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1 Introduction

A wide range of real-life resource allocation problems involves the assignment of indivisible objects
without the use of monetary transfers. Important applications include student placement in public
schools, organ transplantation through live or deceased donors, on-campus housing allocation, and
course allocation at business schools. Most of these markets rely on ordinal mechanisms, where
participants reveal only their preference rankings over given choices to the central authority rather
than their cardinal preferences. In such applications, ensuring fairness in an ex-post sense can entail
significant efficiency losses.1 Therefore, it has become commonplace to use random mechanisms as a
way to restore fairness ex ante.2

We consider generalized discrete resource allocation problems, or simply problems, with multiple
supplies of objects and strict preferences and voluntary participation of agents.3 A mechanism is a
rule that specifies how to randomly assign objects to agents based on their preferences.

In a seminal paper, Bogomolnaia and Moulin (2001) (BM hereafter) proposed the probabilistic

serial mechanism (PS) as an attractive contender to the widely used random serial dictatorship

mechanism (RSD).4 Unlike RSD, PS is sd-efficient 5 and sd-envy-free.6 This surprising observation
in turn led to a rapidly growing body of literature on this problem in general and on PS in particular.7

1See, for example, Kesten and Yazici (2009).
2For example, the assignment mechanisms used in the context of student placement operate through a collection

of strict priority orders of schools over students. In practice, determining these orders often involves randomization
(Abdulkadiroğlu and Sönmez, 2003; Erdil and Ergin, 2008; Kesten and Ünver, 2010; Pathak and Sethuraman, 2011).
Similarly, in the exchange of live-donor kidneys among kidney patients for transplantation, the egalitarian approach
requires the design of a random mechanism (Roth, Sönmez, and Ünver, 2005).

3Our framework is a generalization of the model studied by Bogomolnaia and Moulin (2001) that allowed only for
assignments with single-supplies.

4RSD works as follows: Draw a random ordering from the uniform distribution and let agents succesively pick their
favorite objects among available ones.

5A mechanism is sd-efficient if its outcome is not (first-order) stochastically dominated by an alternative random
assignment, or equivalently if no group of agents can all be made better off, irrespective of their vNM utilities,
by exchanging assignment probabilities of some of the objects among themselves. Hence “sd” stands for first order
stochastic dominance.

6However, RSD is sd-strategy-proof, unlike PS, which is sd-strategy-proof only in a weak sense. Nevertheless,
Kojima and Manea (2010) show that in large but finite problems where each object has a sufficiently large supply,
PS regains sd-strategy-proofness. Relatedly, Che and Kojima (2010) show that in the limit of discrete economies with
finite object types, PS converges to RSD.

7There are very few papers discussing the random assignment problem prior to the new millennium; Hylland and
Zeckhauser (1979) and Zhou (1990) are two of these. Following BM’s ground-breaking work, many papers, such as
McLennan (2002); Bogomolnaia and Moulin (2002); Abdulkadiroğlu and Sönmez (2003); Katta and Sethuraman (2006);
Athanassoglou and Sethuraman (2007); Manea (2008, 2009); Kojima (2009); Yilmaz (2009, 2010); and Budish, Che,
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The outcome of PS is computed via the simultaneous eating algorithm (SEA): Consider each object
as a continuum of probability shares. Agents simultaneously “eat away” from their favorite objects
at the same speed; once the favorite object of an agent is gone, she turns to her next favorite object,
and so on. The amount of an object eaten away by an agent throughout the process is interpreted
as the probability with which she is assigned this object by PS.

In this paper, we provide two normative axiomatic characterizations of PS. Our first result states
that a mechanism is non-wasteful and ordinally fair if and only if it is PS (Theorem 1). Non-
wastefulness is a very mild efficiency property that is standard in the literature. Ordinal fairness is
a new property, which we introduce. Let Fi(a) ∈ [0, 1], called the surplus of agent i at object a, be
the total amount of objects, at least as good as a, that agent i gets. Ordinal fairness requires that
whenever an agent i consumes an object a with some positive probability, the surplus of agent i at
a should not exceed the surplus of any other agent at a, i.e., Fi(a) ≤ Fj(a) for any agent j. This
property takes the normative viewpoint that all agents a priori have equal claims to all objects, and
allows them to redistribute the assignment probabilities among themselves in any way so long as no
agent is “disadvantaged” by the redistribution.

For our second characterization, we introduce an auxiliary robustness axiom, closely related
to incentive properties, called upper invariance. A mechanism is upper invariant if whenever an
agent improves the ranking of a particular object by demoting any object that she consumes with
zero probability, every agent still consumes this object with the same probability as before. This
is a natural monotonicity property, as it diminishes the roles of objects that have no chance of
being assigned to an agent. Upper invariance is also satisfied by RSD as well as by a wide class
of deterministic strategy-proof and Pareto-efficient mechanisms such as hierarchical exchange rules

(Pápai, 2000). Our second result states that a mechanism is sd-efficient, sd-envy-free, and upper
invariant if and only if it is PS (Theorem 2).8

Kojima, and Milgrom (2011), studied various properties of sd-efficient assignments and mechanisms, and extensions
of the PS for various setups. Others, such as Knuth (1996); Abdulkadiroğlu and Sönmez (1998); Sönmez and Ünver
(2005); Kesten (2009); Che and Kojima (2010); Budish and Cantillon (2010); Carroll (2010); and Ekici (2010), studied
RSD-like random assignment mechanisms.

