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1 Introduction

Classical systems of structural equations are parametric, linear, and separable. Begin-

ning in the 1980�s considerable attention has been directed toward relaxing some or all

of these conditions. For example, Brown (1983) studies parametric separable systems

nonlinear only in regressors. Newey and Powell (1988, 2003), Newey, Powell, and Vella

(1999), Darolles, Florens, and Renault (2003), Das (2005), Hall and Horowitz (2005), and

Santos (2006), among others, study nonparametric separable systems. Roehrig (1988),

Brown and Matzkin (1998), Chesher (2003, 2005), Imbens and Newey (2003), Matzkin

(2003, 2004, 2005), Chernozhukov and Hansen (2005), and Chernozhukov, Imbens, and

Newey (2007), for example, consider nonparametric nonseparable systems but impose

monotonicity conditions at some stage in their analysis. Angrist and Imbens (1994), An-

grist, Imbens, and Rubin (1996), Heckman (1997), Heckman, Ichimura, and Todd (1998),

Heckman and Vytlacil (1999, 2001, 2005, 2007), Blundell and Powell (2003), Heckman,

Urzua, and Vytlacil (2006), and Hahn and Ridder (2007), among others, study the con-

sequences of otherwise relaxing the classical assumptions, often considering systems with

binary treatments or index structures.

In addition, researchers have increasingly focused attention on aspects of the distribu-

tion of the response of interest beyond the conditional mean. An area of particular interest

is on structural modeling of response quantiles. Examples are the work of Chesher (2003,

2005), Imbens and Newey (2003), and Chernozhukov and Hansen (2005).

Recently, Altonji and Matzkin (2005), Hoderlein (2005, 2007), Hoderlein and Mam-

men (2007), and Schennach, White, and Chalak (2007) have analyzed structural systems

in which the structural equations may be nonparametric, nonlinear, and nonseparable,

without necessarily imposing monotonicity. Because economic theory is often not fully

speci�c about the forms of the relationships of interest, this generality should enhance

economists�ability to study economic relationships without having to make assumptions

that might not be supported by the data. Moreover, results for the general case provide

a foundation for testing restrictions suggested by economic theory.

As is evident from the literature cited, and as Darolles, Florens, and Renault (2003)

and Chalak and White (2007a) (CW) discuss, there are a variety of ways to identify struc-
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turally meaningful features of interest in non-classical contexts. The classical method is

that of instrumental variables (IV), which requires the availability of exogenous instru-

ments, that is, variables uncorrelated with or independent of the unobserved causes of

the response of interest. Schennach, White, and Chalak (2007) analyze the properties of

e¤ect estimators based on such instruments in the general nonseparable context.

An alternative to the use of exogenous instruments to identify and estimate structural

e¤ects involves the use of covariates. This method originates from the treatment e¤ects

literature (e.g., Rubin, 1974; Rosenbaum and Rubin, 1983) and has been signi�cantly

developed and enhanced by Barnow, Cain, and Goldberger (1980), Heckman and Robb

(1985), Heckman, Ichimura, and Todd (1998), Hahn (1998), Hirano and Imbens (2001,

2004), Hirano, Imbens, and Ridder (2003), and Heckman and Vytlacil (2005), among

others. In contrast to standard exogenous instrumental variables, covariates are typically

endogenous. Covariates operate by ensuring the conditional exogeneity of the causes of

interest. That is, conditional on the covariates, the causes of interest are independent

of the relevant unobservables, making possible identi�cation and estimation of e¤ects of

interest. Because of their role as conditioning variables and because they are instrumental

in identi�cation and estimation, we can view covariates as conditioning instruments (see

CW).

In particular, Altonji and Matzkin (2005), Hoderlein (2005, 2007), and Hoderlein and

Mammen (2007) use covariates to identify structural features of interest in nonseparable

systems. They have also been used in quantile regression (e.g., Firpo, 2007). Imbens

and Newey (2003) discuss their use in a variety of contexts. Although this suggests that

the scope of covariate-based methods for identifying and estimating structural e¤ects is

considerable, the full extent of this scope is as yet an open question.

A main contribution of this paper is thus to demonstrate the extensive scope of

covariate-based methods for identifying and estimating e¤ects of interest in general struc-

tural systems. As we show, all of the procedures commonly used in econometrics, for

example parametric, semi-parametric, and nonparametric extremum or moment-based

methods, can exploit covariates to estimate well-identi�ed structural e¤ects. Moreover,

these results hold for general structural systems, without imposing linearity, separability,

or monotonicity.
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We analyze the use of covariates to identify structural e¤ects of interest, generally

de�ned. In this context, identi�cation means equality between the structural e¤ect of

interest and a well de�ned stochastic object (e.g., one involving a conditional mean or

quantile) that can be de�ned solely in terms of observables. Once this form of identi�cation

has been established, then appropriate statistical methods can be deployed to estimate

the stochastic object, and thus the e¤ect of interest.

Speci�cally, we examine the simultaneous identi�cation of structural e¤ects of multiple

causes; these may be binary, categorical, or continuous. For the case of continuous causes,

we examine both marginal and non-marginal e¤ects. In section 2, we consider average

e¤ects, taking care to rigorously de�ne these e¤ects and to distinguish structurally mean-

ingful objects from stochastically meaningful objects. Section 3 analyzes more general

e¤ects, based on explicit moments, implicit moments, or aspects of the response distri-

bution de�ned as optimizers (e.g., quantiles). To the best of our knowledge, the use of

implicit moment conditions to de�ne e¤ects of interest is new.

A key condition ensuring the identi�cation of e¤ects of interest is a speci�c conditional

exogeneity relation. In section 4, we study the role of this condition by examining what

happens in its absence, �nding that identi�cation then generally fails. Neverthless, we

provide new local and near identi�cation results that provide insight into how the vari-

ous e¤ect measures are impacted by departures from conditional exogeneity and by the

sensitivity of the response of interest to unobservables.

Section 5 concludes with a summary and discussion of directions for further research.

2 Data Generation and Average E¤ects

2.1 Data Generation

We �rst specify a recursive data generating process. In recursive systems, there is an

inherent ordering of the variables: "predecessor" variables may determine "successor"

variables, but not vice versa. For example, when X determines Y , then Y cannot deter-

mine X. In such cases, we say that Y succeeds X, and we write Y ( X as a shorthand

notation. Throughout, random variables are de�ned on (
;F ; P ); a complete probability
space.
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Assumption A.1 (i) Let (D0; U 0; V 0;W 0; Y; Z 0)0 be a vector of random variables such that

Y is scalar valued, D;W; and Z are �nitely dimensioned, and U and V are countably di-

mensioned; (ii) Suppose further that a recursive structural system generates (D;W; Y; Z)

such that Y ( (D;U; V;W;Z), D ( (U; V;W;Z), W ( (U; V; Z), and Z ( U; V , with

structural equations

Y = r(D;Z; U); D = q(Z;W;U; V );

where the response functions q and r are unknown measurable functions mapping to

Rk; k 2 N; and R; respectively; and (iii) the realizations of D;W; Y; and Z are observed,
whereas those of U and V are not.

Assumption A.1(i) imposes only stochastic structure. No structural relations need hold

under A.1(i); these are imposed by A.1(ii). We emphasize that by specifying thatD;W; Y;

and Z are structurally generated, A.1(ii) embodies systems in which the determining

equations represent economic structure arising, for example, from optimizing behavior

and/or equilibrium. As Goldberger (1972, p.979) points out, such structural relations

are directional causal links. For example, variations in D;Z; and U cause variations in

Y; whereas variations in Y have no impact on D;Z; and U: The special nature of these

relations has been clearly articulated by Strotz and Wold (1960) and Fisher (1966, 1970);

see also CW.

Our interest attaches to the e¤ects of one or more elements ofD on Y . Accordingly, we

call Y the response of interest and D causes of interest. We call the remaining observables

X := (W;Z) covariates. Nothing in A.1 ensures that D;W; or Z is independent of U , so

D;W; and Z are generally endogenous.

Whereas Imbens and Newey (2003) and (implicitly) Hoderlein (2005, 2007) study a

recursive structure in which q is monotonic (or even additively separable) in a scalar

unobservable, no such requirements are imposed here. Speci�cally, we do not assume q or

r to be linear, separable, or monotone in their arguments. Signi�cantly, the unobservables

U and V can be vectors; these vectors can even be of in�nite dimension. This permits wide

latitude in accommodating variables known to drive the response or causes of interest,

but which cannot be observed. Aspects of this �exibility can also be found in work of
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Altonji and Matzkin (2005), Hoderlein and Mammen (2007), and Shennach, White, and

Chalak (2007).

