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Abstract

The causal notions embodied in the concept of Granger causality have been argued to
belong to a different category than those of Judea Pearl’s Causal Model, and so far their
relation has remained obscure. Here, we demonstrate that these concepts are in fact closely
linked by showing how each relates to straightforward notions of direct causality embodied
in settable systems, an extension and refinement of the Pearl Causal Model designed to
accommodate optimization, equilibrium, and learning. We then provide straightforward
practical methods to test for direct causality using tests for Granger causality.

Keywords: Causal Models, Conditional Exogeneity, Conditional Independence, Granger
Non-causality

1. Introduction

The causal notions embodied in the concept of Granger causality (“G−causality”) (e.g.,
Granger, 1969; Granger and Newbold, 1986) are probabilistic, relating to the ability of one
time series to predict another, conditional on a given information set. On the other hand,
the causal notions of the Pearl Causal Model (“PCM”) (e.g., Pearl, 2000) involve specific
notions of interventions and of functional rather than probabilistic dependence. The relation
between these causal concepts has so far remained obscure. For his part, Granger (1969)
acknowledged that G−causality was not “true” causality, whatever that might be, but that
it seemed likely to be an important part of the full story. On the other hand, Pearl (2000,
p.39) states that “econometric concepts such as ‘Granger causality’ (Granger 1969) and
‘strong exogeneity’ (Engle et al. 1983) will be classified as statistical rather than causal.” In
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practice, especially in economics, numerous studies have used G−causality either explicitly
or implicitly to draw structural or policy conclusions, but without any firm foundation.

Recently, White and Lu (2010a, “WL”) have provided conditions under which G−causa-
lity is equivalent to a form of direct causality arising naturally in dynamic structural systems,
defined in the context of settable systems. The settable systems framework, introduced by
White and Chalak (2009, “WC”), extends and refines the PCM to accommodate optimiza-
tion, equilibrium, and learning. In this paper, we explore the relations between direct
structural causality in the settable systems framework and notions of direct causality in
the PCM for both recursive and non-recursive systems. The close correspondence between
these concepts in the recursive systems relevant to G−causality then enables us to show
that there is in fact a close linkage between G−causality and PCM notions of direct causal-
ity. This enables us to provide straightforward practical methods to test for direct causality
using tests for Granger causality.

In a related paper, Eichler and Didelez (2009) also study the relation between G−causa-
lity and interventional notions of causality. They give conditions under which Granger
non-causality implies that an intervention has no effect. In particular, Eichler and Didelez
(2009) use graphical representations as in Eichler (2007) of given G−causality relations
satisfying the “global Granger causal Markov property” to provide graphical conditions for
the identification of effects of interventions in “stable” systems. Here, we pursue a different
route for studying the interrelations between G−causality and interventional notions of
causality. Specifically, we see that G−causality and certain settable systems notions of
direct causality based on functional dependence are equivalent under a conditional form of
exogeneity. Our conditions are alternative to “stability” and the “global Granger causal
Markov property,” although particular aspects of our conditions have a similar flavor.

The plan of the paper is as follows. In Section 2, we briefly review the PCM. In Section
3, we motivate settable systems by discussing certain limitations of the PCM using a series
of examples involving optimization, equilibrium, and learning. We then specify a formal
version of settable systems that readily accommodates the challenges to causal discourse
presented by the examples of Section 3. In Section 4, we define direct structural causality
for settable systems and relate this to corresponding notions in the PCM. The close corre-
spondence between these concepts in recursive systems establishes the first step in linking
G−causality and the PCM. In Section 5, we discuss how the results of WL complete the
chain by linking direct structural causality and G−causality. This also involves a conditional
form of exogeneity. Section 6 constructs convenient practical tests for structural causality
based on proposals of WL, using tests for G−causality and conditional exogeneity. Section
7 contains a summary and concluding remarks.

2. Pearl’s Causal Model

Pearl’s definition of a causal model (Pearl, 2000, def. 7.1.1, p. 203) provides a formal
statement of elements supporting causal reasoning. The PCM is a triple M := (u, v, f),
where u := {u1, ..., um} contains “background” variables determined outside the model,
v := {v1, ..., vn} contains “endogenous” variables determined within the model, and f :=
{f1, ..., fn} contains “structural” functions specifying how each endogenous variable is de-
termined by the other variables of the model, so that vi = fi(v(i), u), i = 1, ..., n. Here, v(i)
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is the vector containing every element of v but vi. The integers m and n are finite. The
elements of u and v are system “units.”

Finally, the PCM requires that for each u, f yields a unique fixed point. Thus, there
must be a unique collection g := {g1, ..., gn} such that for each u,

vi = gi(u) = fi(g(i)(u), u), i = 1, ..., n. (1)

The unique fixed point requirement is crucial to the PCM, as this is necessary for defining
the potential response function (Pearl, 2000, def. 7.1.4). This provides the foundation
for discourse about causal relations between endogenous variables; without the potential
response function, causal discourse is not possible in the PCM. A variant of the PCM
(Halpern, 2000) does not require a fixed point, but if any exist, there may be multiple
collections of functions g yielding a fixed point. We call this a Generalized Pearl Causal
Model (GPCM). As GPCMs also do not possess an analog of the potential response function
in the absence of a unique fixed point, causal discourse in the GPCM is similarly restricted.

In presenting the PCM, we have adapted Pearl’s notation somewhat to facilitate subse-
quent discussion, but all essential elements are present and complete.

3. Settable Systems

3.1 Why Settable Systems?

WC motivate the development of the settable system (SS) framework as an extension of
the PCM that accommodates optimization, equilibrium, and learning, which are central
features of the explanatory structures of interest in economics. But these features are of
interest more broadly, especially in machine learning, as optimization corresponds to any
intelligent or rational behavior, whether artificial or natural; equilibrium (e.g., Nash equi-
librium) or transitions toward equilibrium characterize stable interactions between multiple
interacting systems; and learning corresponds to adaptation and evolution within and be-
tween interacting systems. Given the prevalence of these features in natural and artificial
systems, it is clearly desirable to provide means for explicit and rigorous causal discourse
relating to systems with these features.

To see why an extension of the PCM is needed to handle optimization, equilibrium,
and learning, we consider a series of examples that highlight certain limiting features of
the PCM: (i) in the absence of a unique fixed point, causal discourse is undefined; (ii)
background variables play no causal role; (iii) the role of attributes is restricted; and (iv)
only a finite rather than a countable number of units is permitted. WC discuss further
relevant aspects of the PCM, but these suffice for present purposes.

Example 3.1 (Equilibria in Game Theory) Let two players i = 1, 2 have strategy
sets Si and utility functions ui, such that πi = ui(z1, z2) gives player i’s payoff when player
1 plays z1 ∈ S1 and player 2 plays z2 ∈ S2. Each player solves the optimization problem

max
zi∈Si

ui(z1, z2).

The solution to this problem, when it exists, is player i’s best response, denoted

yi = rei (z(i); a),
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where rei is player i’s best response function (the superscript “e” stands for “elementary,”
conforming to notation formally introduced below); z(i) denotes the strategy played by the
player other than i; and a := (S1, u1, S2, u2) denotes given attributes defining the game. For
simplicity here, we focus on “pure strategy” games; see Gibbons (1992) for an accessible
introduction to game theory.

Different configurations for a correspond to different games. For example, one of the
most widely known games is prisoner’s dilemma, where two suspects in a crime are separated
and offered a deal: if one confesses and the other does not, the confessor is released and
the other goes to jail. If both confess, both receive a mild punishment. If neither confesses,
both are released. The strategies are whether to confess or not. Each player’s utility is
determined by both players’ strategies and the punishment structure.

Another well known game is hide and seek. Here, player 1 wins by matching player
2’s strategy and player 2 wins by mismatching player 1’s strategy. A familiar example is
a penalty kick in soccer: the goalie wins by matching the direction (right or left) of the
kicker’s kick; the kicker wins by mismatching the direction of the goalie’s lunge. The same
structure applies to baseball (hitter vs. pitcher) or troop deployment in battle (aggressor
vs. defender).

A third famous game is battle of the sexes. In this game, Ralph and Alice are trying
to decide how to spend their weekly night out. Alice prefers the opera, and Ralph prefers
boxing; but both would rather be together than apart.

Now consider whether the PCM permits causal discourse in these games, e.g., about the
effect of one player’s action on that of the other. We begin by mapping the elements of the
game to the elements of the PCM. First, we see that a corresponds to PCM background
variables u. Next, we see that z := (z1, z2) corresponds to PCM endogenous variables v,
provided that (for now) we drop the distinction between yi and zi. Finally, we see that the
best response functions rei correspond to the PCM structural functions fi.

To determine whether the PCM permits causal discourse in these games, we can check
whether there is a unique fixed point for the best responses. In prisoner’s dilemma, there is
indeed a unique fixed point (both confess), provided the punishments are suitably chosen.
The PCM therefore applies to this game to support causal discourse. But there is no fixed
point for hide and seek, so the PCM cannot support causal discourse there. On the other
hand, there are two fixed points for battle of the sexes: both Ralph and Alice choose opera
or both choose boxing. The PCM does not support causal discourse there either. Nor does
the GPCM apply to the latter games, because even though it does not require a unique
fixed point, the potential response functions required for causal discourse are not defined.

