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Abstract

A new centralized mechanism was introduced in New York City and Boston to assign students

to public schools in district school-choice programs. This mechanism was advocated for its

superior fairness property, besides others, over the mechanisms it replaced. In this paper, we

introduce a new framework for investigating school-choice matching problems and two ex-ante

notions of fairness in lottery design, strong ex-ante stability and ex-ante stability. This framework

generalizes known one-to-many two-sided and one-sided matching models. We show that the

new NYC/Boston mechanism fails to satisfy these fairness properties. We then propose two new

mechanisms, the fractional deferred-acceptance mechanism, which is ordinally Pareto dominant

within the class of strongly ex-ante stable mechanisms, and the fractional deferred-acceptance

and trading mechanism, which satisfies equal treatment of equals and constrained ordinal Pareto

efficiency within the class of ex-ante stable mechanisms.
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1 Introduction

Following the 1987 decision of the U.S. Court of Appeals, the Boston school district introduced a

possibility of “choice” for public schools by relaxing the mandatory zoning policy. For this purpose the

district introduced priority classes for students for each school, based on how far away a student lives

and whether a sibling of the student attends the school. In 1989, a centralized clearinghouse, now

commonly referred to as the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003) was adopted by

the district. Each year since then Boston school district collects preference rankings of students over

schools, and determines a matching of students to schools based on students’ priorities. Since there

are typically several students tied for priority at schools, random tie-breaking has been the common

practice for obtaining a strict priority ranking among students within equal priority classes. Today

many U.S. school districts employ clearinghouses that operate on the random tie-breaking practice.

Abdulkadiroğlu and Sönmez (2003) pointed out that the Boston mechanism is flawed in many

ways (also see Chen and Sönmez, 2006; Ergin and Sönmez, 2006; Pais and Pinter, 2007; Pathak

and Sönmez, 2008). They showed, for example, that student priorities are not necessarily respected

by this mechanism. Moreover, the Boston mechanism is susceptible to strategic manipulation in

a very obvious manner. They proposed two alternatives to this mechanism from the mechanism

design literature on indivisible good allocation and two-sided matching.1 Eventually one of these

mechanisms, the Gale-Shapley student-optimal stable mechanism, replaced the Boston mechanism

in 2005 due to the collaborative efforts of Abdulkadiroğlu and Sönmez with economists Pathak and

Roth (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005, 2006; Pathak and Sönmez, 2008). A version

of the same mechanism was also adopted by the New York City public school system in 2004 via the

efforts of economists (Abdulkadiroğlu, Pathak, and Roth, 2005, 2009).

This new mechanism relies on the idea of producing a “stable matching” first introduced by

Gale and Shapley (1962). This approach has been widely and successfully used in several two-sided

matching applications. Probably the most well-known of these applications is the National Resident

Matching Program (cf. Roth, 1984; Roth and Peranson, 1999) that was designed to match hospital

residency programs with graduating medical doctors.

An important difference between two-sided matching markets and school choice is that in the

former participants’ choices are elicited as strict preferences, and there are no indifferences within

preferences.2 In school choice, however, only students’ choices are elicited as strict preferences,

1See for example Gale and Shapley (1962); Shapley and Scarf (1974); Roth (1984, 1991); Balinski and Sönmez

(1999); Abdulkadiroğlu and Sönmez (1999); Pápai (2000); Ergin (2002); Kesten (2006, 2009b); Pycia and Ünver

(2009).
2Another difference concerns the definition of the mechanism design problem. Both hospital residency programs

and doctors are active “agents” in a two-sided market, and thus, both state preferences over agents on the other side

of the market. On the other hand, in school choice, schools are passive in most cases and viewed only as indivisible
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whereas students’ priorities are coarse. That is, there are often many students who belong to the

same priority class. For example, there are only four priority classes in Boston, although there

are thousands of students applying each year. Consequently, to adapt the deterministic two-sided

matching approach, ties among equal-priority students need to be explicitly broken in an endogenous

or exogenous fashion. All previous mechanism design efforts have thus far relied on the deterministic

approach upon breaking ties in priorities randomly3 or using additional strategic tools.4 Our approach

in this paper does not rely on any form of tie-breaking and enables us to work with a general school

choice model allowing for a rich set of stochastic mechanisms, which in principle can lead to superior

levels of welfare and fairness than their deterministic counterparts.5

In school choice student priorities constitute the basis for fairness considerations. Abdulkadiroğlu

and Sönmez (2003) discuss two plausible interpretations of fairness. The first interpretation, which

assigns a subtle and weak role to priorities, is based on an idea of endowing each student with the

ability to trade his priority at a school for a higher priority at a more desirable school. The second and

arguably more popular interpretation draws parallels between school choice and two-sided matching.

At a stable matching, there does not exist any student i who prefers a seat at a different school c

than the one he is assigned to such that either (1) school c has not filled its quota, or (2) school c has

an enrolled student who has strictly lower priority than i. A mechanism is ex-post stable if it induces

a lottery over stable matchings (i.e., an ex-post stable lottery).6 Thus, the sibling priority should be

honored over an otherwise equal student only if the sibling of a student is already attending the school

while the other student’s is not. Based on this interpretation, the Boston school district adopted

ex-post stability as the proper notion of fairness. As some of the New York schools were also active

players (i.e., they withheld capacities of the schools) and had preferences instead of priorities, the

“endowment” interpretation for a school was not accepted in New York, either. They also adopted

the stability interpretation (Abdulkadiroğlu, Pathak, and Roth, 2005). Thus, the newly adopted

NYC/Boston mechanism is ex-post stable.

Although ex-post stability is a meaningful interpretation of fairness for deterministic outcomes,

objects to be consumed. In other words, a student’s priority is irrelevant to schools’ preferences.
3See, for example, Pathak (2006); Abdulkadiroğlu, Pathak, and Roth (2009); Erdil and Ergin (2008); Abdulka-

diroğlu, Che, and Yasuda (2008); Ehlers and Westkamp (2011).
4See, for example, Abdulkadiroğlu, Che, and Yasuda (2008); Sönmez and Ünver (2010).
5A related problem is the so-called random assignment problem. A random assignment problem can be viewed as

a special school-choice problem where each school has unit quota and all students have equal priority at all schools.

The seminal work of Bogomolnaia and Moulin (2001) has revealed that such a richer setup can allow one to obtain a

much stronger welfare criterion than ex-post efficiency. Our approach, inspired in part by Bogomolnaia and Moulin

(2001), also rests on the idea of avoiding welfare losses emanating from random tie-breaking.
6The Boston school district voiced concern about the first interpretation, and stated that “[...] certain priorities –

e.g., sibling priority – apply only to students for particular schools and should not be traded away.” From the memo

of the [then] Superintendent Thomas W. Payzant on May, 25, 2005 to the Boston school committee.

3



for lottery mechanisms, such as the ones used for school choice, it is much less clear that it is the

most suitable fairness property for this setup. To begin with, ex-post stability is not defined over

random outcomes, but rather over deterministic matchings obtained post tie-breaking. And while

random tie-breaking conveniently makes the deterministic approach still applicable, unfortunately it

precludes broader views of ex ante fairness and can potentially cause significant welfare loss (Erdil

and Ergin, 2008; Abdulkadiroğlu, Pathak, and Roth, 2009).

In this paper we present a general model of school choice in which (1) school priorities can be

coarse as in real life, and (2) matchings can be random. Over random matchings, we propose two

powerful notions of fairness that are stronger than ex-post stability. We say that a random matching

causes ex-ante school-wise justified envy if there are two students i and j and a school c such that

student i has strictly higher priority than j for school c but student j can be assigned to school c with

positive probability while i can be assigned to a less desirable school for him than c with positive

probability (i.e., i has ex-ante school-wise justified envy toward j). We refer to a random matching

as ex-ante stable if it eliminates ex-ante school-wise justified envy. We show that (cf. Example 1)

the new NYC/Boston mechanism, despite its ex-post stability, is not ex-ante stable.

Besides its normative support, our ex-ante approach has an important practical appeal. Even

if one considers ex-post stability as the normatively more appealing fairness concept, the set of ex-

post stable lotteries in highly nontractable for the random matching setup. Indeed, it is difficult to

characterize the probability assignment matrix of a generic ex-post stable lottery since an ex-post

unstable lottery may also induce the same matrix as an ex-post stable lottery (as demonstrated in our

Example 1).7 In this case, one possible practical solution is approximating ex-post stability through

ex-ante stability. We show through simulations that ex-ante school-wise justified envy violations of

the NYC/Boston mechanism are quite rare in realistic environments (cf. Section 6). Hence, the

approximation of ex-post stability via ex-ante stability is a viable option.

Coarse priority structures also give rise to natural fairness considerations concerning students

who belong to the same priority group for some school. We say that a random matching causes

ex-ante school-wise discrimination (among equal-priority students) if there are two students i and j

with equal priority for a school c such that j enjoys a higher probability of being assigned to school c

than student i even though i suffers from a positive probability of being assigned to a less desirable

school for him than school c. The new NYC/Boston mechanism (cf. Example 2) also induces ex-ante

school-wise discrimination between equal-priority students. 8

7A similar difficulty lies in the identification of ex-post efficient lotteries as illustrated by Abdulkadiroğlu and

Sönmez (2003).
8The elimination of ex-ante school-wise discrimination is more than a normative concept and is rooted in equal

treatment laws. Abdulkadiroğlu and Sönmez (2003) cite a lawsuit filed by a student against the state of Wisconsin,

because the student was denied by the Superintendent from a school of a district where he did not live in due

to limited space, while “similar” students were admitted. The Circuit Court reversed the decision as it considered
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We refer to a random matching as strongly ex-ante stable if it eliminates both ex-ante school-

wise justified envy and ex-ante school-wise discrimination. Both ex-ante stability and strong ex-ante

stability imply ex-post stability. The latter also implies equal treatment of equals. We propose two

new mechanisms that select “special” ex-ante stable and strongly ex-ante stable random matchings.

Our first proposal, the fractional deferred-acceptance (FDA) mechanism, selects the strongly ex-

ante stable random matching that is ordinally Pareto dominant among all strongly ex-ante stable

random matchings (Theorems 2 and 3). The algorithm it employs is in the spirit of the deferred-

acceptance algorithm of Gale and Shapley (1962), with students applying to schools in an order of

decreasing preference and schools tentatively retaining students based on priority. Unlike previous

mechanisms, however, the FDA mechanism does not rely on tie-breaking. Loosely, schools always

reject lower-priority students in favor of higher ones (if the need arises) as in the deferred-acceptance

algorithm. However, whenever there are multiple equal-priority students being considered for assign-

ment to a school, for which there is insufficient quota, the procedure tentatively assigns an equal

fraction of these students and rejects the rest of the fractions. These rejected “fractions of students”

continue to apply to their next-preferred schools in the usual deferred-acceptance fashion as if they

were individual students. The procedure iteratively continues to make tentative assignments, until

one full fraction of each student is assigned to some school. We interpret the assigned fractions of a

student at the end of the procedure as his assignment probability to each corresponding school by

the FDA mechanism.9

Our second proposal, the fractional deferred-acceptance and trading (FDAT) mechanism selects

an ex-ante stable random matching that (1) treats equals equally and (2) is ordinally Pareto un-

dominated within the set of ex-ante stable random matchings (Theorems 4 and 5). It employs a

two-stage algorithm that stochastically improves upon the FDA matching. The FDAT mechanism

starts from the random-matching outcome of the FDA algorithm and creates a trading market for

school-assignment probabilities. In this market, the assignment probability of a student to a school

can be traded for an equal amount of probabilities at better schools for the student so long as the

trade does not result in ex-ante school-wise justified envy of some other student. Such trading op-

portunities are characterized by stochastic ex-ante stable improvement cycles, i.e., the list of students

who can trade fractions of schools among each other without violating any ex-ante stability con-

straints. We show that a random matching is constrained ordinally efficient among ex-ante stable

random matchings if and only if there is no stochastic ex-ante stable improvement cycle (Proposition

the Superintendent’s decision “arbitrary” and the Appeals Court affirmed (cf. Michael E. McMorrow, Petitioner-

Respondent, v. State Super Intendant of Public Instructions, John T. Benson, Respondent-Appellant. No. 99-1288.

Court of Appeals of Wisconsin. Decided on July 25, 2000).
9In contrast with the deferred-acceptance algorithm of Gale and Shapley (1962), the above described procedure

may involve rejection cycles that prevent the procedure from terminating in a finite number of steps. Therefore, to

obtain a convergent algorithm we also couple this procedure with a “cycle resolution phase.”
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5). However many stochastic ex-ante stable improvement cycles can co-exist and intersect with each

other. In order to resolve these cycles in a procedurally fair way that preserves equal treatment of

equals, in the second stage of FDAT mechanism, we adapt a combinatorial network-flow algorithm

originally proposed by Athanassoglou and Sethuraman (2011) for a problem domain without any

priorities, in which ordinal efficiency can be improved by trading fractions of indivisible goods when

agents have probabilistic endowments. In our case endowments correspond to the FDA assignment

probabilities.10

To estimate the actual performance of FDAT and contrast it with popular assignment mechanisms

from practice and theory, we also report some simulation results based on the aggregate statistics

of the Boston school-choice data from Abdulkad.iroğlu et al., 2006. Specifically, we compare the

overall efficiency of FDAT mechanism with those of the NYC/Boston mechanism and ex-post trading

approach of Erdil and Ergin (2008) (see Footnote 11). The latter two mechanisms are only ex-post

stable while FDAT is also ex-ante stable. Erdil-Ergin mechanism is constrained ex-post efficient

within the ex-post stable class, whereas FDAT is constrained ordinally-efficient within in the ex-ante

stable class. In the simulations, we observe that FDAT mechanism almost first-order stochastically

dominates the NYC/Boston mechanism. Morover, around 32% of the students unambiguously prefer

the FDAT outcome to Erdil-Ergin outcome, while only 18% have opposite preference. We also

observe that the NYC/Boston and Erdil-Ergin mechanisms produce very little ex-ante school-wise

justified envy, hence ex-ante stability is a fairly good approximation of ex-post stability in such an

environment.11

10Yılmaz (2009, 2010) generalize the ex-ante probabilistic allocation methods for indivisible objects without exoge-

nous priorities introduced in Katta and Sethuraman (2006) and Bogomolnaia and Moulin (2001) to an indivisible

good assignment problem, where some agents have initial property rights of some of the goods for the strict and weak

preference domains, respectively. Athanassoglou and Sethuraman (2011) extend these models to a framework where

the initial property rights could be over fractions of goods.
11In addition to the papers already mentioned, in the two-sided matching literature, a version of the random matching

problem with strict school preferences was analyzed by Roth, Rothblum, and Vande Vate (1993). Our analysis and

results are independent and unrelated to theirs, as weak priorities change the analysis dramatically. Alkan and Gale

(2003) consider a deterministic two-sided matching model in which the two sides are referred to as firms and workers.