8Upon completion of this work, we became aware of two other contemporaneous studies that provide different
axiomatic characterizations of PS for different models. Heo (2010) characterizes PS for the case when each object and
each agent can have an arbitrary quota, through sd-efficiency, proportional division lower-bound, limited invariance,
and probabilistic consistency axioms. She has a second characterization that replaces proportional division lower-bound
with normalized sd-envy-freeness and probabilistic consistency with probabilistic converse consistency. Hashimoto and
Hirata (2011) offer three characterizations of PS, with the added requirement that a null object always exists. Our
domain is more general than theirs, and thus our characterizations hold in different domains including theirs. Their first
chatacterization is based on sd-efficiency, sd-envy-freeness, and truncation robustness. The second one characterizes
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2 Model

A discrete resource allocation problem (cf. Hylland and Zeckhauser, 1979; Shapley and Scarf, 1974),
or simply a problem, is a list (N,A, q,�) where N = {1, . . ., n} is a finite set of agents; A is a finite
set of objects; q = (qa)a∈A is a positive integer vector where qa denotes the quota of object a such
that

�
a∈A qa ≥ |N |; and �= (�i)i∈N is a preference profile where �i is the strict preference relation

of agent i on A. Let P be the set of preferences for any agent. Let �i denote the weak preference
relation induced by �i. We assume that preferences are linear orders on A, i.e., for all a, b ∈ A and
all i ∈ N , a �i b ⇔ a = b or a �i b. We sometimes represent �i as an ordered list beginning with
the most preferred object of agent i and continuing to her least. For example, given A = {a, b, c},
we interpret �i= (b, c, a) as b �i c �i a. A centralized authority shall assign objects to agents such
that each agent is entitled to receive exactly one object.

Observe that this model is general enough to contain different interesting special cases:

1. Unacceptable objects: There is a specific object referred to as the null object and assigned a
quota of |N |. By interpretation, agents who are assigned the null object are viewed as taking
their outside options, or using the matching jargon, they remain unassigned. The objects ranked
below the null object are called unacceptable. This case models assignment under voluntary
participation.9

2. Perfect supply with unit quotas: Each object has a quota of 1 and there are exactly |N |
objects. This is the original setting of BM.10

We assume that probabilistic assignments are possible. A random allocation for agent i is a
vector Pi = (pi,a)a∈A where pi,a ∈ [0, 1] denotes the probability that agent i receives object a, and
�

a∈A pi,a = 1. A random assignment, denoted as P = [Pi]i∈N = [pi,a]i∈N,a∈A, is a substochastic
matrix, the rows of which correspond to the random allocations of agents such that the probabilities
along each row sum to one and the sum of probabilities along the column corresponding to each

the mechanism by sd-efficiency, independence of unassigned objects, and the Rawlsian Criterion. The third one is
a weakening of their first result through a characterization with 2-sd-efficiency (non-existence of profitable bilateral
trades plus non-wastefulness), weak sd-envy-freeness, and truncation robustness. Also there is a recent follow-up study
to ours and Hashimoto and Hirata (2011): Bogomolnaia and Heo (2011) strengthen our second characterization using
a weaker axiom than upper invariance called bounded invariance and relate our second result to Hashimoto and Hirata
(2011)’s first result.

9In this setting, the standard individual rationality requirement, i.e., that no agent be assigned an unacceptable
object with some positive probability, is implied by either efficiency property to be subsequently introduced; namely,
by either non-wastefulness or sd-efficiency.

10In this latter setting, one of our properties, non-wastefulness, to be subsequently introduced, is satisfied vacuously.
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object a does not exceed qa, i.e.,
�

a∈A pi,a = 1 for all i ∈ N and
�

i∈N pi,a ≤ qa for all a ∈ A. Let
Pa denote the column vector of P corresponding to any a ∈ A, i.e., Pa = (pi,a)i∈N . Let R be the set
of random assignments.

Observe that a random assignment gives only the marginal probability distribution according to
which each agent will be assigned an object. It does not specify the distribution according to which
objects should jointly be assigned to agents. To define this joint probability distribution, we first
need to define (deterministic) assignments and probability distributions over them. An assignment
is a P ∈ R such that pi,a ∈ {0, 1} for all i ∈ N and all a ∈ A. Let A be the set of assignments. A
lottery λ = (λα)α∈A is a probability distribution over assignments, i.e., λα ∈ [0, 1] for all α ∈ A and
�

α∈A λα = 1.
Clearly, each lottery induces a random assignment. Let P λ ∈ R be the random assignment

induced by lottery λ, i.e., pλi,a =
�

α∈A:αi,a=1 λα for all i ∈ N and all a ∈ A. It turns out that the
converse statement is also true: For each P ∈ R there exists a lottery λ that induces it, i.e., P λ = P

(Birkhoff, 1946; von Neumann, 1953; Kojima and Manea, 2010). Thus, the centralized authority
can simply restrict attention to random assignments rather than lotteries.11 Throughout the paper,
whenever it is not ambiguous, we shall suppress N , A, q and denote a problem by a preference profile.

Given a ∈ A and �i∈ P for some i ∈ N , let U(�i, a) = {b ∈ A | b �i a} be the upper contour
set of object a at �i. Given a random allocation Pi, let F (�i, a, Pi) =

�
b∈U(�i,a)

pi,b be the
probability that i is assigned an object at least as good as a under Pi; we simply refer to it as i ’s
surplus at a under Pi. Given i ∈ N , �∈ PN , and P,R ∈ R, Pi stochastically dominates Ri at
�i if F (�i, a, Pi) ≥ F (�i, a, Ri) for all a ∈ A. In addition, P stochastically dominates R at � if
Pi stochastically dominates Ri at �i for all i ∈ N .

We are now ready to introduce a powerful efficiency notion. A random assignment is sd-efficient
if it is not stochastically dominated by another random assignment.12

Next is a much weaker efficiency property. A random assignment is non-wasteful if the surplus
of no agent at any object can be raised through the use of an unassigned probability share of some
object. Formally, given �∈ PN , P ∈ R is non-wasteful at � if for all i ∈ N and all a ∈ A such
that pi,a > 0, we have

�
j∈N pj,b = qb for all b ∈ A with b �i a.