The importance of game theory generally in describing the outcomes of interactions
of goal-seeking agents and the fact that the unique fixed point requirement prohibits the
PCM from supporting causal discourse in important cases strongly motivates formulating
a causal framework that drops this requirement. As we discuss below, the SS framework
does not require a unique fixed point, and it applies readily to games generally. Moreover,
recognizing and enforcing the distinction between yi (i’s best response strategy) and zi (an
arbitrary setting of i’s strategy) turns out to be an important component to eliminating
this requirement.

Another noteworthy aspect of this example is that a is a fixed list of elements that
define the game. Although elements of a may differ across players, they do not vary for a
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given player. This distinction should be kept in mind when referring to the elements of a
as background “variables.”

Example 3.2 (Optimization in Consumer Demand) The neoclassical theory of
consumer demand posits that consumers determine their optimal goods consumption by
maximizing utility subject to a budget constraint (see, e.g., Varian, 2009). Suppose for
simplicity that there are just two goods, say beer and pizza. Then a typical consumer
solves the problem

max
z1,z2

U(z1, z2) s.t. m = z1 + pz2,

where z1 and z2 represent quantities consumed of goods 1 (beer) and 2 (pizza) respectively
and U is the utility function that embodies the consumer’s preferences for the two goods. For
simplicity, let the price of a beer be $1, and let p represent the price of pizza; m represents
funds available for expenditure, “income” for short1. The budget constraint m = z1 + pz2

ensures that total expenditure on beer and pizza does not exceed income (no borrowing)
and also that total expenditure on beer and pizza is not less than m. (As long as utility is
increasing in consumption of the goods, it is never optimal to expend less than the funds
available.)

Solving the consumer’s demand problem leads to the optimal consumer demands for
beer and pizza, y1 and y2. It is easy to show that these can be represented as

y1 = ra1(p,m; a) and y2 = ra2(p,m; a),

where ra1 and ra2 are known as the consumer’s market demand functions for beer and pizza.
The “a” superscript stands for “agent,” corresponding to notation formally introduced
below. The attributes a include the consumer’s utility function U (preferences) and the
admissible values for z1, z2, p, and m, e.g., R+ := [0,∞).

Now consider how this problem maps to the PCM. First, we see that a and (p,m)
correspond to the background variables u. Next, we see that y := (y1, y2) corresponds
to PCM endogenous variables v. Finally, we see that the consumer demand functions rai
correspond to the PCM structural functions fi. Also, because the demand for beer, y1, does
not enter the demand function for pizza, ra2 , and vice versa, there is a unique fixed point
for this system of equations. Thus, the PCM supports causal discourse in this system.

Nevertheless, this system is one where, in the PCM, the causal discourse natural to
economists is unavailable. Specifically, economists find it natural to refer to “price effects”
and “income effects” on demand, implicitly or explicitly viewing price p and income m as
causal drivers of demand. For example, the pizza demand price effect is (∂/∂p)ra2(p,m; a).
This represents how much optimal pizza consumption (demand) will change as a result of
a small (marginal) increase in the price of pizza. Similarly, the pizza demand income effect
is (∂/∂m)ra2(p,m; a), representing how much optimal pizza consumption will change as a
result of a small increase in income. But in the PCM, causal discourse is reserved only for
endogenous variables y1 and y2. The fact that background variables p and m do not have
causal status prohibits speaking about their effects.

1. Since a beer costs a dollar, it is the “numeraire,” implying that income is measured in units of beer. This
is a convenient convention ensuring that we only need to keep track of the price ratio between pizza and
beer, p, rather than their two separate prices.

5



White, Chalak and Lu

Observe that the “endogenous” status of y and “exogenous” status of p and m is de-
termined in SS by utility maximization, the “governing principle” here. In contrast, there
is no formal mechanism in the PCM that permits making these distinctions. Although
causal discourse in the PCM can be rescued for such systems by “endogenizing” p and m,
that is, by positing additional structure that explains the genesis of p and m in terms of
further background variables, this is unduly cumbersome. It is much more natural simply
to permit p and m to have causal status from the outset, so that price and income effects
are immediately meaningful, without having to specify their determining processes. The
SS framework embodies this direct approach. Those familiar with theories of price and
income determination will appreciate the considerable complications avoided in this way.
The same simplifications occur with respect to the primitive variables appearing in any
responses determined by optimizing behavior.

Also noteworthy here is the important distinction between a, which represents fixed
attributes of the system, and p and m, which are true variables that can each take a range
of different possible values. As WC (p.1774) note, restricting the role of attributes by
“lumping together” attributes and structurally exogenous variables as background objects
without causal status creates difficulties for causal discourse in the PCM:

[this] misses the opportunity to make an important distinction between invari-
ant aspects of the system units on the one hand and counterfactual variation
admissible for the system unit values on the other. Among other things, assign-
ing attributes to u interferes with assigning natural causal roles to structurally
exogenous variables.

By distinguishing between attributes and structurally exogenous variables, settable systems
permit causal status for variables determined outside a given system, such as when price
and income drive consumer demand.

Example 3.3 (Learning in Structural Vector Autoregressions) Structural vector
autoregressions (VARs) are widely used to analyze time-series data. For example, consider
the structural VAR

y1,t = a11y1,t−1 + a12y2,t−1 + u1,t

y2,t = a21y1,t−1 + a22y2,t−1 + u2,t, t = 1, 2, ...,

where y1,0 and y2,0 are given scalars, a := (a11, a12, a21, a22)′ is a given real “coefficient”
vector, and {ut := (u1,t, u2,t) : t = 1, 2, ...} is a given sequence. This system describes the
evolution of {yt := (y1,t, y2,t) : t = 1, 2, ...} through time.

Now consider how this maps to the PCM. We see that y0 := (y1,0, y2,0), {ut}, and a
correspond to the PCM background variables u; that the sequence {yt} corresponds to the
endogenous variables v; and that the PCM structural functions fi correspond to

r1,t(yt−1, ut; a) = a11y1,t−1 + a12y2,t−1 + u1,t

r2,t(yt−1, ut; a) = a21y1,t−1 + a22y2,t−1 + u2,t, t = 1, 2, ...,

where yt−1 := (y0, ..., yt−1) and ut := (u1, ..., ut) represent finite “histories” of the indicated
variables. We also see that this system is recursive, and therefore has a unique fixed point.
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The challenge to the PCM here is that it permits only a finite rather than a countable
number of units: both the number of background variables (m) and endogenous variables
(n) must be finite in the PCM, whereas the structural VAR requires a countable infinity
of background and endogenous variables. In contrast, settable systems permit (but do not
require) a countable infinity of units, readily accommodating structural VARs.

In line with our previous discussion, settable systems distinguish between system at-
tributes a (a fixed vector) and structurally exogenous causal variables y0 and {ut}. The
difference in the roles of y0 and {ut} on the one hand and a on the other are particularly
clear in this example. In the PCM, these are lumped together as background variables
devoid of causal status. Since a is fixed, its lack of causal status is appropriate; indeed, a
represents effects here2, not causes. But the lack of causal status is problematic for the vari-
ables y0 and {ut}; for example, this prohibits discussing the effects of structural “shocks”
ut.

Observe that the structural VAR represents u1,t as a causal driver of y1,t, as is standard.
Nevertheless, settable systems do not admit “instantaneous” causation, so even though u1,t

has the same time index as y1,t, i.e. t, we adopt the convention that u1,t is realized prior
to y1,t. That is, there must be some positive time interval δ > 0, no matter how small,
separating these realizations. For example, δ can represent the amount of time it takes to
compute y1,t once all its determinants are in place. Strictly speaking, then, we could write
u1,t−δ in place of u1,t, but for notational convenience, we leave this implicit. We refer to
this as “contemporaneous” causation to distinguish it from instantaneous causation.

A common focus of interest when applying structural VARs is to learn the coefficient
vector a. In applications, it is typically assumed that the realizations {yt} are observed,
whereas {ut} is unobserved. The least squares estimator for a sample of size T , say âT ,
is commonly used to learn (estimate) a in such cases. This estimator is a straightforward
function of yT , say âT = ra,T (yT ). If {ut} is generated as a realization of a sequence of
mean zero finite variance independent identically distributed (IID) random variables, then
âT generally converges to a with probability one as T → ∞, implying that a can be fully
learned in the limit. Viewing âT as causally determined by yT , we see that we require a
countable number of units to treat this learning problem.

As these examples demonstrate, the PCM exhibits a number of features that limit its
applicability to systems involving optimization, equilibrium, and learning. These limitations
motivate a variety of features of settable systems, extending the PCM in ways that permit
straightforward treatment of such systems. We now turn to a more complete description of
the SS framework.

3.2 Formal Settable Systems

We now provide a formal description of settable systems that readily accommodates causal
discourse in the foregoing examples and that also suffices to establish the desired linkage
between Granger causality and causal notions in the PCM. The material that follows is
adapted from Chalak and White (2010). For additional details, see WC.

2. For example, (∂/∂y1,t−1)r1,t(y
t−1, et; a) = a11 can be interpreted as the marginal effect of y1,t−1 on y1,t.
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A stochastic settable system is a mathematical framework in which a countable number
of units i, i = 1, ..., n, interact under uncertainty. Here, n ∈ N̄+ := N+ ∪ {∞}, where
N+ denotes the positive integers. When n = ∞, we interpret i = 1, ..., n as i = 1, 2, ....
Units have attributes ai ∈ A; these are fixed for each unit, but may vary across units.
Each unit also has associated random variables, defined on a measurable space (Ω,F). It
is convenient to define a principal space Ω0 and let Ω := ×ni=0Ωi, with each Ωi a copy of
Ω0. Often, Ω0 = R is convenient. A probability measure Pa on (Ω,F) assigns probabilities
to events involving random variables. As the notation suggests, Pa can depend on the
attribute vector a := (a1, ..., an) ∈ A := ×ni=1A.