In their model, a worker can work for one hour in total, but he can share his time between different firms. A firm can

hire fractions of workers that sum up to a certain quota of hours. Both firms and workers have preferences over these

fractions. Although the setups seem related, our solution concepts are different from theirs and Alkan and Gale do not

propose any well-defined algorithm. Previously, Erdil and Ergin (2008) (and then Abdulkadiroğlu, Pathak, and Roth,

2009) have pointed out that the new NYC/Boston mechanism may be subject to welfare losses when ties in priorities are

broken randomly. Erdil and Ergin (2007, 2008) propose methods for improved efficiency without violating exogenous

stability constraints for school-choice and two-sided matching problems, respectively. All these papers emphasize that

random tie-breaking may entail an ex-post efficiency loss. We, on the other hand, argue that it may also entail an

ex-ante stability loss both among students with different priorities (ex-ante school-wise justified envy) and among

students with equal priorities (ex-ante school-wise discrimination). Erdil and Kojima (2007) independently develop

6



We also inspect strategic properties in the environments we introduced. We show that there will

be no strategy-proof, ex-ante stable, constrained efficient, and

The rest of the paper is organized as follows. Section 3 formally introduces a general model of

school choice. Section 4 discusses desirable properties of mechanisms and introduces the new ex-ante

stability criteria. Section 5 presents our first proposal, the fractional deferred-acceptance mechanism,

and the related results. Section 6 presents our second proposal, the fractional deferred-acceptance

and trading mechanism, and the related results. Section 7 inspects the strategic properties of the

mechanisms we proposed. Section 8 concludes. The proofs of our main results are relegated to the

Appendices.

2 The Model

We start by introducing a general model for school choice. A school-choice problem is a five-tuple

[I, C, q, P,%] where:

• I is a finite set of students each of whom is seeking a seat at a school.

• C is a finite set of schools.

• q = (qc)c∈C is a quota vector of schools such that qc ∈ Z++ is the maximum number of students

who can be assigned to school c. We assume that there is enough quota for all students, that

is
∑

c∈C

qc = |I|.12

• P = (Pi)i∈I is a strict preference profile for students such that Pi is the strict preference relation

of student i over the schools.13 Let Ri refer to the associated weak preference relation with Pi.

Formally, we assume that Ri is a linear order, i.e. a complete, transitive, and antisymmetric

binary relation. That is, for any c, a ∈ C, cRia if and only if c = a or cPia.

a school-choice framework and concepts similar to ours. They do not pursue mechanisms satisfying their proposed

properties. Echenique, Lee, Shum, and Yenmez (2012) more recently study observable implications of stability for

aggregate matchings over populations of several “similar” individual types, and propose a condition, similar to our

ex-ante stability notion, that is used for empirical rationalizability of observed matchings. However, their model and

interpretation of this condition are substantially different from ours.
12If originally

∑

c∈C

qc > |I|, then we introduce |I|−
∑

c∈C

qc additional virtual students, who have the lowest priorities at

each school (say, a uniform priority ranking is available among virtual students for all schools and all virtual students

have common strict preferences over schools). If originally
∑

c∈C

qc < |I|, then we introduce a virtual school with a

quota |I|-
∑

c∈C

qc, which is the worst choice of each student, such that all students have equal priority for this school.

13For simplicity of exposition, we assume that all schools are acceptable for all students. All of our results are easy

to generalize to the setting with unacceptable schools using a null school with quota ∞ and sub-stochastic matrices

instead of bi-stochastic matrices.
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• %= (%c)c∈C is a weak priority structure for schools such that %c is the weak priority order of

school c over the students. That is, %c is a reflexive, complete, and transitive binary relation

on I. Let ≻c be the acyclic portion and ∼c be the cyclic portion of %c. That is, i %c j means

that student i has at least as high priority as student j at school c, i ≻c j means that i has

strictly higher priority than j at c, and i ∼c j means that i and j have equal priority at c.

Occasionally, we will fix I, C, q and refer to a problem by the strict preference profile of the students

and weak priorities of schools, [P,%].

We are seeking matchings such that each student is assigned a seat at a single school and the

quota of no school is exceeded. We also allow random (or probabilistic) matchings.

A random matching ρ = [ρi,c]i∈I, c∈C is a real stochastic matrix, i.e., it satisfies (1) 0 ≤ ρi,c ≤ 1

for all i ∈ I and c ∈ C; (2)
∑

c∈C ρi,c = 1 for all i ∈ I ; and (3)
∑

i∈I ρi,c = qc for all c ∈ C.

Here ρi,c represents the probability that student i is being matched with school c. Moreover, the

stochastic row vector ρi = (ρi,c)c∈C denotes the random matching (vector) of student i at ρ, and the

stochastic column vector ρc = (ρi,c)i∈I denotes the random matching (vector) of school c at ρ. A

random matching ρ is a (deterministic) matching if ρi,c ∈ {0, 1} for all i ∈ I and c ∈ C. Let X be

the set of random matchings and M ⊆ X be the set of matchings. We also represent a matching

µ ∈ M as the unique non-zero diagonal vector of matrix µ, i.e., as a list µ =
(
i1 i2 ... i|I|
c1 c2 ... c|I|

)
such that

for each ℓ, µiℓ,cℓ = 1. We interpret each student iℓ as matched with school cℓ in this list and, with a

slight abuse of notation, use µiℓ to denote the match of student iℓ.

A lottery λ is a probability distribution over matchings. That is, λ = (λµ)µ∈M such that for all

µ ∈ M, 0 ≤ λµ ≤ 1 and
∑

µ∈M

λµ = 1. Let ∆M denote the set of lotteries. For any λ ∈ ∆M, let ρλ

be the random matching of lottery λ. That is, ρλ =
[
ρλi,c

]

i∈I,c∈C
∈ X is such that ρλi,c =

∑

µ∈M : µi=c

λµ

for all i ∈ I and c ∈ C. In this case, we say that lottery λ induces random matching ρλ. Observe

that ρλi,c is the probability that student i will be assigned to school c under λ. Let Supp (λ) ⊆ M be

the support of λ, i.e., Supp (λ) = {µ ∈ M : λµ > 0} .

We state the following theorem whose proof is an extension of the proof of the standard Birkhoff

(1946) - von Neumann (1953) Theorem (also see Kojima and Manea (2010)):

Theorem 1 (School-Choice Birkhoff - Von Neumann Theorem)For any random matching

ρ ∈ X , there exists a lottery λ ∈ ∆M that induces ρ, i.e., ρ = ρλ.

Through this theorem’s constructive proof and related algorithms in combinational optimization

theory, such as the Edmonds (1965) algorithm, one can find a lottery implementing ρ in polynomial

time. Thus, without loss of generality, we will focus on random matchings rather than lotteries. A

(school-choice) mechanism selects a random matching for a given school-choice problem. For problem
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[P,%], we denote the random matching of a mechanism ϕ by ϕ [P,%] and the random matching vector

of a student i by ϕi [P,%].

3 Properties

3.1 Previous Notions of Fairness

We first define two previously studied notions that are satisfied by many mechanisms in the literature

and real life. Throughout this section, we fix a problem [P,%] .

We start with the most standard fairness property in school-choice problems as well as other

allocation problems. This weakest notion of fairness is related to the treatment of equal students,

i.e., students with the same preferences and priorities. We refer to two students i, j ∈ I as equal

if Pi = Pj and i ∼c j for all c ∈ C. A random matching ρ treats equals equally if for any equal

student pair i, j ∈ I, we have ρi = ρj , that is: two students with exactly the same preferences and

equal priorities at all schools should be guaranteed the same enrollment chance at every school at a

matching that treats equals equally. The real-life school-choice mechanism used earlier in Boston as

well as the new NYC/Boston mechanism treat equals equally.

Before introducing the second probabilistic fairness property, we define a deterministic fairness

notion. A (deterministic) matching µ is stable if there is no student pair i, j such that µ(j)Piµ(i)

and i ≻µ(j) j.
14 That is: a matching is stable if there is no student who envies the assignment of a

student who has lower priority than he does for that school. Whenever such a student pair exists at

a matching, we say that there is justified envy. Let S ⊆ M be the set of stable matchings. A stable

matching always exists (Gale and Shapley, 1962).

The second probabilistic fairness property is a direct extension of stability to lottery mechanisms:

A random matching ρ is ex-post stable if it is induced by a lottery whose support includes only stable

matchings, i.e., there exists some λ ∈ △M such that Supp (λ) ⊆ S and ρ = ρλ.

Since recently introduced real-life mechanisms are ex-post stable (and the implemented matchings

are stable), ex-post stability has been seen as a key property in previous literature. A characterization

of ex-post stability exists for strict priorities (Roth, Rothblum, and Vande Vate, 1993), yet such a

characterization is unknown for weak priorities.

14The early literature on college admissions and school choice (e.g. Balinski and Sönmez (1999) and Abdulkadiroğlu

and Sönmez (2003)) used the term fair instead of stable. Subsequent studies have used the term stable more often

based on the connection of their models with the two-sided model of Gale and Shapley (1962). Since we already have

several fairness concepts, we have adopted this terminology to avoid confusion.
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3.2 A New Notion: Ex-ante Stability

We now formalize the two fairness notions over random matchings that were informally discussed in

the Introduction.

We say that a random matching ρ ∈ X causes ex-ante school-wise justified envy of i ∈ I toward

(lower-priority student) j ∈ I\ {i} , with i ≻c j, for c ∈ C if ρi,a > 0 for some a ≺i c and ρj,c > 0. A

random matching is ex-ante stable if it does not cause any ex-ante school-wise justified envy.

Observe that ex-ante stability and stability are equivalent concepts for deterministic matchings.

Although ex-ante stability is appealing, it does not impose any restrictions when dealing with fairness

issues regarding students with equal priorities.

We say that a random matching ρ ∈ X induces ex-ante school-wise discrimination (between

equal-priority students) i, j ∈ I, with i ∼c j, for c ∈ C, if ρi,a > 0 for some a ≺i c and ρi,c < ρj,c.

A random matching is strongly ex-ante stable if it eliminates both ex-ante school-wise justified envy

and ex-ante school-wise discrimination.

The elimination of ex-ante school-wise discrimination implies equal treatment of equals. Thus, a

strongly ex-ante stable random matching satisfies equal treatment of equals. Strong ex-ante stability

implies ex-ante stability, but the converse is not true. Theorem 2 (below) shows that a strongly

ex-ante stable random matching always exists. For deterministic matchings, elimination of ex-ante

school-wise discrimination between equal-priority students is equivalent to a no-envy15 requirement

among students with equal priority (due to a school for which equal priority is shared) and thus may

not always be guaranteed.

We compare ex-ante (and strong ex-ante) stability with the earlier notion, ex-post stability. It

turns out that ex-post stability is weaker than ex-ante stability (and strong ex-ante stability), while

the converse is not true:

Proposition 1 If a random matching is ex-ante stable then it is also ex-post stable. Moreover,

any lottery that induces an ex-ante stable random matching has a support that includes only stable

matchings.

Proof. We prove the contrapositive of the second part of the proposition. The first part of the

proposition follows from the second part. Let a random matching ρ ∈ X and a lottery λ ∈ ∆M that

induces it be given, i.e. ρλ = ρ. Suppose there exists some unstable matching µ ∈ M�S such that

λµ > 0. Then there exists a blocking pair (i, c) ∈ I ×C such that cPiµi while for some j ∈ I, µj = c

with i ≻c j. Since λµ > 0, we have ρj,c > 0 while ρi,µi
> 0, i ≻c j, and cPiµi, i.e., ρ is not ex-ante

stable.

15Given a deterministic matching µ ∈ M, there exists no-envy between a pair of students i, j ∈ I if µi Pi µj and µj

Pj µi.
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On the other hand, the following example shows that the new NYC/Boston mechanism is not

ex-ante stable, and hence, an ex-post stable lottery can be ex-ante unstable, i.e., the converse of the

first part of above proposition does not hold:

Example 1 Consider the following problem with five students {1, 2, 3, 4, 5} and four schools {a, b, c, d}

where each of schools a, b, and c has one seat, and d has two seats. The priority orders and student

preferences are as follows:

%a %b %c %d

5 4, 5 1, 3
...

1
...

...

2
...

P1 P2 P3 P4 P5

c a c b b

a d d d a

d
...

...
...

...
...

Consider the new NYC/Boston mechanism, which uniformly randomly chooses a single tie-breaking

order for equal-priority students at each school and then employs the student-proposing deferred-

acceptance algorithm using the modified priority structure. It is straightforward to compute that

this mechanism implements the following lottery:

λ =
1

4

(
1 2 3 4 5

d d c b a

)

︸ ︷︷ ︸

µ1

+
1

4

(
1 2 3 4 5

a d c d b

)

︸ ︷︷ ︸

µ2

+
1

4

(
1 2 3 4 5

c d d b a

)

︸ ︷︷ ︸

µ3

+
1

4

(
1 2 3 4 5

c a d d b

)

︸ ︷︷ ︸

µ4

The above four deterministic matchings in the support of λ are stable since they are obtained by

the student-proposing deferred acceptance algorithm for tie-breakers 3 ≻c 1 and 4 ≻b 5; 3 ≻c 1 and

5 ≻b 4; 1 ≻c 3 and 4 ≻b 5; 1 ≻c 3 and 5 ≻b 4, respectively. Thus λ is ex-post stable. However,

the random matching that lottery λ induces is not ex-ante stable because student 1 has ex-ante

school-wise justified envy toward student 2 for school a: Matching µ1 implies that student 1 suffers

from a positive probability of being assigned to school d, while matching µ4 implies that student 2

enjoys a positive probability of being assigned to school a, for which he has strictly lower priority

than 1.

Interestingly, one can find an alternative lottery that, despite being equivalent to λ, is ex-post

unstable:

λ′ =
1

4

(
1 2 3 4 5

d a c d b

)

︸ ︷︷ ︸

µ′
1

+
1

4

(
1 2 3 4 5

c d d b a

)

︸ ︷︷ ︸

µ′
2

+
1

4

(
1 2 3 4 5

c d d b a

)

︸ ︷︷ ︸

µ′
3

+
1

4

(
1 2 3 4 5

a d c d b

)

︸ ︷︷ ︸

µ′
4

11



The support of λ′ contains an unstable matching, namely µ′
1, since student 1 has school-wise justi-

fied envy toward student 2 at this matching. Lottery λ′ exacerbates the justified school-wise envy

situation under λ by transforming it from ex-ante to ex-post. ♦

Worse still, the new NYC/Boston mechanism may also induce ex-ante school-wise discrimination:

Example 2 Consider the following problem with three students {1, 2, 3} and three schools {a, b, c}

each with a quota of one. The priority orders and student preferences are as follows:

%a %b %c

3 2 2

1, 2 1 1

3 3

P1 P2 P3

a a b

b c a

c b c

The tie-breaking lottery assigns the second priority at school a to equal-priority students 1 and 2

with equal chances. Then the new NYC/Boston mechanism (which operates on the student-proposing

deferred-acceptance algorithm coupled with either strict priority structure) implements the following

lottery:

λ =
1

2

(
1 2 3

a c b

)

︸ ︷︷ ︸

µ1

+
1

2

(
1 2 3

b c a

)

︸ ︷︷ ︸

µ2

Observe that random matching ρλ induces ex-ante school-wise discrimination between students 1

and 2 for school a since matching µ1 implies that student 1 is given a positive probability of being

assigned to school a while student 2 who, despite having equal priority for a, always ends up at

school c which she finds worse than a. In particular, the ex-post observation that student 2 has been

assigned to school c by this mechanism cannot be attributed to an unlucky lottery draw to determine

the priority order at school a. ♦

3.3 Pareto Efficiency

We define and work with two Pareto efficiency concepts defined over ordinal preferences.

