
Identi�cation of Local Treatment E¤ects Using a
Proxy for an Instrument

Karim Chalak�y

Boston College

April 30, 2010

Abstract

The method of indirect least squares (ILS) using a proxy for a discrete instrument
is shown to identify a weighted average of local treatment e¤ects. The weights are
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squares. Thus, one should carefully interpret estimates for causal e¤ects obtained via
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1 Introduction

This paper studies the scope of the method of indirect least squares (ILS) and instrumental

variables (IV) methods for the identi�cation of local average treatment e¤ects (LATEs) of

a cause or treatment D on an outcome of interest Y using a proxy W for an exogenous in-

strument Z. We study the case in which the instrument, proxy, and treatment are discrete;

the outcome need not be discrete. Here an instrument Z satis�es de�nition 3 of Angrist,

Imbens, and Rubin (1996). Three particular features of Z are that (1) it is an exogenous

variable that (2) induces individuals�receipt of treatment in the same direction, and (3)

drives the outcome only via the treatment. A proxy W for an instrument Z is a variable

associated with Z, and possibly driven by it, that need not a¤ect the treatment or outcome

and thus need not be an instrument according to this de�nition. In particular, we assume

that W is mean independent of the treatment and outcome conditional on the instrument.

Examples of possible proxies include an error-laden measurement of an unobserved instru-

ment, a measurement of an instrument with missing or imputed observations, or a binary

coding for a multivalued instrument.

Building on the work of Imbens and Angrist (1994; thereafter IA), Angrist and Imbens

(1995; thereafter AI), and Angrist, Imbens, and Rubin (1996, thereafter AIR), we study

whether ILS and IV methods that use a proxyW for an instrument Z identify local average

treatment e¤ects. In doing so, we establish a relation between an ILS or IV estimand using

the proxy W on one hand and ILS estimands using Z on the other. As we show, ILS

methods that employ a suitable proxy for a multivalued instrument identify a weighted

average of local average treatment e¤ects based on the instrument. This is particularly

troublesome if some of the weights are negative since in this case the sign of the identi�ed

weighted average local e¤ect may be the opposite of that of some, or even all, of the LATEs.

In e¤ect, two researchers seeking to measure the same local average e¤ect using di¤erent

proxies for the same instrument may identify weighted average e¤ects of di¤erent signs. We
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show that the weights are nonnegative if and only if the proxy is intensity preserving for the

instrument, a speci�c form of dependence of the instrument on the proxy that we discuss.

Furthermore, we show that a similar result holds for IV: IV methods using a function of a

proxy for an instrument identify a weighted average of LATEs based on the instrument. We

demonstrate that the weights are nonnegative if and only if the instrument and the function

of the proxy covary with the proxy concordantly, a particular form of dependence among

the instrument, proxy, and a function of the proxy that we introduce. Thus, researchers

should cautiously interpret estimates for causal e¤ects obtained via ILS or IV (e.g. TSLS)

methods based on a proxy for an instrument including an error-laden measurement of an

instrument, a proxy for an instrument with missing or imputed observations, and a binary

proxy for a multivalued instrument.

The case of a binary instrument Z receives signi�cant attention in the literature. For

example, in the "compliance problem" studied in AIR, the treatment and the treatment

assignment are binary and the latter may serve as an instrument. In this case, LATE

is the average e¤ect of the treatment for the subpopulation of "compliers" who always

comply with the treatment assignment. We demonstrate that for binary Z, ILS or IV

using any suitable proxy for the treatment assignment identi�es LATE. Thus, in this case,

identifying LATE via ILS is robust to certain types of measurement error and instrument

misclassi�cation. Also, the fact that ILS using any suitable proxy identi�es LATE provides

the foundation for testing the underlying assumptions.

Favorably, the proxy need not satisfy some of the assumptions imposed on the instru-

ment. In particular, the proxy need not be individualistic: an individual�s proxy may

depend on others�instrument. Further, unlike the instrument, the proxy need not cause

the treatment nor be exogenous but rather it su¢ ces that it is associated with it in an

appropriate sense. If economic theory suggests a proper unobserved instrument, then a

researcher may make use of a suitable intensity preserving proxy to identify an informa-
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tive weighted average of local e¤ects. For example, a nonzero weighted average of local

e¤ects provides evidence against the hypothesis of no causal e¤ect of the treatment on the

outcome.

The results of this paper apply to a variety of situations in which researchers make use

of a proxy for an instrument. To illustrate, consider an experiment to measure the e¤ects

of a training program on wage for a population of individuals i = 1; :::; n in which �nancial

aid status denoted by Z is randomized across individuals thereby a¤ecting their enrollment

cost if they attend the program. Denote joining the program by D = 1; otherwise D = 0.

Last, Y denotes wage measured at a subsequent time. For i = 1; :::; n; the econometrician

observes who joined the program and the individuals� wages, that is realizations of D

and Y , but does not observe the �nancial aid status of individuals. Instead she only

observes a proxy W for �nancial aid. The properties of the proxy may vary depending

on the context. The proxy may denote an error-laden measurement of the instrument Z

that incorrectly codes certain individual�s �nancial aid status. The proxy may also contain

missing observations for certain individuals�instrument. These observations could be coded

as missing or otherwise replaced by some value which could possibly depend on others�

observed instrument. Further, the proxy may code the instrument information coarsely.

For example, Z may assign individuals zero �nancial aid, may wave his/her tuition, or may

provide him/her with full �nancial aid covering tuition and living expenses, and W may

only code whether individuals are assigned �nancial aid. In turn, this coding may also

contain measurement error. We study these cases in what follows.

Examples in which researchers employ a proxy for an instrument are abundant in the

literature. Consider for example the e¤ects of military service denoted by a binary treat-

ment D on an outcome Y denoting a measure of wage in Angrist (1990) and of civilian

mortality in AIR and let Z denote the Vietnam draft lottery random sequence number

drawn for each date of birth in a given year. Thus, for the year 1951 Z can take on 365
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values. Individuals who were assigned a sequence number that falls below a subsequently

announced ceiling (e.g. 125) were potentially drafted for military service. Angrist (1990)

and AIR use a binary proxy W for the lottery number denoting whether the latter falls

below the ceiling. The e¤ect of the lottery number Z on military service need not be fully

captured by the proxyW . For example, Angrist (1990, p. 314) notes that "many men with

low numbers volunteered for the military to avoid being drafted and to improve their terms

of service" and that "there was even a behavioral response to the lottery in enlistment rates

for the 1953 cohort, although no one born in 1953 was drafted."

As another example, Angrist and Krueger (1991) study the returns to education. Here,

the treatment D denotes completed years of education, the outcome Y is a measure of

wage, and Z corresponds to date of birth. Angrist and Krueger (1991) argue that because

of age at entry policy and compulsory schooling law, individuals with di¤erent birthdays

may attain di¤erent levels of schooling. In particular, age of entry policy typically requires

a student to be 6 years old by January of his/her �rst year at school. Further, a student is

allowed to drop out of school only after he/she attains a legal age (e.g. 16 years old). Thus,

individuals born earlier in the year may attain less schooling than those born later in the

year because they enter school at an older age and drop out of school earlier. Angrist and

Krueger (1991, p. 995) make use of a binary proxy W for date of birth, such that W = 1 if

the date of birth is in the �rst quarter and 0 otherwise. Here too the proxy need not fully

capture the e¤ect of date of birth on education. For example, Angrist and Krueger (1991, p.

979-980) state that "the interaction of school-entry requirements and compulsory schooling

laws compel students born in certain months to attend school longer than students born in

other months." AI also apply ILS and TSLS using instruments denoting quarter of birth.

As we demonstrate, in this and the previous example, under certain assumptions, ILS

using the proxy W identi�es a weighted average of local treatment e¤ects based on Z with

nonnegative weights.
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The paper is organized as follows. Section 2 describes the data generating process and

states the assumptions. We work simultaneously with a structural system and the Rubin

Causal Model (Holland, 1986; AIR). Section 3 gives a general result which demonstrates

that the ILS estimand using a proxy is a weighted average of ILS estimands using the instru-

ment. Further, we introduce the notion of an intensity preserving proxy for an instrument

and show that this property is necessary and su¢ cient for the weights to be nonnegative.

Section 4 studies identi�cation of causal e¤ects via ILS using a proxy for an instrument.

After stating a general result for multivalued variables, we examine special cases. First,

we study the compliance problem with binary instrument, proxy, and treatment. We then

study the case of a binary instrument and multivalued proxy. Last we study the case of

multivalued instrument and binary proxy. Section 5 shows that IV methods using a proxy

identify a weighted average of local treatment e¤ects based on the instrument. We extend

results in IA and AI to the general case of multivalued instrument, proxy, and treatment

and provide a necessary and su¢ cient condition for the weights to be nonnegative. For

this, we introduce the notions of mean quadrant dependence and of concordance specifying

dependence among the instrument, proxy, and a function of the proxy. Section 6 relates

the results here to other work on instrument proxy in linear structural systems and nonsep-

arable structural systems with continuous variables and brie�y discusses the implications

of the results in this paper on testing the underlying assumptions and the hypothesis of no

causal e¤ects. Section 6 concludes. Mathematical proofs are gathered in the Appendix.