The random variables associated with unit i define a settable variable Xi for that unit.
A settable variable Xi has a dual aspect. It can be set to a random variable denoted by Zi
(the setting), where Zi : Ωi → Si. Si denotes the admissible setting values for Zi, a multi-
element subset of R. Alternatively, the settable variable can be free to respond to settings
of other settable variables. In the latter case, it is denoted by the response Yi : Ω→ Si. The
response Yi of a settable variable Xi to the settings of other settable variables is determined
by a response function, ri. For example, ri can be determined by optimization, determining
the response for unit i that is best in some sense, given the settings of other settable
variables. The dual role of a settable variable Xi : {0, 1}×Ω→ Si, distinguishing responses
Xi(0, ω) := Yi(ω) and settings Xi(1, ω) := Zi(ωi), ω ∈ Ω, permits formalizing the directional
nature of causal relations, whereby settings of some variables (causes) determine responses
of others.

The principal unit i = 0 also plays a key role. We let the principal setting Z0 and
principal response Y0 of the principal settable variable X0 be such that Z0 : Ω0 → Ω0 is
the identity map, Z0(ω0) := ω0, and we define Y0(ω) := Z0(ω0). The setting Z0 of the
principal settable variable may directly influence all other responses in the system, whereas
its response Y0 is unaffected by other settings. Thus, X0 supports introducing an aspect of
“pure randomness” to responses of settable variables.

3.2.1 Elementary Settable Systems

In elementary settable systems, Yi is determined (actually or potentially) by the settings
of all other system variables, denoted Z(i). Thus, in elementary settable systems, Yi =
ri(Z(i); a). The settings Z(i) take values in S(i) ⊆ Ω0 ×j 6=i Sj . We have that S(i) is a strict
subset of Ω0 ×j 6=i Sj if there are joint restrictions on the admissible settings values, for
example, when certain elements of S(i) represent probabilities that sum to one.

We now give a formal definition of elementary settable systems.

Definition 3.1 (Elementary Settable System) Let A be a set and let attributes
a ∈ A be given. Let n ∈ N̄+ be given, and let (Ω,F , Pa) be a complete probability space
such that Ω := ×ni=0Ωi, with each Ωi a copy of the principal space Ω0, containing at least
two elements.

Let the principal setting Z0 : Ω0 → Ω0 be the identity mapping. For i = 1, 2, ..., n,
let Si be a multi-element Borel-measurable subset of R and let settings Zi : Ωi → Si be
surjective measurable functions. Let Z(i) be the vector including every setting except Zi and
taking values in S(i) ⊆ Ω0 ×j 6=i Sj , S(i) 6= ∅. Let response functions ri( · ; a) : S(i) → Si
be measurable functions and define responses Yi(ω) := ri(Z(i)(ω); a). Define settable

8



Linking G-Causality and the PCM

variables Xi : {0, 1} × Ω→ Si as

Xi(0, ω) := Yi(ω) and Xi(1, ω) := Zi(ωi), ω ∈ Ω.

Define Y0 and X0 by Y0(ω) := X0(0, ω) := X0(1, ω) := Z0(ω0), ω ∈ Ω.
Put X := {X0,X1, ...}. The triple S := {(A,a), (Ω,F , Pa),X} is an elementary set-

table system.

An elementary settable system thus comprises an attribute component, (A,a), a stochas-
tic component, (Ω,F , Pa), and a structural or causal component X , consisting of settable
variables whose properties are crucially determined by response functions r := {ri}. It is
formally correct to write Xa instead of X ; we write X for simplicity.

Note the absence of any fixed point requirement, the distinct roles played by fixed
attributes a and setting variables Zi (including principal settings Z0), and the countable
number of units allowed.

Example 3.1 is covered by this definition. There, n = 2. Attributes a := (S1, u1, S2, u2)
belong to a suitably chosen set A. Here, Si = Si. We take zi = Zi(ωi), ωi ∈ Ωi and
yi = Yi(ω) = rei (Z(i)(ω); a) = rei (z(i); a), i = 1, 2. The “e” superscript in rei emphasizes
that the response function is for an elementary settable system. In the example games,
the responses yi only depend on settings (z1, z2). In more elaborate games, dependence on
z0 = ω0 can accommodate random responses.

3.2.2 Partitioned Settable Systems

In elementary settable systems, each single response Yi can freely respond to settings of all
other system variables. We now consider systems where several settable variables jointly
respond to settings of the remaining settable variables, as when responses represent the
solution to a joint optimization problem. For this, partitioned settable systems group jointly
responding variables into blocks. In elementary settable systems, every unit i forms a block
by itself. We now define general partitioned settable systems.

Definition 3.2 (Partitioned Settable System) Let (A,a), (Ω,F , Pa), X0, n, and Si,
i = 1, ..., n, be as in Definition 3.1. Let Π = {Πb} be a partition of {1, ..., n}, with cardinality
B ∈ N̄+ (B := #Π).

For i = 1, 2, ..., n, let ZΠ
i be settings and let ZΠ

(b) be the vector containing Z0 and
ZΠ
i , i /∈ Πb, and taking values in SΠ

(b) ⊆ Ω0 ×i/∈Πb
Si, SΠ

(b) 6= ∅, b = 1, ..., B. For b = 1, ..., B
and i ∈ Πb, suppose there exist measurable functions rΠ

i ( · ; a) : SΠ
(b) → Si, specific to Π

such that responses Y Π
i (ω) are jointly determined as

Y Π
i := rΠ

i (ZΠ
(b); a).

Define the settable variables XΠ
i : {0, 1} × Ω→ Si as

XΠ
i (0, ω) := Y Π

i (ω) and XΠ
i (1, ω) := ZΠ

i (ωi) ω ∈ Ω.

Put XΠ := {X0,XΠ
1 ,XΠ

2 ...}. The triple S := {(A,a), (Ω,F), (Π,XΠ)} is a partitioned
settable system.
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The settings ZΠ
(b) may be partition-specific; this is especially relevant when the admissible

set SΠ
(b) imposes restrictions on the admissible values of ZΠ

(b). Crucially, response functions
and responses are partition-specific. In Definition 3.2, the joint response function rΠ

[b] :=
(rΠ
i , i ∈ Πb) specifies how the settings ZΠ

(b) outside of block Πb determine the joint response
Y Π

[b] := (Y Π
i , i ∈ Πb), i.e., Y Π

[b] = rΠ
[b](Z

Π
(b); a). For convenience below, we let Π0 = {0}

represent the block corresponding to X0.
Example 3.2 makes use of partitioning. Here, we have n = 4 settable variables with

B = 2 blocks. Let settable variables 1 and 2 correspond to beer and pizza consumption,
respectively, and let settable variables 3 and 4 correspond to price and income. The agent
partition groups together all variables under the control of a given agent. Let the consumer
be agent 2, so Π2 = {1, 2}. Let the rest of the economy, determining price and income, be
agent 1, so Π1 = {3, 4}. The agent partition is Πa = {Π1,Π2}. Then for block 2,

y1 = Y a
1 (ω) = ra1(Z0(ω0), Za3 (ω3), Za4 (ω4); a) = ra1(p,m; a)

y2 = Y a
2 (ω) = ra2(Z0(ω0), Za3 (ω3), Za4 (ω4); a) = ra2(p,m; a)

represents the joint demand for beer and pizza (belonging to block 2) as a function of
settings of price and income (belonging to block 1). This joint demand is unique under mild
conditions. Observe that z0 = Z0(ω0) formally appears as an allowed argument of rai after
the second equality, but when the consumer’s optimization problem has a unique solution,
there is no need for a random component to demand. We thus suppress this argument in
writing rai (p,m; a), i = 1, 2. Nevertheless, when the solution to the consumer’s optimization
problem is not unique, a random component can act to ensure a unique consumer demand.
We do not pursue this here; WC provide related discussion.

We write the block 1 responses for the price and income settable variables as

y3 = Y a
3 (ω) = ra3(Z0(ω0), Za1 (ω1), Za2 (ω2); a) = ra3(z0; a)

y4 = Y a
4 (ω) = ra4(Z0(ω0), Za1 (ω1), Za2 (ω2); a) = ra4(z0; a).

In this example, price and income are not determined by the individual consumer’s demands,
so although Za1 (ω1) and Za2 (ω2) formally appear as allowed arguments of rai after the second
equality, we suppress these in writing rai (z0; a), i = 3, 4. Here, price and income responses
(belonging to block 1) are determined solely by block 0 settings z0 = Z0(ω0) = ω0. This
permits price and income responses to be randomly distributed, under the control of Pa.

It is especially instructive to consider the elementary partition for this example, Πe =
{{1}, {2}, {3}, {4}}, so that Πi = {i}, i = 1, ..., 4. The elementary partition specifies how
each system variable freely responds to settings of all other system variables. In particular,
it is easy to verify that when consumption of pizza is set to a given level, the consumer’s
optimal response is to spend whatever income is left on beer, and vice versa. Thus,

y1 = re1(Z0(ω0), Ze2(ω2), Ze3(ω3), Ze4(ω4); a) = re1(z2, p,m; a) = m− pz2

y2 = re2(Z0(ω0), Ze1(ω2), Ze3(ω3), Ze4(ω4); a) = re2(z1, p,m; a) = (m− z1)/p.