Given that D ( (U; V;W;Z); there is no restriction in assuming D = q(Z;W;U; V ).

We make this explicit for clarity and convenience; for succinctness, we do not make explicit

the structural equations forW and Z:We consider some restrictions on q below, following

Proposition 2.3. Although q may be a function of W; it need not be; generally, there

will be elements of W that do not drive D. In contrast, we explicitly exclude W from

r. This loses no generality, as W may have dimension zero. Nevertheless, when W has

positive dimension, it can play an instrumental role in identifying e¤ects of interest (cf.

Altonji and Matzkin, 2005). Excluding V from r rules out V as a direct cause of Y

and distinguishes V from U: This exclusion can assist in identi�cation, as Proposition 2.3

below suggests. V may also be of dimension zero, however.

When structurally meaningful objects of interest can be equated to well-de�ned and

empirically accessible standard stochastic objects, we say they are identi�ed. The most

straightforward such stochastic object relevant here is the conditional expectation �(D;X) :=

E(Y j D;X): To begin to investigate the content of �(D;X), we let supp(D;X) denote
the support of (D;X), the smallest measurable set on which the density of (D;X); say

dH; integrates to one. Also, let dG(u j d; x) de�ne the conditional density of U given

(D;X):

We begin with a simple result relating � to the structure determining Y:

Proposition 2.1 Suppose Assumption A.1(i) holds with E(Y ) <1: Then (i) �(D;X) :=

E(Y j D;X) exists and is �nite; if in addition A.1(ii) holds, then (ii) for each (d; x) in
supp(D;X)

�(d; x) =

Z
r(d; z; u) dG(u j d; x): �

Part (i) ensures that �(D;X) is a well de�ned stochastic object without requiring any

particular causal structure. When the structure of part (ii) holds, we can represent

�(d; x) as the average response given (D;X) = (d; x). For this, we require the conditional

density dG( � j d; x) to be regular, as de�ned in Dudley (2002, ch.10.2). We assume
throughout that any referenced conditional densities are regular. We call � an average

response function. This tells us the expected response given realizations (d; x) of (D;X).

6



Nevertheless, � does not necessarily provide insight into the e¤ects of D on Y; as such

e¤ects require knowledge about what happens under interventions to D, that is, under

variations in the realized value d unrelated to the stochastic behavior of X or any other

random variable of the system.

We specify the expected response under interventions by de�ning the average coun-

terfactual response at d given X = x: When E(r(d; Z; U)) exists and is �nite for each d

in supp(D), this is

�(d j x) := E(r(d; Z; U) j X = x) =

Z
r(d; z; u) dG(u j x);

where dG(� j x) is the conditional density of U given X = x. The term "counterfactual" is

used here to signal that the value d is arbitrary and need not correspond to the stochastic

behavior speci�ed in A.1(i) or the structural behavior speci�ed in A.1(ii).

The notation �(d j x) is intended to emphasize the di¤erence between the roles played
by d and x. Whereas X = x is given in the usual sense of stochastic conditioning, D is set

to d by intervention. That is, the value of D is not determined by the structure of A.1,

but is instead set to any value in supp (D); as in Strotz and Wold (1960). Pearl (1995,

2000) introduced the "do" operator to express such counterfactual settings. When D is

set to d, Pearl writes the expected response given X = x as E(Y jdo(d); X = x). In our

notation, E(Y jdo(d); X = x) = �(d j x).
The function � is a conditional analog of Blundell and Powell�s (2003) "average struc-

tural function." To make clear the counterfactual nature of �; we call it a covariate-

conditioned counterfactual average response function or a "counterfactual average re-

sponse function," leaving conditioning implicit.

The assumption thatD( (U; V;W;Z) ensures that whenD is set to di¤erent values for

d, this does not necessitate di¤erent realizations for (U; V;W;Z). We thus view �(d j x)
as representing �(d j X(!)) for X(!) = x, where X explicitly does not depend on d.

Otherwise, one must consider

�(d j X(d; �)) = E(r(d; Z(d; �); U(d; �) j X(d; �));

making the dependence of (U;W;Z) (hence X) on d explicit. This permits analysis of
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mediated e¤ects, but because this is somewhat involved, we leave this aside here (see CW,

sections 4.1.2 and 4.2.3). By assuming that D ( (U; V;W;Z); we ensure that �(d j x)
gives a representation in which d and x are variation-free.

Comparing �(d; x) and �(d j x), we see that dG(u j d; x) appears in �(d; x), whereas
dG(u j x) appears in �(d j x). If for given x and all d; dG( � j d; x) = dG( � j x), then
�(d; x) = �(d j x): If this holds for all (d; x) in supp (D;X), then we write � = �: When,

as happens here, a stochastically meaningful object like � is identi�ed with a structurally

meaningful object, we say that it is structurally identi�ed. Similarly, when a structurally

meaningful object like � is identi�ed with a stochastic object, we say it is stochastically

identi�ed. If stochastic identi�cation holds uniquely with a representation solely in terms

of observable variables, we say that both the stochastic object and its structural coun-

terpart are fully identi�ed. These de�nitions conform to CW and Schennach, White, and

Chalak (2007).

The condition that dG( � j d; x) = dG( � j x) for all (d; x) in supp (D;X) is a conditional
independence requirement, analogous to that imposed in similar contexts by Altonji and

Matzkin (2005, assumption 2.1), Hoderlein (2005, 2007), and Hoderlein and Mammen

(2007). Here we use Dawid�s (1979) conditional independence notation D ? U j X to

denote that D is independent of U given X:

Assumption A.2 D ? U j X .

By analogy with the use of "exogeneity" to describe regressors independent of unob-

servable "disturbances" (e.g., Wooldridge, 2002, p. 50), when A.2 holds we say D is

conditionally exogenous (cf. CW). This concept involves only the data generating process

and does not involve any parametric model; it is thus distinct from weak, strong, or su-

per exogeneity (Engle, Hendry, and Richard, 1983), which are de�ned in terms of the

properties of parametric models. It contains strict exogeneity (D ? U) as a special case

(whenX � 1). Following CW, we call X "conditioning instruments," in recognition of the

instrumental role X plays in identifying � with �. When the covariates su¢ ce to ensure

conditional exogeneity for D, we call them su¢ cient covariates, following Dawid (1979).

Given A.1, conditional exogeneity ensures the natural generalization of Rosenbaum and

Rubin�s (1983) �unconfoundedness�condition introduced by Hirano and Imbens (2004):

for all d in supp (D), Yd ? D j X; where Yd := r(d; Z; U):
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Whereas Altonji and Matzkin (2005) assume the covariates X do not enter r (so our

Z is null), Hoderlein and Mammen (2007) assume that all covariates enter r (so our W

is null). Assumption A.2 contains these possibilities as special cases; neither restriction

is necessary here.

Our �rst identi�cation result formalizes this discussion.

Theorem 2.2 Suppose A.1(i,ii) and A.2 hold. (i.a) Then for all (d; x) 2 supp (D;X),
�(d j x) :=

R
r(d; z; u) dG(u j x) exists and �(d j x) = �(d; x), that is, � = �, so that � is

stochastically identi�ed and � is structurally identi�ed. (i.b) If in addition A.1(iii) holds,

then � and � are fully identi�ed. �

Note that this result ensures that � is de�ned on supp(D;X); outside this set, we leave

� unde�ned. In subsequent results we encounter similar situations, and we will understand

the functions in those results to be de�ned only on the speci�ed support. When we refer

to � or its analogs below, we will understand that attention is restricted to the support

on which the function of interest is de�ned.

As we see in Section 4, when A.2 fails, so does full identi�cation. A.2 is thus a crucial

identifying assumption. The speci�c structure relating D;U; V;W; and Z determines

whether Assumption A.2 holds or is plausible, as discussed in CW and Chalak and White

(2007b,c). For example, A.2 holds for Pearl�s (1995, 2000) "back door" structures and for

structures in which W acts as a vector of predictive proxies for U , as in White (2006).

The next result provides conditions ensuring A.2.