2 Data Generation

This section introduces the data generating process. In stating our assumptions, we work

simultaneously with a structural system and the Rubin Causal Model (Holland, 1986) as

in Vytlacil (2002). In what follows, we extend the assumptions in IA, AI, and AIR to

accommodate a proxy W for the possibly unobserved instrument Z and to permit the
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instrument, proxy, and treatment to be multivalued.

Assumption 2.1 Data Generating Structural System: (i) Let I denote a population of in-

dividuals indexed by i = 1; :::; n, n 2 N+ := f1; 2; :::g. Let Z;W;D; and Y be random vari-

ables ranging over I and taking value1 respectively in SZ := f0; 1; :::; Kg, SW := f0; 1; :::; Lg,

SD := f0; 1; :::; Jg; K; L; J 2 N+ �nite, and SY � R, and suppose that E(D) and E(Y )

exist and are �nite. (ii) Let a triangular structural system generate the random vectors of

countable dimension UW , UD; and UY and the instrument Z ranging over I. The proxy

wi for the instrument, treatment di; and outcome yi for individual i in population I are

structurally generated as

wi = p(z; uW;i);

di = q(zi; uD;i); and

yi = r(di; uY;i);

where p, q, and r are unknown measurable functions mapping respectively to SW , SD; and

SY and where z = (z1; :::; zn)
0. The realizations of W , D; and Y are observed, those of

UD; UY ; UW are not, and z may be unobserved.

Part (i) of Assumption 2.1 introduces the random variables. Part (ii) imposes structure

on the data generating process. We let i = 1; : : : ; n denote individuals in a population

I. The random variable Z takes value in SZ and denotes, under Assumption 2.1(ii), the

instrument. The vector z = (z1; :::; zn)
0 collects the realizations of Z for all individuals.

Typically, we assume z is unobserved. In some cases, z may be observed and the econome-

trician nevertheless employs a suitable proxy W for the instrument Z as in the examples

discussed in the Introduction. The proxyW takes value in SW , the treatment D takes value

in SD, and we denote by Y taking value in SY the outcome of interest. We let Z;W; and

1Throughout, the support of a random variable X, supp(X):= SX , denotes the smallest set S such that
P [X 2 S] = 1:
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D be multivalued discrete random variables and Y be any random variable. For z 2 SZ ;

we de�ne the potential treatment D(z) as

D(z) := q(z; UD);

and similarly, for d 2 SD, we de�ne the potential outcome as

Y (d) := r(d; UY )

The random vectors UW ; UD; and UY re�ect the heterogeneity of individuals in population

I. For example, for the same value of the instrument z, di(z) := q(z; uD;i) may di¤er from

dj(z) := q(z; uD;j) and therefore individuals i and j may receive di¤erent treatments.

The triangular structure above de�nes an inherent ordering of variables, implicit in the

potential outcome notation, in which predecessors in�uence successors but not the opposite

(see Chalak and White, 2008). In particular, the random vectors UW , UD; and UY precede

the instrument Z. In turn, UW , UD; UY , and Z precede the proxy W , all of which precede

the treatment D; and the outcome Y succeeds all the system�s variables.

Two assumptions are implicit in Assumption 2.1(ii). Following Manski (2010), we refer

to the �rst one as individualistic treatment receipt and treatment response. In particular,

the potential treatment di(z) for an individual i; depends only on his/her variables but does

not depend on others�treatment assignment or proxies. Similarly, the potential outcome

yi(d) for an individual i depends only on his/her variables. Observe that Assumption 2.1(ii)

permits the potential proxy for an individual i wi(z0) := p(z0; uW;i) to depend on the vector

of treatment assignment z0 for all individuals. Strengthening Assumption 2.1(ii) to further

restrict the potential proxy to be individualistic (p(z0; uW;i) = p(z00; uW;i) for all z0 and z00

such that z0i = z
00
i and all i) gives the "stable unit treatment value assumption" (SUTVA)

also known as "no interference between units" (See e.g. Rubin, 1986; AIR).

The second assumption implicit in Assumption 2.1(ii) is an exclusion restriction which

imposes structure on the impact of the instrument and proxy on the treatment and outcome.
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In particular, Assumption 2.1(ii) states that the receipt of treatment is a¤ected by the

instrument but is not a¤ected by the proxy. This would be violated if for example an

individual who is assigned to treatment decides to not take the treatment because the proxy

incorrectly codes him as assigned to the control group. On the other hand, this assumption

is plausible if individuals believe that the treatment assignment is coded without error.

Similarly, Assumption 2.1(ii) states that the response is a¤ected by the treatment but is

not otherwise a¤ected by the instrument or its proxy. This would be violated if for example

the instrument a¤ects the outcome via a channel other than the treatment.

A notion of the causal e¤ects on D and Y of the intervention z ! z0 to Z, de�ned as

two points z; z0 2 SZ (see White and Chalak, 2009), for the ith individual can be given by:

Causal e¤ect of z ! z0 on di : di(z0)� di(z), and

Causal e¤ect of z ! z0 on yi : yi(di(z0))� yi(di(z)):

The "fundamental problem of causal inference" (Holland, 1986) is that we do not observe

the counterfactuals. For example, we may observe di(z) or di(z0) but not both (z 6= z0).

We thus focus attention on certain average causal e¤ects over the population I. Together

with Assumption 2.1, our next assumption permits us to equate average causal e¤ects with

di¤erences of conditional average responses. In what follows, ?m denotes mean indepen-

dence2.

Assumption 2.2 Mean Ignorability of the Instrument:

D(z) ?m Z and Y (D(z)) ?m Z for all z 2 SZ.

For controlled or natural experiments, Assumption 2.2 is ensured by randomization

of Z. Also, observe that exogeneity of the instrument, Z ? (UD; UY ) where ? denotes

independence as in Dawid (1979), is su¢ cient for Assumption 2.2 to hold by Dawid (1979,

2We write X1 ?m X2jX3 if E(X1jX2; X3) = E(X1jX3) provided these means exist and are �nite.
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lemma 4.2). It follows that under Assumptions 2.1, and 2.2, the average causal e¤ect on

D of the intervention z0 ! z to Z, E[D(z0) � D(z)] is identi�ed with E(DjZ = z0) �

E(DjZ = z): Similarly, the average causal e¤ect on Y of the intervention z0 ! z to Z,

E[Y (D(z0)) � Y (D(z))] is identi�ed with E(Y jZ = z0) � E(Y jZ = z) (see e.g. Rubin,

1978).

The next two assumptions impose structure on the e¤ect of the instrument on the

treatment as in IA, AI, and AIR.

Assumption 2.3 Nonzero Causal E¤ect of Z on D: There exists z; z0 2 SZ, z < z0; such

that Pr[D(z) 6= D(z0)] > 0:

Assumption 2.3 ensures that there is a non-negligible set of individuals for whom the

instrument a¤ects the treatment, that is di(z) 6= di(z
0): The next assumption imposes

structure on the way in which the instrument a¤ects the treatment.

Assumption 2.4 Weak Monotonicity: There exists z; z0 2 SZ, z < z0; such that Pr(D(z) �

D(z0)) = 1.

Assumption 2.4 requires that q(z; UD) is locally monotonic with probability 1. IA, AI,

and AIR discuss the plausibility of this assumption and the consequences of its failure.

For J = K = 1; Assumption 2.4 essentially rules out from the population "de�ers" who

systematically undertake the opposite treatment than that assigned to them (see AIR).

When Assumption 2.4 holds for all k � 1; k 2 SZ ; we order the instrument values such

that D(0) � D(1) � ::: � D(K) with probability 1. Given Assumption 2.2 this implies

E(DjZ = 0) � E(DjZ = 1) � ::: � E(DjZ = K): This imposes a particular from of

dependence of the treatment on the instrument, namely that E(DjZ = l) is monotone in l

for all l 2 SZ . In linear structural systems, the instrument Z is required to be "relevant,"

that is correlated with D. Here a speci�c form of relevance is imposed. We discuss this

further in Section 4. If Assumption 2.3 also holds for all k � 1; k 2 SZ ; we show that
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we then obtain E(DjZ = 0) < E(DjZ = 1) < ::: < E(DjZ = K): For example, when

J = 1, Assumption 2.4 ensures that with probability 1, D(z0) � D(z) is either 0 or 1.

Assumption 2.3 further gives that that Pr[D(z0) � D(z) = 1] 6= 0 so that the average

causal e¤ect of Z on D is nonzero, E[D(z0) �D(z)] 6= 0. Assumption 2.2 then gives that

E[DjZ = z0]� E[DjZ = z] 6= 0:

The last assumption concerns the proxy W .

