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Abstract

This paper explores the empirical content of the weak axiom of revealed preference

(WARP) for repeated cross-sectional data or for panel data where individuals experience

preference shocks. Specifically, in a heterogeneous population, think of the fraction of con-

sumers violating WARP as the parameter of interest. This parameter depends on the joint

distribution of choices over different budget sets. Repeated cross-sections do not reveal this

distribution but only its marginals. Thus, the parameter is not point identified but can be

bounded.

We frame this as a copula problem and use copula techniques to analyze it. The bounds,

as well as some nonparametric refinements of them, correspond to intuitive behavioral as-

sumptions in the two goods case. With three or more goods, these intuitions break down,

and plausible assumptions can have counterintuitive implications. Inference on the bounds

is an application of partial identification through moment inequalities. We implement our

analysis with the British Family Expenditure Survey (FES) data. Upper bounds are fre-

quently positive but lower bounds not significantly so, hence FES data are consistent with

WARP in a heterogeneous population.
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1 Introduction

Motivation. The weak axiom of revealed preference (WARP) is among the core elements of the

theory of rational consumer behavior. In a heterogeneous population, agents differ in their specific

demand behavior, yet economic theory predicts that they individually obey the weak axiom. This

paper explores the empirical content of this prediction for repeated cross-sectional data, i.e. the

ability of such data to reject, be consistent with, or even imply (up to sampling uncertainty) the

weak axiom. We approach this question as an exercise in bounds or partial identification. In

particular, we are interested in the fraction of consumers violating WARP. This parameter should

be zero according to economic theory. Its empirical value depends on the joint distribution of

choices over different budget sets. Repeated cross-sections do not reveal this joint distribution

but do reveal the marginal distribution of demand on every single budget set. Bounds on the

fraction of consumers who violate WARP are implied; indeed, they are closely related to the

classic Fréchet-Hoeffding bounds. We develop these bounds, refine them using nonparametric

assumptions, and apply them to the U.K. Family Expenditure Survey. One motivation for this

exercise is to provide a complement to the nonparametric estimation of “revealed preference”

bounds on behavior derived from similar data sets (e.g., Blundell, Browning, and Crawford (2003,

2008)). We provide some insight as to how much mileage can be gained from strict revealed

preference assumptions alone, without additional aggregation assumptions and only invoking weak

assumptions on the dependence structures.

To see the gist of the identification problem, suppose one is interested in the joint distribution

of demand on just two different (intersecting) budget lines, but one only knows the marginal

distribution of demand on each of these budget lines. Our motivating application is that one

faces repeated cross-sections of the population of interest, a setting that corresponds to many

practical applications and data sets. The scenario also applies, however, if one sees many choices

from the two budgets by one and the same agent, yet this agent follows a random utility model,

i.e., there is a random component in the individual’s utility function. Finally, random utility and

cross-sectional variation could be compounded: Data could be panel data from a heterogeneous

population but one might also be worried about randomly varying preferences of the individuals

and therefore use a random utility model anyway. Whatever the interpretation, the problem is

that one knows the marginal but not the joint distribution of choices; in other words, the aspect

of the relevant distribution that is not identified is precisely the copula.

- figure 1 about here -.

The problem is illustrated in figure 1, which displays two intersecting budget lines and (as
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shaded areas) the marginal distributions of consumers on those lines. WARP is violated by those

consumers whose choices lie in the emphasized segment of each budget line. The proportion of

these consumers in the population depends on the displayed marginal distributions but also on the

copula linking them. This copula has an intuitive interpretation: Consumers can be thought of as

being ordered with respect to their revealed preference for good 2 in any given period. The copula

describes how much realignment with respect to this ordering occurs as consumers get relocated

from one budget to the other one. Two copulas stand out as extreme: The “best behaved”

population might be one where this ordering is precisely maintained; the “worst behaved” (or at

least most heterogeneous) one might correspond to its complete reversal. For this simple example

and if distributions are continuous, these two dependence structures do indeed generate upper

and lower worst-case bounds on P(WARP violated). Furthermore, the two copulas just described

correspond to the Fréchet-Hoeffding upper and lower limit copulas. In the continuous case, the

problem thus becomes an application of a classic finding.

Our contribution is to observe this connection to the copula literature and to exploit it in

numerous ways. First, we develop the result for mixed discrete-continuous distributions, with

the above case as corollary, and also show how the resulting bounds can (under assumptions) be

integrated over budget sets to bound P(WARP violated) for populations that face heterogeneous

budgets. Second, we use the existing literature on copulas, but also some novel ideas, to refine

bounds from above and below. In particular, we impose some nonparametric dependence structure

between demand in different budgets, i.e. we nonparametrically constrain unobserved heterogene-

ity, leading to tighter bounds. In the two-good case, it turns out that some such assumptions

are both intuitively meaningful (and perhaps reasonable) and qualitatively affect bounds in the

way that one might have expected. Third, we generalize the analysis to three and more goods.

This generalization has some unpleasant features: While Fréchet-Hoeffding bounds still apply, the

according worst-case copulas do not correspond to plausible, or at least easily comprehensible,

restrictions on heterogeneity in the population. What is more, mathematically natural generaliza-

tions of the aforementioned, partially identifying assumptions fail to have clear intuitions any more

and may have unexpected effects on the bounds. As one particular example, many assumptions

which seemingly force the population to be well-behaved can actually induce spurious violations

of WARP, that is, they can refine the lower bound of P(WARP violated) away from zero for data

that were generated by a rational population. We illustrate this by considering the triangular

structure often advocated in nonseparable systems of equations.

We finally bring the analysis to a practical application, estimating the bounds on data from

the British Household Expenditure Survey. Inference on the bounds is an application of moment

inequalities, a recently burgeoning literature in econometric theory that we apply and adapt. The
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empirical result is that point estimators of bounds indicate occasional violations of WARP but

these are far from statistically significant. The data are consistent with WARP, either because

consumers exhibit minimal rationality or because WARP is just too weak (or, of course, both).

Related Literature. This paper touches on a number of distinct issues, including the in-

tegrability of stochastic demand functions, the theory of copulas, and inference on parameters

that are partially identified by moment inequalities. Consequently, there are points of contact

to numerous literatures, some of which might be called classic and some of which are currently

developing.

This is primarily a paper about revealed preferences. The revealed preference approach to

consumer demand was introduced and popularized by Afriat (1978), and Varian (1982, 1983).

This work lays the economic foundations for our approach. However, all empirical applications

at the time considered one (usually representative) consumer, and the very notion of unobserved

heterogeneity does not arise. The closest predecessor to our identification analysis is the literature

on integrability of stochastic demand; see, in particular, the classic analysis in McFadden and

Richter (1990) and the synthesis and extension in McFadden (2005). Special cases of some of

our results could alternatively (if cumbersomely) be derived from there. One main difference is

that we explicitly attack the problem as one of partial identification and consider upper and lower

bounds on the fraction of rational consumers rather than just asking whether the lower bound is

zero.1 Also, we do not restrict attention to continuous demand. Perhaps more importantly, by

considering WARP rather than SARP we test a substantially more fundamental requirement of

rationality and turn the problem into one that is precisely suited to the tools developed in the

literature on copulas, as well as in the literature on moment inequalities. In particular, we provide

an economic interpretation involving the behavior of individuals in a heterogeneous population,

show how this relates to refinements proposed in the copula literature, and establish the sense in

which these intuitions break down in the high dimensional case. As already mentioned, our work is

also related to applications of revealed preference to consumer demand, in particular by Blundell,

Browning, and Crawford (2003, 2008); see Cherchye, Crawford, de Rock, and Vermeulen (2009)

for an overview. This literature tests revealed preference theory, and uses it to derive bounds

on demand regression. However, their stochastic models of unobserved heterogeneity are limited.