Replacing (y1, y2) with (z1, z2), we see that this system does not have a unique fixed point,
as any (z1, z2) such that m = z1 + pz2 satisfies both

z1 = m− pz2 and z2 = (m− z1)/p.

10
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Causal discourse in the PCM is ruled out by the lack of a fixed point. Nevertheless, the
settable systems framework supports the natural economic causal discourse here about
effects of prices, income, and, e.g., pizza consumption on beer demand. Further, in settable
systems, the governing principle of optimization (embedded in a) ensures that the response
functions for both the agent partition and the elementary partition are mutually consistent.

3.2.3 Recursive and Canonical Settable Systems

The link between Granger causality and the causal notions of the PCM emerges from a
particular class of recursive partitioned settable systems that we call canonical settable
systems, where the system evolves naturally without intervention. This corresponds to
what are also called “idle regimes” in the literature (Pearl, 2000; Eichler and Didelez, 2009;
Dawid, 2010).

To define recursive settable systems, for b ≥ 0 define Π[0:b] := Π0 ∪ ... ∪Πb−1 ∪Πb.

Definition 3.3 (Recursive Partitioned Settable System) Let S be a partitioned
settable system. For b = 0, 1, ..., B, let ZΠ

[0:b] denote the vector containing the settings ZΠ
i

for i ∈ Π[0:b] and taking values in S[0:b] ⊆ Ω0 ×i∈Π[1:b]
Si, S[0:b] 6= ∅. For b = 1, ..., B and

i ∈ Πb, suppose that rΠ := {rΠ
i } is such that the responses Y Π

i = XΠ
i (1, ·) are determined

as
Y Π
i := rΠ

i (ZΠ
[0:b−1]; a).

Then we say that Π is a recursive partition, that rΠ is recursive, and that S :=
{(A,a), (Ω,F), (Π,XΠ)} is a recursive partitioned settable system or simply that S
is recursive.

Example 3.2 is a recursive settable system, as the responses of block 1 depend on the
settings of block 0, and the responses of block 2 depend on the settings of block 1.

Canonical settable systems are recursive settable systems in which the settings for a
given block equal the responses for that block, i.e.,

ZΠ
[b] = Y Π

[b] := rΠ
[b](Z

Π
[0:b−1]; a), b = 1, ..., B.

Without loss of generality, we can represent canonical responses and settings solely as a
function of ω0, so that

ZΠ
[b](ω0) = Y Π

[b](ω0) := rΠ
[b](Z

Π
[0:b−1](ω0); a), b = 1, ..., B.

The canonical representation drops the distinction between settings and responses; we write

Y Π
[b] = rΠ

[b](Y
Π

[0:b−1]; a), b = 1, ..., B.

It is easy to see that the structural VAR of Example 3.3 corresponds to the canonical
representation of a canonical settable system. The canonical responses y0 and {ut} belong
to the first block, and canonical responses yt = (y1,t, y2,t) belong to block t+ 1, t = 1, 2, ...
Example 3.3 implements the time partition, where joint responses for a given time period
depend on previous settings.

11
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4. Causality in Settable Systems and in the PCM

In this section we examine the relations between concepts of direct causality in settable
systems and in the PCM, specifically the PCM notions of direct cause and controlled direct
effect (Pearl, 2000, p.222; Pearl, 2001, definition 1). The close correspondence between
these notions for the recursive systems relevant to Granger causality enables us to take the
first step in linking Granger causality and causal notions in the PCM. Section 5 completes
the chain by linking direct structural causality and Granger causality.

4.1 Direct Structural Causality in Settable Systems

Direct structural causality is defined for both recursive and non-recursive partitioned set-
table systems. For notational simplicity in what follows, we may drop the explicit partition
superscript Π when the specific partition is clearly understood. Thus, we may write Y,
Z, and X in place of the more explicit Y Π, ZΠ, and XΠ when there is no possibility of
confusion.

Let Xj belong to block b (j ∈ Πb). Heuristically, we say that a settable variable Xi,
outside of block b, directly causes Xj in S when the response for Xj differs for different
settings of Xi, while holding all other variables outside of block b to the same setting
values. There are two main ingredients to this notion. The first ingredient is an admissible
intervention. To define this, let z∗(b);i denote the vector otherwise identical to z(b), but
replacing elements zi with z∗i . An admissible intervention z(b) → z∗(b);i := (z(b), z

∗
(b);i) is a

pair of distinct elements of S(b). The second ingredient is the behavior of the response under
this intervention.

We formalize this notion of direct causality as follows.

Definition 4.1 (Direct Causality) Let S be a partitioned settable system. For given
positive integer b, let j ∈ Πb. (i) For given i /∈ Πb, Xi directly causes Xj in S if there
exists an admissible intervention z(b) → z∗(b);i such that

rj(z∗(b);i; a)− rj(z(b); a) 6= 0,

and we write Xi
D⇒S Xj . Otherwise, we say Xi does not directly cause Xj in S and write

Xi
D
6⇒S Xj. (ii) For i, j ∈ Πb,Xi

D
6⇒S Xj .

We emphasize that although we follow the literature in referring to “interventions,”
with their mechanistic or manipulative connotations, the formal concept only involves the
properties of a response function on its domain.

By definition, variables within the same block do not directly cause each other. In

particular Xi
D
6⇒S Xi. Also, Definition 4.1 permits mutual causality, so that Xi

D⇒S Xj and

Xj
D⇒S Xi without contradiction for i and j in different blocks. Nevertheless, in recursive

systems, mutual causality is ruled out: if Xi
D⇒S Xj then Xj

D
6⇒S Xi.

We call the response value difference in Definition 4.1 the direct effect of Xi on Xj in S
of the specified intervention. Chalak and White (2010) also study various notions of indirect
and total causality.

12
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These notions of direct cause and direct effect are well defined regardless of whether
or not the system possesses a unique fixed point. Further, all settable variables, including
X0, can act as causes and have effects. On the other hand, attributes a, being fixed, do
not play a causal role. These definitions apply regardless of whether there is a finite or
countable number of units. It is readily verified that this definition rigorously supports
causal discourse in each of the examples of Section 3.

As we discuss next, in the recursive systems relevant for G−causality, these concepts
correspond closely to notions of direct cause and “controlled” direct effect in Pearl (2000,
2001). To distinguish the settable system direct causality concept from Pearl’s notion and
later from Granger causality, we follow WL and refer to direct causality in settable systems
as direct structural causality.

4.2 Direct Causes and Effects in the PCM

Pearl (2000, p.222), drawing on Galles and Pearl (1997), gives a succinct statement of the
notion of direct cause, coherent with the PCM as specified in Section 2:

X is a direct cause of Y if there exist two values x and x′ of X and a value u
of U such that Yxr(u) 6= Yx′r(u), where r is some realization of V \{X,Y }.

To make this statement fully meaningful requires applying Pearl’s (2000) definitions 7.1.2
(Submodel) and 7.1.4 (Potential Response) to arrive at the potential response, Yxr(u). For
brevity, we do not reproduce Pearl’s definitions here. Instead, it suffices to map Yxr(u) and
its elements to their settable system counterparts. Specifically, u corresponds to (a, z0); x
corresponds to zi; r corresponds to the elements of z(b) other than z0 and zi, say z(b)(i,0);
and, provided it exists, Yxr(u) corresponds to rj(z(b); a).

The caveat about the existence of Yxr(u) is significant, as Yxr(u) is not defined in the
absence of a unique fixed point for the system. Further, even with a unique fixed point,
the potential response Yxr(u) must also uniquely solve a set of equations denoted Fx (see
Pearl, 2000, eq.(7.1)) for a submodel, and there is no general guarantee of such a solution.
Fortunately, however, this caveat matters only for non-recursive PCMs. In the recursive
case relevant for G−causality, the potential response is generally well defined.

Making a final identification between x′ and z∗i , and given the existence of potential
responses Yx′r(u) and Yxr(u), we see that Yx′r(u) 6= Yxr(u) corresponds to the settable
systems requirement rj(z∗(b);i; a)− rj(z(b); a) 6= 0.

Pearl (2001, definition 1) gives a formal statement of the notion stated above, saying
that if for given u and some r, x, and x′ we have Yxr(u) 6= Yx′r(u) then X has a controlled
direct effect on Y in model M and situation U = u. In definition 2, Pearl (2001) labels
Yx′r(u) − Yxr(u) the controlled direct effect, corresponding to the direct structural effect
rj(z∗(b);i; a)− rj(z(b); a) defined for settable systems.

Thus, although there are important differences, especially in non-recursive systems, the
settable systems and PCM notions of direct causality and direct effects closely correspond
in recursive systems. These differences are sufficiently modest that the results of WL linking
direct structural causality to Granger causality, discussed next, also serve to closely link the
PCM notion of direct cause to that of Granger causality.
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5. G−Causality and Direct Structural Causality

In this section we examine the relation between direct structural causality and Granger
causality, drawing on results of WL. See WL for additional discussion and proofs of all
formal results given here and in Section 6.

5.1 Granger Causality

Granger (1969) defined G−causality in terms of conditional expectations. Granger and
Newbold (1986) gave a definition using conditional distributions. We work with the latter,
as this is what relates generally to structural causality. In what follows, we adapt Granger
and Newbold’s notation, but otherwise preserve the conceptual content.