Assumption 2.5 Conditional Mean Independence of the Proxy from the Treatment and

Outcome Given the Instrument:

D ?m W jZ and Y ?m W jZ:

Assumption 2.5 ensures that the proxy W is irrelevant for predicting the average treat-

ment and outcome given the instrument information Z. Assumption 2.1 ensures that the

treatment and outcome are not a¤ected by the proxy thereby eliminating a possibility

through which Assumption 2.5 may be violated. Assumption 2.5 may also be violated if

the proxy and the treatment or outcome are jointly driven by factors other than the instru-

ment, or if the proxy is contaminated based on the treatment or outcome. Assumption 2.5

holds, when (UD; UY )?W jZ so that conditional on Z,W does not predict the heterogeneity

in treatment receipt and response. When the proxy is individualistic, W = q(Z;UW ); As-

sumption 2.5 is satis�ed provided (Z;D; Y ) ? UW which can hold for example when UW is

measurement error occurring at random in recording the instrument, when UW is a binary

indicator for missing at random instrument values which the proxy codes by L = K + 1 so

that W = ZUW + L(1 � UW ), or trivially when UW is constant and W is a binary proxy

for a multivalued instrument.

The next Proposition shows that exogeneity of the instrument and proxy (Z;W ) ?

(UD; UY ) is su¢ cient for Assumptions 2.2 and 2.5 to hold.

Proposition 2.1 Suppose that Assumption 2.1 hold. If (Z;W ) ? (UD; UY ) then Assump-

tions 2.2 and 2.5 hold.
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2.1 Comparison of Instrument and Proxy

It is useful to compare the assumptions imposed on the instrument Z and the proxyW . (1)

In contrast to the instrument Z,W need not be determined individualistically, it could be a

function of the instrument of all individuals. For example, the econometrician may impute

missing instrument observations provided Assumption 2.5 is satis�ed. (2) We assume that

an individual�s treatment, and through it outcome, may be a¤ected by his/her instrument

but not by his/her proxy. (3) We do not require that the proxy is exogenous. In particular,

we do not assume that (UD; UY ) ? W or that D(z) ?m W and Y (D(z)) ?m W for all

z 2 SZ . If we have that (UD; UY ) ? W jZ then D(z)?mW jZ and Y (D(z))?mW jZ. Given

Assumption 2.2, this implies that D(z)?mW and Y (D(z))?mW . (4) In sharp contrast to

Assumption 2.3 for the instrument, the proxy need not cause the treatment. Thus, the

proxy W need not satisfy all the assumptions imposed on the instrument Z.

3 ILS Using A Proxy For An Instrument

To state a result relating the ILS estimand using a proxy to those using an instrument,

it is convenient to introduce the following notation. For all k; k0 2 SZ ; k < k0, such

that E(DjZ = k) 6= E(DjZ = k0), de�ne �k;k0 the ILS estimand using the instrument Z

evaluated at k and k0:

�k;k0 :=
E(Y jZ = k0)� E(Y jZ = k)
E(DjZ = k0)� E(DjZ = k) :

Similarly, for all l; l0 2 SW ; l < l0, such that E(DjW = l) 6= E(DjW = l0); de�ne �l;l0, the

ILS estimand using the proxy W evaluated at l and l0:

�l;l0 :=
E(Y jW = l0)� E(Y jW = l)

E(DjW = l0)� E(DjW = l)
:

This section demonstrates that �l;l0 can be represented by a weighted average of �k�1;k,

k 2 SZ jf0g. The results of this section do not require the structure in Assumption 2.1(ii)

as they apply to any discrete random variables Z;W;D, and any random variable Y:
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3.1 Intensity Preserving Proxy

We begin by providing a de�nition for a property that a proxy for an instrument may have.

De�nition 3.1 Intensity Preserving Proxy: Let Z and W be as in Assumption 2.1(i) and

put �k;l := Pr(Z � kjW = l); k 2 SZ, l 2 SW : For l; l0 2 SW , l < l0; we say that

that the proxy W at (l; l0) is positively (respectively negatively) intensity preserving for the

instrument Z if �k;l � �k;l0 (respectively �k;l � �k;l0) for all k 2 SZ. We say that W is

positively (respectively negatively) intensity preserving for Z if for all l; l0 2 SW , such that

l < l0; W at (l; l0) is positively (respectively negatively) intensity preserving for Z. Last, we

say that W (at (l; l0)) is intensity preserving for Z if W (at (l; l0)) is either positively or

negatively intensity preserving for Z.

The notion that W is positively (respectively negatively) intensity preserving for Z

corresponds to the de�nition in Lehmann (1966) of Z being either "positively (respectively

"negatively") regression dependent" on W . Intensity preservation is thus a restriction on

the probability distribution of (Z;W ). If a proxy W is positively intensity preserving for

Z then knowledge of W being small increases the probability of Z being small. Intensity

preservation at (l; l0) is the corresponding local notion.

Often researchers use a deterministic function of the instrument W = f(Z) as a proxy.

Then a su¢ cient but not necessary condition for W to be intensity preserving for Z is that

f is monotonic.

Proposition 3.1 Let Z and W be as in Assumption 2.1(i) and for f : SZ ! SW let W =

f(Z). Suppose that f is an increasing (respectively decreasing) monotonic function. Then

W is positively (respectively negatively) intensity preserving for Z. Further, monotonicity

of f is not necessary for W to be intensity preserving for Z:

3.2 ILS Using A Proxy

The next result establishes a relation between �l;l0 and �k�1;k, k 2 SZ jf0g:
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Theorem 3.2 ILS Using a Proxy: Suppose that Assumption 2.1(i) and 2.5 hold. Let

�k;l := Pr(Z = kjW = l); k 2 SZ, l 2 SW , and suppose that E(DjZ = k�1) 6= E(DjZ = k);

k = 1; :::; K and
PK

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0. Then �l;l0, l; l0 2 SW ; l < l0, exists, is

�nite, and is equal to a weighted average of �k�1;k:

�l;l0 =

KX
k=1

�l;l
0

k �k�1;k;

with weights

�l;l
0

k :=
[E(DjZ = k)� E(DjZ = k � 1)][

PK
m=k(�m;l0 � �m;l)]PK

p=1[E(DjZ = p)� E(DjZ = p� 1)][
PK

m=p(�m;l0 � �m;l)]
;

and
PK

k=1 �
l;l0

k = 1: Further, order the elements of SZ such that E(DjZ = k�1) < E(DjZ =

k), then 0 � �l;l
0

1 ; :::; v
l;l0

K � 1 if and only if W at (l; l0) is intensity preserving for Z:

Theorem 3.2 demonstrates the consequences under Assumption 2.5 on the ILS estimand

of substituting a proxy W for an instrument Z. Theorem 3.2 applies to any discrete

random variables Z;W;D, and any random variable Y: In particular, Z need not be a valid

instrument here. The result shows that �l;l0, the ILS estimand using the proxyW evaluated

at l and l0, is a weighted average of the ILS estimands formed using the instrument Z and

evaluated at adjacent points of SZ : The condition
PK

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0 is

clearly violated if Z ? W since then �k;l0 = �k;l for all k 2 SZ and l; l0 2 SW . While the

weights sum up to 1, they could be negative. It follows that �l;l0 could be negative or equal

to 0 even when �k�1;k > 0 for all k 2 SZnf0g: When the instrument is suitably relevant so

that E(DjZ = k � 1) < E(DjZ = k) for k = 1; :::; K; a necessary and su¢ cient condition

for the weights to be positive is that W at (l; l0) is intensity preserving for Z.

4 Identi�cation of Local Causal E¤ects via ILS using
a Proxy

We employ the results of Section 3 to study the identi�cation of local causal e¤ects via ILS

using a proxy for an instrument.
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Proposition 4.1 Identi�cation via ILS Using a Proxy: (a) Suppose that Assumptions 2.1,

and 2.2 hold, and that Assumptions 2.3 and 2.4 hold for k; k0 2 SZ (k < k0): Then �k;k0

exists, is �nite, and is equal to the weighted conditional average causal e¤ect ��k;k0:

�k;k0 =
JX
j=1

!jE[Y (j)� Y (j � 1)jD(k) < j � D(k0)] := ��k;k0 ;

with

!j :=
Pr[D(k) < j � D(k0)]PJ
j=1 Pr[D(k) < j � D(k0)]

;

and where 0 � !j � 1 and
PJ

j=1 !j = 1:

(b) Suppose further that Assumptions 2.3 and 2.4 hold for all k� 1 and k, k 2 SZ jf0g;

that Assumption 2.5 holds, and that
PK

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0. Then �l;l0 exists,

is �nite, and is identi�ed with a weighted average of ��k�1;k :

�l;l0 =
KX
k=1

�l;l
0

k �
�
k�1;k;

where
PK

k=1 �
l;l0

k = 1. Further, 0 � �l;l
0

1 ; :::; v
l;l0

K � 1 if and only if W at (l; l0) is intensity

preserving for Z.