For student i ∈ I, random matching vector πi ordinally (Pareto) dominates random matching

vector ρi, if
∑

aRic

πi,a ≥
∑

aRic

ρi,a for all c ∈ C and
∑

aRib

πi,a >
∑

aRib

ρi,a for some b ∈ C, i.e., πi first-

order stochastically dominates ρi with respect to Pi. A random matching π ∈ X ordinally (Pareto)

dominates ρ ∈ X , if for all i ∈ I, either πi ordinally dominates ρi or πi = ρi, and there exists at least

one student j ∈ I such that πj ordinally dominates ρj. We say that a random matching is ordinally

(Pareto) efficient if there is no random matching that ordinally dominates it.

12



We refer to ordinally efficient deterministic matchings as Pareto efficient. A random matching

is ex-post (Pareto) efficient if there exists a lottery that induces this random matching and has its

support only over Pareto efficient matchings.

Ordinal efficiency implies ex-post efficiency, while the converse is not true for random matchings

(Bogomolnaia and Moulin, 2001). It is well known that even with strict school priorities, ex-post

stability and ex-post efficiency are not compatible.

Proposition 2 (Roth, 1982) There does not exist any ex-post stable and ex-post efficient mecha-

nism.

Since we take fairness notions as given, we will focus on constrained ordinal efficiency and con-

strained ordinal dominance as the proper efficiency concepts for mechanisms that belong to a par-

ticular class.

4 Strong Ex-ante Stable School Choice

4.1 Fractional Deferred-Acceptance Mechanism

Strong ex-ante stability is an appealing stability property since (1) it guarantees all the enrollment

chances to a higher-priority student at his preferred school before all lower-priority students (i.e.,

by elimination of ex-ante school-wise justified envy) thereby also ensuring ex-post stability, and (2)

it treats equal-priority students – not only equal students – fairly by giving them equal enrollment

chance at “competed”16 schools (i.e., by elimination of ex-ante school-wise discrimination). We now

introduce the central mechanism in the theory of strongly ex-ante stable lotteries. This mechanism

employs a fractional deferred-acceptance (FDA) algorithm.

The FDA algorithm is in the spirit of the classical student-proposing deferred-acceptance algo-

rithm of Gale and Shapley (1962). In this algorithm, we talk about a fraction of a student applying

to, being tentatively assigned to, or being rejected by a school. In using such language, we have

in mind that upon termination of the algorithm, the fraction of a student permanently assigned to

some school will be interpreted as the assignment probability of the student to that school. Hence,

fractions in fact represent enrollment chances. In the FDA algorithm, a student fraction, by applying

to a school, may seek a certain fraction of one seat at that school. As a result, depending on its quota

and the priorities of other applicants, the school may tentatively assign a certain fraction (possibly

less than the fraction the student is seeking) of a seat to the student and reject any remaining fraction

16To be precise, we would call a school such as c in the definition of ex-ante school-wise discrimination as a competed

school. That is, it is not student i’s least preferred school among those for which his enrollment chance is positive,

i.e., student i is competing with student j for school c.
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of the student. In the algorithm’s description below, when we say fraction w of student i applies to

school c, this means that at most a fraction w of a seat at school c can be assigned to student i. As

an example, suppose fraction 1
3

of student 1 applies to school c at some step of the algorithm. School

c then may, for example, admit 1
4

of student i and reject the remaining 1
12

of him. We next give a

more precise description.

The FDA Algorithm:

Step 1: Each student applies to his favorite school. Each school c considers its applicants. If the

total number of applicants is greater than qc, then applicants are tentatively assigned to school c one

by one starting from the highest priority applicants such that equal-priority students, if assigned a

fraction of a seat at this school at all, are assigned an equal fraction. Unassigned applicants (possibly

some being a fraction of a student) are rejected.
...

In general,

Step s: Each student who has a rejected fraction from the previous step, applies to his next-

favorite school that has not yet rejected any fraction of him. Each school c considers its tentatively

assigned applicants together with the new applicants. Applicant fractions are tentatively assigned

to school c starting from the highest priority applicants as follows: For all applicants of the highest

priority level, increase the tentatively assigned shares from 0 at an equal rate until there is an

applicant who has been assigned all of his fraction. In such a case continue with the rest of the

applicants of this priority level by increasing the tentatively assigned shares at an equal rate until

there is another applicant who has been assigned all of his fraction. When all applicant fractions of

this priority level are served, continue with the next priority level in a similar fashion. If at some

point during the process, the whole quota of school c has been assigned, then reject all outstanding

fractions of all applicants.

The algorithm terminates when no unassigned fraction of a student remains. At this point, the

procedure is concluded by making all tentative random assignments permanent. We next give a

detailed example to illustrate the FDA algorithm.

Example 3 How does the FDA algorithm work? Consider the following problem with six

students {1, 2, 3, 4, 5, 6} and four schools {a, b, c, d}, two, b and d, with a quota of one, and the other

two, a and c, with a quota of two:

14



%a %b %c %d

... 6 4 5

... 1, 3 2, 3, 5 3, 6

... 5
...

...
...

...
...

...

P1 P2 P3 P4 P5 P6

b c d b c d

a a c c d c
... b b

...
... b

... d a
...

... a

Step 1: Students 1 and 4 apply to school b (with quota one), which tentatively admits student 1

and rejects student 4. Students 2 and 5 apply to school c (with quota two), which does not reject any

of their fractions. Students 3 and 6 apply to school d (with quota one), which tentatively admits 1
2

of 6 and 1
2

of 3, and rejects the remaining halves.

Step 2: Having been rejected by school d, each outstanding half-fraction of students 3 and 6

applies to the next-favorite school, which is school c. Having been rejected by school b, student 4

applies to his next choice, which is also school c. This means school c considers half-fraction of each

of 3 and 6 and one whole of 4 together with one whole of 2 and 5. Among the five students, 4 has

the highest priority, and hence, is tentatively placed at school c. Next in priority are students 2, 3,

and 5 with equal priority, and thus 1
3

of each is tentatively admitted at school c, which exhausts its

quota of two. As a consequence, 1
2

of student 6, 1
6

of 3, and 2
3

of each of 2 and 5 are rejected by c.

Step 3: The next choice of 2 is a, and hence the rejected 2
3

of him applies to a, and is tentatively

admitted there. The next choice of 3 and 6 is b, and hence 1
2

of 6 and 1
6

of 3 apply to b, which is

currently full and holding the whole of student 1. Since 6 has higher priority than both 1 and 3,

the entire applying fraction of 6 is tentatively admitted. Since 1 and 3 share equal priority at b, we

gradually increase assigned shares of both students from 0 at an equal rate. This implies that 1
6

of

3 and 1
3

of 1 are to be tentatively admitted and the remaining 2
3

of 1 is to be rejected. The next

choice of student 5 is d, and hence 2
3

of him applies to d, which is currently holding 1
2

of both of 3

and 6. Since 5 has higher priority than 3 and 6 both of whom have equal priority, the whole 2
3

of 5

is tentatively admitted, whereas 1
6

of each of 3 and 6 is tentatively admitted, causing the remaining
1
3

of each student to be rejected.

Step 4: The next choice of student 1 is a, hence the rejected 2
3

of him applies to a, and is

tentatively admitted there. For students 3 and 6, the best choice that hasn’t rejected either is b, and

hence 1
3

of each student applies to b. School b is currently full and holding 1
2

of 6, 1
6

of 3, and 1
3

of 1.

Since 1 and 3 have equal but lower priority than 6 at b, the school holds on to all of the 1
2
+ 1

3
= 5

6

fraction of 6, and only 1
12

of each of 1 and 3 are tentatively admitted by b; while the remaining 1
4

of

1 and 5

12
of 3 are rejected.

Step 5: The next choice of 1 and 3 after b is a, and hence 1
4

of 1 and 5
12

of 3 apply to a, which

is not filled yet and can accommodate all of these fractions: It is currently holding 11
12

of 1, 5
12

of 3,
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and 2
3

of 2. Since there are no further rejections, the algorithm terminates and returns the following

random matching outcome:

a b c d

1
11
12

1
12

0 0

2 2
3

0 1
3

0

3
5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6

0 1
6

♦

While the FDA algorithm is intuitive, the computation of its outcome poses a new challenge that

did not exist for its deterministic analogue (i.e., the version proposed by Gale and Shapley). It turns

out that in the FDA algorithm a student may end up applying to the same school infinitely many

times. Thus, we next observe that the FDA algorithm as explained above may not converge in a

finite number of steps. We illustrate this with a simple example.

Example 4 The FDA algorithm may not terminate in a finite number of steps: Consider

the following simple problem with three students and three schools each with a quota of one:

%a %b %c

3 1, 2
...

1, 2 3
...
...

P1 P2 P3

a a b

b c a

c b c

Step 1: Students 1 and 2 apply to school a, and 1
2

of each is tentatively admitted (while 1
2

of each

is rejected), since they have the same priority. Student 3 applies to b and is tentatively admitted.

Step 2: Rejected 1
2

of student 2 next applies to school c and is tentatively admitted. Rejected 1
2

of student 1 applies to school b, where he has higher priority than the currently admitted student 3.

Now 1
2

of student 3 is rejected and 1
2

of 1 is tentatively admitted.

Step 3: Rejected 1
2

of student 3 applies to a, where he has higher priority than both 1 and 2.

As a result 1
2

of 3 is tentatively admitted whereas 1
4

of each of 1 and 2 is rejected.

Step 4: Rejected 1
4

of 2 next applies to school c and is tentatively admitted (in addition to the

previously admitted 1
2

of him). Rejected 1
4

of student 1 applies to school b, where he has higher

priority than the currently admitted 1
2

of student 3. Now 1
4

of student 3 is rejected and 1
4

of 1 is

tentatively admitted.
...

16



As the procedure goes on, rejected fractions of student 3 by school b continue to apply to school a

in turn, leading to fractions of student 3 to accumulate at a, and at the same time, causing (a smaller

fraction of) student 1 to be rejected by school a at each application. This, in turn, leads student

1 to apply to school c and cause (the same fraction of) 3 to be further rejected. Consequently, all

fractions of student 3 accumulate at school a and all those of student 1 at school b:

Step ∞ : The sum of the admitted fractions of student 3 at school a is 1, which is the sum of

the geometric series 1
2
+ 1

4
+ 1

8
+ · · · . The sum of the admitted fractions of student 1 at school b is

1. The sum of the admitted fractions of student 2 at school c is 1. ♦

Even though the FDA algorithm may not terminate in finite time, the above example suggests

that its outcome can be computed without getting lost in infinite loops by examining the rejection

cycles that might form throughout the steps of the algorithm.

To define the finite version of the FDA algorithm, we need to define a few new concepts. We first

define a binary relation between students. Let i, j ∈ I and c ∈ C. Suppose that at some step s of the

FDA algorithm, some fraction of student i gets rejected by school c, while he still has some fraction

not rejected by c at this step. On the other hand, suppose also that at step s school c temporarily

holds some fraction of some other student j who has not been rejected by c until step s (i.e., not

rejected before or at step s). Then, we say that i is partially rejected by c in favor of j, and denote

it by j →֒c i. At a later step r> s in the algorithm, if either some fraction of j gets rejected by c or

all fractions of i get rejected by c, then the above relationship does not hold at step r or at any later

step. In this case we say that j →֒c i is no longer current.

A rejection cycle is a list of distinct students and schools (i1, c1, ..., im, cm) such that at a step of

the algorithm, we have

i1 →֒c1 i2 →֒c2 ... →֒cm−1 im →֒cm i1

and all partial rejection relations are current.

Observe that at the moment the cycle occurs, student i1 gets partially rejected by school cm in

favor of student im. We know that school c1 has not rejected student i1 at any fraction; thus, the

next available choice for student i1 is c1. Therefore, student i1 applies “again” to school c1. As a

result student i2 gets partially rejected again, and the same sequence of partial rejections reoccur.

That is, the algorithm cycles. We refer to this cycle as a current rejection cycle as long as all partial

rejection relations are current, and we say that i1 induces this rejection cycle.

Nonetheless, this cycle either converges to a tentative random matching in the limit or, sometimes,

in a finite number of steps when some partial rejections turn into full rejections. Thus, once a cycle

is detected, it can be solved as a system of linear equations.

We make the following observation, which will be crucial in the definition of the “formal” FDA

algorithm:
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Observation 1 If a rejection cycle

i1 →֒c1 i2 →֒c2 ... →֒cm−1 im →֒cm i1

is current in the FDA algorithm, then for each student iℓ, the best school that has not rejected a

fraction of him is school cℓ; that is, whenever a fraction of iℓ gets rejected, he next makes an offer to

school cℓ.

The outcome of the FDA algorithm described above converges (as the number of steps approaches

infinity) to the the outcome of the following finite FDA algorithm:

The FDA Algorithm:

Step s. Fix some student i1 ∈ I who has an unassigned fraction from the previous step. He

applies to the next best school that has not yet rejected any fraction of him. Let c1 be this school.

Two cases are possible:

(a) If the student i1 induces a rejection cycle

i1 →֒c1 i2 →֒c2 ... →֒cm−1 im →֒cm i1,

then we resolve it as follows: For im+1 ≡ i1 and c0 ≡ cm, c1 tentatively accepts the maximum possible

fraction of i1 such that each school cℓ tentatively accepts

• all fractions of applicants tentatively accepted in the previous step except the ones belonging to

the lowest-priority level,

• the total rejected fraction of student iℓ from school cℓ−1, and

• an equal fraction (if possible) among the lowest-priority applicants tentatively accepted in the

previous step (including student iℓ+1)

so that it does not exceed its quota qcℓ .

(b) If i1 does not induce a rejection cycle, school c1 considers its tentatively assigned applicants from

the previous step together with the new fraction of i1. It tentatively accepts these fractions starting

from the highest priority. In case its quota is filled in this process, it tentatively accepts an equal

fraction (if possible) of all applicants belonging to the lowest accepted priority level. It rejects all

outstanding fractions.

We continue until no fraction of a student remains unassigned. At this point, we terminate the

algorithm by making all tentative random assignments permanent.♦

We resolve part (a) of the algorithm reducing the infinite convergence problem demonstrated in

Example 4 to a linear equation system. This is demonstrated in Appendix A- Example 7. We explain

this resolution in Appendix B, the proof of Proposition 3, for the general case.
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Since we have defined the algorithm in a sequential fashion, it is not clear whether the procedure is

independent of the order of the proposing students or which cycle is chosen to be resolved. Corollary

1 (below) shows that this statement is true, and thus, its outcome is unique.17 We refer to the

mechanism whose outcome is found through the above FDA algorithm as the FDA mechanism.

4.2 Properties of the FDA Mechanism

We next present some desirable properties of the FDA mechanism and its iterative algorithm:

Proposition 3 The FDA algorithm is well defined and converges to a random matching in a finite

number of steps.

The proof of Proposition 3 is given in Appendix B.

Theorem 2 An FDA outcome is strongly ex-ante stable.

Proof. Let π be the FDA algorithm’s outcome according to some proposal order of students.

We first show that this outcome is a well-defined random matching. Suppose not. Then, there exists

a student i who is not matched with probability one at π. Thus, π is sub-stochastic and there exists

some school c that is undermatched at π, i.e.,
∑

j πj,c ≤ qc. At some step, student i makes an offer

to c and some fraction of him gets rejected by it, as he ends up with some rejected probability at

the end of the algorithm. However, school c only rejects a student if its quota is tentatively filled.