Proposition 2.3 Suppose that A.1(i) holds. Then U ? (D;V ) j X if and only if

U ? V j X and U ? D j (V;X): �

Thus, U ? V j X and U ? D j (V;X) ensure thatD ? U j X. In particular, given A.1(ii),
if U is not a direct cause of D; so that D = q(Z;W; V ); then U ? D j (V;X): Thus, if
we also have U ? V j X; then D ? U j X. In this case U and V are distinct sources of

unobserved variation for Y and D; respectively. Alternatively, suppose U directly causes

D and that V is the sole direct cause of U: Then D is measurable-�(X;V ), and we again

have U ? D j (V;X): Again, it su¢ ces for A.2 that U ? V j X; although this can hold
only for certain speci�c structural relations between U and V:
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2.2 Average E¤ect Measures

Using �, we can de�ne the expected e¤ect of any intervention d ! d� := (d; d�) to D.

Speci�cally, the average e¤ect on Y of the intervention d! d� to D given X = x is

��(d; d� j x) := �(d� j x)� �(d j x):

We call this a "covariate-conditioned average e¤ect," or, leaving conditioning implicit, an

"average e¤ect." As a special case, this includes the conditional average treatment e¤ect

of a binary treatment discussed by Abadie and Imbens (2002). To ensure that this e¤ect

is well de�ned, we require that (d; d�; x) is "admissible," that is, that (d; d�) 2 supp(D)
� supp(D) and that x 2 supp(X j D = d) \ supp(X j D = d�); where supp(X j D = d)

is the support of X given that D = d: Formally, the interventions (!; !�) 2 
 � 

underlying d ! d� given X = x are those (!; !�) pairs satisfying d = D(!), x = X(!)

and d� = D(!�), x = X(!�):

When � is stochastically identi�ed, then for all admissible (d; d�; x); we have

��(d; d� j x) = ��(d; d�; x) := �(d�; x)� �(d; x):

When � is fully identi�ed, a consistent estimator of ��(d; d�; x) provides a consistent

estimator of ��(d; d� j x).
Replacing x with X yields a random version of the average e¤ect, ��(d; d� j X), with

an optimal prediction property. Speci�cally, by the mean-square optimality of conditional

expectation, ��(d; d� j X) is the mean squared error-best predictor of the random e¤ect

�r(d; d�; Z; U) := r(d�; Z; U)� r(d; Z; U) among all predictors based on X:

This re�nes the usual ceteris paribus interpretation of e¤ects: ��(d; d� j x) is the
expected e¤ect on the response of an intervention d ! d�, averaging over unobserved U ,

conditional on observed X = x. The unobserved U is not �held constant,�but is averaged

over; the observed covariates X are not �held constant,�but are conditioned on. These

distinctions are important: averaging and conditioning are stochastic operations, whereas

�holding constant�is a counterfactual operation meaningful only for interventions. For-

mally, elements dj ! d�j of d! d� such that d�j � dj = 0 are held constant.

In contrast, di¤erences of the form �(d j x) � �(d j x�) have no necessary structural
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interpretation. Instead they inform us only as to how the predicted response at d varies

with di¤erent covariate outcomes X = x and X = x�. This is analogous to the fact

discussed by CW that in linear regression with conditioning instruments, some coe¢ -

cients can be meaningfully interpreted as ceteris paribus e¤ects (those associated with

D), whereas others may have only a predictive interpretation (those associated with X).

Altonji and Matzkin (2005), Hoderlein (2005, 2007) and Hoderlein and Mammen

(2007) pay particular attention to average marginal e¤ects. Here, we consider the av-

erage marginal e¤ect on Y of Dj at d given X = x, de�ned as

�j(d j x) :=
Z
Djr (d; z; u) dG(u j x);

where Dj := (@=@dj), provided the indicated derivative and integral exist. We also call

�j(d j x) a "covariate-conditioned average marginal e¤ect," or just an "average marginal
e¤ect." This is related to (indeed underlies) the average derivatives of Stoker (1986) and

Powell, Stock, and Stoker (1989). It is a weighted average of the unobservable marginal

e¤ect Djr(d; z; u), averaging over unobserved causes, given observed covariates. �j(d j X)
is the mean squared error-optimal predictor of Djr (d; Z; U) given X:

When the limit exists, the derivative of � with respect to dj is given by

Dj�(d j x) := lim
�!0

��(d; d+ � �j j x) = �;

where �j is the k � 1 unit vector with unity in the jth position. Typically, the validity of
an interchange of derivative and integral is simply assumed, so that

Dj�(d j x) = �j(d j x):

The next condition makes explicit general conditions ensuring the existence of deriv-

atives of interest and justifying the interchange of derivative and integral. Further, when

� and � are fully identi�ed, this also ensures full identi�cation of �j(d j x) as Dj�(d; x):
We now let d(j) be the (k � 1)� 1 sub-vector of d containing all but dj, j 2 f1; : : : ; kg.

Assumption A.3 For given (d; x) 2 supp (D;X), suppose the function u ! r(d; z; u)

is integrable with respect to G(� j x), that is,
R
r(d; z; u) dG(u j x) <1; and suppose that

for the given (d(j); z); (dj; z) ! Djr (d; z; u) exists on Cj� supp (U j z), where Cj is a
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convex compact neighborhood of the given dj, and supp (U j z) is the support of U given
Z = z. Suppose further that for the given (d(j); z) and for each u in supp (U j z),

sup
dj2Cj

j Djr (d; z; u) j� �(d(j); z; u);

where � is a measurable function such that E(�(D(j); Z; U)) <1:

When A.3 holds for r and Djr, we say "Djr (d; z; u) is dominated on Cj by an integrable

function." The next identi�cation result is a continuation of Theorem 2.2:

Theorem 2.2 Suppose that the conditions of Theorem 2.2(i.a) hold. (ii.a) If Assumption

A.3 also holds, then the functions dj ! �(d j x) and dj ! �(d; x) are di¤erentiable on Cj,

and Dj�(d j x) = �j(d j x) = Dj�(d; x) =
R
Djr(d; z; u) dG(u j d; x): (ii.b) If Assumption

A.1(iii) also holds, then �j(d j x) and Dj�(d; x) are fully identi�ed. �

Thus, to consistently estimate �j(d j x), it su¢ ces to consistently estimate Dj�(d; x). If
A.3 holds for all (d; x) 2 supp (D;X); then �j and Dj� are fully identi�ed.

3 Identi�cation of General E¤ect Measures

Interest also attaches to e¤ects of interventions on aspects of the conditional response

distribution other than the mean. Heckman, Smith, and Clements (1997) draw attention

to this issue in the context of programme evaluation. Imbens and Newey (2003) discuss a

variety of such e¤ects. For wage determination, Firpo, Fortin, and Lemieux (2005) study

e¤ects of binary treatments on aspects of the unconditional response distribution, such

as the variance, median, or density. Here we discuss identi�cation of structural e¤ects

for general aspects of the conditional response distribution, extending the scope of the

literature just cited. We consider moment-based e¤ects, where moments may be either

explicitly or implicitly de�ned, as well as e¤ects arising from optimizing behavior.

3.1 Three Ways to De�ne General E¤ects

One approach to de�ning e¤ects uses the covariate-conditioned counterfactual moment

�0(d j x) := � 0(�1(d j x); �2(d j x); : : :);
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where � 0 is a known function, and for known scalar-valued functions � k,

�k(d j x) :=
Z
� k(r(d; z; u)) dG(u j x); k = 1; 2; : : : :

The moment e¤ect on Y of the intervention d! d� to D given X = x is

��0(d; d
� j x) := �0(d

� j x)� �0(d j x);

and the marginal moment e¤ect on Y of Dj given X = x is Dj�0(d j x).
For example, let � 1(r) = 1[r � y] for y 2 R (cf. Imbens, 2004, p.9), and let � 0(�1) = �1.

Then e¤ects on the conditional response distribution are de�ned from the counterfactual

conditional distribution function

�0(d j x) =
Z
1[r(d; z; u) � y] dG(u j x):

Or let � 1(r) = r, � 2(r) = r2, and put �0(d j x) = �2(d j x)� �1(d j x)2: This de�nes the
covariate-conditioned counterfactual variance, yielding conditional variance e¤ects.

When conditional exogeneity holds, the counterfactual moment function and the cor-

responding e¤ects are stochastically identi�ed.