Proposition 4.1(a) directly extends theorem 1 of AI with binary instrument to accom-

modate a generally multivalued instrument. As AI demonstrate, ILS using an observed in-

strument identi�es a weighted average of local average treatments e¤ects for subpopulations

of individuals whose treatment receipt is induced by the instrument. AI refer to ��0;1 in the

case of binary observed instrument as the "average causal response." When Z is unobserved

�k;k0 is not directly estimable. Part (b) of Proposition 4.1 demonstrates the consequences of

using a proxy for an instrument on the identi�cation of local e¤ects via ILS. Under the stated

assumptions, the ILS estimand �l;l0 is a weighted average of "average causal responses" eval-

uated at adjacent points of the support of the instrument. It follows that �l;l0 is a weighted

average of local average treatments e¤ects for subpopulations of individuals whose treat-

ment receipt is induced by the instrument. Since the weights could be negative, �l;l0 may
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be negative even when all the local average e¤ects are positive. Assumptions 2.2 and 2.3

-2.4 for all k � 1; k 2 SZ , ensure that E(DjZ = 0) < E(DjZ = 1) < ::: < E(DjZ = K):

Thus, a necessary and su¢ cient condition for the weights to be nonnegative is that W at

(l; l0) is intensity preserving for Z. This holds for example when the proxy is a monotonic

function of the instrument as shown in Proposition 3.1. Next, we examine the consequences

of Theorem 4.1 for special cases of interest.

4.1 The Compliance ProblemWith Proxy for Unobserved Treat-
ment Assignment

Consider the case in which J = K = L = 1 so that the treatment assignment (instrument),

proxy, and treatment can each take on only two values. Suppose that realizations of the

instrument are observed without error. Proposition 4.1(a) gives that under the stated

assumptions the ILS estimand �0;1 exists, is �nite, and is identi�ed with the local average

treatment e¤ect (LATE) ��0;1:

�0;1 :=
E(Y jZ = 1)� E(Y jZ = 0)
E(DjZ = 1)� E(DjZ = 0) = E[Y (1)� Y (0)jD(1)�D(0) = 1] := �

�
0;1:

As discussed in AIR, in this case, �0;1 is identi�ed with ��0;1, the average treatment e¤ect for

the subpopulation of "compliers," the individuals who always comply with the treatment

assignment.

Suppose now that the econometrician only observes realizations of the proxy W for the

instrument Z. Then under Assumptions 2.1 -2.4 condition
P1

k=0(�k;1��k;0)E(DjZ = k) 6=

0 reduces to Z 6? W or (�1;1� �1;0) 6= 0; and given Assumption 2.5 ILS using the proxy W

identi�es the LATE, ��0;1:

�0;1 :=
E(Y jW = 1)� E(Y jW = 0)

E(DjW = 1)� E(DjW = 0)
= E[Y (1)� Y (0)jD(1)�D(0) = 1] := ��0;1:

Indeed multiplying the numerator and denominator in the expression for �0;1 by (�1;1�

�1;0) gives the expression for �0;1 (see also Hernán and Robins, 2006, theorem 5). The

16



result demonstrates the robustness of ILS methods to certain types of measurement error

in the instrument for the purpose of identi�cation of LATE. Examples include the case of

"error at random" in recording the treatment assignment. Another example is the case of

imputed "missing at random" assignment values.

We emphasize that the proxy need not satisfy all the assumptions required for the

instrument. In particular, the proxy need not be individualistic: an individual�s proxy

could depend on other individuals� assignment. Also, importantly, the proxy need not

cause the treatment nor be exogenous. Instead, it su¢ ces that D?mW jZ, Y?mW jZ, and

that Z 6? W . This signi�cantly relaxes AIR�s conditions to identify LATE: any suitable

proxy for the instrument can be used to identify the LATE.

4.2 Multivalued Proxy for Binary Instrument

It is also of interest to consider situations in which the instrument is binary and a proxy

for it is multivalued so that K = 1 < L. For example, the proxy may code instrument

observations that are missing at random. To illustrate, the instrument Z may be a binary

treatment assignment, and the proxy W may take on three values SW = f0; 1; 2g corre-

sponding to being assigned to the control group (W = 0), to the treatment group (W = 1),

or to missing assignment information (W = 2). Suppose further that the treatment is

binary, SD = f0; 1g. In this case, Proposition 4.1 gives that, under the stated assumptions,

the ILS estimand �l;l0 evaluated at any l; l
0 2 SW is identi�ed with the LATE ��0;1:

�l;l0 :=
E(Y jW = l0)� E(Y jW = l)

E(DjW = l0)� E(DjW = l)
= E[Y (1)� Y (0)jD(1)�D(0) = 1] := ��0;1:

Under Assumptions 2.1-2.4, the condition
P1

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0 reduces to

(�1;l0 � �1;l) 6= 0: Interestingly, �l;l0 could be evaluated at any l; l
0 2 SW including l0 = 2

denoting a missing instrument observation. For example, �1;2 is identi�ed with �
�
0;1 under

Assumptions 2.1-2.5 provided that (�1;2 � �1;1) 6= 0 which can hold for example if �1;1 = 1
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so that recorded instrument observations are correct and �1;2 6= 1 so that the missing

instrument observations are not solely from the treatment group. This result demonstrates

that identifying LATE via ILS is robust to certain types of instrument misclassi�cation.

More generally, the treatment can take on J + 1 values such as when it has multiple

intensities. Examples include the number of courses an individual completes at a training

program or the number of years of education an individual receives. Proposition 4.1 then

gives that under our assumptions �l;l0 evaluated at any l; l
0 2 SW is identi�ed with the

average causal response ��0;1, a weighted average of LATEs:

�l;l0 :=
E(Y jW = l0)� E(Y jW = l)

E(DjW = l0)� E(DjW = l)
=

JX
j=1

!jE[Y (j)� Y (j � 1)jD(0) < j � D(1)] := ��0;1:

4.3 Binary Proxy for Multivalued Instrument

Often econometricians employ a binary proxy for a multivalued instrument so that K >

1 = L. For example, the proxy may code information less �nely than the instrument.

Proposition 4.1 demonstrates that ILS usingW identi�es a weighted average of local treat-

ment e¤ects based on Z. For example, let K = 2 so that the instrument can take on three

values. Suppose further that the proxy and treatment are binary L = J = 1. Then

�0;1 :=
E(Y jW = 1)� E(Y jW = 0)

E(DjW = 1)� E(DjW = 0)
= �0;11 �

�
0;1 + �

0;1
2 �

�
1;2

= �0;11 E[Y (1)� Y (0)jD(0) < D(1)] + �
0;1
2 E[Y (1)� Y (0)jD(1) < D(2)]:

with

�0;11 =
[E(DjZ = 1)� E(DjZ = 0)](�1;1 � �1;0 + �2;1 � �2;0)]P2
p=1[E(DjZ = p)� E(DjZ = p� 1)][

P2
m=p(�m;1 � �m;0)]

;

�0;12 =
[E(DjZ = 2)� E(DjZ = 1)][(�2;1 � �2;0)]P2

p=1[E(DjZ = p)� E(DjZ = p� 1)][
P2

m=p(�m;1 � �m;0)]
:

To illustrate, consider the training program example discussed in the Introduction.

Suppose that the unobserved instrument Z denotes whether individuals are o¤ered zero

�nancial aid (Z = 0), partial �nancial aid in the form of waived tuition (Z = 1), or full
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�nancial aid covering tuition and living expenses (Z = 2). Suppose that the proxy records

only whether individuals are o¤ered �nancial aid (W = 1) or not (W = 0). Suppose

that the proxy is coded without error so that �0;0 = �0;0 = 1 and �0;1 = �0;1 = 0: Since

�0;0 > �0;1 and �1;0 = �0;0+�1;0 = 1 > �1;1, we have that the proxy is intensity preserving

for the instrument and therefore the weights are positive and given by

�0;11 =
E(DjZ = 1)� E(DjZ = 0)

[E(DjZ = 1)� E(DjZ = 0)] + [E(DjZ = 2)� E(DjZ = 1)]�2;1
;

�0;12 =
[E(DjZ = 2)� E(DjZ = 1)]�2;1

[E(DjZ = 1)� E(DjZ = 0)] + [E(DjZ = 2)� E(DjZ = 1)]�2;1
:

Suppose instead that the proxy only records whether individuals�tuition is waived. In

this case, �1;1 = 1 and �1;0 = 0. We then have �0;0 > �0;1 = �0;1 = 0 and �1;0 = �0;0+�1;0 =

�0;0 < �0;1+�1;1 = �1;1 = 1. Since the proxy is intensity disrupting for the instrument, one

of the weights must be negative. Indeed, the weights are given by

�0;11 =
[E(DjZ = 1)� E(DjZ = 0)](1� �2;0)]

[E(DjZ = 1)� E(DjZ = 0)](1� �2;0)]� [E(DjZ = 2)� E(DjZ = 1)]�2;0
;

�0;12 =
[E(DjZ = 2)� E(DjZ = 1)](��2;0)

[E(DjZ = 1)� E(DjZ = 0)](1� �2;0)]� [E(DjZ = 2)� E(DjZ = 1)]�2;0
;

and �0;12 is negative. Now suppose that E[D(1) � D(0)] = 2E[D(2) � D(1)] > 0 and

that �2;0 = 1
3
then �0;11 = 4

3
and �0;12 = �1

3
: It follows that �0;1 is negative whenever

0 < ��0;1 <
1
4
��1;2 in which case the sign of �0;1 is the opposite of that of the two LATEs

��0;1 and �
�
1;2.