Our first fairness property is a fundamental principle in mechanism design theory originally
proposed by Foley (1967). A random assignment is sd-envy-free if each agent, regardless of her vNM
utilities, prefers her random allocation to that of any other agent. Formally, given �∈ PN , P ∈ R

11Once a random assignment is determined, finding a lottery that induces it is computationally easy.
12Equivalently, under any alternative random assignment the surplus of some agent at some object is smaller than

that under the original assignment.

5



is sd-envy-free at � if for all i ∈ N , Pi stochastically dominates Pj for all j ∈ N at �i.13

A mechanism is a systematic way of finding a random assignment for a given problem. Formally,
a mechanism is an allocation rule φ : PN→R. A mechanism is said to satisfy a property if its
outcome, for any problem, satisfies that property.

3 Two New Axioms

Our second fairness property, essential to our first characterization, is a natural and intuitive axiom
for the random assignment setting. A random assignment is ordinally fair if whenever an agent is
assigned some object with positive probability, her surplus at this object is no greater than that of
any other agent at the same object. It follows that whenever an agent is assigned some object x with
zero probability, she must be assigned a better object (for her) with a probability no less than any
agent who is assigned object x with positive probability.

Definition 1 Given �∈ PN , P ∈ R is ordinally fair at � if for all a ∈ A and all i, j ∈ N with
pi,a > 0, we have F (�i, a, Pi) ≤ F (�j, a, Pj).

We next introduce an auxiliary robustness axiom, essential to our second characterization. But
first, we need some additional notation. Let �i |B be the restriction of �i∈ P to B ⊆ A; that is,
�i |B is a preference relation over B such that for all a, b ∈ B, a �i |B b ⇔ a �i b.

Given P ∈ R and �∈ PN , preference relation ��
i∈ P is an upper invariant transformation

of �i for i ∈ N at a ∈ A under P if for some Z ⊆ {c ∈ A | pi,c = 0}, U(��
i, a) = U(�i, a) \ Z and

��
i |U(��

i,a)
=�i |U(��

i,a)
. An upper invariant transformation of a preference relation �i at a under

P shrinks the upper contour set at a by removing from this set some of the objects that are never
consumed by agent i; the relative rankings of objects weakly preferred to a stay the same at �i and
��

i; but the relative rankings of objects that are worse than a at ��
i can change in any arbitrary way.

We are now ready to define our invariance concept:

Definition 2 A mechanism φ is upper invariant if for all �∈ PN , all i ∈ N , all ��
i∈ P,

and all a ∈ A such that ��
i is an upper invariant transformation of �i at a under φ(�), we have

φa(��
i,�−i) = φa(�i,�−i).

13Sd-envy-freeness is satisfied by many important allocation rules in different domains such as the competitive
equilibrium from equal endowments (Hylland and Zeckhauser, 1979), some special VCG mechanisms, the uniform rule
for single-peaked preferences over a divisible resource (Benassy, 1982), and the max-min allocation rule for quasi-linear
preferences over indivisible objects and a fixed amount of money (Alkan, Demange, and Gale, 1991).
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Upper invariance is similar in spirit to Maskin Monotonicity (Maskin, 1999) and has close connec-
tions with incentive properties. It implies strategy-proofness for deterministic mechanisms. More-
over, together with non-bossiness (Satterthwaite and Sonnenschein, 1981), it also implies Maskin
monotonicity for deterministic mechanisms; see also Takamiya (2001).14

4 Probabilistic Serial Mechanism

BM introduced the probabilistic serial mechanism (PS),15 the outcome of which can be computed
via the following simultaneous eating algorithm (SEA):

Given a problem �, think of each object a as an infinitely divisible good with supply qa.

Step 1: Each agent “eats away” from her favorite object at the same unit speed. Proceed to the next
step when an object is completely exhausted.
...
Step s, for s ∈ {2, . . . , S}: Each agent eats away from her remaining favorite object at the same
speed. Proceed to the next step when an object is completely exhausted.

The procedure terminates after S � |N | steps when each agent has eaten exactly 1 total unit of
objects (i.e., at time 1). The random allocation of an agent i by PS is then given by the amount of
each object she has eaten until the algorithm terminates. Let PS(�) ∈ R denote the outcome of PS
for problem �.

5 First Characterization of Probabilistic Serial

In our first result, we establish that for each problem there is a unique ordinally fair and non-wasteful
random assignment and that this random assignment is the outcome of SEA. In other words, PS
fully characterizes ordinal fairness with non-wastefulness, and vice versa.

Theorem 1 A mechanism is ordinally fair and non-wasteful if and only if it is PS.16

Proof of Theorem 1. Fix �∈ PN . We will drop � from all arguments below. We reinterpret
the SEA such that at each step at most one object is fully exhausted: If two objects a, b are exhausted

14See Heo and Manjunath (2011) for a discussion of monotonicity conditions for implementation in ordinal random
domains.

15PS was initially proposed by Crès and Moulin (2001) for a simple model where agents have the same rankings
over objects.

16We thank Jay Sethuraman who gave us concrete ideas about shortening our original proof.

7



in a step according to the original definition, we will order these objects arbitrarily and say that one
is exhausted first and the other one is exhausted in the next step. We redefine step S as the first
step when each agent has eaten exactly 1 total unit of objects. Let h1, ..., hS−1 denote the objects
exhausted in steps 1 to S − 1 and the remaining ones be arbitrarily ordered as hS, ..., h|A|.