Theorem 3.1 Suppose Assumption A.1(i) holds. For k = 1; 2; : : : ; let � k : R! R be a

known measurable function such that E(� k(Y )) < 1. (i) Then �k(D;X) := E(� k(Y ) j
D;X) exists and is �nite, k = 1; 2; : : :. (ii) If A.1(ii) also holds, then for each (d; x) in

supp(D;X)

�k(d; x) =

Z
� k(r(d; z; u)) dG(u j d; x); k = 1; 2; : : : :

If � 0 : R1 ! R is a known measurable function, then the function �0 de�ned by �0(d; x)

:= � 0(�1(d; x); �2(d; x); : : :) is also measurable. (iii) If A.2 also holds, then

�k(d j x) =
Z
� k(r(d; z; u)) dG(u j x)

exists and is �nite for each (d; x) in supp(D;X), and �k = �k, k = 1; 2; : : :; the function

�0 de�ned by �0(d j x) = � 0(�1(d j x); �2(d j x); : : :) is measurable; and �0 = �0: (iv) If

A.1(iii) also holds, then �0 and �0 are fully identi�ed. �

13



General e¤ects also arise from the covariate-conditioned counterfactual optimizer

�0(d j x) := argmax
m

Z
�(r(d; z; u);m) dG(u j x);

where � : R � R� ! R is known, so that �0(d j x) is a � � 1 vector of aspects of
the counterfactual conditional distribution. For example, e¤ects on the conditional �-

quantiles of the response arise from

�(r;m) = � jr �mj (�1[r � m] + (1� �)1[r < m]):

Now �0(d j x) de�nes the covariate-conditioned counterfactual �-quantile function, a
conditional analog of the �quantile structural function� of Imbens and Newey (2003).

The associated e¤ect is the covariate-conditioned analog of the quantile treatment e¤ect

of Lehmann (1974) and Abadie, Angrist, and Imbens (2002).

When m is a vector and �(r;m) de�nes a quasi-log-likelihood function, this method

focuses attention simultaneously on multiple aspects of the counterfactual conditional

response distribution, such as location, scale, or quantiles. Taking �(r;m) to de�ne an

agent�s utility function, as in Elliott and Lieli (2005), Skouras (2007), or Lieli and White

(in press), yields distributional aspects, �0(d j x); of the counterfactual response that
determine optimal decisions. When the agent controls D, these aspects make possible the

determination of expected utility-optimal settings

d�(x) = arg max
d2 supp(DjX=x)

&� (d j x; �0(d j x));

where &� and �0 are as de�ned below. Such settings lie at the heart of optimizing behavior

under uncertainty.

Theorem 3.2 Suppose Assumption A.1(i) holds. (i) For � 2 N , let � : R � R� ! R

be a known measurable function such that E(�(Y;m)) < 1 for each m in R�. Then for

each m in R�; '� (D;X;m) := E(�(Y;m) j D;X) exists and is �nite. (ii) Suppose A.1(ii)
also holds. Then for each (d; x;m) in supp(D;X)� R�

'� (d; x; m) =

Z
�(r(d; z; u);m) dG(u j d; x)

14



exists and is �nite. Further, let � ; r, and (d; x) ! G(� j d; x) be such that '� (d; x;m)
de�nes a continuous real-valued function on supp(D;X)�R�, and let M : supp(D;X)!
R� be a non-empty and compact-valued continuous correspondence. Then for each (d; x)

in supp (D;X) the correspondence

�0(d; x) = arg max
m2M(d;x)

'� (d; x;m)

is non-empty, compact-valued, and upper hemi-continuous. (iii) If A.2 also holds, then

&� (d j x; m) :=
Z
�(r(d; z; u);m) dG(u j x)

de�nes a continuous real-valued function on supp (D;X) � R� such that for each (d; x;m)
in supp(D;X)� R� we have &� (d j x; m) = '� (d; x;m); the correspondence

�0(d j x) = arg max
m2M(d;x)

&� (d j x; m)

is non-empty, compact-valued, and upper hemi-continuous; and �0 = �0: (iv) If A.1(iii)

also holds then �0 and �0 are fully identi�ed. �

A third way to de�ne e¤ects uses implicitly de�ned moments �0(d; x) such thatZ
�(r(d; z; u); �0(d; x)) dG(u j x) = 0;

where � : R � R� ! R� is known. This method has not been previously studied to the

best of our knowledge, although it contains many instances of the moment or optimizer

approaches as special cases. For example, this �0(d; x) can represent �rst order conditions

de�ning the interior optimizer of some objective function. The implicit moment approach

generalizes and complements the optimizer approach in the same way that method of

moments estimation generalizes and complements maximum likelihood estimation.

Theorem 3.3 Suppose Assumption A.1(i) holds. (i) For � 2 N , let � : R� R� ! R�

be a measurable function such that E(�(Y;m)) < 1 for each m 2 M � R�. Then for

each m 2M;  � (D;X;m) := E(�(r(D;Z; u);m) j D;X) exists and is �nite. (ii) Suppose
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A.1(ii) also holds. Then for each (d; x;m) in supp(D;X)�M

 � (d; x;m) =

Z
�(r(d; z; u);m) dG(u j d; x)

exists and is �nite. Further, let � ; r, and (d; x)! G(� j d; x) be such that for each (d; x;m)
in supp(D;X)�M ,  � is di¤erentiable on a neighborhood of (d; x;m), the �� � matrix
rm � (d; x;m) is non-singular, and  � (d; x;m) = 0. Then there exists a unique function

�0 such that for each (d; x) 2 supp(D;X), �0 is di¤erentiable at (d; x), andZ
�(r(d; z; u); �0(d; x)) dG(u j d; x) = 0:

(iii) If A.2 also holds, then there exists a unique function �0 such that for each (d; x) 2
supp(D;X), �0 is di¤erentiable at (d; x);Z

�(r(d; z; u); �0(d j x)) dG(u j x) = 0;

and �0 = �0. (iv) If A.1(iii) also holds then �0 and �0 are fully identi�ed. �

In each case, for admissible (d; d�; x), the ��e¤ect of the intervention d ! d� to D

given X = x is

��(d; d� j x) := �(d� j x)� �(d j x):

Our results identify these in terms of the corresponding � as

��(d; d� j x) = ��(d; d�; x) := �(d�; x)� �(d; x):

The value x need not be factual, so there is an allowed counterfactual aspect to con-

ditioning, although this is not a structural aspect. Comparing the expected e¤ects of

an intervention d ! d� for di¤erent values x and x� gives an average �-e¤ect di¤erence

��(d; d� j x�) � ��(d; d� j x). This measures the impact on e¤ect expectations of a
"change" in the covariates.

In Section 2.2, we studied average marginal e¤ects. We defer treating general marginal

e¤ects to Section 4, where we study weaker conditions for identi�cation.
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3.2 Unconditional E¤ects

Covariate-conditioned e¤ects can be used to construct unconditional e¤ects. For given

(d; d�); let F be a distribution supported on a subset of supp(X) on which ��(d; d� j x)
is de�ned, namely, supp(X j D = d�) \ supp(X j D = d): This ensures the analog of

the common support assumption (cf. Imbens and Newey, 2003). The unconditional(�F )
�-e¤ect mean is then given by

m1(d; d
�; ��; F ) :=

Z
��(d; d� j x) dF (x):

When�� is fully identi�ed, then so ism1. For example, consider a single binary treatment,

with ��(0; 1 j x) the covariate-conditioned average e¤ect of treatment. Let F = F1, the

covariate distribution for the treated observations (D = 1), assuming common support.

Then m1(0; 1;��; F1) is the average e¤ect of treatment on the treated (e.g., Rubin, 1974).

Similarly, the unconditional(�F ) marginal �-e¤ect mean is

m1(d;Dj�; F ) :=

Z
Dj�(d j x) dF (x):

Other descriptors of the distribution of ��e¤ects can be straightforwardly de�ned using
other unconditional(�F ) �-e¤ect moments, such as the kth moments,

mk(d; d
�; ��; F ) : =

Z
��(d; d� j x)k dF (x) or

mk(d;Dj�; F ) : =

Z
Dj�(d j x)k dF (x):

3.3 Implications for Estimation

When � is fully identi�ed, it su¢ ces to estimate the corresponding stochastic aspect �, as

e¤ect estimates follow by taking suitable di¤erences or derivatives. We now brie�y sketch

the construction of estimators.

First, consider the covariate-conditioned optimizer of Theorem 3.2,

�0(d; x) := argmax
m

Z
�(r(d; z; u);m) dG(u j d; x):
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This implies

�0 = argmax
�

Z
�(r(d; z; u); �(d; x)) dG(u j d; x) dH(d; x):

To estimate �0, parameterize � by specifying a function of parameters �, de�ned by

m(d; x; �), say, such thatm(d; x; ��) = �0(d; x) for all (d; x) in supp (D;X): Then �
� solves

max
�2�

Z
�(r(d; z; u);m(d; x; �)) dG(u j d; x) dH(d; x);

where � is an appropriate �nite or in�nite dimensional parameter space.