These two examples are special cases in which the proxy is a deterministic function

of the instrument. This need not hold in general. For instance, error in recording the

instrument is su¢ cient for one of the weights in the expression for �0;1 to be negative.

To illustrate, consider the �rst �nancial aid proxy but now suppose that �0;0 = 0:9, �1;0 =

0:025, �0;1 = 0:05, and �1;1 = 0:925. Then �0;0 = 0:9 > 0:05 = �0;1 and �1;0 = 0:9+0:025 <
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0:05 + 0:925 = �1;1: It follows that one of the weights is negative and therefore that the

sign of �0;1 may be the opposite of that of the two LATEs in the expression for �0;1.

As discussed in the Introduction, Angrist (1990), AIR, and Angrist and Krueger (1991)

employ a binary proxy that is a monotonic function of a multivalued instrument. Thus by

Proposition 3.1 these proxies are intensity preserving for their respective instruments. It

follows that under the assumptions of Proposition 4.1, ILS using these proxies identi�es a

weighted average of the LATEs evaluated at adjacent instrument values with nonnegative

weights.

The results of this section demonstrate the need to interpret �0;1 carefully since it is a

weighted average of LATEs. Further, even when the signs of the LATEs in the expression

for �0;1 coincide, �0;1 may have the opposite sign if one or more of the weights are negative.

This possibility arises if and only if the proxy is not intensity preserving for the instrument.

5 Identi�cation of Local Causal E¤ects via IV using a
Proxy For An Instrument

Often researchers employ IV methods such as TSLS for the purpose of identifying average

causal e¤ects. Consider a function g(Z) of the instrument where g : SZ ! Sg is a function

mapping SZ to Sg := f0; :::;Mg; M 2 N+ �nite. Then the IV estimand �gZ is given by:

�gZ :=
Cov(Y; g(Z))

Cov(D; g(Z))
=
EfY [g(Z)� E(g(Z))]g
EfD[g(Z)� E(g(Z))]g :

The particular choice g(Z) = E(DjZ) corresponds to the method of two stage least squares

whose estimand we denote by �TSLSZ . Theorem 2 of IA demonstrates that for binary treat-

ment with observed instrument Z and g(�) monotonic, �gZ is identi�ed with a weighted

average of LATEs ��k�1;k; k = 1; :::; K with nonnegative weights. Theorem 2 of AI general-

izes this result to cover multivalued treatment in the case of TSLS where g(Z) = E(DjZ).

The next theorem extends the results in IA and AI in three directions. First, we give a

necessary and su¢ cient condition for the weights in the expression for an IV estimand �gW as
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a weighted average of ILS estimands �l�1;l, l = 1; :::; L; to be nonnegative. Second, we show

that under Assumption 2.5, the IV estimand �gW using a proxy W is a weighted average

of ILS estimands using the instrument Z, �k�1;k; k = 1; :::; K and we give a necessary

and su¢ cient condition for the weights to be nonnegative. These two results hold for any

random variables as de�ned in Assumption 2.1(i). Last, we show that under Assumptions

2.1-2.5, the IV estimand �gW using the proxy W is identi�ed with a weighted average of

LATEs ��k�1;k; k = 1; :::; K:

5.1 Mean Quadrant Dependence and Concordance

The following de�nition of mean quadrant dependence is useful in stating the next theorem.

Although mean quadrant dependence and intensity preservation may hold for any random

variables, we state the de�nitions for discrete random variables to avoid introducing new

notation.

De�nition 5.1 Mean Quadrant Dependence: Let W be as in Assumption 2.1(i) and let V

be a random variable that takes value in Sg with E(V ) �nite. We say that V is positively

mean quadrant dependent on W if E(V jW � l) � E(V ) for all l 2 SW and that V is

negatively mean quadrant dependent on W if E(V jW � l) � E(V ) for all l 2 SW . We

say that V is mean quadrant dependent on W if V is either positively or negatively mean

quadrant dependent on W

V is positively (respectively negatively) mean quadrant dependent onW if the expected

value of V given that W � l for any l 2 SW is not larger (respectively not smaller) than

the unconditional expected value of V . Noting that3 for all l 2 SW ,
MX
m=1

Pr(V � mjW � l) = E(V jW � l);

3We have
PM

m=1 Pr(V � mjW � l) =
PM

m=1

PM
p=m Pr(V = pjW � l) =

PM
p=1

Pp
m=1 Pr(V = pjW �

l) =
PM

p=1 pPr(V = pjW � l) = E(V jW � l):
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a su¢ cient condition for V to be mean quadrant dependent on W is that (W;V ) are either

"positively quadrant dependent" so that Pr(V � mjW � l) � Pr(V � m) for all l 2 SW

and m 2 Sg or "negatively quadrant dependent" so that the previous condition holds with

the sign reversed (Lehmann, 1966). In turn, a su¢ cient condition for this is that either W

is intensity preserving for V (so that Pr(V � mjW = l) is monotone in l for all m 2 Sg) or

conversely that V is intensity preserving for W (Lehmann, 1966, lemma 4).

Using argument similar to lemma 4 in Lehmann (1966), the next proposition gives two

increasingly stronger conditions than mean quadrant dependence.

Proposition 5.1 Let W and V be as in De�nition 5.1. Consider the following statements:

(a) E(V jW = l) is non-decreasing in l 2 SW ;

(b) E(V jW � l) � E(V jW � l0) for all l; l0 2 SW , l < l0; and

(c) E(V jW � l) � E(V ) for all l 2 SW :

We have (a))(b))(c).

As discussed in Section 2, Assumptions 2.1, 2.2, and 2.4 for all k � 1; k; k 2 SZ , imply

that E(DjZ = l) is monotone in l for all l 2 SZ , a form of dependence between D and Z

analogous to condition (a).

De�nition 5.1 is a restriction on the joint distribution of (W;V ): We are interested in

the special case in which V = g(W ). The next proposition demonstrates that monotonicity

of g is su¢ cient but not necessary for mean quadrant dependence.

Proposition 5.2 Let W be as in Assumption 2.1(i) and let g : SW ! Sg be an increas-

ing (respectively decreasing) monotonic function such that E(g(W )) exists and is �nite.

Then g(W ) is positively (respectively negatively) mean quadrant dependent on W . Further,

monotonicity of g is not necessary for g(W ) to be mean quadrant dependent on W:
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As g(W ) is a function of a proxy for an instrument, we are concerned with the joint

probability distribution of (Z;W; g(W )) and particularly with the following notion of de-

pendence among the instrument Z; proxy W; and g(W ).

De�nition 5.2 Concordance: Let Z andW be as in Assumption 2.1(i) and let g : SW ! Sg

with E(g(W )) �nite. We say that the instrument Z and a function g(W ) of the proxy covary

with W concordantly if either [E(g(W ))�E(g(W )jW � l�1)][�k;l�1��k;l] is nonnegative

for all (l; k) 2 f1; :::; Lg � SZ or nonpositive for all (l; k) 2 f1; :::; Lg � SZ.

Clearly, a su¢ cient condition for Z and g(W ) to covary with W concordantly is that

W is intensity preserving for Z and that g(W ) is mean quadrant dependent on W:

5.2 Identi�cation of Local Causal E¤ects via IV using a Proxy

Part (a) of the next theorem demonstrates that the IV estimand using a function g(W ) of

a suitable proxy W for Z is a weighted average of ILS estimands using the instrument Z

and provides necessary and su¢ cient conditions for the weights to be nonnegative. Part

(b) further demonstrates that under our assumptions, IV identi�es a weighted average of

local treatment e¤ects.

Theorem 5.3 Identi�cation via IV Using a Proxy: (a) Suppose that the hypothesis of

Theorem 3.2 holds for all l � 1 and l; l 2 SW jf0g; that E(g(W )) exists and is �nite, and

that for �q := Pr(W = q); q 2 SW ;
PL

q=0 �qE(DjW = q)[g(q) � E(g(W ))] 6= 0. Then the

IV estimand �gW exists, is �nite, and is equal to a weighted average of �k�1;k:

�gW =
LX
l=1

�gl �l�1;l =

LX
l=1

KX
k=1

�gl;k�k�1;k;

where

�gl = [E(DjW = l)� E(DjW = l � 1)]
PL

q=l �q[g(q)� E(g(W ))]PL
q=0 �qE(DjW = q)[g(q)� E(g(W ))]

;
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and

�gl;k := �
g
l :�

l�1;l
k ;

with
PL

l=1 �
g
l =

PK
k=1 �

l�1;l
k =

PL
l=1

PK
k=1 �

g
l;k = 1: Further, order the elements of SW such

that E(DjW = l � 1) < E(DjW = l); then 0 � �g1; :::; �
g
L � 1 if and only if g(W ) is mean

quadrant dependent on W . If also the elements of SZ are ordered as in Theorem 3.2, then

0 � �g1;1; �
g
1;2; :::; �

g
2;1; :::�

g
L;K � 1 if and only if the instrument Z and g(W ) covary with the

proxy W concordantly.