(⇒) PS is non-wasteful as it is sd-efficient. We show that PS is ordinally fair. First, consider s < S:
Each agent has eaten away weakly better objects than hs until s at the same speed. Thus, for any
i ∈ N who eats away hs at s and any j ∈ N who eats away some b �j hs, since they continue eating
at the same speed and bj is not exhausted before hs, we have F (�i, hs, PSi) ≤ F (�j, bj, PSj) ≤
F (�j, hs, PSj). Next, consider s ≥ S: At step S, each j ∈ N eats away some bj �j hs. When SEA
terminates after S, j’s surplus at bj is 1, and hence, F (�j, hs, PSj) = 1. Thus, in either case ordinal

fairness is satisfied for hs.

(⇐) Let P ∈ R be ordinally fair and non-wasteful at the fixed �. We will show that PS= P. Define
π(a) = mini F (�i, a, Pi) for all a ∈ A. Relabel objects as a1, ..., a|A| so that π(as) ≤ π(as+1) for all
s ≤ |A| − 1. Let A0 = ∅, As = {a1, ..., as}, and As = A \ As be the set complement of As. For all
s ≥ 1 and all a ∈ As−1 , let N s(a) = {k ∈ N | a �k b for all b ∈ As−1}.

We argue by induction. Fix some s ≥1. Assume that for all t < s and all i ∈ N t(at), F (�i

, at, Pi) = F (�i, at, PSi) = π(at); for all k /∈ N t(at), pk,at = PSk,at = 0; and at is the object
exhausted at step t of SEA for t < S. Each statement in the inductive assumption holds vacuously
for s = 1. We prove that they also hold for step s and thus P = PS :

Step 1. We show that for all k �∈ N s(as), pk,as = 0: For a contradiction, suppose for some b ∈ As,
k ∈ N s(b) we have pk,as > 0. For an agent j with π(as) = F (�j, as, Pj), we have F (�k, as, Pk) >

F (�k, b, Pk) ≥ F (�j, as, Pj) where the last inequality follows from the ordering of as before b through
π. However, this inequality violates ordinal fairness of P .�
Step 2. We show that for all i ∈ N s(as), F (�i, as, Pi) = π(as): Let i ∈ N s(as). Either pi,as > 0 or
pi,as = 0. If pi,as > 0, then by ordinal fairness, for all j ∈ N , F (�i, as, Pi) ≤ F (�j, as, Pj), and thus
F (�i, as, Pi) = π(as) by the definition of π(as). Suppose pi,as = 0. Let t∗ be the earliest step t such
that i ∈ N t(as). If t∗ = 1, then by pi,as = 0, F (�i, as, Pi) = 0, and thus F (�i, as, Pi) = π(as) by
the definition of π(as). Next, suppose t∗ > 1. Then i ∈ N t∗−1(at

∗−1). By the inductive assumption
(as t∗ ≤ s), π(at∗−1) = F (�i, at

∗−1, Pi). Thus, as as is ranked just below at
∗−1 in �i and pi,as = 0,

F (�i, as, Pi) = π(at
∗−1). Moreover, since as is ordered after at

∗−1 according to π, π(as) ≥ π(at
∗−1).

Thus, as F (�i, as, Pi) ≥ π(as), F (�i, as, Pi) = π(as) . �
Step 3. We show that at step s of SEA for s < S, for any agent i ∈ N s(as), F (�i, as, PSi) ≥π(as) :

By the inductive assumption, for each b ∈ As−1, at the end of step s − 1 of SEA, the amount that
each i ∈ N s(b) has eaten away from objects in U(�i, b) is x = π(as−1) if s > 1 and x = 0 if s = 1;
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and moreover, all objects in U(�i, b) \ {b} are also fully exhausted. For all j ∈ N s(as), all b ∈ As−1,
and all k ∈ N s(b), we have π(as) ≤ π(b) by the definition of as; and this together with Step 2 and
the definition of π imply F (�j, as, Pj) − x = π(as) − x ≤ π(b) − x ≤ F (�k, b, Pk) − x. Thus, the
remaining amount of object b is sufficiently large for each agent in N s(b) so that when each agent in
N s(as) has eaten away π(as) − x of as, no agent in N s(b) has yet started eating an object different
from b. Therefore, each j ∈ N s(as) eats away by the end of step s at least (π(as)− x) + x = π(as),
the total amount from objects in U(�j, as), implying that π(as) ≤ F (�j, as, PSj).�
Step 4. We show that for all j ∈ N s(as), π(as) = F (�j, as, PSj) and PSk,as = 0 for all k /∈ N s(as)

for s< S: Proving the first claim is sufficient (by Step 3). Suppose, to the contrary, for some
i ∈ N s(as), F (�i, as, Pi) = π(as) < F (�i, as, PSi) ≤ 1; but then
�

j

pj,as =
�

j∈Ns(as)

{F (�j, a
s, Pj)−

�

b�jas

pj,b} <
�

j∈Ns(as)

{F (�j, a
s, PSj)−

�

b�jas

PSj,b} =
�

j∈Ns(as)

PSj,as ≤ qas ,

where
�

j∈Ns(as) F (�j, as, Pj) <
�

j∈Ns(as) F (�j, as, PSj) by Steps 2 and 3 and the supposition, and
pj,b = PSj,b for all j ∈ N s(as) and all b �j as by the inductive assumption. This violates non-

wastefulness of P. We have showed that for all j ∈ N s(as), F (�i, as, PSi) = π(as). Then, step s of
SEA ends when as is fully exhausted by Step 3 of the proof. Moreover, PSk,as = 0 for all k /∈ N s(as)

as none of these agents have started eating as before it gets fully exhausted under SEA. �
Step 5. We show that the rest of the inductive claim holds for s ≥ S: SEA terminates at step
S when when each agent has eaten exactly 1 total unit of objects. Any agent i ∈ NS(a) eats away
a ∈ AS−1 at step S of SEA. Thus, F (�i, a, PSi) = 1 and for any k �∈ NS(a), PSi,a = 0. By
non-wastefulness of P (through the same argument in Step 4 applied to a instead of as), for any
i ∈ N s(a), F (�i, a, PSi) = π(a) =F (�i, a, Pi).�

6 Second Characterization of Probabilistic Serial

Sd-efficiency and sd-envy-freeness are among the most appealing properties of mechanisms. Our
second result characterizes PS through these two fundamental properties together with upper invari-
ance:

Theorem 2 A mechanism is sd-efficient, sd-envy-free, and upper invariant if and only if it is PS.