For instance, Blundell, Browning, and Crawford (2003) focus on revealed preference analysis using

the mean regression, which comes close to imposing a representative agent assumption because

additive deviations from the conditional mean cannot in general be generated by a structural

1McFadden (2005) could be extended in this direction, however. As the formal identification problem would

also occur in a random utility setting, our work is furthermore related to Marschak (1960), Manski (2007), and to

Bandhopadhyay et al. (2002, 2004), more on which later.
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model (due to well known aggregation problems of WARP; see, e.g., Mas Colell, Whinston, and

Green (1995), p.110). Our contribution complements this line of research by adding unobserved

heterogeneity. Since we are employing a nonseparable model in a consumer demand setup, our

contribution is also nested within the wider econometric literature on nonparametric identification

of economic hypotheses using nonseparable models; see Matzkin (2006) for a lucid overview.

Formally, the present identification problem is also related to one that received attention in the

treatment effects literature. Consider learning about the distribution of a treatment effect, ∆ ≡
Y1−Y0 (or variations thereof), when a randomized experiment identifies the marginal distributions

of potential outcomes Y0 and Y1. Clearly, a similar partial identification problem to ours emerges,

namely, marginals are perfectly but copulas are not at all identified. The issue is commonly

avoided by focusing attention on the expected value of the treatment, which does not depend

on the copula. Researchers genuinely interested in the distribution of the treatment effect have,

however, brought Fréchet-Hoeffding’s as well as related bounds to this problem (Heckman, Smith,

and Clemens (1997), Manski (1997), Fan and Park (2009)). While motivated by a very different

question, this literature has some formal similarities to what we are doing. The technical difference

is that we are interested in features of the joint distribution, notably P(WARP violated), that do

not correspond to interesting aspects of the distribution of ∆, thus the detail of our identification

analysis is quite different. Also, both Heckman, Smith, and Clemens (1997) and Manski (1997)

recognize that inference on the resulting bounds is nonstandard but do not focus on it; Fan and

Park’s (2009) results on inference do not apply here.

Finally, inference on our bounds is an application of moment inequalities, a currently very

active literature. While we do not provide a conceptual innovation to this field, it is interesting

to note that mechanical application of existing approaches, in particular of Andrews and Soares

(2007), can be improved upon by exploiting the specific structure of our bounds. We expect that

the same will hold true for many other applications of moment inequalities, and that this paper

might accordingly be of interest as case study of such an application.

Structure of the Paper. The remainder of this paper is structured as follows. Section 2

is devoted to identification analysis: We describe and solve the identification problem, that is,

we find bounds on the fraction of consumers that violate WARP under the assumption that all

observable features of population distributions are known. We provide worst-case bounds as well

as bounds that use partially identifying assumptions and conduct this analysis in two as well

as more dimensions, with the latter analysis having a qualitatively different message. Section 3

develops the necessary tools for inference. Section 4 contains our empirical application. Section 5

concludes, and an appendix collects all proofs.
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2 Identification Analysis

This section analyzes identification of the fraction of a population who violate WARP. Thus, we

discover what we could learn about this fraction if the population distribution of observables were

known. Estimation and inference will be considered later.

Consider, therefore, a population of agents who face an income process (Yt)t=1,..,T and a con-

sumption set Rm
+ , where m ≥ 2 denotes the number of distinct goods. Individual demand is

given by the time invariant function Q(yt,pt, z, a) : R × Rm
+ × Z × A → Rm

+ , t = 1, .., T , where

Q(yt,pt, z, a) ∈ {x ∈ Rm
+ : ptx ≤ yt}, z ∈Z ⊆ Rl denotes observable covariates (assumed time

invariant for simplicity) and a ∈ A denotes time invariant unobservable covariates, including what

one might want to think of as preferences. Note that Q is nonstochastic and constant across con-

sumers; without loss of generality, heterogeneity is absorbed by A. In the repeated cross section

scenario that constitutes our leading application, one would think of A = al as a consumer with

preference ordering al. However, l could also denote preferences in situation l, and as already

mentioned, the analysis could equally be applied to a random utility model. In any case, the dis-

tribution of (Yt,Q(Yt,pt,Z,A),Z) is identified for every t in the sample.2 The sequence (pt)t=1,..,T

is considered nonstochastic.

To obtain testable implications, we have to assume some structure across time periods.

Assumption 1. For any time periods s and t, ∆Yst ≡ Ys − Yt is independent of A conditional

on (Z,Yt).

This type of assumption is standard in the related literature on nonseparable models (Matzkin

(2006)). It states that preferences for the goods in question and income changes are independent

conditional on current income and household characteristics. For an intuition, suppose there

are two types of income shocks, say positive and negative, where the size depends on covariates

(Z,Yt) (think of this conditioning as allocating an individual to a cell defined by values z0, yt,0).

Suppose further that for a good k, there are two types of individuals, ak and ak′ say, where type ak

idiosyncratically likes good k and type ak′ does not. Then assumption 1 states that, conditional

on covariates having a certain value and for both positive and negative income shocks, there must

be equal proportions of ak and ak′ in the population. This implies identification of the distribution

of (Ys, Yt,Q(Ys,ps,Z,A),Z) as well as (Ys, Yt,Q(Yt,pt,Z,A),Z); conditional on covariates, we can

identify the joint distribution of consumption in the respective period, and income across periods,

from the respective marginals. The assumption is not sufficient to identify the joint distribution of

consumption across periods, i.e. of (Ys, Yt,Q(Ys,ps,Z,A),Q(Yt,pt,Z,A),Z), from its marginals.

2We use the following conventions: Large letters denote random variables and small letters denote realizations

(as well as nonrandom variables). Vectors are identified by bold typeface.
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Fix any two time periods s and t and initially condition on a realization of (Ys, Yt,Z); inte-

gration of the resulting bounds will be considered in a second step. Recall that the accordingly

conditioned distributions of Qt ≡ Q(Yt,pt,Z,A) and Qs ≡ Q(Ys,ps,Z,A) are identified. A given

consumer’s choices violate WARP if one choice would have been strictly affordable given the other

budget, that is, if p′sQt ≤ ys and p′tQs ≤ yt, with at least one inequality being strict. The frac-

tion of consumers who violate WARP (or, equivalently from an identification point of view, the

population probability of violating it) is

Pyz(WARP violated) = Pyz ((p′sQt ≤ ys,p
′
tQs < yt) ∨ (p′sQt < ys,p

′
tQs ≤ yt)) , (2.1)

for all s, t ∈ {1, .., T} , where Pyz(·) ≡ P(·|Ys = ys, Yt = yt,Z = z). This probability is a feature of

the joint distribution of (Qt,Qs|Yt, Ys,Z) and hence, is not identified under our assumptions. We

will initially develop bounds on it for the two-good case. This case turns out to be characterized

by a tight relation between bounds and meaningful (if not necessarily reasonable) assumptions

about the evolution of demand in the population. We then generalize the analysis to three and

more goods, illustrating all concepts with an example in the three goods case, where a graphical

intuition is still available. The multiple goods case qualitatively differs from the two goods one.