For any sequence of random vectors {Yt, t = 0, 1, ...}, let Y t := (Y0, ..., Yt) denote its
“t−history,” and let σ(Y t) denote the sigma-field (“information set”) generated by Y t. Let
{Qt, St, Yt} be a sequence of random vectors. Granger and Newbold (1986) say that Qt−1

does not G-cause Yt+k with respect to σ(Qt−1, St−1, Y t−1) if for all t = 0, 1, ...,

Ft+k( · | Qt−1, St−1, Y t−1) = Ft+k( · | St−1, Y t−1), k = 0, 1, ..., (2)

where Ft+k( · | Qt−1, St−1, Y t−1) denotes the conditional distribution function of Yt+k given
Qt−1, St−1, Y t−1, and Ft+k( · | St−1, Y t−1) denotes that of Yt+k given St−1, Y t−1. Here, we
focus only on the k = 0 case, as this is what relates generally to structural causality.

As Florens and Mouchart (1982) and Florens and Fougère (1996) note, G non-causality
is a form of conditional independence. Following Dawid (1979), we write X ⊥ Y | Z when
X and Y are independent given Z. Translating (2) gives the following version of the classical
definition of Granger causality:

Definition 5.1 (Granger Causality) Let {Qt, St, Yt} be a sequence of random vectors.
Suppose that

Yt ⊥ Qt−1 | Y t−1, St−1 t = 1, 2, ... . (3)

Then Q does not G−cause Y with respect to S. Otherwise, Q G−causes Y with
respect to S.

As it stands, this definition has no necessary structural content, as Qt, St, and Yt can be
any random variables whatsoever. This definition relates solely to the ability of Qt−1 to
help in predicting Yt given Y t−1 and St−1.

In practice, researchers do not test classical G−causality, as this involves data histories
of arbitrary length. Instead, researchers test a version of G−causality involving only a
finite number of lags of Yt, Qt, and St. This does not test classical G−causality, but rather
a related property, finite-order G−causality, that is neither necessary nor sufficient for
classical G−causality.

Because of its predominant practical relevance, we focus here on finite-order rather than
classical G−causality. (See WL for discussion of classical G−causality.) To define the finite-
order concept, we define the finite histories Y t−1 := (Yt−`, ..., Yt−1) and Qt := (Qt−k, ..., Qt).

Definition 5.2 (Finite-Order Granger Causality) Let {Qt, St, Yt} be a sequence of
random variables, and let k ≥ 0 and ` ≥ 1 be given finite integers. Suppose that

Yt ⊥ Qt | Y t−1, St, t = 1, 2, ... .
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Then we say Q does not finite-order G−cause Y with respect to S. Otherwise, we
say Q finite-order G−causes Y with respect to S.

We call max(k, `− 1) the “order” of the finite-order G non-causality.
Observe that Qt replaces Qt−1 in the classical definition, that Y t−1 replaces Y t−1, and

that St replaces St−1. Thus, in addition to dropping all but a finite number of lags in Qt−1

and Y t−1, this version includes Qt. As WL discuss, however, the appearance of Qt need not
involve instantaneous causation. It suffices that realizations of Qt precede those of Yt, as in
the case of contemporaneous causation discussed above. The replacement of St−1 with St
entails first viewing St as representing a finite history, and second the recognition that since
St plays purely a conditioning role, there need be no restriction whatever on its timing. We
thus call St “covariates.” As WL discuss, the covariates can even include leads relative to
time t. When covariate leads appear, we call this the “retrospective” case.

In what follows, when we refer to G−causality, it will be understood that we are referring
to finite-order G−causality, as just defined. We will always refer to the concept of Definition
5.1 as classical G−causality to avoid confusion.

5.2 A Dynamic Structural System

We now specify a canonical settable system that will enable us to examine the relation
between G−causality and direct structural causality. As described above, in such systems
“predecessors” structurally determine “successors,” but not vice versa. In particular, future
variables cannot precede present or past variables, enforcing the causal direction of time.
We write Y ⇐ X to denote that Y succeeds X (X precedes Y ). When Y and X have iden-
tical time indexes, Y ⇐ X rules out instantaneous causation but allows contemporaneous
causation.

We now specify a version of the causal data generating structures analyzed by WL and
White and Kennedy (2009). We let N denote the integers {0, 1, ...} and define N̄ := N∪{∞}.
For given `,m,∈ N, ` ≥ 1, we let Y t−1 := (Yt−`, ..., Yt−1) as above; we also define Zt :=
(Zt−m, ..., Zt). For simplicity, we keep attributes implicit in what follows.

Assumption A.1 Let {Ut,Wt, Yt, Zt; t = 0, 1, ...} be a stochastic process on (Ω,F , P ),
a complete probability space, with Ut,Wt, Yt, and Zt taking values in Rku ,Rkw ,Rky , and
Rkz respectively, where ku ∈ N̄ and kw, ky, kz ∈ N, with ky > 0. Further, suppose that
Yt ⇐ (Y t−1, U t,W t, Zt), where, for an unknown measurable ky × 1 function qt, and for
given `,m,∈ N, ` ≥ 1, {Yt} is structurally generated as

Yt = qt(Y t−1,Zt, Ut), t = 1, 2, ..., (4)

such that, with Yt := (Y ′1,t, Y
′

2,t)
′ and Ut := (U ′1,t, U

′
2,t)
′,

Y1,t = q1,t(Y t−1,Zt, U1,t) Y2,t = q2,t(Y t−1,Zt, U2,t).

Such structures are well suited to representing the structural evolution of time-series
data in economic, biological, or other systems. Because Yt is a vector, this covers the case
of panel data, where one has a cross-section of time-series observations, as in fMRI or EEG
data sets. For practical relevance, we explicitly impose the Markov assumption that Yt is
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determined by only a finite number of its own lags and those of Zt and Ut. WL discuss the
general case.

Throughout, we suppose that realizations of Wt, Yt, and Zt are observed, whereas re-
alizations of Ut are not. Because Ut,Wt, or Zt may have dimension zero, their presence is
optional. Usually, however, some or all will be present. Since there may be a countable
infinity of unobservables, there is no loss of generality in specifying that Yt depends only on
Ut rather than on a finite history of lags of Ut.

This structure is general: the structural relations may be nonlinear and non-monotonic
in their arguments and non-separable between observables and unobservables. This system
may generate stationary processes, non-stationary processes, or both. Assumption A.1 is
therefore a general structural VAR; Example 3.3 is a special case.

The vector Yt represents responses of interest. Consistent with a main application of
G−causality, our interest here attaches to the effects on Y1,t of the lags of Y2,t. We thus call
Y2,t−1 and its further lags “causes of interest.” Note that A.1 specifies that Y1,t and Y2,t

each have their own unobserved drivers, U1,t and U2,t, as is standard.
The vectors Ut and Zt contain causal drivers of Yt whose effects are not of primary

interest; we thus call Ut and Zt “ancillary causes.” The vector Wt may contain responses
to Ut. Observe that Wt does not appear in the argument list for qt, so it explicitly does
not directly determine Yt. Note also that Yt ⇐ (Y t−1, U t,W t, Zt) ensures that Wt is not
determined by Yt or its lags. A useful convention is that Wt ⇐ (W t−1, U t, Zt), so that
Wt does not drive unobservables. If a structure does not have this property, then suitable
substitutions can usually yield a derived structure satisfying this convention. Nevertheless,
we do not require this, so Wt may also contain drivers of unobservable causes of Yt.

For concreteness, we now specialize the settable systems definition of direct structural
causality (Definition 4.1) to the specific system given in A.1. For this, let ys,t−1 be the sub-
vector of yt−1 with elements indexed by the non-empty set s ⊆ {1, ..., ky}×{t− `, ..., t−1},
and let y(s),t−1 be the sub-vector of yt−1 with elements of s excluded.

Definition 5.3 (Direct Structural Causality) Given A.1, for given t > 0, j ∈ {1, ..., ky},
and s, suppose that for all admissible values of y(s),t−1, zt, and ut, the function ys,t−1 →
qj,t(yt−1, zt, ut) is constant in ys,t−1. Then we say Y s,t−1 does not directly structurally

cause Yj,t and write Y s,t−1

D
6⇒S Yj,t. Otherwise, we say Y s,t−1 directly structurally

causes Yj,t and write Y s,t−1
D⇒S Yj,t.

We can similarly define direct causality or non-causality of Zs,t or Us,t for Yj,t, but we leave

this implicit. We write, e.g., Y s,t−1
D⇒S Yt when Y s,t−1

D⇒S Yj,t for some j ∈ {1, ..., ky}.
Building on work of White (2006a) and White and Kennedy (2009), WL discuss how

certain exogeneity restrictions permit identification of expected causal effects in dynamic
structures. Our next result shows that a specific form of exogeneity enables us to link direct
structural causality and finite order G−causality. To state this exogeneity condition, we
write Y 1,t−1 := (Y1,t−`, ..., Y1,t−1), Y 2,t−1 := (Y2,t−`, ..., Y2,t−1), and, for given τ1, τ2 ≥ 0,
Xt := (Xt−τ1 , ..., Xt+τ2), where Xt := (W ′t , Z

′
t)
′.