Before proving the theorem, we introduce the following auxiliary concept and lemma. We invoke
upper invariance only through this lemma in our proof. Given a mechanism φ, �∈ PN , i ∈ N,

��
i∈ P, and a ∈ A, � i and ��

i are weakly invariant transformations of each other at a if φi,a(�) =

φi,a(��
i,�−i) = 0 and ��

i |A\{a} =�i |A\{a}. The following lemma is immediate:
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Lemma 1 Let φ be an upper invariant mechanism. Then, for all �∈ PN , all i ∈ N , all ��
i∈ P, and

all a ∈ A,

1. if �i and ��
i are weakly invariant transformations of each other at a, then φ(�) = φ(��

i,�−i);

2. if �i and ��
i are upper invariant transformations of each other at a, then φb(�) = φb(��

i,�−i) for

all b ∈ U(�i, a).

We continue with the proof of Theorem 2:

Proof of Theorem 2. (⇐) The sd-efficiency and sd-envy-freeness of the PS mechanism are
proved by BM in a more restricted domain. The same proofs apply to our domain. We prove its
upper invariance below.

Let �∈ PN , i ∈ N , and a ∈ A. Let �̃i ∈ P be an upper invariant transformation of �i at a under
PS(�). Let �̃ = (�̃i,�−i). Then, U(�̃i, a) = U(�i, a) \Z for some Z ⊆ {c ∈ A |PSi,c(�) = 0}. We
will show that PSa(�̃) = PSa(�).

First, consider the case Z = ∅. Observe that all objects will be eaten in exactly the same amounts
under both � and �̃ until a is exhausted if a is fully exhausted under � and until SEA terminates
otherwise, as agent i has not started eating any object less preferred to a yet under either preference
profile, and her preferences coincide up to object a. Thus, PSa(�̃) = PSa(�).

Next, consider the case Z �= ∅. Since agent i does not eat any object b ∈ Z in � and such an object
is less preferred to a in �̃, an upper invariant transformation does not change which objects agents
eat at what shares until a is exhausted if a is exhausted fully under �, and until SEA terminates
otherwise. Thus, the previous conclusion still holds.

(⇒) Let φ be a sd-efficient, sd-envy-free, and upper invariant mechanism. By sd-efficiency, it
is non-wasteful. We will show that φ is also ordinally fair, and thus by Theorem 1, φ = PS. Fix
�∈ PN .

Let P = φ(�). Contrary to the hypothesis, suppose there exist i and j ∈ N , and a∗ ∈ A with
pi,a∗ > 0 such that F (�i, a∗, Pi) > F (�j, a∗, Pj).

If U(�i, a∗) ⊆ U(�j, a∗), we have F (�j, a∗, Pi) ≥ F (�i, a∗, Pi) > F (�j, a∗, Pj), contradicting the
sd-envy-freeness of P . Thus, in the rest of the proof assume that U(�i, a∗)\U(�j, a∗) �= ∅. If there is
no object b such that a∗ �j b �j a� and pj,b > 0 where a� is the lowest ranked a ∈ U(�i, a∗)\U(�j, a∗)

by j then as we have U(�i, a∗) ⊆ U(�j, a�), we still have F (�j, a�, Pi) ≥ F (�i, a∗, Pi) > F (�j

, a∗, Pj) = F (�j, a�, Pj) contradicting the sd-envy-freeness of P .

Thus, in the rest of the proof, assume that such a b exists and assume that it is the highest ranked
such b by j. Let a ∈ U(�i, a∗) \ U(�j, b) be the highest ranked such a by j. By the sd-efficiency

of P , pj,a = 0, as otherwise i could trade with j some share at a∗ to receive an equal share at a,
and i and j both would get better off (in first-order stochastic dominance sense), while other agents
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would remain indifferent. Next, we upgrade a just in front of b in preferences of j, and obtain ��
j

from �j. As �j and ��
j are upper invariant transformations of each other at a∗, by By Lemma 1

Part 2, objects in U(�j, a∗) = U(��
j, a

∗) have the same assignment probabilities for any agent under
φ(��

j,�−j) and P , and in particular, we still have φi,a∗(��
j,�−j) = pi,a∗ > 0. By the sd-efficiency

of φ(��
j,�−j), we have φj,a(��

j,�−j) = 0 (as otherwise, agent i could trade with j some share at a∗

to receive an equal share at a, and each of i and j would be better off, while the rest of the agents
would remain indifferent). Then, �j and ��

j are weakly invariant transformations of each other at a,
and by Lemma 1 Part 1, φ(��

j,�−j) = P .
We repeat this procedure of updating j’s preferences for each such a ∈ U(�i, a∗) \U(�j, b) , and

hence, if ���
j is the final preference relation of j that we obtain, then φ(���

j ,�−j) = P by repeatedly
invoking upper invariance through Lemma 1 as above. Then,

F (���
j , a

�, Pi) ≥ F (�i, a
∗, Pi) > F (�j, a

∗, Pj) = F (���
j , a

∗, Pj) = F (���
j , a

�, P j),

where recall that a� is the lowest ranked a ∈ U(�i, a∗)\U(�j, a∗) in ���
j and hence, the first inequality

follows as U(�i, a∗) ⊆ U(���
j , a

�) by construction of ���
j . The overall inequality contradicts the sd-

envy-freeness of φ(���
j ,�−j) = P . Thus, we showed that F (�i, a∗, Pi) ≤ F (�j, a∗, Pj). This proves

the ordinal fairness of φ.