Moreover, once it is tentatively filled, it never gets undermatched. However, this contradicts the

earlier conclusion that its quota was not filled at π. Thus, π is a bi-stochastic matrix, i.e., it is a

random matching. Next we show that π is strongly ex-ante stable. Since in the algorithm, (i) a

student fraction always applies to the best school that has not yet rejected him, and (ii) when its

quota is filled, a school always prefers higher priority students to the lower-priority ones, a student

cannot have ex-ante school-wise justified envy toward a lower-priority student. If π is not strongly

ex-ante stable, then it should be the case that there is ex-ante school-wise discrimination between

equal-priority students, i.e., there are i ∼c j for some school c such that cPia, πi,a > 0, and yet

πi,c < πj,c. Consider the first step after which the (tentative) random matching vector of school c

does not change. At this step, some students apply to school c and in return some fractions of some

students with equal priority i′ and j′ are tentatively accepted and some are rejected. The only way

πi′,c < πj′,c is if no fraction of i′ ever gets rejected by school c. Thus, πi′,a′ = 0 for all a′ ≺i′ c. This

contradicts the claim that such a student i exists.

17This result is analogous to the result regarding the deferred-acceptance algorithm of Gale and Shapley, which can

also be executed by students making offers sequentially instead of simultaneously (McVitie and Wilson, 1971).

19



Our next result states that from a welfare perspective the FDA outcome is the most appealing

strongly ex-ante stable matching. This finding can also be interpreted as the random analogue of

Gale and Shapley’s celebrated result on the constrained Pareto optimality of the student-proposing

deferred-acceptance outcome (among stable matchings) for the deterministic two-sided matching

context.

Theorem 3 An FDA outcome ordinally dominates all other strongly ex-ante stable random match-

ings.

The proof of Theorem 3 is also given in Appendix B. Theorem 3 implies that the FDA mechanism

is well defined, i.e., its outcome is unique and independent of the order of students making applications

in the algorithm.

Corollary 1 The FDA algorithm’s outcome is independent of the order of students making offers or

the rejection cycle chosen to be resolved if more than one is encountered simultaneously; and thus, it

is unique.

5 Ex-ante Stable School Choice

The FDA mechanism satisfies ex-ante stability but sacrifices some efficiency at the expense of finding

a random matching that treats equal-priority students fairly. Therefore, we next address how we

can achieve more efficient outcomes without sacrificing fairness “too much”, i.e. by giving up equal

treatment of equal-priority students, but maintaining ex-ante stability and equal treatment of equals.

By Proposition 2 we know that there is no mechanism that satisfies ordinal efficiency and ex-ante

stability. Thus, we define the following constrained efficiency concept: A mechanism ϕ is constrained

ordinally efficient within its class if there exist no mechanism ψ in the same class as ϕ and no problem

[P,%] such that ψ [P,%] ordinally dominates ϕ [P,%].

We now characterize constrained ordinal efficient mechanisms within the class of ex-ante stable

mechanisms. First, we restate a useful result due to Bogomolnaia and Moulin (2001) that character-

izes ordinal efficiency. Fix a problem [P,%] . For any random matching π ∈ X , we say that i ex-ante

school-wise envies j for b due to c, if πj,b > 0, πi,c > 0, and bPic.
18 We denote it as

(i, c)⋗π (j, b) .

18Under this definition, a student will ex-ante school-wise envy himself, if he is assigned fractions from two schools.

This is different from the improvement relationship defined by Bogomolnaia and Moulin. Unlike them, we do not rule

out this possibility and use it for the constrained efficiency characterization within ex-ante stable random matchings.
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A stochastic improvement cycle Cyc = (i1, c1, ..., im, cm) at π is a list of distinct student-school pairs

(iℓ, cℓ) such that

(i1, c1)⋗
π (i2, c2)⋗

π ...⋗π (im, cm)⋗
π (i1, c1) .

(We use modulom whenever it is unambiguous for subscripts, i.e.,m+1 ≡ 1.) Let w ≤ minℓ∈{1,...,m} πiℓ,cℓ .

Cycle Cyc is satisfied with fraction w at π if for all ℓ ∈ {1, ..., m}, a fraction w of the school cℓ+1 is

assigned to student iℓ additionally and a fraction w of school cℓ is removed from his random matching,

while we do not change any of the other matching probabilities at π. Formally, we obtain a new

random matching ρ ∈ X such that for all i ∈ I and c ∈ C,

ρi,c =







πi,c + w if i = iℓand c = cℓ+1for some ℓ ∈ {1, ..., m} ,

πi,c − w if i = iℓand c = cℓfor some ℓ ∈ {1, ..., m} ,

πi,c otherwise.

The following is a direct extension of Bogomolnaia and Moulin’s result to our domain and our

definition of the ex-ante school-wise envy relationship. Therefore, we skip its proof.

Proposition 4 (Bogomolnaia and Moulin, 2001) A random matching is ordinally efficient if

and only if it has no stochastic improvement cycle.

5.1 Ex-ante Stability and Constrained Ordinal Efficiency

Proposition 4 suggests that if a random matching has a stochastic improvement cycle, then one can

obtain a new random matching that ordinally dominates the initial one simply by satisfying this

stochastic improvement cycle. Observe, however, that satisfying such a cycle may induce ex-ante

school-wise justified envy at the new random matching. Consequently, given that our goal is to

maintain ex-ante stability, to improve the efficiency of an ex-ante stable random matching, we can

only work with those stochastic improvement cycles that respect the ex-ante stability constraints.

For this purpose we introduce an envy relationship as follows:

We say that i ex-ante top-priority school-wise envies j for b due to c, and denote it as

(i, c) ◮π (j, b) ,

if (i, c) ⋗π (j, b) and i %b k for all (k, a) ∈ I × C such that (k, a) ⋗π (j, b). That is, i envies j for b

due to c, and i is the highest-priority student that envies j for b.19

19Like the ex-ante school-wise envy relationship, a student will ex-ante top-priority school-wise envy himself if he

is assigned fractions from two schools and for the better of the two schools, he is among the highest-priority students

ex-ante school-wise–envying.
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An ex-ante stable improvement cycle (i1, c1, ..., im, cm) at π is a list of distinct student-school pairs

(iℓ,cℓ) such that

(i1, c1) ◮
π (i2, c2) ◮

π ... ◮π (im, cm) ◮
π (i1, c1) .

We state our main result of this subsection below. Although one direction of this result is easy to

prove, the other direction’s proof needs extra attention to detail. Our result generalizes Proposition

4 (stated for the equal priority domain by Bogomolnaia and Moulin), and a result by Erdil and Ergin

(2008) (stated for the deterministic domain) to the probabilistic school-choice framework:

Proposition 5 An ex-ante stable random matching ρ is not ordinally dominated by any other ex-ante

stable random matching if and only if there is no ex-ante stable improvement cycle at ρ.

The proof of Proposition 5 is given in Appendix B.

5.2 Ex-ante Stable Fraction Trading

Motivated by Proposition 5, we shall use the FDA outcome to obtain a constrained ordinally efficient

ex-ante stable matching. Our second proposal, roughly, rests on the following intuition: Since the

outcome of the FDA mechanism is ex-ante stable, if we start initially from this random matching and

iteratively satisfy ex-ante stable improvement cycles, we should eventually arrive at a constrained

ordinally efficient ex-ante stable random matching. Though intuitive, this approach need not guar-

antee equal treatment of equals. Therefore, in what follows we will also need to pay attention to the

ex-ante stable improvement cycles that are to be selected.

Our second proposal, the fractional deferred-acceptance and trading (FDAT), starts from the

FDA outcome and satisfies all ex-ante stable improvement cycles simultaneously so as to preserve

equal treatment of equals to obtain a new random matching. It iterates until there are no new ex-

ante stable improvement cycles. Before formalizing this procedure, to fix ideas and point out some

potential difficulties, we first illustrate our approach with an example:

Example 5 How does the FDAT algorithm work? We use the same problem as in Example

3.

Step 0. We have found the FDA outcome in Example 3 as
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ρ1 =

a b c d

1
11
12

1
12

0 0

2 2
3

0 1
3

0

3
5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6

0 1
6

Step 1. We form top-priority school-wise envy relationships as

(1, a) ◮ρ1 (3, b) , (6, b) , (1, b)

(2, a) ◮ρ1 (3, c) , (4, c) , (5, c) , (2, c)

(3, f) ◮ρ1 (5, d) , (6, d) , (3, d) ∀f ∈ {a, b, c}

(3, f) ◮ρ1 (2, c) , (4, c) , (5, c) , (3, c) ∀f ∈ {a, b}

(3, a) ◮ρ1 (1, b) , (6, b) , (3, b)

(5, d) ◮ρ1 (2, c) , (3, c) , (4, c) , (5, c)

(6, b) ◮ρ1 (3, d) , (5, d) , (6, d) .

There is only one ex-ante stable improvement cycle:

(3, c) ◮ρ1 (5, d) ◮ρ1 (3, c)

We satisfy this cycle with the maximum possible fraction 1
3

and obtain:

ρ2 =

a b c d

1
11
12

1
12

0 0

2 2
3

0 1
3

0

3
5
12

1
12

0 1
2

4 0 0 1 0

5 0 0 2
3

1
3

6 0 5
6

0 1
6

Step 3. There are no new top-priority school-wise envy relationships at ρ2, and no new ex-ante

stable improvement cycles; thus, ρ2 is the outcome of the FDAT algorithm. ♦

The main difficulty with this approach is determining which ex-ante stable improvement cycle to

satisfy, if there are many. This choice may cause fairness violations regarding the equal treatment of
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equals, or there can be many ways to find a solution respecting equal treatment of equals. Thus, the

outcome of the FDAT algorithm as explained above is not uniquely determined. Furthermore, there

are also legitimate computational concerns in finding more than one ex-ante stable improvement

cycle at a time.20 We overcome these fairness and computational issues by adapting to our domain a

fractional trading algorithm, which was introduced in the operations research literature by Athanas-

soglou and Sethuraman (2011). It is referred to as the constrained-consumption algorithm and was

introduced to obtain ordinally efficient allocations in house allocation problems with existing tenants

(Abdulkadiroğlu and Sönmez, 1999). Similar algorithms were also previously introduced by Yılmaz

(2009, 2010). Our version, the ex-ante stable consumption (EASC) algorithm, is embedded in step

s ≥ 1 of the FDAT algorithm as a way to satisfy ex-ante stable improvement cycles simultaneously

and equitably. It is explained in detail in Supplementary Appendix D.

We state the FDAT algorithm formally as follows:

The FDAT Algorithm:

Step 0. Run the FDA algorithm. Let ρ1 be its random matching outcome.
...

Step s. Let ρs ∈ X be found at the end of step s-1. If there is an ex-ante stable improvement

cycle, run the EASC algorithm. Let ρs+1 be the outcome and continue with Step s+1. Otherwise,

terminate the algorithm with ρs as its outcome. ♦

We refer to the mechanism whose outcome is found through this algorithm as the FDAT mecha-

nism.

In Supplementary Appendix E-Example 8, we illustrate the EASC algorithm to show how the

formal FDAT algorithm works for the problem in Example 5. Although the execution of the FDAT

algorithm is obvious and simple in this example without the implementation of the EASC algorithm

in each step, for expositional purposes we re-execute it with the embedded EASC algorithm.21

5.3 Properties of the FDAT Mechanism

Proposition 6 The FDAT algorithm is well defined and converges to a random matching in a finite

number of steps.

Proof. We know that Step 0 of FDA algorithm works in finite steps (by Proposition 3), as well

as Step 1, the EASC algorithm (Athanassoglou and Sethuraman, 2011).

20In a worst-case scenario, the number of ex-ante stable improvement cycles at an ex-ante stable matching grows

exponentially with the number of students.
21In general, without the use of the EASC algorithm or a similar well-defined technique, step s ≥ 1 of the FDAT

algorithm may not be well defined.
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Next, we prove that the number of steps in FDAT is finite. After each step t ≥ 1 of the FDAT

algorithm, at least one student i ∈ I leaves a school c ∈ C with ρt-1
i,c > 0 with 0 fraction and gets into

better schools, i.e., ρt
i,c = 0 and

∑

aPic

ρt
i,a >

∑

aPic

ρt-1
i,a . (Otherwise, the same ex-ante stable improvement

cycle of ρt-1
i,c would still exist at ρt, contradicting that the EASC algorithm has converged at step t.)

Thus, the FDAT algorithm converges in no more than |C| |I|+ 1 steps (including Step 0).

Theorem 4 The FDAT mechanism is ex-ante stable.

Proof. Consider each step of the FDAT algorithm.

In Step 0, the outcome of the FDA has no school-wise justified envy toward a lower-priority

student by Theorem 2.

In Step 1, students in determined ex-ante stable improvement cycles are made better off (in an

ordinal dominance sense), while others’ welfare is unchanged. Moreover, the students who are made

better off are among the highest-priority students who desire a seat at the school where they receive

a larger share. That is, for any student i with ρ1
i,c > ρ0i,c, there is some school b with cPib, and

ρ1
i,b < ρ0

i,b, and there is no student j ≻c i such that ρ1j,a > 0 for some school a with cPja. (Otherwise,

i would not ex-ante top-priority school-wise envy a student k with ρ0k,c > 0 for c due to b, since j

would do that due to a or a worse school. Moreover, since ρ0 is ex-ante stable, ρ0i,c = 0. The last

two statements would imply (i, c) 6∈ A (ρ0), which in turn implies that ρ1i,c = 0.) Hence, ρ1 is ex-ante

stable.

We repeat this argument for each step. Hence, when the algorithm is terminated, the outcome is

ex-ante stable.

Our next result states that from a welfare perspective the FDAT outcome is among the most

appealing ex-ante stable random matchings. Improving upon this matching would necessarily lead

to ex-ante school-wise justified envy. This finding can also be interpreted as the random analogue

of the mechanism proposed by Erdil and Ergin (2008) for a deterministic school-choice model with

random tie-breaking. In that context, the outcome of the Erdil-Ergin mechanism has been shown to

be constrained ex-post Pareto efficient among ex-post stable matchings.

Theorem 5 The FDAT mechanism is constrained ordinally efficient within the ex-ante stable class.

Proof. Suppose that the FDAT outcome ρ is ordinally dominated by an ex-ante stable random

matching for some problem P . By Proposition 5, there exists an ex-ante stable improvement cycle

at P . Thus, this contradicts the fact that ρ is the FDAT outcome.

Theorem 6 The FDAT mechanism treats equals equally.
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Proof. The FDA mechanism treats equals equally as it is strongly ex-ante stable (by Theorem 2).

Thus, two students with the same preferences and priorities have exactly the same random matching

vector under the FDA outcome ρ0. Let i, j be two equal students. Then ρ0i = ρ0j and (i, c) ∈ A (ρ0)

if and only if (j, c) ∈ A (ρ0) for any school c ∈ C. By Athanassoglou and Sethuraman (2011), the

EASC algorithm treats equals equally. The last two statements imply that outcome of Step 1, ρ1

treats equals equally. We repeat this argument iteratively for each step, showing that the FDAT

outcome treats equals equally.