Bounds are easily derived by generalizing previous concepts, but plausible conditions on individual

behavior are harder to find. Conversely, natural generalizations of the behavioral interpretation

of the two dimensional case will fail to provide reasonable bounds. In particular, we show that

depending on the distribution of individuals, the frequently advocated triangular structure of

nonseparable models may achieve upper as well as lower worst-case bounds and may spuriously

indicate violations of WARP. The reason for this may be found in the difficulty of finding a natural

ordering of goods.

2.1 The Two Good Case

2.1.1 The General Result

Fix again any two time periods s and t. The following identification result applies no matter

whether (Qs,Qt|Ys, Yt,Z) is distributed continuously, discretely, or as a mixture of the two. We

begin by setting m = 2, thus the consumers’ problem is characterized by two time periods and

two budget lines Bs and Bt in R2
+. Normalizing pt = (1, pt), and using the budget equation to

write Qt = (yt − ptQt, Qt), these budget lines can be expressed as Bs ≡ {q ≥ 0 : p′tq = yt} and

Bt ≡ {q ≥ 0 : p′tq = yt}, and their intersection occurs at Qs = Qt = (yt − ys)/(pt − ps). Assume

w.l.o.g. that ys/ps > yt/pt, i.e. Bs has the larger vertical intercept, then WARP is violated iff

Qt ≥ (yt − ys)/(pt − ps) > Qs or Qt > (yt − ys)/(pt − ps) ≥ Qs. (See again figure 1, where the
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distribution of Qs corresponds to the lighter shaded probability.) The probability of this event is

constrained by the marginal distributions of Qt and Qs but also depends on how consumers are

re-ordered along the budget lines between periods s and t. It can be bounded as follows.

Proposition 1. Suppose the model of individual demand as outlined above holds. Let assumption

A1 be true and assume that the conditional distributions of Qs and Qt are known. Finally, assume

that all probabilities are well defined. Then,

max

{
Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps))

−min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps)} , 0

}

≤ Pyz(WARP violated) ≤

min

{
max {Pyz(Qs < (yt − ys)/(pt − ps)),Pyz(Qt > (yt − ys)/(pt − ps)} ,

Pyz(Qs ≤ (yt − ys)/(pt − ps)),Pyz(Qt ≥ (yt − ys)/(pt − ps)

}
.

Moreover, these bounds are tight, i.e. best possible given the available information.

This result provides tight bounds for the parameter of interest that can be determined from

the marginals, using only observable, and hence estimable quantities. It holds for any value of

yt, ys, pt, ps and z, and it specifically provides bounds for the subpopulation defined by y, z. Other

than regularity conditions needed to ensure that all probabilities exist and are well defined, it only

requires assumption 1, which restricts the income process. Note that this assumption could be

weakened provided one has access to instruments, which define controls such that the conditional

independence holds. Hence we consider this a rather weak assumption, and thus proposition 1 a

rather general result. Its proof can be found in the appendix.

2.1.2 Specialization to Continuous Demand

We now specialize proposition 1 to the case where (Qs,Qt|Ys, Yt,Z) is distributed continuously.

We will also work with this case, which leads to a rather simple and intuitive result, later on.

Whether the continuity assumption is realistic depends on one’s perspective. If one thinks of

all British consumers as the population of interest, then the true population distribution is of

course discrete, albeit so finely grained that the simplification gained from assuming continuity

may be worth the price. If one thinks even of all consumers as a very large sample from the data

generating process of true interest, then continuity is a substantively appropriate assumption. We

also duly note that the difference between our above result and this subsection’s corollary is driven

by the necessity to take care of mass points that sit at very specific locations; in that sense, it

can be thought of as accommodating nongeneric complications. An important exception to these
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considerations occurs if the demand function is expected to have genuine mass points, for example

at corner solutions.

In the continuous case, we can simplify (2.1) as follows:

Pyz(WARP violated) = Pyz (p′sQt < ys, p
′
tQs < yt) . (2.2)

This event has a simple geometric interpretation. Denote the boundary of the time t budget

constraint by

Bt ≡ {q ≥ 0 : p′tq = yt} ,

then the set of time t choices that are affordable given the time s budget is

Bt,s ≡ {q ≥ 0 : p′tq = yt, p
′
sq ≤ ys} ,

the intersection of Bt with the half-space below (the hyperplane containing) Bs. Hence,

Pyz(WARP violated) = Pyz

(
(Qt, Qs) ∈ Bs,t × Bt,s

)
,

the probability that both Qt and Qs are contained in the respective half-space; consider again figure

1. Given that the marginal probabilities
(
Pyz

(
Qt ∈ Bs,t

)
,Pyz

(
Qs ∈ Bt,s

))
are known, the prob-

lem of bounding Pyz

(
(Qt, Qs) ∈ Bs,t × Bt,s

)
is easily recognized as the original Fréchet-Hoeffding

bounding problem, and it can indeed be verified that our result simplifies to this classic result.3

Corollary 2. (Fréchet-Hoeffding Bounds) Let the conditions of Proposition 1 be satisfied

and assume in addition that the conditional distributions of Qs and Qt be continuous. Then

max{Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)− 1, 0} ≤ Pyz(WARP violated)

≤ min
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
.

These bounds are again tight.

In the two-dimensional case, the crucial probabilities can be written in terms of (Qs, Qt, ps, pt, ys, yt).

Recalling that s is normalized to correspond to the budget line with higher intercept, we have

Qs ∈ Bs,t ⇐⇒ Qs < (yt − ys)/(pt − ps)

Qt ∈ Bt,s ⇐⇒ Qt > (yt − ys)/(pt − ps).

3These bounds can furthermore be derived as solutions to linear programming problems along the lines of

McFadden (2005, theorem 3.1). We thank Dan McFadden for pointing this out.
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Notice in particular that the lower half-space Bt,s is an upper contour set of Qt. The Fréchet-

Hoeffding Bounds then become

max {Pyz(Qs < (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps)), 0}
≤ Pyz(WARP violated) ≤

min {Pyz(Qs < (yt − ys)/(pt − ps)), 1− Pyz(Qt < (yt − ys)/(pt − ps))} ,

which is the expression we will use for estimation, inference and in the application.

We will restrict attention to continuous distributions henceforth. Before turning to extensions

of our result, we elaborate a further on an informal corollary as well as a generalization.

(i) Empirical Content of WARP A corollary of our result is to identify the empirical content

of WARP. Specifically, choice probabilities are consistent with WARP iff the lower bound on

Pyz(WARP violated) equals zero. This is the case if

Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps))

−min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps)} ≤ 0,

which in the continuous case simplifies to

Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

) ≤ 1

⇐⇒ Pyz

(
Qs ∈ Bs,t

) ≤ Pyz

(
Qt /∈ Bt,s

)

⇐⇒ Pyz

(
Qt ∈ Bt,s

) ≤ Pyz

(
Qs /∈ Bs,t

)
.