Assumption A.2 For ` and m as in A.1 and for τ1 ≥ m, τ2 ≥ 0, suppose that Y 2,t−1 ⊥
U1,t | (Y 1,t−1,Xt), t = 1, ..., T − τ2.
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The classical strict exogeneity condition specifies that (Y t−1,Zt) ⊥ U1,t, which implies
Y 2,t−1 ⊥ U1,t | (Y 1,t−1,Zt). (Here, Wt can be omitted.) Assumption A.2 is a weaker re-
quirement, as it may hold when strict exogeneity fails. Because of the conditioning involved,
we call this conditional exogeneity. Chalak and White (2010) discuss structural restrictions
for canonical settable systems that deliver conditional exogeneity. Below, we also discuss
practical tests for this assumption.

Because of the finite numbers of lags involved in A.2, this is a finite-order conditional
exogeneity assumption. For convenience and because no confusion will arise here, we simply
refer to this as “conditional exogeneity.”

Assumption A.2 ensures that expected direct effects of Y 2,t−1 on Y1,t are identified. As
WL note, it suffices for A.2 that U t−1 ⊥ U1,t | (Y0, Z

t−1,Xt) and Y 2,t−1 ⊥ (Y0, Z
t−τ1−1) |

(Y 1,t−1,Xt). Imposing U t−1 ⊥ U1,t | (Y0, Z
t−1,Xt) is the analog of requiring that serial

correlation is absent when lagged dependent variables are present. Imposing Y 2,t−1 ⊥
(Y0, Z

t−τ1−1) | (Y 1,t−1,Xt) ensures that ignoring Y0 and omitting distant lags of Zt from
Xt doesn’t matter.

Our first result linking direct structural causality and G−causality shows that, given
A.1 and A.2 and with proper choice of Qt and St, G−causality implies direct structural
causality.

Proposition 5.4 Let A.1 and A.2 hold. If Y 2,t−1

D
6⇒S Y1,t, t = 1, 2, ..., then Y 2 does not

finite order G−cause Y1 with respect to X, i.e.,

Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt, t = 1, ..., T − τ2.

In stating G non-causality, we make the explicit identifications Qt = Y 2,t−1 and St = Xt.
This result leads one to ask whether the converse relation also holds: does direct struc-

tural causality imply G−causality? Strictly speaking, the answer is no. WL discuss several
examples. The main issue is that with suitably chosen causal and probabilistic relationships,
Y 2,t−1 can cause Y1,t, but Y 2,t−1 and Y1,t can be independent, conditionally or uncondi-
tionally, i.e. Granger non-causal.

As WL further discuss, however, these examples are exceptional, in the sense that
mild perturbations to their structure destroy the Granger non-causality. WL introduce
a refinement of the notion of direct structural causality that accommodates these special
cases and that does yield a converse result, permitting a characterization of structural and
Granger causality. Let supp(Y1,t) denote the support of Y1,t, i.e., the smallest set containing
Y1,t with probability 1, and let F1,t(· | Y 1,t−1,Xt) denote the conditional distribution
function of U1,t given Y 1,t−1,Xt. WL introduce the following definition:

Definition 5.5 Suppose A.1 holds and that for given τ1 ≥ m, τ2 ≥ 0 and for each y ∈
supp(Y1,t) there exists a σ(Y 1,t−1,Xt)−measurable version of the random variable∫

1{q1,t(Y t−1,Zt, u1,t) < y} dF1,t(u1,t | Y 1,t−1,Xt).

Then Y 2,t−1

D
6⇒S(Y 1,t−1,Xt) Y1,t (direct non-causality−σ(Y 1,t−1,Xt) a.s.). If not, Y 2,t−1

D⇒S(Y 1,t−1,Xt) Y1,t.
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For simplicity, we refer to this as direct non-causality a.s. The requirement that the integral
in this definition is σ(Y 1,t−1,Xt)−measurable means that the integral does not depend on
Y 2,t−1, despite its appearance inside the integral as an argument of q1,t. For this, it suffices
that Y 2,t−1 does not directly cause Y1,t; but it is also possible that q1,t and the conditional
distribution of U1,t given Y 1,t−1,Xt are in just the right relation to hide the structural
causality. Without the ability to manipulate this distribution, the structural causality will
not be detectable. One possible avenue to manipulating this distribution is to modify the
choice of Xt, as there are often multiple choices for Xt that can satisfy A.2 (see White
and Lu, 2010b). For brevity and because hidden structural causality is an exceptional
circumstance, we leave aside further discussion of this possibility here. The key fact to bear
in mind is that the causal concept of Definition 5.5 distinguishes between those direct causal
relations that are empirically detectable and those that are not, for a given set of covariates
Xt.

We now give a structural characterization of G−causality for structural VARs:

Theorem 5.6 Let A.1 and A.2 hold. Then Y 2,t−1

D
6⇒S(Y 1,t−1,Xt) Y1,t, t = 1, ..., T− τ2, if

and only if
Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt, t = 1, ..., T − τ2,

i.e., Y 2 does not finite-order G−cause Y1 with respect to X.

Thus, given conditional exogeneity of Y 2,t−1, G non-causality implies direct non-causality
a.s. and vice-versa, justifying tests of direct non-causality a.s. in structural VARs using
tests for G−causality.

This result completes the desired linkage between G−causality and direct causality in
the PCM. Because direct causality in the recursive PCM corresponds essentially to direct
structural causality in canonical settable systems, and because the latter is essentially equiv-
alent to G−causality, as just shown, direct causality in the PCM is essentially equivalent
to G−causality, provided A.1 and A.2 hold.

5.3 The Central Role of Conditional Exogeneity

To relate direct structural causality to G−causality, we maintain A.2, a specific conditional
exogeneity assumption. Can this assumption be eliminated or weakened? We show that
the answer is no: A.2 is in a precise sense a necessary condition. We also give a result
supporting tests for conditional exogeneity.

First, we specify the sense in which conditional exogeneity is necessary for the equiva-
lence of G−causality and direct structural causality.

Proposition 5.7 Given A.1, suppose that Y 2,t−1

D
6⇒S Y1,t, t = 1, 2, ... . If A.2 does not

hold, then for each t there exists q1,t such that Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt does not hold.

That is, if conditional exogeneity does not hold, then there are always structures that
generate data exhibiting G−causality, despite the absence of direct structural causality.
Because q1,t is unknown, this worst case scenario can never be discounted. Further, as
WL show, the class of worst case structures includes precisely those usually assumed in
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applications, namely separable structures (e.g., Y1,t = q1,t(Y 1,t−1,Zt) + U1,t), as well as
the more general class of invertible structures. Thus, in the cases typically assumed in the
literature, the failure of conditional exogeneity guarantees G−causality in the absence of
structural causality. We state this formally as a corollary.

Corollary 5.8 Given A.1 with Y 2,t−1

D
6⇒S Y1,t, t = 1, 2, ..., suppose that q1,t is invertible

in the sense that Y1,t = q1,t(Y 1,t−1,Zt, U1,t) implies the existence of ξ1,t such that U1,t =
ξ1,t(Y 1,t−1,Zt, Y1,t), t = 1, 2, ... . If A.2 fails, then Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt fails, t =
1, 2, ....

Together with Theorem 5.6, this establishes that in the absence of direct causality and
for the class of invertible structures predominant in applications, conditional exogeneity is
necessary and sufficient for G non-causality.

Tests of conditional exogeneity for the general separable case follow from:

Proposition 5.9 Given A.1, suppose that E(Y1,t) <∞ and that

q1,t(Y t−1,Zt, U1,t) = ζt(Y t−1,Zt) + υt(Y 1,t−1,Zt, U1,t),

where ζt and υt are unknown measurable functions. Let εt := Y1,t − E(Y1,t|Y t−1,Xt). If
A.2 holds, then

εt = υt(Y 1,t−1,Zt, U1,t)− E(υt(Y 1,t−1,Zt, U1,t) | Y 1,t−1,Xt)
E(εt|Y t−1,Xt) = E(εt|Y 1,t−1,Xt) = 0 and

Y 2,t−1 ⊥ εt | Y 1,t−1,Xt. (5)

Tests based on this result detect the failure of A.2, given separability. Such tests are
feasible because even though the regression error εt is unobserved, it can be consistently
estimated, say as ε̂t := Y1,t − Ê(Y1,t|Y t−1,Xt), where Ê(Y1,t|Y t−1,Xt) is a parametric or
nonparametric estimator of E(Y1,t|Y t−1,Xt). These estimated errors can then be used to
test (5). If we reject (5), then we must reject A.2. We discuss a practical procedure in the
next section. WL provide additional discussion.

WL also discuss dropping the separability assumption. For brevity, we maintain separa-
bility here. Observe that under the null of direct non-causality, q1,t is necessarily separable,
as then ζt is the zero function.

6. Testing Direct Structural Causality

Here, we discuss methods for testing direct structural causality. First, we discuss a general
approach that combines tests of G non-causality (GN) and conditional exogeneity (CE).
Then we describe straightforward practical methods for implementing the general approach.

6.1 Combining Tests for GN and CE

Theorem 5.6 implies that if we test and reject GN, then we must reject either direct struc-
tural non-causality (SN) or CE, or both. If CE is maintained, then we can directly test SN
by testing GN; otherwise, a direct test is not available.
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Similarly, under the traditional separability assumption, Corollary 5.8 implies that if we
test and reject CE, then we must reject either SN or GN (or both). If GN is maintained,
then we can directly test SN by testing CE; otherwise, a direct test is not available.