5.4 The FDAT Mechanism vs. Probabilistic Serial Mechanism

The way the FDA and FDAT mechanisms treat equal-priority students resembles the probabilistic

serial (PS) mechanism of Bogomolnaia and Moulin (2001) proposed for the “random assignment”

problem where there are no exogenous student priorities. Loosely speaking, within any given step of

the PS algorithm, those students who compete for the available units of the same object are allowed

to consume equal fractions until the object is exhausted. Similarly, within any given step of the FDA

algorithm those equal-priority students who have applied to the same school are also treated equally

in very much the same way. Despite such similarity the two procedures are indeed quite different

in general. The difference of the two algorithms comes from the fact that the PS algorithm makes

permanent random matchings within each step, whereas the FDA algorithm always makes tentative

random matchings till the last step. We can expect to have some efficiency loss due to FDA’s strong

ex-ante stability property, while the PS mechanism is not strongly ex-ante stable. Even if FDA and

PS outcomes are different, one may think that starting from the FDA outcome, fractional trading

will somehow establish the equivalence with the PS outcome. However, as the following example

shows, the PS outcome does not necessarily ordinally dominate the FDA outcome, and hence, the

FDAT outcome, which ordinally dominates the FDA outcome, and the PS outcome are not the same

either:

Example 6 Neither FDA nor FDAT is equivalent to the PS mechanism when all students

have the same priority: Assume there are four students {1, 2, 3, 4} and four schools {a, b, c, d} each

with a quota of one. All students have equal priorities at all schools. The students’ preferences are

given as

P1 P2 P3 P4

d a d c

c d c b

a c b d

b b a a
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The FDA, FDAT, and PS outcomes are:

ρFDA =

a b c d

1
1
3

0 1
3

1
3

2
2
3

0 0 1
3

3 0 1
3

1
3

1
3

4 0 2
3

1
3

0

ρFDAT =

a b c d

1 0 0 1
2

1
2

2 1 0 0 0

3 0 1
3

1
6

1
2

4 0 2
3

1
3

0

ρPS =

a b c d

1
1
6

1
6

1
6

1
2

2
5
6

1
6

0 0

3 0 1
3

1
6

1
2

4 0 1
3

2
3

0

Observe that ρFDAT and ρPS are both ordinally efficient. Moreover, ρPS does not ordinally

dominate ρFDA (e.g., contrast student 2’s random matching vectors under ρFDA
2 vs. ρPS

2 ). ♦

6 Simulations

We ran simulations to estimate the performance of FDAT mechanism and contrast it with those of the

NYC/Boston (DA henceforth) and Erdil and Ergin (2008) (EE henceforth) mechanisms in problems

that approximately match the main characteristics of the Boston data from 2008-11 (Abdulkad.iroğlu

et al., 2006) . EE dominates DA, as it starts from a deterministic DA outcome using some ex-ante tie-

breaking at each instance and finds deterministic stable improvement cycles randomly and satisfies

them. There is no clear theoretical efficiency comparison between FDAT and EE (nor between FDAT

and DA). FDAT is a constrained ordinally efficient mechanism within the ex-ante stable class while

EE is a constrained ex-post efficient mechanism within the ex-post stable class. Ordinal efficiency is

a stronger efficiency notion, however the ex-post stable class is larger than the ex-ante stable class.

Even if in instances the outcome of the EE is ex-ante stable, FDAT may not dominate it.

In our simulations we randomly generated 100 markets, each with |S| schools and |I| students,

and computed the corresponding outcomes of FDAT, DA and EE, where 100 random tie-breaking

priority orderings were additionally generated for the latter two mechanisms. More specifically, we

assumed that students were zoned in n neighborhoods, |S|/n schools per each neighborhood. Stu-

dents were grouped in these neighborhood such that |I|/n students were assumed to be living in

each neighborhood. Also s students in each neighborhood were assumed to have elder siblings at-

tending high school, some attending a neighborhood school and others a non-neighborhood school.

As in Boston, the priorities at each school were generated to prioritize the neighborhood students

with siblings attending the school first, non-neighborhood students with siblings attending the school

second, neighborhood students without siblings at the school third, and non-neighborhood students

without siblings attending the school last. We generated student preferences using the following ran-

domization process: Each student had psn probability to first-rank a particular neighborhood school

that a sibling is attending, ps probability to first-rank a particular non-neighborhood school that a

sibling is attending, pn probability to first-rank a neighborhood school that a sibling is attending,
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and the remaining probability was divided up equally for each non-neighborhood school to determine

its probability to be ranked first. If the student did not have a sibling, then ps and psn were ignored;

if the student had a sibling attending a neighborhood school, then ps was ignored; and if the student

had a sibling attending a non-neighborhood school then psn was ignored when generating the first

choice. Once the first choice school is randomly determined, the conditional probabilities for the

remaining schools were updated and then second choice was randomly generated. The remaining

choices were determined sequentially and randomly after updating the probabilities for remaining

schools after each selection. We chose the above preference parameters roughly based on real prefer-

ence summary statistics of Boston high school applicants in years 2008-11 (Abdulkadiroğlu, Pathak,

Roth, and Sönmez, 2006).

The data suggested that 60% of the students have siblings in the system, although we do not have

data on how many of them are older siblings who generate sibling priorities for the students at their

schools. There were on average 26 schools and 2705 students per year applying for high school. Each

school had neighborhood priority (either with or without sibling) for 208 students on average, and

there were on average two schools located in each neighborhood. Based on the aggregate statistics,

students ranked a non-priority school 64% of the time, a sibling’s non-neighborhood school 3% of the

time and a sibling’s neighborhood school 3% of the time, and a neighborhood school without a sibling

priority 30% of the time. Observe that the latter includes all students and does not distinguish among

student types with or without siblings. Also we did not have reliable data on quotas of schools. Our

simulation statistics assumed that half of the students with siblings have older siblings in high school

(a total of 30%) so that 10% of the students have older in-walk-zone siblings and 20% of the students

have older siblings attending non-neighborhood schools. Using a back-of-the-envelope calculation for

our simulations to approximately match the preference characteristics of data with our preference

generation process, we chose psn = 0.3, ps = 0.15, and pn = 0.15. We also chose the number of

schools comparable in size to the sample: we had |S| = 20 and n = 10 neighborhoods, so that there

were two schools per neighborhood. However, to have a manageable simulation (as we ran DA and

EE 10,000 times and FDAT 100 times) we chose |I| = 200 total students, and hence, 20 students per

walk zone, instead of 208. We report the results of these simulations below.22

The following tables show the average allocation of different types of students in the simulations.

The first table compares the DA outcome with that of FDAT. Although there is no domination

relationship between the two mechanisms in theory, FDAT does extremely well for almost all students

with respect to DA. The first row in Table 1 shows the average proportion of students for whom FDAT

first-order stochastically dominates (fosd, for short) DA, DA fosd FDAT, DA and FDAT outcomes

are the same and there is no comparison with fosd among the two outcomes. A super-majority of

students, 62.9% prefer FDAT over DA. Among these students, the probability a student receives his

22The reported results are highly robust to changes in in-walk-zone/out-of-walk-zone sibling ratios.
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first choice school is 0.76, while this probability is 0.456 under DA. While only 1.5% prefer DA over

FDAT, the average assignment probabilities of these students to their choices are very similar under

both mechanisms and only slightly favorable for the DA. The probability for the first two choices are

0.928 for FDAT and only 0.787 for DA. On the other hand, the students who get the same outcome

under FDAT and DA always get their first choices and these students comprise 30.7% of the whole

population. For 5% of the population the FDAT and DA outcomes are not comparable in fosd sense,

and the average allocation probabilities for their choices are similar.

The second table reports the results of similar comparisons between FDAT and EE. Note that

there is no overall domination relation between these mechanisms in theory. Students seem overall

much better under EE with respect to DA, still FDAT outcomes appear to be more favorable for a

higher percentage of students than EE: 31.6% of the students unambiguously prefer FDAT over EE

while only 18% of the students prefer EE over FDAT. 37% of the students receive the same allocation

under both mechanisms, at which each of them receives his first choice with probability 1. For 13.4%

of the students the outcomes are not comparable with respect to fosd.

Although neither EE nor DA is ex-ante stable, we observe very small percentage of agents having

ex-ante justified envy. Hence, under these preferences and priorities both mechanisms almost behave

like ex-ante stable mechanisms (the last row in both tables). Although in theory, there can be ex-

post stable and more efficient mechanisms than FDAT, as the two stability concepts seem to be close

under realistic simulations, FDAT’s superior performance with respect to both mechanisms is not

surprising.
Table 1: FDAT vs. DA FDAT fosd DA DA fosd FDAT FDAT=DA not comp. Overall

Fraction of Students 62.9% 1.5% 30.7% 5.0% 100%

Average Prob. Choices FDAT DA FDAT DA FDAT=DA FDAT DA FDAT DA

1st 0.760 0.456 0.407 0.482 1.000 0.498 0.414 0.815 0.621

2nd 0.168 0.331 0.565 0.496 0.256 0.311 0.127 0.231

3rd 0.055 0.131 0.026 0.020 0.179 0.177 0.044 0.091

4th 0.013 0.049 0.002 0.001 0.055 0.066 0.011 0.034

5th 0.003 0.020 0.010 0.020 0.002 0.013

6th 0.001 0.008 0.002 0.007 0.000 0.005

7th 0.003 0.001 0.003 0.002

8th 0.001 0.001 0.001

9th 0.001 0.000

Fraction of justifiably ex-ante envious students in DA 5.6%
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Table 2: FDAT vs. EE FDAT fosd EE EE fosd FDAT FDAT=EE not comp. Overall

Fraction of Students 31.6% 18.0% 37.0% 13.4% 100%

Average Prob. Choices FDAT EE FDAT EE FDAT=EE FDAT EE FDAT EE

1st 0.795 0.692 0.617 0.756 1.000 0.498 0.414 0.815 0.812

2nd 0.168 0.241 0.268 0.191 0.256 0.311 0.127 0.138

3rd 0.030 0.046 0.087 0.042 0.179 0.177 0.044 0.035

4th 0.005 0.013 0.022 0.009 0.055 0.066 0.011 0.010

5th 0.001 0.005 0.005 0.001 0.010 0.020 0.002 0.003

6th 0.002 0.001 0.002 0.007 0.000 0.001

7th 0.001 0.001 0.003 0.000 0.000

8th 0.001 0.000

9th 0.001 0.000

Fraction of justifiably ex-ante envious students in EE 2.0%

7 Incentives

Strategic issues regarding lottery matching mechanisms, in general, have not been well understood.

In the context of one-sided matching (i.e., the special case of our model where all students have

equal priority at all schools) strategy-proofness is essentially incompatible with ordinal efficiency. A

mechanism is strategy-proof if, for each agent, his random matching vector obtained through the

mechanism via his truth-telling behavior ordinally dominates or is equal to the one obtained via

his revelation of any untruthful ranking. Therefore, notwithstanding its appeal in terms of various

properties including ordinal efficiency, the probabilistic serial mechanism of Bogomolnaia and Moulin

(2001) that has triggered a rapidly growing literature on the random assignment problem is not

strategy-proof. In the context of school choice, due to the well-known three-way tension among

stability, efficiency, and incentives, strategy-proof and stable mechanisms are necessarily inefficient

(see e.g. Erdil and Ergin (2008), Abdulkadiroğlu, Pathak, and Roth (2009), and Kesten (2009a)).

The current NYC/Boston mechanism, which is strategy-proof, is the most efficient stable mechanism

(Gale and Shapley, 1962) when priorities are strict. However, in the school-choice problem with weak

priorities, it is not even ex-post efficient within the ex-post stable class of mechanisms. Moreover,

it has been shown empirically (Abdulkadiroğlu, Pathak, and Roth, 2009) and theoretically (Kesten,

2009a) to be subject to significant and large welfare losses. As a result of this observation non-

strategy-proof mechanisms have been highly advocated and proposed in the recent literature on

school choice (see e.g. Erdil and Ergin (2008), Kesten (2009a), and Abdulkadiroğlu, Che, and

Yasuda (2008)).

Given the negative results outlined above regarding different fairness and efficiency properties it is

probably not surprising that the two mechanisms proposed in this paper are not strategy-proof. This

observation follows from the following two impossibility results regarding the existence of strategy-
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proof mechanisms in our problem domain. We state these observations in the next two remarks.

The first remark is a reformulation of a result due to Bogomolnaia and Moulin (2001) for the present

context.

Remark 1 When |I| ≥ 4, there is no strategy-proof, ex-ante stable, and constrained ordinally effi-

cient mechanism that also respects equal treatment of equals.

The next remark shows the incompatibility between strategy-proofness and strong ex-ante sta-

bility. Its proof is given Appendix B.

Remark 2 When |I| ≥ 3, there is no strategy-proof and strongly ex-ante stable mechanism.

However, in sufficiently large markets, non-strategy-proof mechanisms of small markets can turn

out to be strategy-proof (cf. Kojima and Manea, 2010; Azevedo and Budish, 2012). Indeed, in a

large market with diverse preference types of students, FDA is strategy-proof. We prove this result

in the following subsection. FDAT is not readily known to be strategy-proof or not in a similar large

market formulation or under further restrictions.

7.1 Incentives under FDA in a Large Market

A continuum school-choice problem is denoted by a six-tuple [I, T, τ, C, q, P,%]where: I is a Lebesgue-

measurable continuum set of students each of whom is seeking a seat at a school; T is a finite set

of priority types of students; τ : I → T is a type specification function for students; C is a fi-

nite set of schools; q = (qc)c∈C is a quota vector of schools such that qc ∈ Z++ is the maximum

Lebesgue measure of students who can be assigned to school c; P = (Pi)i∈I is a strict preference

profile for students; and %= (%c)c∈C is a weak priority structure for schools over T . Let |J | denote

the Lebesque measure of student subset J ⊆ I. Let |I| > 0.23 We assume that there is enough

quota for all students, that is
∑

c∈C

qc = |I|. We also assume that if t ∈ τ(I) then τ−1(t) has a positive

Lebesgue measure, |τ−1(t)| > 0. In particular, for all possible preference relations Pj over schools,

there exists a positive Lebesgue measure of students in τ−1(t) with the same preference relation Pj ,

that is: |{i ∈ τ−1(t) : Pi = Pj}| > 0 for all t ∈ τ(I) and preference relation Pj.
24 The ordinally

Pareto-dominant strongly ex-ante stable random matching still exists in this framework for each

problem.25 Let FDA be defined through the mechanism that picks this random matching. In this

framework, we can state the following result:

23See Che and Kojima (2010) for a foundational exercise in modeling continuum matching problem.
24Note that we do not assume that all prioritizations of different preference types are possible in a given problem.

The possible prioritizations are given through the fixed priority profile %.
25Establishing this fact requires a little more formal work, but we skip it for brevity and refer our reader to the

corresponding result in a finite problem.
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Theorem 7 In continuum school-choice problems as specified above, FDA is strategy-proof; that is,

for any student it is a weakly ordinally dominant strategy to reveal his true preferences.

Proof. Suppose a student i of type t, instead of revealing his true preference Pi, reveals some

other student’s preference Pj where j is also of type t (for every manipulation of student i, such a

student j exists by the assumptions). Now, the outcome of the FDA mechanism is the same under

both problems, with truthful revelation of i and with i pretending to be a student identical toj. This

is true as the set of strongly ex-ante stable random matchings will not change without changing the

measures of types of agents existing in the problem. Suppose ρ is this outcome. All we need to

show is that ρi ordinally dominates ρj under Pi or ρi = ρj (suppose we denote this relationship by

ρi ≥i ρj). We assume that a1Pia2Pi....Pian denotes the preference relation of i. There exists some

ak with k ≥ 1 such that ρi,ak > 0. Suppose ak is the lowest ranked school in Pi with this property.