This corollary fully applies to higher dimensions (with notational adaptations indicated later).

Intuitively, it means that if a budget plane is rotated, the probability mass on the part of the

plane that is rotated toward the origin must weakly shrink, whereas the mass on the part that is

rotated away from the origin must weakly expand. There is no empirical content if the “before”

and “after” budgets fail to intersect.4

4Apart from an alternative proof via McFadden (2005), this finding for the continuous case could be deduced

by combining previous results of Bandyopadhyay et al. (2002, 2004). The inequalities correspond to what these

authors call “stochastic substitutability,” and in Bandyopadhyay et al. (2004), they show that under our auxiliary

assumptions, stochastic substitutability is equivalent to their “Weak Axiom of Stochastic Revealed Preference”

(WASRP). Bandyopadhyay et al. (2002) establish that WARP for individual demand implies WASRP for aggregate

demand. These results jointly imply the inequalities.

Of course, our results are significantly stronger than the implication from WARP toward stochastic substi-

tutability. While Bandyopadhyay et al. (2002) do not use the auxiliary assumptions, one might wonder whether

the present analysis can be adapted to analogously strengthen their original result. We show in ongoing work that

this is indeed so.
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These restrictions certainly do not appear very strong. Furthermore, they are implied not only

by WARP but also by a host of other restrictions on individual behavior. For example, they are

easily derived from the assumption that consumers choose independently (across consumers and

time periods) from uniform distributions over budget planes.5 Nonparametric, assumption-free

tests of WARP from cross-sectional data will have accordingly limited power, but this is simply

due to the limited empirical content that WARP has on its own.

(ii) Unconditional Bounds We conclude this section by providing expressions for uncondi-

tional bounds. Suppose one also knows (or can estimate) the joint distribution of (Y1, . . . YT ,Z);

this is a realistic assumption as panel income data sets exist for many countries. Under assump-

tion 1, one can then generate unconditional bounds on P(WARP is violated) by integrating the

preceding bounds over (Ys, Yt,Z). For the worst-case bounds this means the following.6

Lemma 2.1. Let the conditions of Proposition 1 hold and suppose that the distribution of (Ys, Yt,Z)

is known. Then

∫
max{Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)− 1, 0}F (d(ys, yt, z)) ≤ P(WARP is violated)

≤
∫

min
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
F (d(ys, yt, z)).

These bounds are tight.

2.1.3 Nonparametric Refinements

One upshot of the preceding section is that the identification problem is really about copulas,

more specifically, about the copula connecting Qs and Qt. Recognizing this allows one to refine

the above bounds by importing results about copulas. We now present some such assumptions

and their exact implications.

The lower and upper bounds on Pyz(WARP violated) correspond to measures of dependence

between Qs and Qt that are extremal in an obvious sense; namely, they impose perfectly positively

respectively negatively dependence. Many nonparametric measures of dependence interpolate

between these extremes. Restrictions on any of them may induce narrower bounds.

One nonparametric dependence concept that has gained popularity in the copula literature is

quadrant dependence:

5This observation resembles a classic discussion by Becker (1962).
6To keep expressions simple, we here abuse notation: Bs,t and Bt,s depend on (Ys, Yt) and therefore vary over

the integrals.
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Definition 3. The copula linking Qs and Qt exhibits positive [negative] quadrant dependence if

Pyz((Qs, Qt) = (qs, qt)) ≥ [≤]Pyz(Qs ≥ qs)Pyz(Qt ≥ qt)) for all scalars qs, qt.

Positive quadrant dependence means that large (and small) values of the individual variables

coincide more often than would be expected under independence. In our application, this is to

say that consumers who reveal strong taste for good 2 at time s tend to do the same at time t.

Negative quadrant dependence is the intuitive opposite.

Imposing quadrant dependence leads to the following refinement.

Lemma 2.2. (i) Let the conditions of Proposition 1 hold and assume positive quadrant depen-

dence, then

max{Pyz

(
Qs ∈ Bs,t

)
+Pyz

(
Qt ∈ Bt,s

)−1, 0} ≤ Pyz(WARP is violated) ≤ Pyz

(
Qs ∈ Bs,t

)
Pyz

(
Qt ∈ Bt,s

)
.

(ii) Let the conditions of Proposition 1 hold and assume negative quadrant dependence, then

Pyz

(
Qs ∈ Bs,t

)
Pyz

(
Qt ∈ Bt,s

) ≤ Pyz(WARP is violated) ≤ min
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
.

These bounds are tight.

Positive respectively negative quadrant dependence therefore neatly separate the worst-case

bounds into two regions, one that is associated with positive and one that is associated with nega-

tive dependence. The boundary between the regions corresponds to independence. Substantively,

it is certainly positive rather than negative quadrant dependence that we mean to suggest as

interesting restriction on behavior across choice situations.

Numerous nonparametric measures of dependence can be used to strengthen positive quadrant

dependence. In particular, one could impose that the copula exhibit tail monotonicity, stochastic

monotonicity, corner set monotonicity, or likelihood ratio dependence (known as affiliation in the

auctions literature). See, for example, Nelsen (2006) for definitions of all of these, which are listed

roughly in order of increasing stringency. Imposing any of them would lead to the same bounds

identified above: All of them imply quadrant dependence, so the bounds cannot be wider; but

all of them also allow for independence as boundary case as well as for the relevant one of the

original worst-case bounds, so the bounds do not become tighter. Within this family, quadrant

dependence therefore stands out as the weakest restriction that generates the above refinement.7

7Comparisons of nonparametric concepts of positive dependence in de Castro (2007) and Yanamigoto (1972)

support the same conclusion, i.e. quadrant dependence is weakest among large classes of such concepts, none of

which would lead to tighter bounds. Two concepts that are insufficient to generate the above bounds are positive

correlation and a positive value of Kendall’s τ .
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We therefore now proceed to a different class of restrictions. Positive dependence can also be

modelled by presuming that consumers do not “move too much” in terms of quantiles. Letting Ft

denote the c.d.f. of Qt, this idea could be formalized as follows:

Definition 4. The copula linking Qs and Qt exhibits κ-limited quantile changes if |Fs(Qs)− Ft(Qt)| ≤
κ a.s.

The assumption has not, to our knowledge, been previously entertained for copulas but is

close in spirit to “sensitivity assumptions” that are occasionally used in econometrics and statistics;

compare, for example, the parameter λ in Horowitz and Manski (1995) or Γ in Rosenbaum (2002).

In particular, κ ∈ [0, 1] is a user-defined parameter that determines how much deviation from

perfectly positive dependence is allowed. By changing it, one can scale the assumption from

implying perfect dependence (κ = 0) to being completely vacuous (κ = 1). Whether bounds are

affected depends on how tightly κ is chosen. The precise result is as follows.

Lemma 2.3. Let the conditions of Proposition 1 hold and let the copula linking the conditional

distributions of Qs and Qt exhibit κ-limited quantile changes, then

max{Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)− 1, 0} ≤ Pyz(WARP is violated)

≤ max
{
min

{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)
, κ + Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)− 1
}

, 0
}

.