When neither CE nor GN is maintained, no direct test of SN is possible. Nevertheless,
we can test structural causality indirectly by combining the results of the GN and CE tests
to isolate the source of any rejections. WL propose the following indirect test:

(1) Reject SN if either:

(i) the CE test fails to reject and the GN test rejects; or

(ii) the CE test rejects and the GN test fails to reject.

If these rejection conditions do not hold, however, we cannot just decide to “accept”
(i.e., fail to reject) SN. As WL explain in detail, difficulties arise when CE and GN both
fail, as failing to reject SN here runs the risk of Type II error, whereas rejecting SN runs
the risk of Type I error. We resolve this dilemma by specifying the further rules:

(2) Fail to reject SN if the CE and GN tests both fail to reject;

(3) Make no decision as to SN if the CE and GN tests both reject.

In the latter case, we conclude only that CE and GN both fail, thereby obstructing structural
inference. This sends a clear signal that the researcher needs to revisit the model speci-
fication, with particular attention to specifying covariates sufficient to ensure conditional
exogeneity.

Because of the structure of this indirect test, it is not enough simply to consider its level
and power. We must also account for the possibility of making no decision. For this, define

p : = P [ wrongly make a decision ]
= P [ fail to reject CE or GN | CE is false and GN is false ]

q : = P [ wrongly make no decision ]
= P [ reject CE and GN | CE is true or GN is true ].

These are the analogs of the probabilities of Type I and Type II errors for the “no decision”
action. We would like these probabilities to be small. Next, we consider

α∗ := P [ reject SN or make no decision | CE is true and GN is true ]
π∗ := P [ reject SN | exactly one of CE and GN is true ].

These quantities correspond to notions of level and power, but with the sample space
restricted to the subset on which CE is true or GN is true, that is, the space where a decision
can be made. Thus, α∗ differs from the standard notion of level, but it does capture the
probability of taking an incorrect action when SN (the null) holds in the restricted sample
space, i.e., when CE and GN are both true. Similarly, π∗ captures the probability of taking
the correct action when SN does not hold in the restricted sample space. We would like the
“restricted level” α∗ to be small and the “restricted power” π∗ to be close to one.
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WL provide useful bounds on the asymptotic properties (T →∞) of the sample-size T
values of the probabilities defined above, pT , qT , α∗T , and π∗T :

Proposition 6.1 Suppose that for T = 1, 2, ... the significance levels of the CE and GN
tests are α1T and α2T , respectively, and that α1T → α1 < .5 and α2T → α2 < .5. Suppose
the powers of the CE and GN tests are π1T and π2T , respectively, and that π1T → 1 and
π2T → 1. Then

pT → 0, lim sup qT ≤ max{α1, α2},
|α1 − α2| ≤ lim inf α∗T ≤ lim supα∗T ≤ α1 + α2 + min{α1, α2}, and

min {1− α1, 1− α2} ≤ lim inf π∗T ≤ lim supπ∗T ≤ max {1− α1, 1− α2} .

When π1T → 1 and π2T → 1, one can also typically ensure α1 = 0 and α2 = 0 by suitable
choice of an increasing sequence of critical values. In this case, qT → 0, α∗T → 0, and
π∗T → 1. Because GN and CE tests will not be consistent against every possible alternative,
weaker asymptotic bounds on the level and power of the indirect test hold for these cases
by Proposition 8.1 of WL. Thus, whenever possible, one should carefully design GN and
CE tests to have power against particularly important or plausible alternatives. See WL
for further discussion.

6.2 Practical Tests for GN and CE

To test GN and CE, we require tests for conditional independence. Nonparametric tests for
conditional independence consistent against arbitrary alternatives are readily available (e.g.,
Linton and Gozalo, 1997; Fernandes and Flores, 2001; Delgado and Gonzalez-Manteiga,
2001; Su and White, 2007a, 2007b, 2008; Song, 2009; Huang and White, 2009). In principle,
one can apply any of these to consistently test GN and CE.

But nonparametric tests are often not practical, due to the typically modest number of
time-series observations available relative to the number of relevant observable variables. In
practice, researchers typically use parametric methods. These are convenient, but they may
lack power against important alternatives. To provide convenient procedures for testing GN
and CE with power against a wider range of alternatives, WL propose augmenting standard
tests with neural network terms, motivated by the “QuickNet” procedures introduced by
White (2006b) or the extreme learning machine (ELM) methods of (Huang, Zhu, and Siew,
2006). We now provide explicit practical methods for testing GN and CE for a leading class
of structures obeying A.1.

6.2.1 Testing Granger Non-Causality

Standard tests for finite-order G−causality (e.g., Stock and Watson, 2007, p. 547) typically
assume a linear regression, such as3

E(Y1,t|Y t−1,Xt) = α0 + Y ′1,t−1ρ0 + Y ′2,t−1β0 + X ′tβ1.

3. For notational convenience, we undertand that all regressors have been recast as vectors containing the
referenced elements.
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For simplicity, we let Y1,t be a scalar here. The extension to the case of vector Y1,t is
completely straightforward. Under the null of GN, i.e., Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt, we have
β0 = 0. The standard procedure therefore tests β0 = 0 in the regression equation

Y1,t = α0 + Y ′1,t−1ρ0 + Y ′2,t−1β0 + X ′tβ1 + εt. (GN Test Regression 1)

If we reject β0 = 0, then we also reject GN. But if we don’t reject β0 = 0, care is needed,
as not all failures of GN will be indicated by β0 6= 0.

Observe that when CE holds and if GN Test Regression 1 is correctly specified, i.e.,
the conditional expectation E(Y1,t|Y t−1,Xt) is indeed linear in the conditioning variables,
then β0 represents precisely the direct structural effect of Y 2,t−1 on Y1,t. Thus, GN Test
Regression 1 may not only permit a test of GN, but it may also provide a consistent estimate
of the direct structural effect of interest.

To mitigate specification error and gain power against a wider range of alternatives,
WL propose augmenting GN Test Regression 1 with neural network terms, as in White’s
(2006b, p. 476) QuickNet procedure. This involves testing β0 = 0 in

Y1,t = α0 + Y ′1,t−1ρ0 + Y ′2,t−1β0 + X ′tβ1 +
r∑
j=1

ψ(Y ′1,t−1γ1,j + X ′tγj)βj+1 + εt.

(GN Test Regression 2)

Here, the activation function ψ is a generically comprehensively revealing (GCR) function
(see Stinchcombe and White, 1998). For example, ψ can be the logistic cdf ψ(z) = 1/(1 +
exp(−z)) or a ridgelet function, e.g., ψ(z) = (−z5+10z3−15z) exp(−.5z2) (see, for example,
Candès, 1999). The integer r lies between 1 and r̄, the maximum number of hidden units.
We randomly choose (γ0j , γj) as in White (2006b, p. 477).

Parallel to our comment above about estimating direct structural effects of interest, we
note that given A.1, A.2, and some further mild regularity conditions, such effects can be
identified and estimated from a neural network regression of the form

Y1,t = α0 + Y ′1,t−1ρ0 + Y ′2,t−1β0 + X ′tβ1

+
r∑
j=1

ψ(Y ′1,t−1γ1,j + Y ′2,t−1γ2,j + X ′tγ3,j)βj+1 + εt.

Observe that this regression includes Y 2,t−1 inside the hidden units. With r chosen suf-
ficiently large, this permits the regression to achieve a sufficiently close approximation to
E(Y1,t|Y t−1,Xt) and its derivatives (see Hornik, Stinchcombe, and White (1990) and Gal-
lant and White (1992)) that regression misspecification is not such an issue. In this case,
the derivative of the estimated regression with respect to Y 2,t−1 well approximates

(∂/∂y2)E(Y1,t | Y 1,t−1,Y 2,t−1 = y2,Xt)
= E[ (∂/∂y2)q1,t(Y 1,t−1,y2,Zt, U1,t) | Y 1,t−1,Xt].

This quantity is the covariate conditioned expected marginal direct effect of Y 2,t−1 on Y1,t.
Although it is possible to base a test for GN on these estimated effects, we do not

propose this here, as the required analysis is much more involved than that associated with
GN Test Regression 2.
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Finally, to gain additional power WL propose tests using transformations of Y1,t, Y 1,t−1,
and Y 2,t−1, as Y1,t ⊥ Y 2,t−1 | Y 1,t−1,Xt implies f(Y1,t) ⊥ g(Y 2,t−1) | Y 1,t−1,Xt for all
measurable f and g. One then tests β1,0 = 0 in

ψ1(Y1,t) = α1,0 + ψ2(Y 1,t−1)′ρ1,0 + ψ3(Y 2,t−1)′β1,0 + X ′tβ1,1

+
r∑
j=1

ψ(Y ′1,t−1γ1,1,j + X ′tγ1,j)β1,j+1 + ηt. (GN Test Regression 3)

We take ψ1 and the elements of the vector ψ3 to be GCR, e.g., ridgelets or the logistic
cdf. The choices of γ, r, and ψ are as described above. Here, ψ2 can be the identity
(ψ2(Y 1,t−1) = Y 1,t−1), its elements can coincide with ψ1, or it can be a different GCR
function.

6.2.2 Testing Conditional Exogeneity

Testing conditional exogeneity requires testing A.2, i.e., Y 2,t−1 ⊥ U1,t | Y 1,t−1,Xt. Since
U1,t is unobservable, we cannot test this directly. But with separability (which holds under
the null of direct structural non-causality), Proposition 5.9 shows that Y 2,t−1 ⊥ U1,t |
Y 1,t−1,Xt implies Y 2,t−1 ⊥ εt | Y 1,t−1,Xt, where εt := Y1,t − E(Y1,t|Y t−1,Xt). With
correct specification of E(Y1,t|Y t−1,Xt) in either GN Test Regression 1 or 2 (or some other
appropriate regression), we can estimate εt and use these estimates to test Y 2,t−1 ⊥ εt |
Y 1,t−1,Xt. If we reject this, then we also must reject CE. We describe the procedure in
detail below.