Given a sample of n observations (Yi; Di; Xi), an estimator �̂n of �
� solves

max
�2�n

n�1
nX
i=1

�(Yi;m(Di;Xi; �));

where f�ng is a suitable sequence of subsets of �. If �n = � and � is �nite dimensional,
the method is parametric. Semi-parametric and nonparametric methods are handled

by letting � be in�nite dimensional. For example, one may apply the method of sieves

(Grenander, 1981; Chen, 2005).

Next, consider the covariate-conditioned implicit moment �0 such thatZ
�(r(d; z; u); �0(d; x)) dG(u j d; x) = 0:

As above, parameterize �0, specifying a parameter space � and a function � ! m(d; x; �),

such that m(d; x; ��) = �0(d; x) for all (d; x) in supp (D;X). Then �
� satis�esZ

�(r(d; z; u);m(d; x; ��)) dG(u j d; x) dH(d; x) = 0:

That is, �� solves the implicit moment conditionsE[�(Y;m(D;X; ��))] = 0: To estimate ��,

apply parametric, semi-parametric, or nonparametric versions of the method of moments.

For example, Hansen (1982) and Ai and Chen (2003) describe the properties of such

estimators under general conditions. One can also apply Owen�s (1988, 2001) empirical

likelihood methods (see also, e.g., Schennach (2007) or Ragusa (2005)).

Kernel methods apply straightforwardly to nonparametric estimation of explicit mo-

ments. See, e.g., Pagan and Ullah (1999), Li and Racine (2007). Li, Lu, and Ullah
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(2003) and Schennach, White, and Chalak (2007) give results for estimating derivatives

of conditional expectations.

The results of Section 3.1 thus ensure structural interpretations, based on the use of

covariates, for fully identi�ed aspects of the response distribution estimated by parametric,

semi-parametric, or nonparametric extremum and method of moments procedures. As

this covers most procedures commonly used in econometrics, this ensures that each of

these methods can exploit covariates to deliver structural content. In particular, under

full identi�cation, di¤erences and derivatives of estimators �̂n = m(�; �; �̂n) with respect
to elements of causes of interest D have structural meaning. In line with our discussion of

Section 2.2, di¤erences and derivatives with respect to elements of the covariates X have

expectational or predictive content, but no necessary structural meaning.

Estimators of unconditional e¤ects are given bym1(d; d
�; ��̂n; F̂n) andm1(d;Dj�̂n; F̂n),

for example, where F̂n is an estimator of F , such as an empirical distribution or a smoothed

empirical distribution.

4 Identi�cation Without Conditional Exogeneity

We now study identi�cation without conditional exogeneity. This yields conditions ensur-

ing identi�cation at speci�c values (d; x), i.e., locally. In some cases, we obtain necessary

and su¢ cient conditions. We also obtain �near identi�cation�results.

4.1 Explicit Moment E¤ects

We �rst consider the relationship between �k and �k of Theorem 3.1 without A.2.

Theorem 4.1 Suppose that A.1(i) holds and let

s(d; x; u) := 1� dG(u j x) = dG(u j d; x) = 1� dG(d j x) = dG(d j u; x):

(i) Then for all (d; x) 2 supp (D;X),
R
s(d; x; u) dG(u j d; x)) = 0; (ii) Further, let

A.1(ii) and the remaining conditions of Theorem 3.1(i) hold, and suppose that E(s(D;X;U)2) <

1 and E(� k(Y )2) < 1, k = 1; 2; : : : . Then for all (d; x) 2 supp (D;X), �k(d j x) as
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de�ned in Theorem 3.1(ii) exists and is �nite, and

�k(d; x) = �k(d j x) + 
k(d; x);

where


k(d; x) :=

Z
� k(r(d; z; u)) s(d; x; u) dG(u j d; x); k = 1; 2; : : : :

(iii) Further, for all (d; x) 2 supp (D;X);

j
k(d; x)j � �(d; x; � k) �(d; x; s); k = 1; 2; : : : ;

where �(d; x; � k) := [var (� k(Y ) j (D;X) = (d; x))]1=2 and �(d; x; s) := [var (s(D;X;U) j
(D;X) = (d; x))]1=2: �

The discrepancy score s(d; x; u) measures the relative departure from conditional exogene-

ity at (d; x; u). By (i), the discrepancy score has conditional mean zero.

By (ii), �k(d; x) di¤ers from �k(d j x) by the moment discrepancy 
k(d; x), which,

given (i), is the conditional covariance of � k(Y ) and s(D;X;U). Thus, 
k(d; x) = 0 is

necessary and su¢ cient for stochastic identi�cation of �k(d j x). This is a local identi�-
cation result, speci�c to a particular (d; x). Conditional exogeneity is su¢ cient for this,

but not necessary. It su¢ ces that s(d; x; u) = 0 for all u 2 supp (U j (D;X) = (d; x)):
Chesher (2003, 2005) and Matzkin (2004) give related results involving local identi�cation

under some monotonicity assumptions.

The Cauchy-Schwarz inequality gives (iii), bounding the moment discrepancy and

establishing a form of continuity with respect to (i) local dependence of � k(Y ) on unob-

servables, measured by �(d; x; � k); and (ii) departures from local conditional exogeneity,

measured by �(d; x; s). If either is small, then so is the moment discrepancy. Theorem

4.1(iii) is thus a near identi�cation result. The bound is best possible, as equality holds

when j� k(r(d; z; u))j = js(d; x; u)j for given (d; x) and all u in supp(U j (D;X) = (d; x)).
Similar results follow by applying the Hölder inequality.

Theorem 3.1 treats �0(d; x) = � 0(�1(d; x), �2(d; x); : : :) and �0(d; x) = � 0(�1(d; x),
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�2(d; x); : : :). The general moment discrepancy is


0(d; x) := �0(d; x)� �0(d; x):

If � 0 is a¢ ne in its arguments (e.g., the covariate-conditioned average response),


0(d; x) = � 0(
1(d; x); 
2(d; x); : : :):

Theorem 4.1(ii) then implies that the �apparent e¤ect���0(d; d
�; x) is contaminated by

the e¤ect discrepancy

�
0(d; d
�; x) = � 0(�
1(d; d

�; x);�
2(d; d
�; x); : : :);

where �
k(d; d
�; x) := 
k(d

�; x)� 
k(d; x); k = 1; 2; : : :.

Even if � 0 is not a¢ ne, 
0 depends globally and smoothly on the 
k�s, under plausible

conditions. For brevity, let � 0 depend continuously on � := (�1; : : : ; ��)
0 taking values in

a compact set, K. Then

� 0(�) =
1X
i=1

aicos (�0�i) +
1X
i=1

bi sin(�
0�i);

gives the Fourier series representation, where ai�s and bi�s are Fourier coe¢ cients, �i�s are

appropriate multi-frequencies, and equality is in the sense of uniform convergence. Then

� 0(�)� � 0(�) = [

1X
i=1

ai cos(�
0�i)�

1X
i=1

ai cos(�
0�i)] + [

1X
i=1

bi sin(�
0�i)�

1X
i=1

bi sin(�
0�i)]

for any �; � 2 K. Standard trigonometric identities give

cos(u)� cos(v) = 2 sin(u) cos([v � u]=2) sin([v � u]=2) + 2 cos(u) sin2([v � u]=2)

sin(u)� sin(v) = �2 cos(u) cos([v � u]=2) sin([v � u]=2) + 2 sin(u) sin2([v � u]=2):
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Letting 
 := �� � and substituting into � 0(�)� � 0(�) then gives


0(�; 
) = 2
1X
i=1

[ai sin(�
0�i)� bi cos(�

0�i)] cos(

0�i=2) sin(


0�i=2)

+ 2

1X
i=1

[ai cos(�
0�i) + bi sin(�

0�i)] sin
2(
0�i=2):

The general moment discrepancy 
0 thus depends globally and smoothly on 
. Theorem

4.1(iii) then ensures that the e¤ect discrepancy �
0 inherits continuity with respect to

both conditional dependence and local dependence of the response on unobservables.