These bounds are again tight. In particular, the assumption leads to a refinement of bounds iff

κ < 1 − max
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
, and it implies that WARP is not violated at all

iff κ ≤ 1− Pyz

(
Qs ∈ Bs,t

)− Pyz

(
Qt ∈ Bt,s

)
.

An observation of special interest is that the upper bound on Pyz(WARP is violated) is zero for

a sufficiently restrictive choice of κ, namely when κ ≤ 1− Pyz

(
Qs ∈ Bs,t

)− Pyz

(
Qt ∈ Bt,s

)
. This

choice is feasible whenever this inequality’s r.h.s. is positive, i.e. iff the lower bound is zero. By

the same token, whenever the lower bound is zero, the threshold value κ∗ ≡ 1− Pyz

(
Qs ∈ Bs,t

)−
Pyz

(
Qt ∈ Bt,s

)
identifies just how much quantile movement is needed to generate a violation of

WARP. The higher this number, the more contrived are the quantile movements that are needed

to contradict WARP. One could, therefore, think of κ∗ as an indicator of just how suggestive the

data are in favor of WARP.

The approach can be extended by importing other suggestions from the literature on copulas.

For example, one could bound dependence between choice on Bs and choice on Bt in terms of

the medial correlation coefficient (Blomquist’s β), the rank correlation coefficient (Spearman’s ρ),

or Kendall’s τ . The resulting bounds on joint c.d.f.’s, and hence on Pyz(Qs ∈ Bs,t, Qt ∈ Bt,s),

13



then follow from known results (Nelsen et al. (2001), Nelsen and Úbeda-Flores (2004)). We omit

elaborations because these bounds involve much more algebra than the preceding ones, but notice

that numerical evaluation would in all cases be easy, and also that such restrictions can be used

to tighten bounds from below as well as above if one is willing to make according assumptions.

2.2 The Multiple Goods Case

We now analyze the multiple goods case, emphasizing differences to the two goods one. Integra-

tion of bounds, for one thing, is completely unchanged, and we therefore condition on (ys, yt, z)

throughout this section. We also continue to restrict attention to continuous distributions. As a

result, the Fréchet-Hoeffding bounds bounds from corollary 2 still apply. Adapting the notation

to higher dimensions, we have

max{Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

)− 1, 0} ≤ Pyz(WARP violated)

≤ min
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
,

where

Bt ≡ {q : p′tq = yt,q = 0}
and

Bt,s ≡ {q : p′tq = yt,p
′
sq ≤ ys,q = 0} .

The analysis could be generalized to mixed continuous-discrete distributions, but the necessary

bookkeeping regarding point masses becomes very tedious. The worst-case bounds are illustrated

in the following example, which we will revisit later.

Example 1. Let there be three goods, let p1 = (10, 6, 5), p2 = (5, 10, 6), and y1 = y2 =

30. The according budget triangles are most easily described by their corners: B1 is spanned

by ((3, 0, 0), (0, 5, 0), (0, 0, 6)), B2 is spanned by ((6, 0, 0), (0, 3, 0), (0, 0, 5)). Assume that Q1 is

supported on (a1, a2, a3) = ((5/7, 0, 32/7), (1, 0, 28/7), (9/7, 20/7, 0)), that Q2 is supported on

(b1,b2) = ((0, 0, 5), (6, 0, 0)), and that the joint distribution of (Q1,Q2) is characterized by the

following population-level contingency table, where the bold row and column indicate marginal

distributions.

b1 b2

a1 1/4 0 1/4

a2 0 1/4 1/4

a3 1/4 1/4 1/2

1/2 1/2
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It is easily calculated that of the support of Q1, only a2 lies on B1,2. On the support of Q2, it

is b1 that lies on B2,1. Thus, there is no violation of WARP. Using only the marginals, one would

find Pyz(Q1 ∈ B1,2) = 0.25, Pyz(Q2 ∈ B2,1) = 0.5, and

0 ≤ Pyz(WARP violated) ≤ 0.25.

Tightness of bounds follows from known results, but it is instructive to inspect the joint

distributions that achieve the bounds. To do so, order elements of Bs increasingly according to

p′tq, i.e. according to how expensive they would be given time t prices. Similarly, order elements of

Bt according to p′sq but in decreasing order. These orderings have in common that their level sets

are parallel to Bs∩Bt; furthermore, they identify Bs,t as a lower and Bt,s as an upper contour set.8

Then the lower Fréchet-Hoeffding bound is achieved by assuming that all consumers maintain

their quantile position with respect to these orderings, and the upper bounds are achieved by

inversion of the orderings.

In two dimensions, these orderings are the ones we identified before, and they have clear

intuitions. In higher dimensions, the case is more complicated. Quite literally, the consumers

are ordered according to how much one would have to pay them (or tax them) so that they

could just afford their previous consumption bundle. This ordering does not have much economic

significance.9 In particular, it is hard to see how an ordering of subjects on Bs that depends

on time t prices (and vice versa) would arise from natural restrictions on behavior. Therefore,

while the mechanism generating the bounds is instructive, we do not claim that it corresponds to

compelling behavioral assumptions. This raises the question whether interesting results can be

generated either without ordering Bs and Bt beforehand or by ordering them in a more natural

way.

We now explore the idea of weakly maintaining, with varying degrees of stringency, the ordering

of consumers with respect to the orthants, i.e. with respect to “taste for good k.” Mathematically,

these orderings may appear arbitrary because they privilege the standard basis over other possible

bases of Euclidean space. Substantively, however, there may be reason to do just that: Co-

8Tie-breaking rules of the orderings matter only if distributions have mass points, which were assumed away.
9To see a vestige of economic meaning, assume for the moment that preferences exist and consider the problem

of bounding the compensating variation for a consumer who moves from Bs to Bt. With the few assumptions

imposed here, a lower bound on this CV will always be zero because the consumer could be indifferent across all

bundles. The upper bound is given by (p′tqs−yt), the payment needed so that the consumer can afford her previous

bundle. The ordering over Bs therefore accords with the upper bound on compensating variation as consumers

move from Bs to Bt, whereas a similar reasoning reveals that the ordering on Bt accords with an upper bound on

equivalent variation. Perfectly positive dependence then means that both orderings coincide, perfectly negative

dependence maximizes their disagreement.
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ordinatewise orderings map onto an interesting dimension of heterogeneity if goods are substitutes

and complements only to a limited degree, so that a high demand for good k indeed indicates

taste for it. Whether this assumption is defensible depends on how the orthants are defined. The

favorable case would be that they correspond to well separated groups of nondurables. We also

note that none of the below assumptions induce bounds that are easily expressed in closed form;

in particular, although they are adaptations of quantile constancy and its weakenings, they do

lead not to analogs of the preceding section’s lemmas.

The strongest possible generalization of quantile constancy would be to maintain that all

consumers keep their quantile position with respect to every good:

Definition 5. Let
(
Qs,Qt

)
and (Q̃s, Q̃t) be distributed independently according to the distribution

of (Qs,Qt). The copula joining Qs and Qt exhibits co-ordinatewise quantile constancy if

(
Qs − Q̃s

)
¯

(
Qt − Q̃t

)
= 0

a.s., where ¯ denotes the componentwise product. In words, any matching components of
(
Qs − Q̃s

)

and
(
Qt − Q̃t

)
are concordant (their product is non-negative) a.s.