(b) Suppose that Assumptions 2.1, 2.2, and 2.5 hold and that Assumptions 2.3 and 2.4

hold for all k � 1 and k, k 2 SZ jf0g. Suppose further that
PK

k=0(�k;l � �k;l�1)E(DjZ =

k) 6= 0 for all l 2 f1; :::; Lg and
PL

m=0 �mE(DjW = m)[g(m) � E(g(W ))] 6= 0. Then the

IV estimand �gW exists, is �nite, and is identi�ed with a weighted average of ��k�1;k:

�gW :=
LX
l=1

KX
k=1

�l;k�
�
k�1;k:

If the elements of SW are ordered as in (a) then 0 � �g1;1; �
g
1;2; :::; �

g
2;1; :::�

g
L;K � 1 if and

only if the instrument Z and g(W ) covary with the proxy W concordantly.

Observe that for L = 1 and any function g; �gW is equal to �0;1. Further, the concordance

condition in Theorem 5.3(a) for the weights �g1;k to be nonnegative restricts the sign of

[E(g(W ))� E(g(W )jW � 0)[�k;0 � �k;1] or equivalently the sign of �k;0 � �k;1, to be the

same for all k 2 SZ . In this case, the results in Theorem 5.3 reduce to the results in

Proposition 4.1.

Theorem 2 of IA provides a su¢ cient condition for �g1; :::; �
g
L to be nonnegative, namely

that E(DjW = l � 1) < E(DjW = l) for all l 2 SW jf0g and that g(W ) is monotone

in W . Indeed, Proposition 5.2 shows that monotonicity of g is su¢ cient for g(W ) to

be mean quadrant dependent on W and thus for �g1; :::; �
g
L to be nonnegative given the

ordering of the elements of SW . Also, theorem 2 of AI considers the special case of TSLS in

which g(W ) = E(DjW ): In this case, ordering the elements of SW such that E(DjW =
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l � 1) < E(DjW = l) gives that g(W ) is monotonic in W and therefore that the weights

�TSLS1 ; :::; �TSLSL are nonnegative.

Similar to the discussion in Section 4, because the IV estimand is a weighted average of

LATE with potentially negative weights, one should carefully interpret estimates for causal

e¤ects obtained via IV using a function of an instrument or of a proxy for it.

6 Further Comments

6.1 Nonseparable Structural System with Discrete Variables

For linear structural equations, IV using a measurement that is "valid," that is uncorrelated

with the unobserved causes of the response Y , and "relevant," that is correlated with the

causes of interest D; identi�es the causal e¤ect of D on Y . As pointed in Heckman (1996,

p. 460), this measurement need not be uncorrelated with the unobserved drivers of D. In

particular, it need not be exogenous in the reduced form equation. Accordingly, Chalak and

White (2009) distinguish between observed exogenous instruments (OXI) and proxies for

unobserved exogenous instruments (PXI). As they show, for linear structural systems, IV

methods using a valid and relevant proxy for an unobserved exogenous instrument identi�es

the causal e¤ect of the treatment on the response.

Schennach, White, and Chalak (2009) study the method of ILS in a general nonsepa-

rable structural equations system with continuous cause, response, and instrument. They

demonstrate that ILS using an observed exogenous instrument identi�es a weighted average

marginal e¤ect with some of the weights possibly negative. They show that in special cases,

such as when the treatment is separably determined, this weighted average e¤ect reduces to

an instrument-conditioned average marginal e¤ect. Further, they show that the availability

of two or more suitable proxies for an unobserved exogenous instrument permits estimating

this weighted average e¤ect.

This paper studies a general nonseparable structural system with discrete instrument,
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proxy, cause, and a general response. We demonstrate that ILS and IV methods using a

proxy for an instrument generally identify a weighted average of local causal e¤ects based

on the instrument. This analysis thus complements the results in Chalak and White (2009)

and Schennach, White, and Chalak (2009). It is of interest to study the consequences in

the continuous case (see e.g. Hernán and Robins, 2006, theorem 6) of the dependence

properties between the proxy and the instrument introduced here.

6.2 Implications for Testing

The results of this paper provide a way to test two hypotheses of interest. First, the

availability of a proxy for an unobserved instrument permits testing the hypothesis of no

causal e¤ect of the treatment. In particular, under this hypothesis the weighted average

e¤ect identi�ed by ILS using a proxy should be zero. This hypothesis could also be tested

via IV using a function of a proxy. Second, the availability of one multivalued proxy or

of two binary proxies for a binary instrument permits identifying the same LATE via ILS

using the multivalued instrument evaluated at any two adjacent points of its support or

using any of the two binary proxies. This provides the foundation for tests of the underlying

assumptions. We leave developing these tests for future work.

7 Conclusion

We study the scope of the method of indirect least squares (ILS) and of instrumental

variables (IV) methods for the identi�cation of local e¤ects of an endogenous cause D on

an outcome of interest Y using a proxy W for a possibly unobserved instrument Z. We

study the case in which the instrument, proxy, and treatment are discrete; the outcome

need not be discrete. ILS using a suitable proxy W for an instrument Z identi�es a

weighted average of local treatment e¤ects based on the instrument Z. The weights are

nonnegative if and only if the proxy is intensity preserving for the instrument. Similarly,
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IV using a function of a proxy for an instrument identi�es a weighted average of local

treatment e¤ects based on the instrument and the weights are nonnegative if and only if

the instrument Z and g(W ) covary with the proxy W concordantly. Thus, researchers

should carefully interpret estimates for causal e¤ects obtained via ILS or IV, such as the

method of two stage least squares, using an error-laden proxy for an instrument, a proxy for

an instrument with missing or imputed observations, or a binary proxy for a multivalued

instrument for example. Positively, the proxy need not satisfy all the assumptions required

for the instrument. In particular, the proxy need not be individualistic, it can depend on

other individuals�instrument. Importantly, unlike the instrument, the proxy need not cause

the treatment nor be exogenous. This is particularly useful because in special circumstances

such as when the instrument is binary, ILS using any suitable proxy identi�es local average

treatment e¤ects. Last, it is of interest to study the consequences in the continuous case

of the dependence between a proxy and an instrument studied here. Also, it is of interest

to develop tests for the underlying assumptions and for the hypothesis of no causal e¤ect

based on the availability of one or more proxies for an instrument. We leave this for future

research.

Mathematical Appendix

Proof of Proposition 2.1: We refer to lemmas 4.1, 4.2, and 4.3 of Dawid (1979) in

what follows. To show that (Z;W ) ? (UD; UY ) is su¢ cient for Assumption 2.2 to hold,

lemma 4.2(i) gives (q(z; UD); r(q(z; UD); UY )) ? Z and thus that (D(z); Y (D(z))) ? Z

which implies Assumption 2.2. To show that (Z;W ) ? (UD; UY ) implies Assumption 2.5,

we make use of the converse of lemma 4.3 which, as stated in Dawid (1979, p. 5), holds.

This gives (UD; UY ) ? W jZ: Applying lemma 4.1 gives (Z;UD; UY ) ? (Z;W )jZ. Then

lemma 4.2(i) gives (q(Z;UD); r(q(Z;UD); UY )) ? W jZ or (D; Y ) ? W jZ which implies

Assumption 2.5: �
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Proof of Proposition 3.1: We �rst prove su¢ ciency. Suppose that f is an increasing

monotonic function. We have

�k;l := Pr(Z � kjW = l) =

8<:
0 if f(k) < l
c 2 (0; 1] if f(k) = l
1 if f(k) > l

since for f(k) = l, there may exist k1; ::: < kh, h � K, such that f(k1) = ::: = f(kh) = l.

Then, for arbitrary l < l0;

�k;l � �k;l0 =

8<:
0 if f(k) < l < l0

c 2 (0; 1] if l � f(k) < l0
1� c0; c0 2 (0; 1]; if l < l0 � f(k)

and therefore for all l; l0 2 SW ; l < l0, we have �k;l � �k;l0 for all k 2 SZ .

Similar arguments shows that if f is a decreasing monotonic function then for all l; l0 2

SW ; l < l
0; we have �k;l � �k;l0 for all k 2 SZ .