7 Concluding Remarks

Our study is not the first attempt at this kind of a characterization. BM gave a full characterization
of these two axioms together with weak sd-strategy-proofness when there are three agents and three
objects. A mechanism is weakly sd-strategy-proof if no agent ever stochastically gains by misreporting
her preferences.17 The following result shows that this characterization no longer holds with five or
more agents:

Proposition 1 If the number of agents is greater than or equal to five, the PS mechanism is not

characterized by sd-efficiency, sd-envy-freeness, and weak sd-strategy-proofness.

We prove this proposition through a counterexample, i.e., by providing a mechanism, different
from PS, that satisfies all three properties. The mechanism we describe in the next example differs
from PS only at one preference profile out of 1205 profiles. It turns out that it is not upper invariant.

17Formally, φ is weakly sd-strategy-proof if for all � and all i ∈ N , there is no ��
i such that φi(��

i,�−i) stochastically
dominates φi(�i,�−i) and φi(��

i,�−i) �= φi(�i,�−i).
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Example 1 Suppose that there are five agents N = {1, 2, ..., 5} and five objects A = {a, b, c, d, e}
each with unit quota. Let �∗ be defined as follows:

a �∗
i c �∗

i d �∗
i e �∗

i b for i = 1, 2, 3

b �∗
4 c �∗

4 d �∗
4 e �∗

4 a

b �∗
5 a �∗

5 c �∗
5 e �∗

5 d

The PS outcome for this problem is

PS(�∗) =
1

720





240 0 192 180 108

240 0 192 180 108

240 0 192 180 108

0 360 72 180 108

0 360 72 0 288




.

Define

P ∗ =
1

720





220 0 210 185 105

220 0 210 185 105

220 0 210 185 105

0 360 75 165 120

60 360 15 0 285




.

Construct the mechanism φ as follows:

φ(�) =

�
P ∗ if �=�∗,

PS(�) otherwise.

This mechanism is sd-efficient, sd-envy-free, and weakly sd-strategy-proof, but not upper invariant
(see the appendix). �

Finally, we establish the logical independence of the axioms in Theorems 1 and 2. We start with
Theorem 1. An ordinally fair but wasteful mechanism is the following: When the total quota of
objects exceeds the number of agents,18 consider the following: Fix q�a ≤ qa for all a ∈ A such that
�

a∈A q�a = |N |. The PS mechanism that assigns objects according to the artificial quota vector
(q�a)a∈A is ordinally fair but wasteful. On the other hand, RSD is a non-wasteful but ordinally unfair
mechanism.

18If the total quota of objects is equal to the number of agents, we have an assignment problem with perfect supply.
Thus, non-wastefulness holds vacuously.
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The independence of the axioms for Theorem 2 can be shown as follows. The mechanism in
Example 1 is sd-efficient and sd-envy-free, but not upper invariant. A serial dictatorship is a sd-
efficient and upper invariant mechanism that induces sd-envy. A sd-envy-free and upper invariant
mechanism that is not sd-efficient can be constructed as follows: Choose a quota q�a ≤ qa for each
a ∈ A so that

�
a∈A q�a = |N |. For any problem assign each agent each a ∈ A with probability q�a

|N | .
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Appendix: Proof of Proposition 1

We show that the mechanism in Example 1 is sd-efficient, sd-envy-free, and weakly sd-strategy-
proof.

First, note that P ∗ is sd-efficient at �∗, and the PS mechanism is sd-efficient (BM). Thus, the
mechanism φ is sd-efficient.

Second, we show that the mechanism φ is sd-envy-free. Since the PS mechanism is sd-envy-free
(BM), we need to show that P ∗ is sd-envy-free at �∗. Let sd(�i) be the stochastic dominance relation
induced by preference �i. For example, we need to show, for agent 1, P ∗

1 sd(�∗
1)P

∗
4 and P ∗

1 sd(�∗
1)P

∗
5 .

We have similar conditions for agents 4 and 5. To this end, we use the following table:

�∗
1 a c d e b

P ∗
1 220 430 615 720 720

P ∗
4 0 75 240 360 720

P ∗
5 60 75 75 360 720

(× 1
720)

The first row indicates the houses in order of the preference �∗
1 of agent 1. The second row

calculates F (�∗
1, a

�, P ∗
1 ) for each corresponding house a� in the first row. The third row calculates

F (�∗
1, a

�, P ∗
4 ) for each corresponding house a� in the first row. Similarly defined is the fourth row. To
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have P ∗
1 sd(�∗

1)P
∗
4 , we need to compare the row of P ∗

1 with that of P ∗
4 . That is, for each column, the

number in the second row must be greater than or equal to the number in the third row. The above
table actually shows P ∗

1 sd(�∗
1)P

∗
4 and P ∗

1 sd(�∗
1)P

∗
5 . Similarly, we have tables for agents 4 and 5:

�∗
4 b c d e a

P ∗
4 360 435 600 720 720

P ∗
1 0 210 395 500 720

P ∗
5 360 375 375 660 720

�∗
5 b a c e d

P ∗
5 360 420 435 720 720

P ∗
1 0 220 430 535 720

P ∗
4 360 360 435 555 720

(× 1
720)

Looking at the above tables, we conclude that P ∗ is sd-envy-free at �∗.
Finally, we show that the mechanism φ is weakly sd-strategy-proof. For notational simplicity,

we use P = φ(�i,�∗
−i) for a preference �i �=�∗

i of an agent i. Recall P ∗ = φ(�∗). First, because φ

consists of the PS mechanism that is weakly sd-strategy-proof (BM), we need to show for all i ∈ N

,�i, if Pi �= P ∗
i , then

it is not possible that Pi sd(�∗
i )P

∗
i , and

it is not possible that P ∗
i sd(�i)Pi.