Co-ordinatewise quantile constancy is perhaps the most natural generalization of quantile

constancy. It is obviously quite strong; indeed, it is not only point identifying but testable in the

sense of generating cross-marginal restrictions that might be violated in the data.10 A less obvious

observation is that co-ordinatewise quantile constancy generalizes the intuition behind quantile

constancy but has a quite different impact. In particular, it need not lead to the lower worst-case

bounds, as is illustrated in our example.

Example 2. (continued) The fictitious population distributions are compatible with co-ordinatewise

quantile constancy. They then imply that P(WARP violated) = 0.25. If the location of b2 were

changed to (0, 3, 0), co-ordinatewise quantile constancy would have to be violated.

Co-ordinatewise quantile constancy turns out to generate the upper worst-case bounds (admit-

tedly due to careful rigging of the example). Intuitively, what happens here is that we maintain an

ordering of consumers on budget planes that might be substantively plausible but that disagrees

with the ordering underlying the lower worst-case bounds.

10Hence, despite our wording, it is not strictly an assumption about copulas only and accordingly not known

in the copulas literature. Heterogeneous Cobb-Douglas preferences constitute an important special case where the

assumption is fulfilled.
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One might complain that co-ordinatewise quantile constancy is too strong an assumption,

especially when it is incompatible with the data but even otherwise. We therefore turn to weak-

enings of it. All of these are assumptions about copulas proper and, therefore, not testable from

observation of marginals.

To begin, one could impose quantile constancy not along all orthants simultaneously, but first

along one, then (conditionally) another one and so forth.

Definition 6. The copula joining Qs and Qt exhibits triangular quantile constancy with respect

to an ordering (i1, . . . , im) of orthants if for independent random variables
(
Qs,Qt

)
and (Q̃s, Q̃t)

distributed as (Qs,Qt),

Q
i1
s ≥ Q̃i1

s ⇐⇒ Q
i1
t ≥ Q̃i1

t[
Q

i1
s = Q̃i1

s

]
=⇒

[
Q

i2
s ≥ Q̃i2

s ⇐⇒ Q
i2
t ≥ Q̃i2

t

]

etc.,

where Q
i1
s is the i1-component of Qs etc.

Triangular quantile constancy weakens co-ordinatewise quantile constancy by specifying a tie-

breaking rule if maintenance of quantile positions along different orthants would encounter a con-

tradiction. Note that the assumption’s impact generally depends on how one orders the orthants;

it is invariant to interchange of orthants, and at the same time coincides with co-ordinatewise

quantile constancy, if (and only if) the latter is compatible with the data. While not previously

known in the copulas literature, triangular quantile constancy resembles assumptions made in

the literature on nonparametric demand estimation. An obvious problem is that the ordering of

orthants will typically be arbitrary, thus point identification is arguably achieved at a high cost

in terms of credibility.

We therefore also propose some assumptions that are symmetric with respect to permutations

of the orthants, hence they do not depend on how the orthants are ordered. The assumptions

weaken co-ordinatewise quantile constancy in a different way, namely by merely requiring that

quantile positions are maintained in some stochastic sense.

Definition 7. The copula linking Qs and Qt exhibits co-ordinatewise positive quadrant dependence

if Pyz(Q
i
s ≥ a,Qi

t ≥ b) ≥ Pyz(Q
i
s ≥ a,Qi

t ≥ b) for all scalars a, b and orthants i ≤ m.

Definition 8. The copula linking Qs and Qt exhibits association if Pyz(Qs ∈ A,Qt ∈ B) ≥
Pyz(Qs ∈ A)Pyz(Qt ∈ B) for all upper contour sets A and B.
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Both definitions generalize the idea behind quadrant dependence, the former one by applying

it separately along each orthant, the latter one by allowing for general upper contour sets. As-

sociation is strictly stronger; it is also the assumption that previously appeared in the literature

(Esary et al. (1967)).

On the face of it, the assumptions enforce some consistency of tastes across budget problems

and hence, appear optimistic in the sense of limiting the probability of violating WARP. This

impression is not quite accurate for two reasons. The less important one is that both assumptions

are fulfilled by the independent copula as a boundary case, hence neither of them will exclude the

possibility that Pyz(Qs ∈ Bs,t,Qt ∈ Bt,s) = Pyz(Qs ∈ Bs,t)Pyz(Qt ∈ Bt,s). In particular, neither

will reduce the upper bound on Pyz(WARP violated) to zero unless it was zero to begin with.

More importantly, just as with co-ordinatewise quantile constancy, the assumptions can actually

be pessimistic in the sense of refining bounds from below but not from above.

Example 3. (continued) Imposing triangular quantile constancy, with the first orthant having

highest priority, implies Pyz(WARP violated) = 0.25. Imposing association refines the bounds

to 0.125 ≤ Pyz(WARP violated) ≤ 0.25.11 Merely imposing co-ordinatewise positive quadrant

dependence does not affect the bounds.

Our example indicates that the potential tension between apparently reasonable assumptions

and WARP remains; thus, it contains a piece of cautionary advice for users who wish to use

specifications of this type in nonparametric analysis of demand. Triangular quantile constancy

point identifies Pyz(WARP violated) at its highest possible level, and association refines away

the lower half of the identified set. In particular, both assumptions imply spurious violations of

WARP – the lower bound is strictly positive even though the data were generated by rational

consumers. Intuitively plausible restriction on copulas in higher dimensional commodity spaces

may in general (although certainly not for every particular data set) be logically inconsistent with

presuming consumer rationality. The intuitive reason why this can happen is again the same:

The ordering of consumers that is maintained – at least in some stochastic sense – is simply not

relevant for the Fréchet-Hoeffding problem.

3 Hypothesis Tests and Confidence Intervals

Estimation of bounds presents a relatively routine nonparametric estimation problem, and we will

give details on our procedure in the empirical section. Inference on partially identified parameters,

however, raises a number of conceptual and technical issues that are the subject of a currently

11This claim is established in the appendix.
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active literature, notably (for our purposes) Andrews and Soares (2007), Imbens and Manski

(2004), and Stoye (2009). To tackle these, we continue to assume continuity of relevant population

distributions, and we also focus on worst-case Fréchet bounds, that is, we use (2.1.2) to construct

confidence regions for parameters of interest

θyz ∈ Θyz = [max{πyz − ψyz, 0}, min{πyz, 1− ψyz}] ,
where

πyz = Pyz(Qs < (yt − ys)/(pt − ps))

ψyz = Pyz(Qt < (yt − ys)/(pt − ps)).

We will assume the following:

Assumption 2. There exist estimators

π̂yz = P̂yz(Qs < (yt − ys)/(pt − ps))

ψ̂yz = P̂yz(Qt < (yt − ys)/(pt − ps))

such that
√

φn

[
π̂yz − πyz

ψ̂yz − ψyz

]
d→ N

([
0

0

]
,

[
σ2

πyz ρyzσπyzσψyz

ρyzσπyzσψyz σ2
ψyz

])
,

where φn = nhd, h being the kernel bandwidth and d the dimensionality of (Y, Z), and where

estimators (σ̂πyz, σ̂ψyz, ρ̂yz) are available.