Then by elimination of ex-ante discrimination of equal priority students i and j under ρ, we have

ρi,aℓ ≥ ρj,aℓ for all ℓ < k. Therefore for all ℓ < k,
∑ℓ

m=1 ρi,am ≥
∑ℓ

m=1 ρj,am . Moreover, we have
∑k

m=1 ρi,am = 1. Hence,
∑ℓ

m=1 ρi,am ≥
∑ℓ

m=1 ρj,am for all ℓ, showing that ρi ≥i ρj . 26

8 Concluding Comments

In this paper, we have established a framework that generalizes one-to-many two-sided and one-

sided matching problems. Such a framework enables the mechanism designer to achieve strong

and appealing ex-ante efficiency properties when students are endowed with ordinal preferences as

exemplified in the pioneering work of Bogomolnaia and Moulin (2001). On the other hand, fairness

considerations play a crucial role in the design of practical school-choice mechanisms, since school

districts are vulnerable to possible legal action resulting from a violation of student priorities. We

have formulated two natural and intuitive ex-ante fairness notions called strong ex-ante stability

and ex-ante stability and have shown that they are violated by prominent school-choice mechanisms

such as the current NYC/Boston mechanism. We have proposed two mechanisms that stand out as

attractive members of their corresponding classes.

The research on school-choice lotteries is a relatively new area in market design theory and there

are many remaining open questions. One important question is about the characterization of ex-post

stability when matchings are allowed to be random. Similarly to the results we have established

for strong ex-ante stability (Theorem 3) and ex-ante stability (Theorem 5), a characterization of

constrained ordinal efficient and ex-post stable random matchings currently remains an important

26It can be shown that there is no strategy-proof and constrained-efficient ex-ante stable mechanism that also satisfies

equal treatment of equals in the continuum school-choice problems. Hence, FDAT is also not strategy-proof in such a

model.
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future issue. One other important area of future investigation is the analysis of strategic properties

of FDA in a large market.

A Appendix: How does the FDA algorithm work when there

is a rejection cycle?

Example 7 How does the finite FDA algorithm work? Assume there are four students {1, 2, 3, 4}

and four schools, {a, b, c, d} each with a quota of one. The priorities and preferences are given as

follows:

≻a ≻b ≻c ≻d

4 1, 2 2
...

2 3, 4 1, 3
... 4

P1 P2 P3 P4

c a b b

b c c a

d b d
...

a d a
...

Students propose according to the order 1, 2, 3, 4 :

Step 1: Student 1 applies to school c and is tentatively admitted.

Step 2: Student 2 applies to school a and is tentatively admitted.

Step 3: Student 3 applies to school b and is tentatively admitted.

Step 4: Student 4 applies to school b. The applicants of school b are students 3 and 4 (who have

equal priority). Since applications exceed the quota, 1
2

of each of 3 and 4 are rejected by b, while 1
2

of each of 3 and 4 are tentatively admitted.

Step 5: Student 3 has an outstanding fraction of 1
2

and applies to his next best school, c.

The applicants of c are student 1 with whole fraction and student 3 with fraction 1
2
. Each has equal

priority at school c whose quota has been exceeded. Thus 1
2

of each of students 1 and 3 are tentatively

admitted at school c, while 1
2

of student 1 is rejected. Since 1 is partially rejected in favor of 3 by c,

we have 3 →֒c 1.

Step 6: Student 1 has an outstanding fraction of 1
2
, and applies to his next best school, b. School

b has three applicants, 1
2

of 3, 1
2

of 4, and 1
2

of 1. Since the quota of the school is exceeded and

student 1 has the highest priority among the three applicants, 1
2

of 1 is tentatively admitted, while 1
4

of each of 3 and 4 are tentatively admitted, and 1
4

of each of 3 and 4 are rejected. We have 1 →֒b 4,

and 1 →֒b 3, hence there is a rejection cycle (3, c, 1, a). The resolution of this cycle is trivial, since

once 3 applies to school c again with his outstanding fraction 1
4
, all of this is rejected by c since both

1 and 3 have equal priority at c and they already have 1
2

fraction each at c. Thus, it is no longer true

that 3 →֒c 1, and the cycle is resolved.

33



Step 7: Student 3 has an outstanding fraction of 1
4
, and applies to his next best school, d. This

is tentatively accepted by d.

Step 8 : Student 4 has an outstanding fraction of 3
4
, and applies to his next best school, a. School

a has two applicants, whole fraction of 2 and 3
4

of 4. Since the quota of a is only one, and student 4

has higher priority than 2 at a, then 3
4

of 4 and 1
4

of 2 are tentatively admitted to a, while 3
4

of 2 is

rejected. We have 4 →֒a 2.

Step 9: Student 2 has an outstanding fraction of 3
4

and applies to his next best school, c. School

c has three applicants, 1 with fraction 1
2
, 3 with fraction 1

2
, and 2 with fraction 3

4
. Since the quota of

c, which is one, has been exceeded, and 2 has higher priority than each of 1 and 3 who have equal

priority, 3
4

of 2, 1
8

of each 1 and 3 are tentatively admitted to c, while 3
8

of each of 1 and 3 are rejected.

We have 2 →֒c 1 and 2 →֒c 3. The former relation induces a new cycle (1, b, 4, a, 2, c). This cycle is

not trivial. We use a simple system of equations to resolve this cycle with unknowns y1, y4, y2 as the

eventual limit rejected fractions from c, b, a and tentatively admitted fractions to b, a, c of students

of 1, 4, 2, respectively:

y1 + ω1 = max{y4, 0}+max {φ3,b − (φ4,b − y4), 0} ,

y4 = max{y2, 0},

y2 = max {y1, 0}+max {φ3,c − (φ1,c − y1), 0} ;

where ω1 = 3
8

is the fraction of 1 that will be tentatively admitted to b when the cycle is initiated;

φ4,b = φ3,b = 1
4

are the fractions of 4 and 3 currently tentatively admitted to b when the cycle is

initiated; and φ3,c = φ1,c =
1
8

are the fractions of 3 and 1 currently tentatively admitted to c. Observe

that these unknowns can be solved through the linear system,

y1 +
3

8
= 2y4, y4 = y2, y2 = 2y1.

By solving them we obtain

y4=
1

4
, y2=

1

4
, y1=

1

8
.

As these rejected fractions are all less than or equal to the initially admitted fractions of 4,2,1 to

b, a, c respectively indeed it is possible to resolve this cycle with these fractions.27 At this point, the

tentative random matchings of students are: a whole fraction of 1 at b, a whole fraction of 4 at a, a

whole fraction of 2 at c. From the previous step we also have 1
4

of 3 tentatively admitted at d.

27If we had a situation such that yiℓ > φiℓ,cℓ−1
for some iℓ in the cycle where φiℓ,cℓ−1

is the initially tentatively

admitted fraction of iℓ at cℓ−1, from which he is being rejected by repeated applications of iℓ−1 , then we would set

yiℓ = φiℓ,cℓ−1
and solve the other equations. See the proof of Proposition 3 in Appendix B for generalization of this

method.
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Step 10: Student 3 has an outstanding fraction of 3
4
, with which he applies to his best school

that has not rejected him yet, d. Now, the whole fraction of 3 is applying to d, which tentatively

admits him.

There are no outstanding student fractions left. The algorithm terminates with the outcome

a b c d

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

4 1 0 0 0

.

♦

B Appendix: Proofs of the Results Regarding the FDA Mech-

anism

Proof of Proposition 3. First, we prove that a rejection cycle can be resolved in finite time.

Suppose a rejection cycle occurs at a step when i1 applies to c1 with fraction ω1 after this fraction is

rejected from cm:

i1 →֒c1 i2 →֒c2 ... →֒cm−1 im →֒cm i1,

At this point for each s, let φi,cs be the fraction of student i tentatively assigned to school cs. Note

that among the students i1, ..., im only i1 has a positive fraction, ω1, that is tentatively unassigned

at this time. Let φi,cs be the fraction of student i ∈ I tentatively held at each cs at this point. We

will place ω1 in c1 if we can. If not, i1 will be rejected by c1 and cycle will be resolved. Suppose ω1

can be tentatively placed in c1.

Let ys+1 be the rejected fraction of is+1 from cs when the cycle is resolved. This fraction will be

tentatively held by school cs+1 at this stage. Observe that all rejected fractions from cs belong to the

students that are at the same priority level with is+1. We need to make sure that each student i at

the same priority level as is+1 is held at the same fraction φis+1,cs − ys+1 at cs, unless i did not have

that much fraction to start with. The sum of all tentatively accepted fractions at the resolution of

the cycle will be qcs.

A simple way to solve these equations is as follows: Let Ms = {i ∼cs is+1|φi,cs > 0} for all s.

Observe that if we did have sufficient fractions already held at the school cs of is+1, then we can

iteratively solve for ys as

ys =
∑

i∈Ms

max{φi,cs − (φis+1,cs − ys+1), 0} ∀s ∈ {2, ..., m}, (1)
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as when ys of is is admitted at cs it causes the fraction [φi,cs − (φis+1,cs −ys+1)] to be rejected for each

student i ∈ Ms, whenever this fraction is greater than 0 to start with (where m + 1 = 1 in modulo

m). For c1 we have

y1 + ω1 =
∑

i∈M1

max{φi,c1 − (φi2,c1 − y2), 0}, (2)

as y1 + ω1 is the total admitted fraction of i1 at school c1. Then we can solve these m equations in

m unknowns using a number of linear equation systems.

At the determined {yt} vector satisfying Equations (1) and (2), a student is+1 may have ys+1 >

φis+1,cs , i.e., we cannot reject ys+1 fraction of is+1 from cs. Then, we try setting ys+1 = φis+1 and

otherwise the equations for the other yt 6= ys+1 is given as in Equations (1) and (2). We can similarly

solve this system. Each yt decreases, as ys+1 decreased and ys and ys+2 are positively correlated with

ys+1 and so on so forth for all the other yt’s. If we still have at the new vector {yt} a student iu+1

such that yu+1 > φiu+1,cu, we set yu+1 = φu+1,cu and all other yt 6= yu+1 are given as in Equations (1)

and (2). We solve the new system. As {yt} decreases again, we have ys+1 < φis+1,cs and hence the

problem for the first student is+1 is resolved. We continue iteratively as above until for all student

it+1, yt+1 ≤ φit+1,ct . We are done.

If a cycle does not occur, similarly the step of the algorithm can be resolved easily.

Observe that in each step of the FDA algorithm, students get weakly worse off, since they only

make proposals to a school that has not rejected a fraction of themselves. After all |I| students

make offers, at least one student gets rejected by one school and has an outstanding fraction, or

the algorithm converges, whether or not a cycle occurs. Since there are |C| schools, the algorithm

converges in at most |I| |C| steps.

Proof of Theorem 3. We argue by contradiction. Suppose this is not true for some school-

choice problem. Fix a problem [P,%]. Let π ∈ X be the FDA algorithm’s outcome random matching

for some order of students making offers, and ρ ∈ X be a strongly ex-ante stable random assignment

that is not stochastically dominated by π. This means that

there exist i0 ∈ I and a0 ∈ C such that 0 6= ρi0,a0 > πi0,a0
where a0Pi0e0 for some e0 ∈ C with 0 6= πi0,e0 > ρi0,e0.

(3)

We will construct a finite sequence of student-school pairs as follows:

Construction of a trading cycle from π to ρ: Statement 3 implies that there exists i1 ∈ I\{i0}

such that ρi1,a0 < πi1,a0 6= 0. Then strong ex-ante stability of the FDA outcomes implies that i1 %a0 i0,

for otherwise π would have induced ex-ante school-wise justifiable envy of i1 toward i0 for a0 (in case

i1 ≻a0 i0) or π would have ex-ante discriminated i0 and i1 at a0 (in case i1 ∼a0 i0). Then, since

ρi1,a0 < πi1,a0 , ρi0,a0 > πi0,a0 , and ρ is strongly ex-ante stable, in order for ρ not to have ex-ante

school-wise justified envy of i1 toward i0 for a0 (in case i1 ≻a0 i0) and ρ not to have ex-ante school-
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wise discrimination between i0 and i1 for a0 (in case i1 ∼a0 i0), there must exist some a1 ∈ C\{a0}

such that 0 6= ρi1,a1 > πi1,a1 where a1Pi1a0. (More precisely, there are two cases:

Case (1) i1 ≻a0 i0: Suppose by contradiction that for all b ∈ C with bPi1a0, we have ρi1,b ≤ πi1,b.

Then by feasibility there is c ∈ C with a0Pi1c and ρi1,c > πi1,c. But then i1 would ex-ante school-wise

justifiably envy i0 for a1 at ρ, contradicting ρ is strongly ex-ante stable.

Case (2) i1 ∼a0 i0 : Since πi0,e0 6= 0 and a0Pi0e0 (by Statement 3 above), we have 0 6= πi1,a0 ≤

πi0,a0 6= 0. Thus, ρi1,a0 < πi1,a0 and ρi0,a0 > πi0,a0 imply that ρi1,a0 < ρi0,a0 . Then, no ex-ante school-

wise discrimination at ρ between i0 and i1 for a0 implies that there is no d ∈ C where a0Pi1d with

ρi1,d 6= 0. Then such an a1 should exist for i1.)

Observe that i1 satisfies the same Statement 3 above as i0 does using a1 instead of a0, and a0

instead of e0, and i1 %a0 i0, i.e.,

ρi1,a1 > πi1,a1 , a1Pi1a0 with ρi1,a0 < πi1,a0 6= 0 and i1 %a0 i0.

Thus, as we continue iteratively we obtain a finite sequence of students and schools such that each

pair (as−1, is) (subscripts are modulo n + 1, so that n+ 1 ≡ 0) appears only once in the sequence,

e0, i0, a0, i1, a1, ..., in, an

and each is satisfies Condition 3 replacing is with i0, as with a1 and as−1 with e0, and additionally

satisfying is %as−1 is−1, i.e.,

ρis,as > πis,as , asPisas−1 with ρis,as−1 < πis,as−1 6= 0 and is %as−1 is−1 (4)

and finally, by finiteness of schools and students, we have

an ≡ e0 and yet in 6= i0,

where e0 can be chosen as defined in Condition 3. This sequence describes a special probability

trading cycle from π to ρ for some better schools, so that ρ cannot be ordinally dominated by π. ♦

Observe that there can be many such cycles, some of them overlapping. And each such cycle has

at least two agents and two schools. Suppose there are m∗ such cycles Cyc1, ...Cycm, ..., Cycm
∗
and

let I1, I2, ..., Im, ..., Im
∗

be the sets of students and C1, C2, ..., Cm, ..., Cm∗
be the corresponding sets

of schools in these cycles, respectively. Let I∗ be the union of all above student sets and C∗ be the

union of all above school sets. We will prove some claims that will facilitate the proof of the theorem:

Claim 1: Take a cycle Cycm = (i0, a0, ..., in, an). There is no as ∈ Cm and no b ∈ C such that

for student is+1, we have asPis+1b and ρis+1,b 6= 0.
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Proof of Claim 1: Suppose, on the contrary, there are as ∈ Cm and b ∈ C such that asPis+1b

and ρis+1,b 6= 0. We also have, ρis+1,as < πis+1,as 6= 0 by construction of cycle Cycm (see Statement

4 above). We also have by construction, 0 6= ρis,as > πis,as, asPisas−1, ρis,as−1 < πis,as−1 6= 0, and,

finally is+1 %as is (see Statement 4 above). Consider two cases:

Case (1’) is+1 ≻as is : Since ρis,as 6= 0, ρis+1,b 6= 0 and asPis+1b, student is+1 ex-ante justifiably

envies is for as at ρ, contradicting ρ is strongly ex-ante stable.