Thus, neglecting to proxy unobservables that have minor relevance for determining

either the response or the cause of interest leads to correspondingly minor distortions

in the apparent e¤ect. Priority should therefore be given to including proxies for those

unobservables most relevant to determining the response and causes of interest.

Marginal e¤ects are similarly a¤ected when A.2 fails. We add further structure,

gaining analytic convenience without losing much generality. We now require that possible

values for U do not depend on the realization of D, though they may depend on that of X.

This permits conditional dependence, as the probabilities associated with these possible

values can depend on the realization of D.

Recall that a �-�nite measure � is absolutely continuous with respect to a �-�nite

measure �, written � � �, if �(B) = 0 for every measurable set B such that �(B) = 0. If

� � �, we say � dominates � and call � a "dominating measure." The Radon-Nikodym

theorem states that if � � �, then there exists a positive measurable function f = d�=d�,

the Radon-Nikodym density, such that �(A) =
R
A
f d� for every measurable set A.

Assumption A.4 For each x 2 supp X, there exists a �-�nite measure �( � j x)
such that (i) for each (d; x) 2 supp(D;X), the measure G(B j d; x) =

R
B
dG(u j d; x) is

absolutely continuous with respect to �( � j x); (ii) for each x 2 supp (X), the measure
G(B j x) =

R
B
dG(u j x) is absolutely continuous with respect to �( � j x).

By Radon-Nikodym, there exist conditional densities, say g(u j d; x) and g(u j x) such
that dG(u j d; x) = g(u j d; x) d�(u j x) and dG(u j x) = g(u j x) d�(u j x): Conditional
dependence arises whenever g(u j d; x) depends non-trivially on d.
Next, we impose di¤erentiability and domination conditions.
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Assumption A.5 For given j, Djg (u j d; x) is dominated on Cj by a function integrable
with respect to �( � j x) at (d; x).

We also impose the analog of A.3:

Assumption A.6 For given j and k = 1; 2; : : : ; Dj[(� k � r)g](d; x; u) is dominated on
Cj by a function integrable with respect to �( � j x) at (d; x).

The di¤erentiability of g implicit in A.5 and di¤erentiability of � k � r with respect to dj
implicit in A.6 ensure existence of the product derivative Dj[(� k � r)g].

Theorem 4.2 Suppose Assumptions A.1(i) and A.4 hold and let s(d; x; u) := 1� g(u j
x) = g(u j d; x) = 1 � g(d j x)=g(d j u; x) (i.a) Then for all (d; x) 2 supp (D;X);R
s(d; x; u) g(u j d; x) d�(u j x) = 0: (i.b) If A.5 also holds, then for the given (d; x)Z

Dj log g (u j d; x) g(u j d; x) d�(u j x) = 0:

(ii) Further, let A.1(ii), A.6, and the remaining conditions of Theorem 3.1(i) hold. Then

the functions dj ! �k(d; x), k = 1; 2; : : :, are di¤erentiable on Cj and

Dj�k(d; x) =

Z
Dj� k(r(d; z; u)) g(u j d; x) d�(u j x)

+

Z
� k(r(d; z; u))Dj log g(u j d; x) g(u j d; x) d�(u j x):

(iii) If, in addition for k = 1; 2; : : : E([Dj� k(r(D;Z; U))]
2) < 1 and E(s(D;X;U)2) <

1, then for k = 1; 2; : : :

Dj�k(d; x) = �k;j(d j x) + �1;k;j(d; x) + �2;k;j(d; x); where

�k;j(d j x) : =

Z
Dj� k(r(d; z; u)) g(u j x) d�(u j x)

�1;k;j(d; x) : =

Z
Dj� k(r(d; z; u)) s(d; x; u) g(u j d; x) d�(u j x)

�2;k;j(d; x) : =

Z
� k(r(d; z; u))Dj log g(u j d; x) g(u j d; x) d�(u j x):

(iv)(a) Letting �(d; x;Dj(� k � r)) := [ var (Dj� k(r(D;Z; U)) j (D;X) = (d; x))]1=2;

j �1;k;j(d; x) j� �(d; x;Dj(� k � r))�(d; x; s):
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(b) If in addition E([Dj log g(U j D;X)]2) <1 and E(� k(Y )2) <1, k = 1; 2; : : :, then

j�2;k;j(d; x)j � �(d; x; � k)�(d; x;Dj log gd)

where �(d; x;Dj log gd) := [
R
fDj log g(u j d; x)g2 g(u j d; x) d�(u j x)]1=2: �

Thus, Dj�k is a contaminated version of �k;j, the covariate-conditioned average mar-

ginal � k moment e¤ect. The e¤ect discrepancy is �k;j := �1;k;j + �2;k;j. Conditional

exogeneity is su¢ cient but not necessary for this to vanish. The e¤ect discrepancy com-

ponent �1;k;j(d; x) vanishes if the discrepancy score s(d; x; u) vanishes for all u. The

e¤ect discrepancy component �2;k;j(d; x) vanishes if the marginal discrepancy score Dj log

g(u j d; x) vanishes for all u: Result (iv) bounds the moment discrepancies. We thus

have local identi�cation and near identi�cation results analogous to those of Theorem 4.1.

Results relating to Dj�0 to Dj�0 follow straightforwardly. For brevity, let � 0 depend

on a ��1 vector, and write � := (�1; : : : ; ��)0 and � := (�1; : : : ; ��)0. The chain rule gives
Dj�0 = r0� 0(�)(Dj�);Dj�0 = r0� 0(�)(Dj�);where r� 0 is the �� 1 gradient vector of � 0
with respect to its arguments, and Dj� and Dj� are � � 1 vectors (Dj operates element
by element). Adding and subtracting appropriately gives

Dj�0 � Dj�0 = r0� 0(�)[Dj�� Dj�]

+[r0� 0(�)�r0� 0(�)] (Dj�)� [r0� 0(�)�r0� 0(�)][Dj�� Dj�]

= r0� 0(�)�j +r0
0(�; 
)(Dj�)�r0
0(�; 
)�j;

=: �0(�; 
; �j);

where �j is the vector with elements �k;j and r0
0(�; 
) = r0� 0(�)�r0� 0(�) holds with


 := � � � and smoothness assumptions on � 0 su¢ cient for the Fourier series approxi-

mation above to hold in a suitable Sobolev norm. The marginal general moment e¤ect

discrepancy �0(�; 
; �j) can vanish for speci�c values of (d; x) under special circumstances.

It vanishes for all (d; x) under conditional exogeneity.
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4.2 Implicit Moment E¤ects

We subsume optimizer-based e¤ects into the study of implicit moment e¤ects, viewing

optimizer-based distributional aspects as implicit moments de�ned by the �rst order con-

ditions of the underlying optimization.

The implicit nonlinear de�nitions of �0 and �0 present signi�cant challenges to directly

obtaining a tractable representation for the implicit moment discrepancy 
0 := �0 � �0,

so for brevity we do not treat this here. Nevertheless, implicitly de�ned moments can

often be well approximated by the explicit moments analyzed in Theorems 3.1 and 4.1.

An analysis of marginal e¤ects analogous to Theorem 4.2 is more straightforward. To

succinctly state our next result, we now writeZ
�� gd d� =

Z
�(r(d; z; u); �0(d; x)) g(u j d; x) d�(u j x):

When the integral of Theorem 4.3(ii) below exists, we writeZ
� � g d� =

Z
�(r(d; z; u); �0(d j x)) g(u j x) d�(u j x):

When the referenced derivatives exist, we now write Dj�0 as the ��1 vector containing
the derivatives Dj�0;i(d; x); i = 1; : : : ; �, and Dj�0 is now the � � 1 vector containing
Dj�0;i(d j x); i = 1; : : : ; �. For �(r;m), let rr� � denote the � � 1 vector containing
(@=@r)� i(r(d; z; u), �0(d j x)), i = 1; : : : ; �; let rr�� denote the � � 1 vector containing
(@=@r)� i(r(d; z; u), �0(d; x)); i = 1; : : : ; �; let r0

m�� denote the � � � matrix whose ith

row has elements (@=@mj)� i(r(d; z; u); �0(d; x)), j = 1; : : : ; �, i = 1; : : : ; �; and let r0
m� �

denote the �� � matrix whose ith row has elements (@=@mj)� i(r(d; z; u), �0(d j x)), j =
1; : : : ; �, i = 1; : : : ; �. When the integrals and inverses exists, we de�ne Q� := �

R
r0
m��

gd d�, Q� := �
R
r0
m� � g d�:

Assumption A.7 (i) The elements of �(r(d; z; u), �0(d; x)) g(u j d; x) are dominated
on Cj by a function integrable with respect to �(� j x) at (d; x). (ii) The elements of
�(r(d; z; u), �0(d j x)) are dominated on Cj by a function integrable with respect to

dG(� j x) at (d; x).