We provide an example to show that the monotonicity of f is not necessary for W to

be intensity preserving for Z. Suppose that K = 3; and that Z is uniformly distributed so

that P (Z = k) = 1
4
for k = 0; 1; 2; 3: Suppose that

W =

�
0 if Z = 0; 2
1 if Z = 1; 3

:

We have

�k;l := Pr(Z � kjW = l) =

kX
p=0

Pr(Z = pjW = l);

and by Bayes�theorem

Pr(Z = pjW = l) =
Pr(W = ljZ = p) Pr(Z = p)PK
k=0 Pr(W = ljZ = k) Pr(Z = k)

:

Thus �0;0 = 1
2
> 0 = �0;1; �1;0 =

1
2
= �1;1, �2;0 = 1 > 1

2
= �2;1; and �3;0 = 1 = �3;1 and

therefore W is intensity preserving for Z: �

Proof of Theorem 3.2: Assumption 2.1(i) ensures that E(Y ) exist and is �nite and

thus E(Y jZ = k) and E(Y jW = l) exit and are �nite for all k 2 SZ and l 2 SW . By
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Assumption 2.5

E(Y jW = l) =

KX
m=0

E(Y jW = l; Z = m) Pr(Z = mjW = l)

=

KX
m=0

E(Y jZ = m)�m;l:

We can write

E(Y jW = l0)� E(Y jW = l)

=

KX
m=0

(�m;l0 � �m;l)E(Y jZ = m)

= (�0;l0 � �0;l)E(Y jZ = 0) +
KX
m=1

(�m;l0 � �m;l)E(Y jZ = m)

= ((1�
KX
m=1

�m;l0)� (1�
KX
m=1

�m;l))E(Y jZ = 0) +
KX
m=1

(�m;l0 � �m;l)E(Y jZ = m)

=
KX
m=1

(�m;l0 � �m;l)[E(Y jZ = m)� E(Y jZ = 0)]:

Substituting for

E(Y jZ = m)� E(Y jZ = 0) =
mX
k=1

[E(Y jZ = k)� E(Y jZ = k � 1)];

we obtain

E(Y jW = l0)� E(Y jW = l) =
KX
m=1

(�m;l0 � �m;l)
mX
k=1

[E(Y jZ = k)� E(Y jZ = k � 1)]

=
KX
k=1

[E(Y jZ = k)� E(Y jZ = k � 1)][
KX
m=k

(�m;l0 � �m;l)]:

Similarly, by Assumption 2.1(i), E(D) exists, is �nite and thus E(DjZ = k) and E(DjW =

l) exist and are �nite for all k 2 SZ and l 2 SW . By Assumption 2.5, a similar derivation

as above gives

E(DjW = l0)� E(DjW = l) =
KX
k=0

(�k;l � �k;l0)E(DjZ = k)

=

KX
k=1

[E(DjZ = k)� E(DjZ = k � 1)][
KX
m=k

(�m;l0 � �m;l)]:

29



Given that E(DjZ = k � 1) 6= E(DjZ = k); k = 1; :::; K; we have

E(Y jW = l0)�E(Y jW = l) =

KX
k=1

�k�1;k[E(DjZ = k)�E(DjZ = k�1)][
KX
m=k

(�m;l0��m;l)]:

Since
PK

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0, we have that �l;l0 exists, is �nite, and is given

by

�l;l0 : =
E(Y jW = l0)� E(Y jW = l)

E(DjW = l0)� E(DjW = l)

=

PK
k=1 �k�1;k[E(DjZ = k)� E(DjZ = k � 1)][

PK
m=k(�m;l0 � �m;l)]PK

p=1[E(DjZ = p)� E(DjZ = p� 1)][
PK

m=p(�m;l0 � �m;l)]

=
KX
k=1

�l;l
0

k �k�1;k:

It is immediate that the weights are such that
PK

k=1 �
l;l0

k = 1: All weights �l;l
0

k , k =

1; :::; K, are nonnegative if there does not exist �l;l
0

k ; �
l;l0

k0 , k; k
0 2 f1; :::; Kg with numerators

of opposite sign. If E(DjZ = k) � E(DjZ = k � 1) > 0, this is equivalent to eitherPK
m=k �m;l0 �

PK
m=k �m;l for all k 2 f1; :::; Kg or

PK
m=k �m;l0 �

PK
m=k �m;l for all k 2

f1; :::; Kg. Noting that
PK

m=k �m;l = 1 � �k�1;l; for k = 1; :::; K and l 2 SW and that

�K;l = 1 for all l 2 SW completes the proof. �

Proof of Proposition 4.1: (a) The proof directly extends the proof of theorem 1 of

Angrist and Imbens (1995) for binary Z to the general multivalued case, K � 1. Let I(A)

denote the indicator function of the event A and de�ne �k;j := I(D(k) � j) for k 2 SZ and

j 2 SD [ fJ + 1g, then �k;0 = 1 and �k;J+1 = 0 for all k 2 SZ . Let Zk = I(Z = k). Given

Assumption 2.1, we write

Y =

KX
k=0

ZkY (D(k)):

and

Y (D(k)) =
JX
j=0

(�k;j � �k;j+1)Y (j):
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Given Assumption 2.1(i), E(Y jZ = k) exist and is �nite for all k 2 SZ . Using the above

expression for Y , we can write:

E(Y jZ = k0)� E(Y jZ = k)

= E[
KX
k=0

ZkY (D(k))jZ = k0]� E[
KX
k=0

ZkY (D(k))jZ = k]

= E[Y (D(k0))jZ = k0]� E[Y (D(k))jZ = k]:

Under Assumption 2.2, we have Y (D(k)) ?m Z for all k 2 SZ and thus

E[Y (D(k0))jZ = k0]� E[Y (D(k))jZ = k] = E[Y (D(k0))� Y (D(k))]:

Using the expression for Y (D(k)) we have

E[Y (D(k0))� Y (D(k))]

= E[
JX
j=0

(�k0;j � �k0;j+1 � �k;j + �k;j+1)Y (j)]

= E[(�k0;0 � �k;0)Y (0) +
JX
j=1

(�k0;j � �k;j)(Y (j)� Y (j � 1))� (�k0;J+1 � �k;J+1)Y (J)]

= E[
JX
j=1

(�k0;j � �k;j)(Y (j)� Y (j � 1))];

where the last equation follows because �k;0 = 1 and �k;J+1 = 0 for all k 2 SZ :

Assumption 2.4 ensures that for k; k0 2 SZ ; k < k0, �k0;j � �k;j equals 0 or 1 with

probability 1 for all j 2 SD and we can write:

E(Y jZ = k0)� E(Y jZ = k) =
JX
j=1

E(Y (j)� Y (j � 1)j�k0;j � �k;j = 1)Pr(�k0;j � �k;j = 1)

=
JX
j=1

E[Y (j)� Y (j � 1)jD(k) < j � D(k0)] Pr[D(k) < j � D(k0)]:

Similarly, under Assumption 2.1, we write

D =
KX
k=0

ZkD(k); and

D(k) =
JX
j=0

(�k;j � �k;j+1)j:
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Given Assumption 2.1(i), E(DjZ = k) exist and is �nite for all k 2 SZ . Using the expression

for D, we write:

E(DjZ = k0)� E(DjZ = k)

= E(D(k0)jZ = k0)� E(D(k)jZ = k):

Under Assumption 2.2, we have D(k) ?m Z for k 2 SZ : Then

E(D(k0)jZ = k0)� E(D(k)jZ = k) = E(D(k0)�D(k)):

Substituting for the expression for D(k) gives

E(D(k0)�D(k))

= E[
JX
j=0

(�k0;j � �k0;j+1 � �k;j + �k;j+1)j]

= E[
JX
j=1

(�k0;j � �k;j)� (�k0;J+1 � �k;J+1)J ]

= E[
JX
j=1

(�k0;j � �k;j)];

where the last equality follows since �k;J+1 = 0 for all k 2 SZ : Assumption 2.4 gives that

E[
JX
j=1

(�k0;j � �k;j)] =
JX
j=1

Pr[D(k) < j � D(k0)];

and Assumption 2.3 then ensures that
PJ

j=1 Pr[D(k) < j � D(k0)] > 0: Taking the ratio

of E(Y jZ = k0)� E(Y jZ = k) to E(DjZ = k0)� E(DjZ = k), it follows that �k;k0 exists,

is �nite, and is identi�ed with the weighted conditional average causal e¤ect ��k;k0 : It is

immediate that 0 � !j � 1 and
PJ

j=1 !j = 1:

(b) Given (a) and that Assumptions 2.3 and 2.4 hold for all k; k � 1 for k 2 SZnf0g,

we have that �k�1;k exists, is �nite, and is identi�ed with ��k�1;k; for all k 2 SZnf0g. SincePK
k=0(�k;l0 � �k;l)E(Y jZ = k) 6= 0; and since Assumptions 2.1, 2.2, and 2.3-2.4 for k� 1; k;
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k 2 SZ give E(DjZ = k� 1) < E(DjZ = k), the result obtains immediately from Theorem

3.2. �

Proof of Proposition 5.1: Picking l0 = L gives that (b) ) (c). We show that

(a)) (b): For any l; l0 2 SW , l < l0; we have

E(V jW � l) =

PM
m=0mPr(V = m;W � l)

Pr(W � l) and

E(V jW � l0) =

PM
m=0mPr(V = m;W � l) +

PM
m=0mPr(V = m; l < W � l0)

Pr(W � l) + Pr(l < W � l0) :

To show that E(V jW � l) � E(V jW � l0) it su¢ ces to show that

Pr(l < W � l0)
MX
m=0

mPr(V = m;W � l) � Pr(W � l)
MX
m=0

mPr(V = m; l < W � l0):

Note that

MX
m=0

mPr(V = m; l < W � l0) =
MX
m=0

l0X
q=l+1

mPr(V = m;W = q)