By symmetry, we show this for i = 1, 4, 5. Before checking the above two conditions, we in-
troduce two kinds of tables. For example, consider the case where i = 1 and her preference is
�1= (e, b, a, c, c) �=�∗

1. We denote P = φ(�1,�∗
−1) ≡ PS(�1,�∗

−1), and recall P ∗ ≡ φ(�∗
1,�∗

−1). To
examine the first condition in the above, we use the following table.

�∗
1 a c b d e

P ∗
1 F (�∗

1, a, P
∗
1 ) F (�∗

1, c, P
∗
1 ) F (�∗

1, b, P
∗
1 ) F (�∗

1, d, P
∗
1 ) F (�∗

1, e, P
∗
1 )

P1 F (�∗
1, a, P1) F (�∗

1, c, P1) F (�∗
1, b, P1) F (�∗

1, d, P1) F (�∗
1, e, P1)

Here the first row indicates the houses in order of preference �∗
1. To verify the first condition

(i.e., we cannot have P1sd(�∗
1)P

∗
1 , it suffices to have that, at some column, the number in the second

row is strictly greater than the one in the third row. Thus, we will list houses until the column with
this condition.

Similarly, to examine the second condition in the above, we use the following table.

�1 e b a c d

P1 F (�1, e, P1) F (�1, b, P1) F (�1, a, P1) F (�1, c, P1) F (�1, d, P1)

P ∗
1 F (�1, e, P ∗

1 ) F (�1, b, P ∗
1 ) F (�1, a, P ∗

1 ) F (�1, c, P ∗
1 ) F (�1, d, P ∗

1 )

Here the first row indicates the houses in order of preference �1. To verify the condition 2, it
suffices to have that, at some column, the number in the second row is strictly greater than the one
in the third row. Thus, we will list houses until the column with this condition.

Now we start checking each case.
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First, consider agent 1. Take any preference �1.

Case 1-1: �1= (a, c, d, b, e) or (a, c, b, d, e).
Then, P = PS(�∗) (Recall P = PS(�1,�∗

−1)) and
thus P1 =

1
720(240, 0, 192, 180, 108). Hence,

�∗
1 a c d

P ∗
1 220 430 615

P1 240 432 612

�1 a

P1 240
P ∗
1 220

Case 1-2: �1= (a, c, b, e, d) or (a, c, e, · · · ).
Then, P1 =

1
720(240, 0, 192, 0, 288). Hence,

�∗
1 a c d

P ∗
1 220 430 615

P1 240 432 432

�1 a

P1 240
P ∗
1 220

Case 1-3: �1= (a, b, c, ·, ·).
Then, P1 =

1
720(240, 80, 112, · · · ). Hence,

�∗
1 a c

P ∗
1 220 430

P1 240 352

�1 a

P1 240
P ∗
1 220

Case 1-4: �1= (a, b, d, ·, ·) or (a, b, e, ·, ·).
Then, P1 =

1
720(240, 80, 0, · · · ). Hence,

�∗
1 a c

P ∗
1 220 430

P1 240 240

�1 a

P1 240
P ∗
1 220

Case 1-5: �1= (a, d, · · · ) or (a, e, · · · ).
Then, P1 =

1
720(240, 0, 0, · · · ). Hence,

�∗
1 a c

P ∗
1 220 430

P1 240 240

�1 a

P1 240
P ∗
1 220

Case 1-6: �1= (b, · · · ).
Obviously, p1b = 1/3 = 240/720. Hence,

�1 b

P1 240
P ∗
1 0

�
× 1

720

�

Note that p1a is the largest if �1= (b, a, · · · ). Sup-
pose �1= (b, a, · · · ). Then, P1 = 1

720(60, 240, · · · ).
Hence, the other table is

�∗
1 a

P ∗
1 220

P1 60

Thus, for any preference �1, we have the desired
result.

Case 1-7: �1= (c, · · · ).
Then, P1 =

1
720(0, 0, 432, · · · ). Hence,

�∗
1 a

P ∗
1 220

P1 60

�1 c

P1 432
P ∗
1 210

Case 1-8: �1= (d, · · · ).
Then, P1 =

1
720(0, 0, 0, 585, 135). Hence,

�∗
1 a

P ∗
1 220

P1 0

�1 d

P1 585
P ∗
1 185

Case 1-9: �1= (e, · · · ).
Then, P1 =

1
720(0, 0, 0, 90, 630).

�∗
1 a

P ∗
1 220

P1 0

�1 e

P1 630
P ∗
1 105

Next, consider agent 4. Take any preference �4

( �=�∗
4). We denote P = φ(�4,�∗

−4) ≡ PS(�4,�∗
−4),

and recall P ∗ ≡ φ(�∗
4,�∗

−4).
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Case 4-1: �4= (b, c, d, a, e), (b, c, a, d, e), or
(b, a, c, d, e).
Then, P = PS(�∗). Thus,

�∗
4 b c

P ∗
4 360 435

P4 360 432

�4 b (a) c (a) d

P4 360 (360) 432 (432) 612
P ∗
4 360 (360) 435 (435) 600

Case 4-2: �4= (b, c, a, e, d), (b, c, e, · · · ), or
(b, a, c, e, d).
Then, P4 =

1
720(0, 360, 72, 0, 288). Hence,

�∗
4 b c

P ∗
4 360 435

P4 360 432

�4 b (a) c (a) e

P4 360 (360) 432 (432) 720
P ∗
4 360 (360) 435 (435) 555

Case 4-3: �4= (b, a, d, · · · ) or (b, d, · · · ).
Then, P4 =

1
720(0, 360, 0, 247.5, 112.5). Hence,

�∗
4 b c

P ∗
4 360 435

P4 360 360

�4 b (a) d

P4 360 (360) 607.5
P ∗
4 360 (360) 525

Case 4-4: �4= (b, a, e, · · · ) or (b, e, · · · ).
Then, P4 =

1
720(0, 360, 0, 0, 360). Hence,

�∗
4 b c

P ∗
4 360 435

P4 360 360

�4 b (a) e

P4 360 (360) 720
P ∗
4 360 (360) 480

Case 4-5: �4= (a, · · · ).
Obviously, p4a = 1/4 = 180/720. Thus,

�4 a

P4 180
P ∗
4 0

Note that p4b is the largest if �4= (a, b, · · · ). Sup-
pose �4= (a, b, · · · ). Then, P4 =

1
720(180, 270, 0, · · · ).