Theorem 4.3. (i) Suppose the conditions of Theorem 3.3(i) and A.1(ii) hold, that
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E(s(D;X;U)2) < 1, and that E(�(Y;m)2) < 1 for each m 2M � R�. Then for each

(d; x;m) in supp (D;X) � M the conditional expectation

 � (d; x;m) =

Z
�(r(d; z; u);m) dG(u j x)

exists and is �nite. (ii) Further, let � ; r; and x! G(� j x) be such that for each (d; x;m)
in supp (D;X) � M ,  � is di¤erentiable on a neighborhood of (d; x;m), the ��� matrix
rm � (d; x;m) is non-singular, and  � (d; x;m) = 0. Then there exists a unique function

�0 such that for each (d; x) 2 supp (D;X), �0 is di¤erentiable at (d; x) andZ
�(r(d; z; u); �0(d j x)) dG(u j x) = 0:

(iii) If A.4(ii) and A.7(ii) also hold, if � is di¤erentiable and for the given (d(j); x),

(dj; u) ! Djr(d; z; u) exists on Cj � supp (U j z), and if Q� exists and is �nite and
non-singular, then

Dj�0 = Q�1�

Z
rr� � (Djr) g d�:

(iv) If in addition A.4(i) and A.7(i) hold and if Q� exists and is �nite and nonsingular,

then Dj�0 = Dj�0 + �0;j; where

�0;j := �1;j + �2;j + �3;j

�1;j := Q�1�

Z
rr� �(Djr) s gd dv

�2;j := Q�1�

Z
�� (Dj log gd) gd dv

�3;j :=

Z
(Q�1� rr �� �Q�1� rr � �) Djr gd dv:

(v)(a) Suppose E[(5r�(Y; �0(D j X))0 5r�(Y; �0(D j X)) (Djr(D;Z; U))
2] < 1,

de�ne ~�( � ;5r� Djr) := [
R
5r�

0
� 5r � �(Djr)

2 gd dv]
1=2, and let ��� denote the largest

eigenvalue of (Q�10� Q�1� ). Then

k�1;jk := (�01j�1j)1=2 � ��
1=2
� ~�( � ;5r�Djr) �( � ; s):

(b) Suppose E[�(Y; �0(D;X))
0 �(Y; �0(D;X))] <1, de�ne ~�( � ; ��) := [

R
� 0��� gd dv]

1=2,
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and let ��� denote the largest eigenvalue of (Q�10� Q�1� ). Then

k�2;jk � ��
1=2
� ~�( � ; ��) �( � ;Dj log gd):

(c) Suppose E [5r�(Y; �0(D;X))
0 5r�(Y; �0(D;X))] < 1 and E[5r �(Y; �0(D j X))0

5r � (Y; �0(D j X))] < 1, and de�ne ~�( � ;Q�1� 5r �� �Q�1� 5r � �) := [
R
(Q�1� 5r �� �

Q�1� 5r � �)
0 (Q�1� 5r ���Q�1� 5r � �) gd dv]

1=2 and ~�( � ;Djr) := [
R
(Djr)

2 gddv]
1=2. Then

k�3jk � ~�( � ;Q�1� 5r �� �Q�1� 5r � �)� ~�( � ;Djr): �

The functions in (iii)� (v) above are implicitly evaluated at (d; x) as speci�ed in A.7.
To interpret the marginal implicit moment e¤ect discrepancy �0;j, note that each of

its components vanishes under conditional exogeneity, as then s = 0, Dj log gd = 0; and

Q�1� rr���Q�1� rr� � = 0 (Theorem 3.3). If conditional exogeneity fails but the marginal

e¤ect Djr (d; z; u) is zero for all u in supp (U j d; x), the true marginal implicit moment
e¤ect vanishes (Dj�0(d j x) = 0), but the apparent e¤ect becomes

�0;j := Q�1�

Z
�� (Dj log gd) gd d�:

The important special case �(r;m) = r�m o¤ers further insight. Here Q� = Q� = 1

and rr�� = rr� � = 1. In this case, we have (cf. Theorem 4.2(iii))

�0;j :=

Z
(Djr) s gd d� +

Z
��(Dj log gd) gd d�:

Theorem 4.3 a¤ords considerable opportunity to explore special cases of interest (for

example, when � = 1, consider the anti-symmetric case in which �(r;m) = ��(m; r),
which applies to the conditional median). For brevity, we leave this aside here.

The �rst two components of �0;j are clearly conditional covariances, given that s and

Dj log gd have conditional mean zero. The third term is generally not a covariance

because there is no need for Djr or Q�1� rr�� �Q�1� rr� � to have conditional mean zero.

Nevertheless, under a hypothesis of no e¤ect, speci�cally, that Djr has conditional mean

zero, the third term is again a covariance. Result (v) provides a near identi�cation and

continuity result, generalizing that of Theorem 4.2(iv).
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5 Summary and Conclusion

We examine the use of covariates to identify and estimate structural e¤ects of multiple

causes. These can be binary, categorical, or continuous. For the case of continuous causes,

we examine both marginal and non-marginal e¤ects. We analyze e¤ects generally de�ned,

based on explicit or implicit moments, as well as on aspects of the response distribution

de�ned as optimizers (e.g., quantiles). The latter lead to extremum estimators; the former

lead to method of moment estimators. As we show, the procedures commonly used in

econometrics, for example parametric, semi-parametric, and nonparametric extremum or

moment-based methods, can all exploit covariates to estimate well-identi�ed structural

e¤ects. These results hold for general structural systems, without imposing linearity,

separability, or monotonicity.

We also study the role of conditional exogeneity by examining what happens in its

absence. We �nd that identi�cation generally fails, although it may hold locally. We also

obtain near identi�cation results that provide insight into how the various e¤ect measures

are impacted by departures from local conditional exogeneity and the sensitivity of the

response of interest to unobservables.

There are a variety of directions for further investigation. Of particular interest are

analyzing e¢ ciency bounds for extremum and moment-based estimators of e¤ects under

conditional exogeneity in nonseparable settings, developing tests for conditional exogene-

ity, and developing tests for restrictions such as monotonicity or separability in the context

of general nonseparable structures.

A Mathematical Appendix

Proof of Proposition 2.1 (i) Given A.1(i) and E(Y ) <1 , E(Y j D;X) exists and is
�nite by Billingsley (1979, p.395). (ii) Apply theorem 34.5 of Billingsley (1979). �

Proof of Theorem 2.2 (i:a) Given A.1(i; ii) and E(Y ) < 1, Proposition 2.1 gives
�(d; x) =

R
r(d; z; u) dG(u j d; x). Assumptions A.1(ii) and A.2 then imply

R
r(d; z; u)

dG(u j d; x) =
R
r(d; z; u) dG(u j x) = �(d j x), ensuring both existence of �(d j x)

and �(d j x) = �(d; x). (i:b) The result follows immediately from the identi�cation

de�nitions given A.1(iii). (ii:a) Assumption A.3 permits application of Bartle (1966,
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corollary 5.9) establishing the di¤erentiability of � and � (by (i)) and ensuring the validity

of an interchange of derivative and integral, giving

Dj�(d; x) = Dj�(d j x)

=

Z
Djr (d; z; u) dG(u j x) (=: �j(d j x))

=

Z
Djr(d; z; u) dG(u j d; x):

The �rst equality holds by (i:a). In the second, A.3 ensures the interchange of derivative

and integral, and A.1(ii) ensures the absence of terms involving (@z=@dj). The third

equality follows by A.2. (ii:b) Immediate, given A.1(iii). �

Proof of Proposition 2.3 D;U; V; and X exist by Assumption A.1(i). Dawid (1979,

lemma 4.3) establishes the if part and Dawid�s (1979) lemma 4.2 and the symmetry of

conditional independence establish the converse, as Dawid (1979) states. �

Proof of Theorem 3.1. (i) For given k = 1; 2; : : : ; the proof is identical to that

of Proposition 2.1(i), mutatis mutandis (replacing r with � k � r). The measurability

of �0 follows by measurability of compositions of measurable functions. (ii; iii) For

given k = 1; 2; : : : ; the proof is identical to that of Theorem 2.2(i:a), mutatis mutandis.