In our application, we estimate σ̂πyz and σ̂ψyz and set ρ = 0 since samples are drawn from

different time periods. The latter leads to algebraic simplification in several of the results reported

below; we exploit these simplifications in our implementation but omit them here. Also, all results

apply equally if the distribution of
√

φn

(
π̂yz − πyz, ψ̂yz − ψyz

)
is approximated by a bootstrap

distribution Fπ∗yz−bπyz ,ψ∗yz− bψyz
, provided of course that this approximation can be justified. It is the

bootstrap version that we implement in the next section.

Two major issues regarding inference in this setting are the following. First, should a confidence

region cover the identified set, i.e. the relevant coverage probability is P(Θyz ⊆ CI1−α(Θ)),

or should it cover the partially identified parameter, i.e. the relevant coverage probability is

P(θyz ∈ CI1−α(θ))? The answer plainly depends on what is conceived as the quantity of interest.

We will leave the choice to the reader and develop both types of inference.

Second, some simple confidence regions will display undesirable behavior because they fail to

account for non-pivotality of underlying test statistics. More specifically, observe that identifica-

tion through Fréchet bounds can be seen as identification through moment inequalities:

max{πyz − ψyz, 0} ≤ θyz ≤ min{πyz, 1− ψyz}
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is equivalent to the conjunction of

πyz − ψyz − θyz ≤ 0 (3.1a)

−θyz ≤ 0 (3.1b)

θyz − πyz ≤ 0 (3.1c)

θyz − 1 + ψyz ≤ 0. (3.1d)

Confidence intervals will be lower contour sets of a test statistic that aggregates violations of

sample versions of these inequalities. The distribution of this statistic depends on which inequal-

ities bind, and it is not possible to pre-test for the binding inequalities with sufficient precision in

boundary cases where one or more inequalities are close to binding. In line with the recent liter-

ature on moment inequalities, we resolve this by using conservative pre-tests. Conceptually, this

method is by now well understood, including results for very general settings. By exploiting the

specific structure of the present problem, we can however improve on mechanical implementation

of available methods. In particular, we know that (3.1a) and (3.1b) as well as (3.1c) and (3.1d)

potentially compete, and we will accordingly pre-test for the comparison of those pairs of inequal-

ities. What is more, (3.1b) is nonstochastic, simplifying some developments. In a final step, one

should generally also pre-test for the possibility that the upper and lower bound simultaneously

bind at the true parameter value, that is, there is point identification. Simple algebra shows that

in the present case, this obtains if min{πyz, 1− πyz, ψyz, 1− ψyz} = 0. These cases are frequently

simple to pre-test because they involve degenerate probabilities; furthermore, all data points that

we consider below are far away from them. We will therefore ignore this aspect by assuming the

following:

Assumption 3. ε ≤ πyz, ψyz ≤ 1− ε for some ε > 0.

Assumption 3 greatly simplifies matters because it implies that Θyz is asymptotically large

relative to standard errors.

Many of the ideas presented in this section can be extended to inference on Fréchet-Hoeffding

bounded probabilities more generally and without assumption 3; we do this in ongoing research.

We also reiterate that the ideas can be equivalently used if the above, normal approximation is

replaced with a bootstrap approximation. It is important to understand, however, that use of the

bootstrap does not automatically resolve the pre-testing problems analyzed here. That is, valid

inference requires that one bootstrap the above sampling distribution but then use conservative

pre-tests as detailed below. Also, we keep the treatment simple by formulating simple pre-tests

in which certain nulls are either rejected or not. Smooth pre-tests (corresponding to smooth
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shrinkage, rather than thresholding, for certain test statistics) might seem conceptually appealing,

but experience with inference on moment inequalities suggests that gains from such refinements

are at best moderate (Andrews and Jia (2008)). In our application, empirical results are clear

enough that we desist from complicating the analysis by such refinements.

Unlike papers cited above, we will not establish uniform (in parameter space) validity of our

confidence regions. However, this is only because we would then require uniform validity of

asymptotic joint normality respectively the bootstrap, and we do not wish to get into the required

regularity conditions. The pre-tests inherent in our constructions do avoid the aforementioned,

non-pivotality driven uniformity failures.

3.1 One-Sided Confidence Regions

We first construct one-sided confidence regions for the upper and lower bound on θyz. Let σ̂2
sum =

σ̂2
πyz + σ̂2

ψyz − 2ρ̂yzσ̂πyzσ̂ψyz and

cl
1−α = Φ−1(1− α)σ̂sum,

where Φ is the standard normal c.d.f. Then we have:

Lemma 3.1. Let assumption 2 hold. Then

lim
n→∞

P
(
max{πyz − ψyz, 0} ≥ max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

})
= 1− α.

This one-sided confidence interval will be conservative if πyz − ψyz < 0, reflecting that the

underlying testing problem is then degenerate.

One-sided testing for the upper bound presents additional problems because

φ
1/2
n

(
min

{
π̂yz, 1− ψ̂yz

}
−min {πyz, 1− ψyz}

)
is not an asymptotic pivot. We resolve this issue

by implicitly shrinking φ
1/2
n (πyz + ψyz − 1) toward zero, making for a test that is pointwise exact

and uniformly valid, but conservative along certain local parameter sequences. Thus, let bn be a

user-defined sequence s.t. bn → 0 but φ
1/2
n bn →∞. If

∣∣∣π̂yz + ψ̂yz − 1
∣∣∣ ≤ bn, let cu

1−α be s.t.

ΦBV N

(
cu
1−α, cu

1−α; 0, 0, σ̂πyz, σ̂ψyz,−ρ̂yz

)
= 1− α,

where ΦBV N(z1, z2; µ1, µ2, σ1, σ2, ρ) denotes the bivariate normal c.d.f. with the indicated param-

eters, evaluated at (z1, z2). If π̂yz + ψ̂yz − 1 < bn, let cu
1−α = σ̂πyzΦ

−1(1− α); if π̂yz + ψ̂yz − 1 > bn,

let cu
1−α = σ̂ψyzΦ

−1(1− α). Then we have:
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Lemma 3.2. Let assumption 2 hold. Then

lim
n→∞

P
(
min {πyz, 1− ψyz} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

)

= lim
n→∞

P
(
min {πyz, 1− ψyz} ≥ min

{
π̂yz, 1− ψ̂yz

}
− φ−1/2

n cu
1−α

)

= 1− α.

Here, the first claim will be used in the next subsection, and the second one is relevant to

test statistical significance of strictly positive upper bounds, as we will do later. Note that if π̂yz

and 1− ψ̂yz are similar with similar estimated standard errors and we furthermore have ρyz = 0,

then calibration of cu
1−α from the bivariate standard normal distribution is essentially equivalent to

setting cu
1−α = σ̂ψyzΦ

−1((1− α)1/2) ≈ σ̂ψyzΦ
−1(1−α/2), where the last step presumes a reasonably

small α. This simplification will hold in our application.