Case (2’): is+1 ∼as is : By the strong ex-ante stability of π, there is no ex-ante school-wise

discrimination between is+1 and is for as at π. Since asPisas−1 and πis,as−1 6= 0, we must have

πis,as ≥ πis+1,as . Then, we have ρis,as > πis,as ≥ πis+1,as > ρis+1,as . Recall that ρis+1,b 6= 0 for asPis+1b.

The last two statements imply that ρ ex-ante discriminates between is and is+1 at as, contradicting

that ρ is strongly ex-ante stable. ♦

Consider the sequence of offers and rejections in the FDA algorithm that leads to π. Let is ∈ Im

for a cycle Cycm (without loss of generality, let (i0, a0, i1, a1, ..., in, an) be this cycle) be the last

student in I∗ to apply and get a positive fraction under π from the next school in his cycle (i.e., for

is, this school is as ∈ Cm). Let t be this step of the algorithm. We prove the following claim:

Claim 2: The total sum of student fractions that school as−1 has tentatively accepted until the

beginning of step t of the FDA algorithm is equal to its quota, i.e., school as−1 is filled at the beginning

of step t.

Proof of Claim 2: Consider agent is−1. We have πis−1,as−2 > 0 by construction of Cycm. By the

choice of student is, student is−1 should have applied to school as−2 at some step p < t. We also

have as−1Pis−1as−2 by construction of Cycm. Then, in the FDA algorithm, is−1 should have applied

to as−1 first at some step r < p. This is true as he can apply to as−2 in the algorithm only after

having been rejected by school as−1. A school can reject a student only if it has tentatively accepted

student fractions summing up to its quota. Since as−1 remains to be filled after it becomes filled in

the algorithm, the claim follows. ♦

Thus, by Claim 2, as−1 is full at the beginning of step t just before student is applies. Then,

there exists some student j ∈ I with is %as j such that some fraction of j was tentatively accepted

by school as before step t and some fraction of j gets kicked out of school as at the end of step t

(so that by the choice of is, some fraction of his gets in as−1). Since the FDA algorithm converges to

a well-defined random matching, there is some b ∈ C such that as−1Pjb and πj,b 6= 0. We prove the

following claim:

Claim 3: We have j 6∈ I∗.
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Proof of Claim 3: Suppose not, i.e., j is in some cycle. By the choice of student is, the ordered

four-tuple b(= as−2), j (= is−1) , as−1, is cannot be part of Cycm, i.e., j cannot be accepted by b

after being rejected by as−1 in the FDA algorithm and yet ρj,b < πj,b (i.e., see Statement 4 for the

construction of a cycle). But then by the choice of school b, ρj,b ≥ πj,b 6= 0. However, Claim 1

applied for school as−1 and student j(= is−1) and the fact that as−1Pjb together imply that ρj,b = 0,

contradicting the previous statement. Thus, j 6∈ I∗. ♦

We are ready to finish the proof of the theorem. Since school as−1 is full at the beginning of step

t (by Claim 2), there is student is−1 ∈ Im\ {is}, i.e., preceding as−1 in Cycm, with 0 6= ρis−1,as−1 >

πis−1,as−1 who applied to school as−2 ≺is−1 as−1 after being rejected by school as−1. Moreover, by the

choice of is, student is−1 applies to as−2 before step t (for the last time), and hence, he got rejected

by as−1 before step t. Moreover, is−1 6= j (by Claim 3). Thus, j %as−1 is−1. We will establish a

contradiction, and complete the proof of the theorem. Two cases are possible:

Case (1”’): j ≻as−1 is−1 : Since ρj,b 6= 0, strong ex-ante stability of ρ implies that ρis−1,as−1 = 0

leading to a contradiction to the fact that 0 6= ρis−1,as−1 .

Case (2”’): j ∼as−1 is−1 : Recall again that πis−1,as−2 > 0 and as−1Pis−1as−2, πj,b > 0, and as−1Pjb.

But then, is−1 gets rejected by as−1 at the FDA algorithm at the same step as j gets rejected

with some fraction, which is step t (since ρ does not ex-ante discriminate j and is−1 at as−1, they

should have equal fractions at as−1 prior to step t), and thus is−1 applies to school as−2 after step t,

contradicting the choice of student is.

Proof of Remark 2. Let ϕ be a strongly ex-ante stable mechanism. Consider the following

problem with three students 1, 2, 3, and three schools a, b, c, each with quota one:

P1 P2 P3

a a b

b c a

c b c

%a %b %c

3 1
...

1, 2
...

There is a unique strongly ex-ante stable random matching that is given as follows:

ρ =

a b c

1 0 1 0

2 0 0 1

3 1 0 0

Thus, ϕ[P,%] = ρ.
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However, if student 1 submits the preferences P ′
1 = (acb) instead of Pi, then the unique strongly

ex-ante stable random matching will be

ρ′ =

a b c

1
1
2

0 1
2

2
1
2

0 1
2

3 0 1 0

Hence, ϕ[(P ′
1, P−1),%] = ρ′. Observe that there can be von Neumann - Morgenstern utility functions

of Student 1 that may make ρ′1 more desirable than ρ1.

If |I| > 3, we can make the example hold by embedding it in a problem with I = {1, 2, ..., |I|}

and C = {a, b, c, d4, ..., d|I|} where each student i ∈ {4, ...., |I|} is ranking school di as his first choice,

and each student i ∈ {1, 2, 3} is ranking each school di lower than schools a, b, c. Under any ex-ante

strongly stable matching, each i ∈ {4, 5, ..., |I|} will be matched with di and {1, 2, 3} will be mapped

with {a, b, c}.

C Appendix: Proof of Proposition 5

Proof of Proposition 5. “Only if” part: Let ρ be an ex-ante stable random matching with an

ex-ante stable improvement cycle Cyc = (i1, a1, ..., im, am). Let im+1 ≡ i1 and am+1 ≡ a1. Let π be

the random matching obtained by satisfying this cycle with some feasible fraction. Then π ordinally

dominates ρ. Since each student is envies student is+1 for as+1 due to as at ρ, and is is a highest

al-priority student ex-ante school-wise–envying a student with a positive probability at school as+1.

Thus, either (1) is is at the same priority level with is+1 for as+1, or (2) is is at a lower-priority level

than is+1 for as+1 but any i ∼as+1 is+1 does not ex-ante school-wise envy himself or is+1 for as+1 at

ρ, that is: i is not assigned with a positive probability to a worse school than as+1 at ρ. Thus, when

we satisfy the cycle Cyc, there will be no ex-ante school-wise justified envy toward a lower-priority

student and π is ex-ante stable.

“If” part: Let ρ be an ex-ante stable random matching. Let π 6= ρ be an ex-ante stable random

matching that ordinally dominates ρ. We will construct a particular ex-ante stable improvement

cycle at ρ.

Let I ′ = {i ∈ I : ρi 6= πi}. Clearly, I ′ 6= ∅. Note that for all i′ ∈ I ′, πi′ stochastically dominates

ρi′ . Thus, whenever πi′,a > ρi′,a for some i′ ∈ I ′ and a ∈ C, then there is j′ ∈ I ′ with πj′,a < ρj′,a;

moreover, since πj′ stochastically dominates ρj′, there is b ∈ C with bPj′a and πj′,b > ρj′,b. Let

C ′ = {c ∈ C : πi,c > ρi,c for some i ∈ I ′}. Clearly, C ′ 6= ∅.

Consider the following directed graph: Each pair student-school pair (i, c) ∈ I ′×C ′ with ρi,c 6= 0 is

represented by a node. Fix a school c ∈ C ′. Let each student-school pair (i, c) in this graph containing
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school c be pointed to by every student-school pair containing a student school-wise–envying student

i for school c and has the highest priority among such school-wise–envying students in I ′. We repeat

this for each c ∈ C ′.

Note that no student-school pair in the resulting graph points to itself, and each student-school

pair in this graph is pointed to by at least one other student-school pair. Moreover, each student-

school pair (i, c) in this graph can only be pointed to by a student-school pair that contains a different

school than c. Then there is at least one cycle of student-school pairs Cyc = (i1, a1, i2, a2, ..., im, am)

with (im, am) ≡ (i0, a0) and m ≥ 2. By construction, we have (is, as)⋗
ρ (is+1, as+1) for s = 0, . . . , m−

1. Note also that cycle Cyc contains at least two distinct students. Then cycle Cyc is a stochastic

improvement cycle.

Now consider school as+1 of the pair (is+1, as+1) in cycle Cyc. Suppose, for a contradiction, that

student is does not ex-ante top-priority school-wise envy is+1 for as+1 due to as. Then there is a

student-school pair (j, d) with j /∈ I ′, which is not represented in our graph, such that (j, d) ◮ρ

(is+1, as+1) . In particular, j ≻as+1 i for any i ∈ I ′ such that (i, d)⋗ρ (is+1, as+1) for any d ∈ C ′. Let

k ∈ I ′ such that πk,as+1 > ρk,as+1 . Since j ≻as+1 k and ρj,d = πj,d, student j justifiably ex-ante envies

k at π. This contradicts the ex-ante stability of π.
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D Supplementary Appendix : The EASC Algorithm

The description of the algorithm mostly follows the constrained consumption algorithm of Athanas-

soglou and Sethuraman (2011) with a few modifications:

Given an ex-ante stable matching ρ, we first define the following set:

A (ρ) = {(i, c) ∈ I × C : ρi,c > 0 or (i, a) ◮ρ (j, c) for some j ∈ I and a ∈ C} .

Given an initial ex-ante stable random matching ρ, our adaptation of the constrained consumption

algorithm finds a random matching π such that (1) π ordinally dominates or is equal to ρ and (2)

(i, c) 6∈ A (ρ) =⇒ πi,c = 0.

It is executed through a series of flow networks, each of which is a directed graph from an

artificial source node to an artificial sink node, denoted as σ and τ, respectively. We will carry the

assignment probabilities from source to sink over this flow network, so that the eventual flow will

always determine a feasible random matching. The initial network is constructed as follows:

The nodes of the network are (1) source σ and sink τ ; (2) each school c ∈ C; and (3) for each

i ∈ I and ℓ ∈ {1, ..., |C|}, i(ℓ) ∈ I × {1, ..., |C|} ; i.e., the ℓth node of student i is a node, where this

node corresponds to the ℓth choice of student i among the schools.

Let N = I × {1, ..., |C|} ∪ C ∪ {σ, τ} be the set of nodes of the network.

An arc from node x to node y is represented as x→ y. Let ωx→y be the capacity of arc x → y.28

The arcs have the following load capacities:

(1) Each arc σ → i(ℓ) has the capacity ρi,c, where school c is the ℓth choice of student i.

(2) Each arc i(ℓ) → c has the capacity ∞, if (i, c) ∈ A (ρ), and c is ranked ℓth or better at the

student i’s preferences; and 0, otherwise.

(3) Each arc c→ τ has the capacity qc, the quota of school c.

(4) Any arc between any other two nodes has capacity zero.

Thus, the arcs with positive load capacities are directed from the source σ to the student nodes,

from the student nodes to feasible school nodes with respect to A (ρ), and from school nodes to the

sink τ .

Let Γ = 〈N, ω〉 denote this network. We define additional concepts for such a network.

A cut of the network is a subset of nodes K ⊆ N such that σ ∈ K and τ ∈ N\K. The capacity of

a cut K is the sum of the capacities of the arcs that are directed from nodes in K to nodes in N\K,

28Without loss of generality, we focus on rational numbers as load capacities.

45



and it is denoted as Ω (K), that is: Ω (K) =
∑

x∈K,y∈N\K

ωx→y. A minimum cut K∗ is a minimum

capacity cut, i.e., K∗ ∈ argmin{σ}⊆K⊆N\{τ}Ω (K). A flow of the network is a list φ = (φx→y)x,y∈N
such that (1) for each x, y ∈ N, φx→y ≤ ωx→y, i.e., the flow cannot exceed the capacity, and (2)

for all x ∈ N\ {σ, τ},
∑

y∈N

φy→x =
∑

y∈N

φx→y, i.e., total incoming flow to a node should be equal to

the total outgoing flow. Let Φ be the set of flows. The value of a flow φ is the total outgoing flow

from the source, i.e., Ω (φ) =
∑

y∈N

φσ→y. A maximum flow φ∗ is a flow with the highest value, i.e.,

φ∗ ∈ argmaxφ∈ΦΩ (φ). Observe that in our network Γ, the maximum flow value is equal to |I|.

The algorithm solves iterative maximum flow-minimum cut problems, a powerful tool in graph

theory and linear programming. The corresponding duality theorem is stated as follows:

Theorem 8 (Ford and Fulkerson, 1956), (Maximum Flow-Minimum Cut Theorem) The

value of the maximum flow is equal to the capacity of a minimum cut.

There are various polynomial-time algorithms, such as the Edmonds and Karp (1972) algorithm,

which can determine a minimum cut and maximum flow.

The ex-ante stable consumption algorithm updates the network starting from Γ by updating the

capacity of some of the source arcs ωσ→i(ℓ) over time, which is a continuous parameter t ∈ [0, 1]. It

starts from t = 0 and increases up to t = 1. Thus, let’s relabel the source arc weights as a function of

time t as ωt
σ→i(ℓ)

by setting ω0
σ→i(ℓ)

≡ ωσ→i(ℓ) for each arc σ → i(ℓ). No other arc capacity is updated.

Let Γt be the corresponding flow network at time t.

There will also be iterative steps in the algorithm with start times t1 = 0 ≤ t2 ≤ ... ≤ tn ≤

1 = tn+1, for steps 1,...,n, respectively. All assignment activity in step m occurs in the time interval

(tm, tm+1].

This algorithm is in the class of eating algorithms introduced by Bogomolnaia and Moulin (2001),

and t also represents the assigned fraction of each student, since each student is assumed to be

assigned at a uniform speed of 1. This activity is referred to as eating a school. Each school is

assumed to be a perfectly divisible object with qc copies.

We update the feasible assignment set A (ρ) in each step. Let Am (ρ) be the feasible student-school

pairs at step m=1,...,n. We have A1 (ρ) = A (ρ) ⊇ A2 (ρ) ⊇ ... ⊇ An (ρ) .

At each step m, let bi ∈ C be the best feasible school for student i, that is, (i, bi) ∈ Am (ρ), and

biRic for all c with (i, c) ∈ Am (ρ). Also, let ei ∈ C be the endowment school of student i, that is, if

Ri (c) is the rank of school c for i, then ωtm

σ→i(Ri(ei))
> 0 and biPieiRic for all c with ωtm

σ→i(Ri(c))
> 0.

Observe that ei may not exist for a student i, which case is denoted as ei = ∅. In the algorithm we

describe here, each student consumes the best school feasible for him at t while his endowment of a

worse school decreases.
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We are ready to state the algorithm, a slightly modified version of the Athanassoglou and Sethu-

raman (2011) algorithm:

The EASC Algorithm:

Suppose that until step m ≥ 1, we determined tm ,
{

ωtm

σ→i(ℓ)

}

i∈I,ℓ∈{1,....|C|}
, and Am (ρ).