Measurability follows for �0 just as for �0. That �0 = �0 follows immediately from

�k = �k, k = 1; 2; : : : . (iv) Immediate, given A.1(iii). �

Proof of Theorem 3.2. (i) Given E(�(Y;m)) < 1, the existence and �niteness of
'� (d; x;m) follow from Billingsley (1979, p.395). (ii) For each (d; x) in supp (D;X),

the existence of the non-empty, compact-valued, upper hemi-continuous correspondence

�0(d; x) follows from the Theorem of the Maximum (Berge, 1963) under the stated condi-

tions. (iii) If A.1(ii) and A.2 also hold, then for each (d; x;m) 2 (D;X) � R� '� (d; x;m)
= &� (d j x;m). Setting �0 (d j x) = �0 (d; x) completes the proof. (iv) Immediate, given

A.1(iii). �

Proof of Theorem 3.3. (i) Given E(�(Y;m)) < 1, the existence and �niteness of
 � (d; x;m) follow from Billingsley (1979, p. 395). (ii) The existence, uniqueness, and

di¤erentiability of �0 follow immediately under the given conditions from the implicit

function theorem (e.g., Chiang, 1984, pp. 210-211). (iii) If A.1(ii) and A.2 also hold,
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then for each (d; x) 2 supp (D;X)Z
�(r(d; z; u); �0(d; x)) dG(u j d; x) =

Z
�(r(d; z; u); �0(d; x)) dG(u j x):

Setting �0(d j x) = �0(d; x) completes the proof. (iv) Immediate, given A.1(iii). �

Proof of Theorem 4.1. Given A.1(i), the densities dG(u j d; x) and dG(u j x) exist and
can be written dG(u j d; x) = dG(d; x; u) / dG(d; x) and dG(u j x) = dG(x; u) / dG(x).

Consequently, dG(u j x) / dG(u j d; x) = [dG(x; u) / dG(x)] / [dG(d; x; u) / dG(d; x)] =
[dG(d; x) / dG(x)] / [dG (d; x; u) / dG(x; u)] = dG(d j x) / dG(d j u; x). (i) We haveR
s(d; x; u) dG(u j d; x) =

R
f[dG(u j d; x) � dG(u j x)] / dG(u j d; x)g dG(u j d; x) =R

[dG(u j d; x)� dG(u j x)] = 0, given that dG(u j d; x) and dG(u j x) are each conditional
densities. (ii) Given A.1(ii) and the conditions on � k, Theorem 3.1(i) gives �k(d; x) =R
� k(r(d; z; u)) dG(u j d; x). Adding and subtracting appropriately, with A.1(ii) we have

�k(d j x) : =

Z
� k(r(d; z; u)) dG(u j x)

=

Z
� k(r(d; z; u)) dG(u j d; x) +

Z
� k(r(d; z; u)) [dG(u j x)� dG(u j d; x)]

= �k(d; x) +

Z
� k(r(d; z; u))f[dG(ujx)� dG(u j d; x)] / dG(u j d; x)g dG(u j d; x)

= �k(d; x)�
Z
� k(r(d; z; u)) s(d; x; u) dG(u j d; x)

= �k(d; x)� 
k(d; x):

The existence of �k(d; x) follows given E(� k(Y )) <1 and the existence of 
k(d; x) follows

from the imposed second moment conditions and the Cauchy-Schwarz inequality. It

follows that �k(d j x) exists and �k(d; x) = �k(d j x) + 
k(d; x). (iii) The result follows

immediately from the Cauchy-Schwarz inequality, applied to (ii) and using (i). �

Proof of Theorem 4.2. (i:a) Assumptions A.1(i) and A.4(i) ensure that for each (d; x)

in supp (D;X), g(u j d; x) = dG(u j d; x) / d�(u j x) is a density by the Radon-Nikodym
theorem (e.g., Bartle, 1966, theorem 8.9), so

R
g(u j d; x) d�(u j x) = 1. (i:b) Assumption

A.5 ensures that the left hand expression above is di¤erentiable with respect to dj by

Bartle (1966, corollary 5.9). Di¤erentiating both sides of this equality with respect to dj
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gives

Dj

Z
g(u j d; x) d�(u j x) = 0:

Assumption A.4 further justi�es interchanging the derivative and integral on the left by

Bartle (1966, corollary 5.9), so thatZ
Djg(u j d; x) d�(u j x) = 0:

Substituting Djg(u j d; x) = Dj log g(u j d; x) g(u j d; x) delivers the desired result. (ii)
Given A.1(ii) and the conditions on � k, Theorem 3.1(i) gives �k(d; x) =

R
� k(r(d; z; u))

dG(u j d; x). Substituting dG(u j d; x) = g(u j d; x) d�(u j x) gives

�k(d; x) =

Z
� k(r(d; z; u)) g(u j d; x) d�(u j x):

Assumption A.6 permits application of Bartle (1966, corollary 5.9), ensuring di¤erentia-

bility of �k and the validity of an interchange of derivative and integral. Thus,

Dj�k(d; x) =

Z
Dj((� k � r)g)(d; x; u) d�(u j x)

=

Z
Dj(� k � r)(d; z; u) g(u j d; x) d�(u j x)

+

Z
� k(r(d; z; u)) Djg(u j d; x) d�(u j x);

where A.1(ii) ensures the absence of terms involving (@x=@dj) in the second equality.

Substituting Djg(u j d; x) = Dj log g(u j d; x) g(u j d; x) delivers the result. (iii) The

moment conditions ensure jE(Dj� k(r(D;Z; U)) s(D;X;U))j < 1 by Cauchy-Schwarz,

ensuring the existence of �1;k;j(d; x) and thus of

�k;j(d j x) =
Z
Dj� k(r(d; z; u)) g(u j d; x) dv(u j x)� �1;k;j(d; x):

The result now follows from (ii). (iv) The result follows immediately from the Cauchy-

Schwarz inequality, applied to (iii) and using (i). �
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Proof of Theorem 4.3 (i) We write

 � (d; x;m) : =

Z
�(r(d; z; u);m) dG(u j x)

=

Z
�(r(d; z; u);m)[dG(u j x) / dG(u j d; x)] dG(u j d; x):

The imposed second moment conditions ensure the existence and �niteness of this integral

by Cauchy-Schwarz. (ii) The existence, uniqueness, and di¤erentiability of �0 follow

immediately under the given conditions from the implicit function theorem (e.g., Chiang,

1984, pp. 210-211). (iii) Given the assumed di¤erentiability of  � and Assumption

A.7(ii), we have

Dj � (d; x; �0(d; x)) =

Z
Dj�(r(d; z; u); �0(d; x; )) dG(u j x) = 0;

where the interchange of integral and derivative is justi�ed by Bartle (1966, corollary 5.9),

and the equality holds because  � (d; x; �0(d; x)) = 0 for all (d; x) in supp (D;X). Using

the assumed di¤erentiability of � and r; the di¤erentiability of �0 ensured by (ii), and the

chain rule gives Z
[rr� � Djr +r0

m� � Dj�0] dG(u j x) = 0;

where we exploit the notation introduced preceding Theorem 4.3 in the text. Solving for

Dj�0 given the assumed existence of Q
�1
� = �[

R
r0
m� � dG(u j x)]�1 yields

Dj�0 = Q�1�

Z
rr� � Djr dG(u j x) = Q�1�

Z
rr� � Djr g d�;

where the second equality holds given A.4(ii). (iv) A similar argument invoking A.4(i)

and A.7(i) instead of A.4(ii) and A.7(ii) gives

Dj�0 = Q�1�

Z
[rr�� Djr + �� (Dj log gd)] gd d�;

given the assumed existence of Q�1� = �[
R
r0
m�� gd d�]

�1. It follows that

Dj�0 � Dj�0 =
Z
[Q�1� rr�� �Q�1� rr� � g=gd] Djr gd d� +Q�1�

Z
��(Dj log gd) gd d�:

The expression for �0;j holds by adding and subtracting terms appropriately. (v)(a)
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�01j�1j = [
R
50
r� �(Djr)s gd dv] Q

�10
� Q�1� [

R
5r� �(Djr)s gd dv] � ���[

R
5r� �(Djr)s gd dv]

0

[
R
rr� �(Djr) s gd dv] by the Rayleigh inequality. The result then follows by Cauchy-

Schwarz. (b) Analogous to (a). (c) Analogous to (a). �
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