=
MX
m=0

l0X
q=l+1

mPr(V = mjW = q) Pr(W = q)

=
l0X

q=l+1

E(V jW = q) Pr(W = q);

and similarly

MX
m=0

mPr(V = m;W � l) =
lX

p=0

E(V jW = p) Pr(W = p):

By (a) E(V jW = p) is non-decreasing in p. Thus

Pr(l < W � l0)
MX
m=0

mPr(V = m;W � l) = Pr(l < W � l0)
lX

p=0

E(V jW = p) Pr(W = p)

� Pr(l < W � l0)E(V jW = l) Pr(W � l)

� Pr(W � l)
l0X

q=l+1

E(V jW = q) Pr(W = q) = Pr(W � l)
MX
m=0

mPr(V = m; l < W � l0):

which completes the proof: �
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Proof of Proposition 5.2: We have

E(g(W )jW � l)� E(g(W )) =
lX

q=0

�qPl
p=0 �p

g(q)�
LX

m=0

�mg(m)

=

lX
q=0

(
1Pl
p=0 �p

� 1)�qg(q)�
LX

m=l+1

�mg(m)

=

lX
q=0

(

PL
m=l+1 �mPl
p=0 �p

)�qg(q)�
LX

m=l+1

�mg(m):

We also have

lX
q=0

(

PL
m=l+1 �mPl
p=0 �p

)�q =
lX

q=0

(
�qPl
p=0 �p

)
LX

m=l+1

�m =
LX

m=l+1

�m:

Now suppose that g is an increasing monotone function so that g(l) � g(l0) for l < l0. Let

g = minfg(l + 1); :::g(L)g and �g = maxfg(0); :::g(l)g. Then g � �g and

lX
q=0

(

PL
m=l+1 �mPl
p=0 �p

)�qg(q) � �g
lX

q=0

(

PL
m=l+1 �mPl
p=0 �p

)�q � g
LX

m=l+1

�m �
LX

m=l+1

�mg(m):

Suppose instead that g is an decreasing monotone function so that g(l) � g(l0) for l < l0.

Let g = minfg(0); :::g(l)g and �g = maxfg(l + 1); :::g(L)g. Then g � �g and

lX
q=0

(

PL
m=l+1 �mPl
p=0 �p

)�qg(q) � g
lX

q=0

(

PL
m=l+1 �mPl
p=0 �p

)�q � �g
LX

m=l+1

�m �
LX

m=l+1

�mg(m):

We provide an example to show that monotonicity of g is not necessary for g(W ) to

be mean quadrant dependent on W . Let K = 3; and W be uniformly distributed so that

P (W = l) = 1
4
for l = 0; 1; 2; 3: Suppose that

g(W ) =

�
0 if W = 0; 2
1 if W = 1; 3

:

Then E(g(W )) = 1
2
and E(g(W )jW � 0) = 0; E(g(W )jW � 1) = 1

2
; E(g(W )jW � 2) = 1

3
;

and E(g(W )jW � 3) = 1
2
: Thus, E(g(W )jW � l) � E(g(W )) for all l 2 SW : �

Proof of Theorem 5.3: (a) From Theorem 3.2 we have that for all l and l � 1;

l 2 SW jf0g; �l�1;l exists, is �nite and is given by �l�1;l =
PK

k=1 �
l;l0

k �k�1;k. Arguments
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similar to those in theorem 2 of IA and theorem 2 of AI give that �gW =
PL

l=1 �
g
l �l�1;l: We

state these for completeness. We have

EfY [g(W )� E(g(W ))]g = EfE(Y jW )[g(W )� E(g(W ))]g

=
LX
q=0

�qE(Y jW = q)[g(q)� E(g(W ))];

exists and is �nite since E(Y jW = l); g(l); and E(g(W )) exist and are �nite for all l 2 SW .

Since
LX
q=0

�q[g(q)� E(g(W ))] = 0;

we can rewrite the above expression as
LX
q=0

�q[E(Y jW = q)� E(Y jW = 0)][g(q)� E(g(W ))]

=
LX
q=1

�q[E(Y jW = q)� E(Y jW = 0)][g(q)� E(g(W ))]

Substituting for

E(Y jW = q)� E(Y jW = 0) =

qX
l=1

E(Y jW = l)� E(Y jW = l � 1);

gives
LX
q=1

�q[

qX
l=1

E(Y jW = l)� E(Y jW = l � 1)][g(q)� E(g(W ))]

=
LX
l=1

E(Y jW = l)� E(Y jW = l � 1)
LX
q=l

�q[g(q)� E(g(W ))]

=

LX
l=1

�l�1;l[E(DjW = l)� E(DjW = l � 1)
LX
q=l

�q[g(q)� E(g(W ))];

given that E(DjW = l)� E(DjW = l � 1) for all l and l � 1; l 2 SW jf0g:

A similar derivation shows that

EfD[g(Z)� E(g(Z))]g =
LX
q=0

�qE(DjW = q)[g(q)� E(g(W ))]

=

LX
l=1

[E(DjW = l)� E(DjW = l � 1)]
LX
q=l

�q[g(q)� E(g(W ))];
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exists and is �nite since E(DjW = l); g(l); and E(g(W )) exist and are �nite for all l 2 SW .

Dividing the expression for EfY [g(Z) � E(g(Z))]g with the expression for EfD[g(Z) �

E(g(Z))]g which we assume is nonzero gives that �gW =
PL

l=1 �
g
l �l�1;l where

PL
l=1 �

g
l = 1

is obvious.

The weights �gl , l = 1; :::; L, are nonnegative if there does not exist �gl ; �
g
l0, l; l

0 2

f1; :::; Lg with numerators of opposite sign. With E(DjW = l)� E(DjW = l � 1) > 0 for

all l 2 f1; :::; Lg, this is equivalent to
PL

q=l �q[g(q) � E(g(W ))] not having opposite signs

for any l; l0 2 f1; :::; Lg. But
LX
q=l

�q[g(q)� E(g(W ))]

= [E(g(W )�
l�1X
q=0

�qg(q)]� E(g(W )(1�
l�1X
q=0

�q)

= E(g(W ))
l�1X
q=0

�q �
l�1X
q=0

�qg(q):

Noting that E(g(W )jW � l�1) =
Pl�1

q=0
�qPl�1
p=0 �p

g(q) and that E(g(W )jW � L) = E(g(W ))

gives that 0 � �g1; :::; �
g
L � 1 if and only if E(g(W )jW � l) � E(g(W )) for all l 2 SW or

E(g(W )jW � l) � E(g(W )) for all l 2 SW .

The weights �gl;k; (l; k); (l
0; k0) 2 f1; :::; Lg� f1; :::; Kg are nonnegative if there does not

exist �gl;k; �
g
l0;k0, (l; k); (l

0; k0) 2 f1; :::; Lg � f1; :::; Kg; with numerators of opposite signs.

With E(DjW = l)�E(DjW = l� 1) > 0 for all l� 1; l 2 SW and E(DjZ = k)�E(DjZ =

k� 1) > 0 for all k� 1; k 2 SZ ; this is equivalent to
PL

q=l �q[g(q)�E(g(W ))][
PK

m=k(�m;l�

�m;l�1)] not having opposite signs for any (l; k); (l0; k0) 2 f1; :::; Lg � f1; :::; Kg: Using the

expression for
PL

q=l �q[g(q) � E(g(W ))] from above and that �k�1;l = 1 �
PK

m=k �m;l we

have
LX
q=l

�q[g(q)� E(g(W ))][
KX
m=k

(�m;l � �m;l�1)]

= [E(g(W ))

l�1X
q=0

�q �
l�1X
q=0

�qg(q)][�k�1;l�1 � �k�1;l]:
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Dividing by
Pl�1

p=0 �p > 0 preserves the sign of this expression and gives

[E(g(W ))�
l�1X
q=0

�qPl�1
p=0 �p

g(q)][�k�1;l�1 � �k�1;l]

= [E(g(W ))� E(g(W )jW � l � 1)][�k�1;l�1 � �k�1;l]:

Since �K;l�1 = �K;l = 1 for all l 2 f1; :::; Lg, the weights are nonnegative if and only

if [E(g(W )) � E(g(W )jW � l � 1)][�k;l�1 � �k;l] is either nonnegative for all (l; k) 2

f1; :::; Lg � SZ or nonpositive for all (l; k) 2 f1; :::; Lg � SZ .

(b) Under Assumptions 2.1, 2.2, and 2.5, and Assumptions 2.3-2.4 for all k � 1 and

k, k 2 SZ jf0g; and given
PK

k=0(�k;l0 � �k;l)E(DjZ = k) 6= 0, Proposition 4.1 gives that

�l�1;l exists, is �nite, and is identi�ed as �l�1;l =
PK

k=1 �
l�1;l
k ��k�1;k for all l 2 f1; :::; Lg:

Assumptions 2.1, 2.2, and 2.3-2.4 for all k� 1; k; k 2 SZ , give E(DjZ = k� 1) < E(DjZ =

k), the result then follows from part (a). �
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