As WL discuss, such a procedure is not “watertight,” as this method may miss certain
alternatives to CE. But, as it turns out, there is no completely infallible method. By offering
the opportunity of falsification, this method provides crucial insurance against being naively
misled into inappropriate causal inferences. See WL for further discussion.

The first step in constructing a practical test for CE is to compute estimates of εt, say
ε̂t. This can be done in the obvious way by taking ε̂t to be the estimated residuals from a
suitable regression. For concreteness, suppose this is either GN Test Regression 1 or 2.

The next step is to use ε̂t to test Y 2,t−1 ⊥ εt | Y 1,t−1,Xt. WL recommend doing this
by estimating the following analog of GN Test Regression 3:

ψ1(ε̂t) = α2,0 + ψ2(Y 1,t−1)′ρ2,0 + ψ3(Y 2,t−1)′β2,0 + X ′tβ2,1

+
r∑
j=1

ψ(Y ′1,t−1γ2,1,j + X ′tγ2,j)β2,j+1 + ηt. (CE Test Regression)

Note that the right-hand-side regressors are identical to those of GN Test Regression 3; we
just replace the dependent variable ψ1(Y1,t) for GN with ψ1(ε̂t) for CE. Nevertheless, the
transformations ψ1, ψ2, and ψ3 here may differ from those of GN Test Regression 3. To
keep the notation simple, we leave these possible differences implicit. To test CE using this
regression, we test the null hypothesis β2,0 = 0 : if we reject β2,0 = 0, then we reject CE.

As WL explain, the fact that ε̂t is obtained from a “first-stage” estimation (GN) in-
volving potentially the same regressors as those appearing in the CE regression means that
choosing ψ1(ε̂t) = ε̂t can easily lead to a test with no power. For CE, WL thus recommend
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choosing ψ1 to be GCR. Alternatively, non-GCR choices may be informative, such as

ψ1(ε̂t) = |ε̂t|, ψ1(ε̂t) = ε̂t(λ− 1{ε̂t < 0}), λ ∈ (0, 1), or ψ1(ε̂t) = ε̂2
t .

Significantly, the asymptotic sampling distributions needed to test β2,0 = 0 will gener-
ally be impacted by the first-stage estimation. Handling this properly is straightforward,
but somewhat involved. To describe a practical method, we denote the first-stage (GN)
estimator as θ̂1,T := (α̂1,T , ρ̂1,T , β̂

′
1,0,T , β̂

′
1,1,T , ..., β̂1,r+1,T )′, computed from GN Test Regres-

sion 1 (r = 0) or 2 (r > 0). Let the second stage (CE) regression estimator be θ̂2,T ; this
contains the estimated coefficients for Y 2,t−1, say β̂2,0,T , which carry the information about
CE. Under mild conditions, a central limit theorem ensures that

√
T (θ̂T − θ0) d→ N(0, C0),

where θ̂T := (θ̂′1,T , θ̂
′
2,T )′, θ0 := plim(θ̂T ), convergence in distribution as T → ∞ is de-

noted d→, and N(0, C0) denotes the multivariate normal distribution with mean zero and
covariance matrix C0 := A−1

0 B0A
−1′
0 , where

A0 :=
[
A011 0
A021 A022

]
is a two-stage analog of the log-likelihood Hessian and B0 is an analog of the information
matrix. See White (1994, pp. 103 - 108) for specifics.4 This fact can then be use to
construct a well behaved test for β2,0 = 0.

Constructing this test is especially straightforward when the regression errors of the GN
and CE regressions, εt and ηt, are suitable martingale differences. Then B0 has the form

B0 :=
[
E[ Zt εt ε′tZ ′t ] E[ Zt εt η′tZ ′t ]
E[ Zt ηt ε′tZ ′t ] E[ Zt ηt η′tZ ′t ]

]
,

where the CE regressors Zt are measurable-σ(Xt), Xt := (vec[Y t−1]′, vec[Xt]′)′, εt :=
Y1,t − E(Y1,t | Xt), and ηt := ψ1(εt) − E[ψ1(εt) | Xt]. For this, it suffices that U1,t ⊥
(Y t−`−1, Xt−τ1−1) | Xt, as WL show. This memory condition is often plausible, as it says
that the more distant history (Y t−`−1, Xt−τ1−1) is not predictive for U1,t, given the more
recent history Xt of (Y t−1, Xt+τ2). Note that separability is not needed here.

The details of C0 can be involved, especially with choices like ψ1(ε̂t) = |ε̂t|. But this is a
standardm−estimation setting, so we can avoid explicit estimation of C0: suitable bootstrap
methods deliver valid critical values, even without the martingale difference property (see,
e.g., Gonçalves and White, 2004; Kiefer and Vogelsang, 2002, 2005; Politis, 2009).

An especially appealing method is the weighted bootstrap (Ma and Kosorok, 2005), which
works under general conditions, given the martingale difference property. To implement
this, for i = 1, ..., n generate sequences {Wt,i, t = 1, ..., T} of IID positive scalar weights
with E(Wt,i) = 1 and σ2

W := var(Wt,i) = 1. For example, take Wt,i ∼ χ2
1/
√

2 + (1− 1/
√

2),
where χ2

1 is chi-squared with one degree of freedom. The weights should be independent of

4. The regularity conditions include plausible memory and moment requirements, together with certain
smoothness and other technical conditions.
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the sample data and of each other. Then compute estimators θ̂T,i by weighted least squares
applied to the GN and CE regressions using (the same) weights {Wt,i, t = 1, ..., T}. By Ma
and Kosorok (2005, theorem 2), the random variables

√
T (θ̂T,i − θ̂T ), i = 1, ..., n

can then be used to form valid asymptotic critical values for testing hypotheses about θ0.
To test CE, we test β2,0 = 0. This is a restriction of the form S2 θ0 = 0, where S2 is

the selection matrix that selects the elements β2,0 from θ0. Thus, to conduct an asymptotic
level α test, we can first compute the test statistic, say

TT := T θ̂′T S′2 S2 θ̂T = T β̂′2,0,T β̂2,0,T .

We then reject CE if TT > ĉT,n,1−α, where, with n chosen sufficiently large, ĉT,n,1−α is the
1− α percentile of the weighted bootstrap statistics

TT,i := T (θ̂T,i − θ̂T )′ S′2 S2 (θ̂T,i − θ̂T ) = T (β̂2,0,T,i − β̂2,0,T )′ (β̂2,0,T,i − β̂2,0,T ), i = 1, ..., n.

This procedure is asymptotically valid, even though TT is based on the “unstudentized”
statistic S2 θ̂T = β̂2,0,T . Alternatively, one can construct a studentized statistic

T ∗T := T θ̂′T S′2 [S2 ĈT,n S′2]−1 S2 θ̂T ,

where ĈT,n is an asymptotic covariance estimator constructed from
√
T (θ̂T,i − θ̂T ), i =

1, ..., n. The test rejects CE if T ∗T > c1−α, where c1−α is the 1 − α percentile of the chi-
squared distribution with dim(β0,2) degrees of freedom. This method is more involved but
may have better control over the level of the test. WL provide further discussion and
methods.

Because the given asymptotic distribution is joint for θ̂1,T and θ̂2,T , the same methods
conveniently apply to testing GN, i.e., β1,0 = S1 θ0 = 0, where S1 selects β1,0 from θ0. In
this way, GN and CE test statistics can be constructed at the same time.

WL discuss three examples, illustrating tests for direct structural non-causality based
on tests of Granger non-causality and conditional exogeneity. A matlab module, testsn,
implementing the methods described here is available at www.econ.ucsd.edu/˜xunlu/code.

7. Summary and Concluding Remarks

In this paper, we explore the relations between direct structural causality in the settable
systems framework and direct causality in the PCM for both recursive and non-recursive
systems. The close correspondence between these concepts in recursive systems and the
equivalence between direct structural causality and G−causality established by WL enable
us to show the close linkage between G−causality and PCM notions of direct causality. We
apply WL’s results to provide straightforward practical methods for testing direct causality
using tests for Granger causality and conditional exogeneity.

The methods and results described here draw largely from work of WC and WL. These
papers contain much additional relevant discussion and detail. WC provide further exam-
ples contrasting settable systems and the PCM. Chalak and White (2010) build on WC,
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examining not only direct causality in settable systems, but also notions of indirect causal-
ity, which in turn yield implications for conditional independence relations, such as those
embodied in conditional exogeneity, which plays a key role here. WL treat not only the
structural VAR case analyzed here, but also the “time-series natural experiment” case,
where causal effects of variables Dt, absorbed here into Zt, are explicitly analyzed. The
sequence {Dt} represents external stimuli, not driven by {Yt}, whose effects on {Yt} are of
interest. For example, {Dt} could represent passively observed visual or auditory stimuli,
and {Yt} could represent measured neural activity. Interest may attach to which stimuli
directly or indirectly affect which neurons or groups of neurons. WL also examine the struc-
tural content of classical Granger causality and a variety of related alternative versions that
emerge naturally from different versions of Assumption A.1.
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