Step m: We determine tm+1 ,
{

ωt
σ→i(ℓ)

}

i∈I,ℓ∈{1,....|C|}
for all t ∈ (tm , tm+1 ], and Am+1 (ρ) as fol-

lows: Initially time satisfies t = tm . Let {bi, ei}i∈I be determined given Am (ρ) and
{

ωtm

σ→i(ℓ)

}

.

Then t continuously increases. At t the arc capacities ω(t)
(
σ → i(ℓ)

)
are updated as follows for

each i ∈ I and c ∈ C :

ωt
σ→i(Ri(c))

:=







max

{

t−
Ri(bi)−1∑

ℓ=1

ωtm

σ→i(ℓ)
, ωtm

σ→i(Ri(bi))

}

if c = bi and ei 6= ∅,

min

{
Ri(bi)∑

ℓ=1

ωtm

σ→i(ℓ)
+ ωtm

σ→i(Ri(ei))
− t, ωtm

σ→i(Ri(ei))

}

if c = ei,

ωtm

σ→i(Ri(c))
otherwise.

That is, each student i consumes his best feasible school bi with uniform speed by trading away

fractions from his endowment school ei, if it exists and the consumption fraction of the best school

exceeds his initial consumption of ωtm

σ→i(Ri(bi))
.

Time t increases until one of the following two events occurs:

• t < 1, and yet

– the endowment school fraction endowed to some student reaches to zero, i.e., ω
(t)
σ→ei = 0

for some i ∈ I: We update

tm+1 := t,

Am+1 (ρ) := Am (ρ) ;

or

– any further increase in t will cause the maximum flow capacity in the network to fall,

i.e., for tε > t and arbitrarily close to t, the network Γ(tε) has a maximum flow capacity

less than |I| (which can be determined by an algorithm such as Edmonds-Karp): This

means that if some student were to consume his best feasible school anymore, some ex-

ante stability constraint will be violated. Let K be a minimum cut of Γtε. Any student i

with i(Ri(bi)) ∈ K and i(Ri(ei)) 6∈ K, i is one of such students. Thus, we update

tm+1 := t,

Am+1 (ρ) := Am (ρ) \
{
(i, bi) : ei 6= ∅, i(Ri(bi)) ∈ K, and i(Ri(ei)) 6∈ K

}
.
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We continue with Step m+1.

• t = 1: The algorithm terminates. The outcome of the algorithm π ∈ X is found as follows: Let

φ be a maximum flow of the network Γ1 (i.e., the final network at time t=1). Then, we set for

all i ∈ I and c ∈ C,

πi,c :=

|C|
∑

ℓ=1

φi(ℓ)→c,

i.e., the total flow from student i to school c. ♦

Athanassoglou and Sethuraman (2011) proved that this algorithm with A (ρ) = I × C (i.e., the

case in which all schools are feasible to be assigned to each student) converges to a unique ordinally

efficient random matching such that it treats equals equally whenever ρ treats equals equally; and

it Pareto dominates, or is equal to ρ. Their statements can be generalized to the case in which

A (ρ) ⊆ I × C such that the outcome of the above algorithm π is constrained ordinally efficient in

the class of random matchings χ ∈ X satisfying χi,c > 0 ⇒ (i, c) ∈ I × C. Moreover, π is also

ex-ante stable whenever ρ is ex-ante stable; it ordinally dominates, or is equal to ρ; and it treats

equals equally whenever ρ treats equals equally. We skip these proofs for brevity.

E Supplementary Appendix: How is the EASC algorithm

embedded in the FDAT algorithm?

Example 8 We illustrate the functioning of the FDAT algorithm with the EASC algorithm using

the same problem in Example 3 (and Example 5):

Step 0. We found the FDA outcome in Example 3 as

ρ1 =

a b c d

1
11
12

1
12

0 0

2 2
3

0 1
3

0

3
5
12

1
12

1
3

1
6

4 0 0 1 0

5 0 0 1
3

2
3

6 0 5
6

0 1
6

Step 1. We form the feasible student-school pairs for matching as

A1.1
(
ρ1
)
= {(1, a) , (1, b) , (2, a) , (2, c) , (3, a) , (3, b) , (3, c) , (3, d) , (4, c) , (5, c) , (5, d) , (6, a) , (6, c)} .

We execute the EASC algorithm as follows:

48



Step 1.1. Time is set as t1.1 = 0 : Given that i(ℓ) represents the ℓth choice school of student i, we

form the flow network with the positive weights obtained from the endowment random matching ρ1

as for all i ∈ I and for all schools f ∈ C, we set the arc capacities

ω0
σ→i(Ri(f))

= ρ1i,f ,

where Ri (f) is the ranking of school f in i’s preferences. Next, for all i ∈ I and f ∈ C, if (i, f) ∈

A1 (ρ1), we set the arc capacities of the flow network as

ω0
i(ℓ)→f = ∞,

for all ranks ℓ ≤ Ri (f). Finally, for all f ∈ C, we set the arc capacities

ω0
f→τ = qf .

Figure 1 shows this network for t ∈
[
0, 1

12

]
.

Moreover, given these constraints, the best available schools and endowment schools are

students (i) best school (bi) endow. school (ei)

1 b a

2 c a

3 d c

4 c ∅

5 c d

6 d b

We start increasing time t starting from t1 = 0, thus, each student starts consuming his best

available school by trading away from his endowment school (whenever ei 6= ∅): that is, the capacity

of each arc σ → i(Ri(bi)) is updated as

ωt
σ→i(Ri(bi))

= max






t−

Ri(bi)−1
∑

ℓ=1

ω0
σ→i(ℓ)

, ω0
σ→i(Ri(bi))






,

and the capacity of each arc σ → i(Ri(ei)) is updated as

ωt
σ→i(Ri(ei))

= min







Ri(bi)∑

ℓ=1

ω0
σ→i(ℓ)

+ ω0
σ→i(Ri(ei))

− t, ω0
σ→i(Ri(ei))






,

as long as a feasible random assignment can be obtained in the network, i.e., the value of the maximum

flow of the network is |I| = 6 or the capacity of the endowment school arc does not go to zero.
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Figure 1: The consumption network for Example 8 at Step 1.1 for times t ∈
[
0, 1

12

]
.
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The first condition is satisfied at t = 1
12

: If t increases above 1
12

, the value of the maximum flow

falls below 6, because of the bottleneck set of agents J = {1, 2}. At this t, there is an excess demand

for 1 and 2’s best schools, but other agents do not demand 1 and 2’s endowment school. Thus, 1 and

2 can no longer trade their endowment school in exchange for a fraction of their best schools. To see

that {1,2} is a bottleneck set, we find a minimum cut K as seen in Figure 1 for network at t = 1
12

.

Each student’s representative nodes for his best school and his endowment school are in K, except

for students 1 and 2. Their nodes for best schools are in K, but not their nodes for endowment

schools. Also their endowment school a is not in K. Thus, Step 1.1 ends, and students 1 and 2 can

no longer consume their best schools b and c, respectively. (Observe that the network at t = 1
12

is

identical to the network at t = 0.)We set:

t1.2 =
1

12
,

A1.2
(
ρ1
)
= A1.1

(
ρ1
)
\ {(1, b) , (2, c)} .

Step 1.2. Time is set as t1.2 = 1
12

. The best and endowment schools are updated as

students (i) best school (bi) endow. school (ei)

1 a ∅

2 a ∅

3 d c

4 c ∅

5 c d

6 d b

Time increases until t = 1
6
, when there is a new bottleneck set of students with minimum cut

K =
{
σ, 2(1), 3(1), 3(2), 4(2), 5(1), 5(2), 6(1), c, d

}
.

Since 6(R6(b6)) = 6(R6(d)) = 6(1) ∈ K and 6(R6(e6)) = 6(R6(b)) = 6(3) 6∈ K, and there is no other student

such that his node for his best (available) school is in K while his node for his endowment school is

not, we determine the new bottleneck set as

J = {6} .

Thus, we update

t1.3 =
1

6
,

A1.3
(
ρ1
)
= A1.2

(
ρ1
)
\ {(6, d)} .
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At this point the capacities of the source-agent nodes are set still as their initial values at ω0 (seen

in Figure 1).

Step 1.3. Time is set as t1.3 = 1
6
. The best and endowment schools are updated as

students (i) best school (bi) endow. school (ei)

1 a ∅

2 a ∅

3 d c

4 c ∅

5 c d

6 b ∅

At this step, we observe actual trading of fractions of schools c and d between students 3 and 5, since

all other students have no endowment schools to trade: time t increases until 1
2

at which point only

the following arc capacities are changing, while the others are still at ω0 level:

ω
1
2
σ→3(R3(b3))

= ω
1
2
σ→3(R3(d))

= ω
1
2

(σ→3(1))
=

= max






t−

R3(b3)−1
∑

ℓ=1

ω
1
6
σ→3(ℓ)

, ω
1
6
σ→3(R3(b3))







= max

{
1

2
− 0,

1

6

}

=
1

2
;

ω
1
2
σ→3(R3(e3))

= ω
1
2
σ→3(R3(c))

= ω
1
2
σ→3(2)

=

= min







R3(b3)∑

ℓ=1

ω
1
6
σ→3(ℓ)

+ ω
1
6
σ→3(R3(e3))

− t, ω
1
6
σ→3(R3(e3))







= min

{
1

6
+

1

3
−

1

2
,
1

3

}

= 0;

ω
1
2
σ→5(R5(b5))

= ω
1
2
σ→5(R5(c))

= ω
1
2
σ→5(1)

=

= max






t−

R5(b5)−1
∑

ℓ=1

ω
1
6
σ→5(ℓ)

, ω
1
6
σ→5(R3(b3))







= max

{
1

2
− 0,

1

3

}

=
1

2
;
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ω
1
2
σ→5(R5(e5))

= ω
1
2
σ→5(R5(d))

= ω
1
2
σ→5(2)

=

= min







R5(b5)∑

ℓ=1

ω
1
6
σ→5(ℓ)

+ ω
1
6
σ→5(R5(e5))

− t, ω
1
6
σ→5(R5(e5))







= min

{
1

3
+

2

3
−

1

2
,
2

3

}

=
1

2
.

Since the endowment school’s matching probability reaches zero for student 3, the step ends and we

update:

t1.4 =
1

2
,

A1.4
(
ρ1
)
= A1.3

(
ρ1
)
.

Step 1.4. Time is set to t1.4 = 1
2
, only student 3’s endowment school changed as e3 = b. But at

this time there is a minimum cut

K =
{
σ, 2(1), 3(1), 4(2), 5(1), 5(2), 6(1), c, d

}
.

Since 3(R3(b3)) = 3(R3(d)) = 3(1) ∈ K and 3(R3(e3)) = 3(R3(b)) = 3(3) 6∈ K, and there is no other student

with this property, the bottleneck set is

J = {3} .

Thus, we set

t1.5 =
1

2
,

A1.5
(
ρ1
)
= A1.4

(
ρ1
)
\ {(3, d)} .

Step 1.5. Time is set to t1.5 = 1
2
, only student 3’s best school changed as e3 = c. But at this

time there is a minimum cut

K =
{
σ, 2(1), 3(1), 4(2), 5(1), 5(2), 6(1), c, d

}
.

Since 3(R3(b3)) = 3(R3(c)) = 3(1) ∈ K and 3(R3(e3)) = 3(R3(b)) = 3(3) 6∈ K, and there is no other student

with this property, the bottleneck set is

J = {3} .

Thus, we set

t1.5 =
1

2
,

A1.5
(
ρ1
)
= A1.4

(
ρ1
)
\ {(3, c)} .
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Step 1.6. Time is set to t1.6 = 1
2
, student 3’s best school changed as b3 = b and his endowment

school changed as e3 = a. Time t increases until 7
12

, when further increasing t would create a

bottleneck set of students with minimum cut

K =
{
σ, 1(1), 2(1), 3(1), 3(3), 4(2), 5(1), 5(2), 6(1), 6(3), b, c, d

}
.

Since 3(R3(b3)) = 3(R3(b)) = 3(3) ∈ K and 3(R3(e3)) = 3(R3(a)) = 3(4) 6∈ K, and there is no other student

with this property, we have the bottleneck set at

J = {3} .

Observe that in the interval t ∈ (1
2
, 7
12
], student 3 does not consume his best school more than his

capacity. This interval serves as the continuation of the trading between student 3 and 5 regarding

schools c and d that has started at Step 1.3. Although 3 has already traded all his endowment of 1
3
c

away in return to get 1
3
d, student 5 has not fully gotten 1

3
d and traded away 1

3
c. Thus, the market

has not cleared yet. Increase in t helps the market to clear, since now we have

ω
7
12
σ→5(R5(b5))

= ω
7
12
σ→5(R5(c))

= ω
7
12
σ→5(1)

=

= max






t−

R5(b5)−1
∑

ℓ=1

ω
1
2
σ→5(ℓ)

, ω
1
2
σ→5(R3(b3))







= max

{
7

12
− 0,

1

2

}

=
7

12
;

ω
7
12
σ→5(R5(e5))

= ω
7
12
σ→5(R5(d))

= ω
7
12
σ→5(2)

=

= min







R5(b5)∑

ℓ=1

ω
1
2

σ→5(ℓ)
+ ω

1
2
σ→5(R5(e5))

− t, ω
1
2
σ→5(R5(e5))







= min

{
1

2
+

1

2
−

7

12
,
1

2

}

=
5

12
.

while all other arc capacities remain the same. We update as

t1.7 =
7

12
,

A1.7
(
ρ1
)
= A1.6

(
ρ1
)
\ {(3, b)} .

Step 1.7. Time is set to t1.7 = 7
12
, student 3’s best school changed as b3 = a and he no longer has

an endowment school, i.e., e3 = ∅. Time t increases until 2
3
, when further increasing t would create

a bottleneck set of students with minimum cut

K =
{
σ, 4(2), 5(1), c

}
.
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Since 5(R5(b5)) = 5(R3(c)) = 5(1) ∈ K and 5(R5(e5)) = 5(R5(d)) = 5(2) 6∈ K, and there is no other student

with this property, we have the bottleneck set as

J = {5} .

Similar to Step 1.6, trade of c from 3 to 5 has continued at this step in return of d, and it can be

verified that the only updated arc capacities are as follows:

ω
2
3
σ→5(1)

=
2

3
,

ω
2
3
σ→5(2)

=
1

3
.

We update as

t1.8 =
2

3
,

A1.8
(
ρ1
)
= A1.7

(
ρ1
)
\ {(5, c)} .

Step 1.8. Time is set to t1.8 = 2
3
, and student 5’s best school is updated as b5 = d and he no

longer has an endowment school, i.e., e5 = ∅. Since no student has any endowment school, no more

trade takes place in this step, time t increases to 1, and the ex-ante stable consumption algorithm

terminates with

ρ2 =

a b c d

1
11
12

1
12

0 0

2 2
3

0 1
3

0

3
5
12

1
12

0 1
2

4 0 0 1 0

5 0 0 1
6

1
3

6 0 5
6

0 1
6

Step 2. We have the feasible student-school set

A2.1
(
ρ2
)
= {(1, a) , (1, b) , (2, a) , (2, c) , (3, a) , (3, b) , (3, c) , (3, d) , (4, c) , (5, c) , (5, d) , (6, b) , (6, d)}

= A1.1
(
ρ1
)
.

It is easy to check that there are no feasible ex-ante stable improvement cycles and the FDAT

algorithm terminates with outcome ρ2. ♦
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