and Lu (2010a)

discuss some straightforward regression-based procedures.

Other things equal, one may prefer the approach with fewer variables, as nonparametric pro-

cedures then place fewer demands on the data. Alternatively, to the extent that the underlying

economics in a given application makes it more plausible to maintain the auxiliary assumptions

of one of these approaches, then that approach may be preferred. Nevertheless, these approaches

are complementary; nothing rules out their joint use.

Signi�cantly, neither approach can deliver a test consistent against arbitrary failures of D ?
U j X: That is, neither result has a corresponding converse, even under some further plausible
conditions. In fact, however, this is not a speci�c failure of these two approaches. Rosenbaum

(1987) discusses similar properties of his tests based on absence of causal e�ects. As White

and Lu (2010a) show, without further identifying information, there can be no test of any kind

consistent against arbitrary alternatives, as easy examples prove the existence of cases where

D ? U j X fails, but this can never be detected empirically (White and Lu, 2010a, example

7.A.(ii)). Thus, though the consequences of rejection are clear, one must be careful when failing

to reject. It is always possible that conditional exogeneity fails, but in such a way as to evade

detection. This underscores the usefulness of testing conditional exogeneity in multiple ways.

Finally, we justify referring to S as "supplementary" covariates by showing that if X is a

su�cient set of covariates, then so is (X;S):

Proposition 3 Suppose the conditions of Proposition 2 hold. Then D ? U j X implies
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D ? U j (X;S):

This result raises the question of whether it is better to use a larger or smaller set of covariates.

This issue has been addressed by Hahn (2004) and by White and Lu (2010b) for the case of

binary D: The key idea is that if the goal is to increase the precision of a given measure of e�ect,

then the answer depends on the nature of the underlying structure. Investigation of this issue

for the case of general D is an interesting direction for further research.

3 Mathematical Appendix

Proof of Proposition 1: Given V ? U j (D;X); we have (V;D;X) ? U j (D;X) by D79
lemma 4.1 and lemma 4.2(i). Given R = p(D;X; V ); D79 lemma 4.2(i) gives that R ? U j
(D;X). Now D ? U j X and R ? U j (D;X) imply (D;R) ? U j X by D79 lemma 4.3. Then

(D;R) ? U j (D;X) by D79 lemma 4.2(ii). This implies (D;R) ? (U;X;D) j (D;X) by D79
lemma 4.1 and lemma 4.2(i). Given (1), D79 lemma 4.1 applied twice gives Y ? R j (D;X): �

Proof of Proposition 2: D ? U j X and D ? V j (U;X) imply D ? (U; V ) j X by D79

lemma 4.3. By D79 lemma 4.1 and Lemma 4.2(i), D ? (U; V;X) j X: As S = q(X;U; V ); we

have D ? S j X by D79 lemma 4.2(i). �

Proof of Proposition 3: The conditions of Proposition 2 give D ? (U; V;X) j X: As S =
q(X;U; V ); this implies D ? (U; V;X) j (X;S) by D79 lemma 4.2(ii): It follows from D79 lemma
4.1(i) that D ? U j (X;S): �
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