And the other table is

�∗
4 b

P ∗
4 360

P4 270

Thus, for any preference, we have the desired re-
sult.

Case 4-6: �4= (c, · · · ).
We can calculate as p4c = 1/2 = 360/720. Thus,

�4 c

P4 360
P ∗
4 75

Note that p4b is the largest if �4= (c, b, · · · ). Sup-
pose �4= (c, b, · · · ). Then, P4 =

1
720(0, 180, 360, · · · ).

And the other table is

�∗
4 b

P ∗
4 360

P4 180

Thus, for any preference, we have the desired re-
sult.

Case 4-7: �4= (d, · · · ).
Obviously, p4d ≥ 1/3 = 240/720. Then,

�4 d

P4 at least 240
P ∗
4 165
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Note that p4b is the largest if �4= (d, b, · · · ). Sup-
pose �4= (d, b, · · · ). Then, P4 =

1
720(0, 90, · · · ). And

the other table is

�∗
4 b

P ∗
4 360

P4 90

Thus, for any preference, we have the desired re-
sult.

Case 4-8: �4= (e, · · · ).
Then, P4 =

1
720(0, 0, 0, 0, 720).

�∗
4 b

P ∗
4 360

P4 0

�4 e

P4 720
P ∗
4 120

Finally, we consider agent 5. Take any preference
�5 ( �=�∗

5). We denote P = φ(�5,�∗
−5) ≡ PS(�5

,�∗
−5), and recall P ∗ ≡ φ(�∗

5,�∗
−5).

Case 5-1: �5= (b, a, c, d, e).
Then, P5 =

1
720(0, 360, 72, 144, 144). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b a c d

P5 360 360 432 576
P ∗
5 360 420 435 435

Case 5-2: �5= (b, a, d, · · · ).
Then, P5 =

1
720(0, 360, 0, 216, 144). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b a d

P5 360 360 576
P ∗
5 360 420 420

Case 5-3: �5= (b, a, e, · · · ).
Then, P5 =

1
720(0, 360, 0, 0, 360). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b a e

P5 360 360 720
P ∗
5 360 420 705

Case 5-4: �5= (b, c, · · · ).
Then, P5 =

1
720(0, 360, 72, · · · ). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b c

P5 360 432
P ∗
5 360 375

Case 5-5: �5= (b, d, · · · ).
P coincides with the one in Case 5-2, i.e.,
P5 =

1
720(0, 360, 0, 216, 144). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b d

P5 360 576
P ∗
5 360 360

Case 5-6: �5= (b, e, · · · ).
P coincides with the one in Case 5-3, i.e.,
P5 =

1
720(0, 360, 0, 0, 360). Hence,

�∗
5 b a

P ∗
5 360 420

P5 360 360

�5 b e

P5 360 720
P ∗
5 360 645

Case 5-7: �5= (a, · · · ).
Obviously, p5a = 1/4 = 180/720. Thus,

�5 a

P5 180
P ∗
5 60

Note that p5b is the largest if �5= (a, b, · · · ). Sup-
pose �5= (a, b, · · · ). Then, P5 =

1
720(180, 270, 0, · · · ).
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�∗
5 b

P ∗
5 360

P5 270

Thus, for any preference, we have the desired re-
sult.

Case 5-8: �5= (c, · · · ).
Obviously, p5c ≥ 1/3 = 240/720. Thus,

�5 c

P5 at least 240
P ∗
5 15

Note that p5b is the largest if �5= (c, b, · · · ). Sup-
pose �5= (c, b, · · · ). Then, P5 =

1
720(0, 180, 360, · · · ).

�∗
5 b

P ∗
5 360

P5 180

Thus, for any preference, we have the desired re-
sult.

Case 5-9: �5= (d, · · · ).
Obviously, p5d ≥ 1/3 = 240/720. Thus,

�5 d

P5 at least 240
P ∗
5 0

Note that p5b is the largest if �5= (d, b, · · · ).
Suppose �5= (d, b, · · · ). Then, P5 =
1

720(0, 90, 0, 540, 90).

�∗
5 b

P ∗
5 360

P5 90

Thus, for any preference, we have the desired re-
sult.

Case 5-10: �5= (e, · · · ).
Then, P5 =

1
720(0, 0, 0, 0, 720). Hence,

�∗
5 b

P ∗
5 360

P5 0

�5 e

P5 720
P ∗
5 285

We next show that mechanism φ is not upper invariant: Consider the preference of agent 1,
��

1= (a, c, d, b, e). Then, φ(��
1,�∗

−1) = PS(��
1,�∗

−1) = PS(�∗). In particular, φ1b(��
1,�∗

−1) = 0.
Thus, �∗

1= (a, c, d, e, b) is an upper invariant transformation of ��
i at e under φ(��

1,�∗
−1). However,

φje(�∗
1,�∗

−1) �= φje(�∗
1,�∗

−1) for all j = 1, 2, · · · , 5. Hence, φ is not upper invariant.
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