3.2 Inference on the True Parameter

We now construct confidence regions for the partially identified parameter θyz. An according

confidence region CI(θ) must fulfil

lim
n→∞

inf
θyz∈Θyz

P(θyz ∈ CI1−α(θ)) = 1− α.

Here, the inf-operator reflects the fact that coverage probabilities cannot in general be approached

uniformly over Θyz. For example, if Θyz has an interior, then it is typically the case that any

reasonable estimator of it is a 100%-confidence region for any θyz in this interior. The coverage

probability of 1− α therefore pertains to a least favorable choice of θyz within Θyz.

A valid construction is here straightforwardly defined as

CI1−α(θ) =
[
max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

}
, min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

]
,

i.e. by intersecting the one-sided (1 − α)-confidence intervals for the upper and lower bound.

Intuitively, this works because under our assumptions, the length of the identified set is asymp-

totically large relative to standard errors, thus the corresponding hypothesis testing problem is

either one-sided (if θyz is on the boundary of Θyz) or degenerate (if it is interior). Formally, we

observe the following.

Lemma 3.3. Let assumptions 2 and 3 hold. Then

lim
n→∞

inf
θyz∈Θyz

P(θyz ∈ CI1−α(θ)) = 1− α.
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3.3 Inference on the Identified Set

A confidence region for Θyz is constructed by projecting a simultaneous confidence set for the

upper and lower bound. Thus, let

(z1, z2) ∼ N

([
0

0

]
,

[
σ̂2

πyz ρ̂yzσ̂πyzσ̂ψyz

ρ̂yzσ̂πyzσ̂ψyz σ̂2
ψyz

])
.

Let the sequence bn be as before and let (cl, cu) minimize (cl + cu) (and thus the length of the

resultant confidence region) subject to the constraint that

P(z1 ≥ −cu, z2 ≤ cu, z1 − z2 ≤ cl) ≥ 1− α

if
∣∣∣π̂yz + ψ̂yz − 1

∣∣∣ ≤ bn,

P(z1 ≥ −cu, z1 − z2 ≤ cl) ≥ 1− α

if π̂yz < 1− ψ̂yz, and

P(z2 ≤ cu, z1 − z2 ≤ cl) ≥ 1− α

otherwise. Let

CI1−α(Θ) =
[
max

{
π̂yz − ψ̂yz − φ−1/2

n cl, 0
}

, min
{

π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
]

if π̂yz − ψ̂yz > −bn and

CI1−α(Θ) =
[
0, min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

]

otherwise, where cu
1−α is as in section 3.1. Intuitively, the final case distinction exploits the fact

that if πyz − ψyz is known to be negative, then noncoverage risk is exclusively incurred at the

interval’s upper end. Then:

Lemma 3.4. Let assumption 2 hold. Then

lim
n→∞

P(Θyz ⊆ CI1−α(Θ)) = 1− α.

3.4 Testing for Violations of WARP

Recall that a corollary of bounds on Pyz(WARP violated) is a delineation of the empirical content

of WARP in repeated cross-sectional data: these are compatible with WARP as long as the lower

bound is zero. It is, therefore, of special interest to test whether the lower bound is nonzero for

at least some (y, z). To do so, it is not appropriate to just collect values of (y, z) for which the

preceding confidence region fails to include 0 – simultaneously applied to many such values, this
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approach would tend to generate false positives. One must therefore control for familywise error

rates. Given the large number of values (y, z), a Bonferroni correction would, on the other hand,

be hopelessly conservative. We rather propose to use current developments in the econometrics

of partial identification. Specifically, the null hypothesis that the lower bound on Pyz(WARP

violated) equals zero for all (y, z) can be written as

H0 : (πyz − ψyz ≤ 0) ,∀(y, z) ⇐⇒ max
y,z

{πyz − ψyz} ≤ 0.

The second way of writing the hypothesis reveals that testing it would be an application of

current work by Chernozhukov, Lee, and Rosen (2009). Specifically, they propose to test this

hypothesis by the following algorithm:

• Pre-select a conservative (that is, guaranteed to be too large in the limit) estimator V̂ of

V = arg maxyz {πyz − ψyz}.

• Letting θ(yz) be the population objective function, θ̂(yz) an estimator, and σ̂(yz) an esti-

mator of the pointwise standard error of θ̂, simulate the distribution of the studentized error

process τ(yz) =
(
θ̂(yz)− θ(yz)

)
/σ̂(yz). Let τ ∗ be the (1− α)-quantile of supyz τ(yz).

• Reject the null if supyz

{
θ̂(yz)− τ ∗σ̂(yz)

}
> 0.

Results in Chernozhukov, Lee, and Rosen (2009) imply that the method could be imple-

mented here, provided we impose enough assumptions to ensure uniform consistency of estimators(
π̂yz, ψ̂yz

)
. We desist from such an implementation because our empirical results imply that the

result will be acceptance of H0. The method might be important, though, in other data sets that

may generate (potentially spurious) indications of violations of WARP. We also note that essen-

tially the same remarks apply to testing whether the upper bound is ever significantly positive,

which is equivalent to testing for rejection of

H ′
0 : (min{πyz, 1− ψyz} ≤ 0) ,∀(y, z) ⇐⇒ max

y,z
{min{πyz, 1− ψyz}} ≤ 0.

4 Empirical Application: WARP and the British House-

hold Expenditure Survey

In this section, we analyze a real world data set with the framework we propose in this paper. The

data come from the Family Expenditure Survey (FES) and were the basis for successful, recent

applications of revealed preference approaches (Blundell, Browning, Crawford (2003, 2008)). This

section is structured as follows: We first provide a description of the data we use. Then we present

some econometric details. Finally, we display the empirical results.
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4.1 Description of the Data

The FES reports a yearly cross section of labor income, expenditures, demographic composition

and other characteristics of about 7,000 households. We use the years 1974-1993, but exclude the

respective Christmas periods as they contain too much irregular behavior. As is standard in the

demand system literature, we focus on the subpopulation of two person households where both

are adults, at least one is working, and the head of household is a white collar worker. This is

to reduce the impact of measurement error; see Lewbel (1999) for a discussion. We provide a

summary statistic of our data in table 1 in the appendix.

We form several expenditure categories. The first category is related to food consumption

and consists of the subcategories food bought, food out (catering) and tobacco. The second

category contains housing expenditures, namely rent or mortgage payments and household goods

and services, excluding furniture. The last group consists of motoring and fuel expenditures. For

brevity, we call these categories food, housing and energy. These broader categories are formed

since more detailed accounts suffer from infrequent purchases (recall that the recording period

is 14 days) and are thus often underreported. These three categories account for 20-30% of

total expenditure on average, leaving a fourth residual category. Results actually displayed were

generated by considering consumption of food versus nonfood items, but similar analyses were

performed for all of the goods, and with similar results. We removed outliers by excluding the

upper and lower 2.5% of the population in the three groups.

For the pairwise comparisons, we normalize prices by dividing all variables by the general

price index excluding the good into consideration (in particular, for food we consider the price

of food vs. the price of all nondurable goods except food). This removes both general inflation

and transforms all prices to be relative to the price index. Quantities are defined by dividing the

normalized expenditures by the respective normalized price, e.g. food by the food price index.

We also divide total expenditure by the price index.

To account for possible endogeneities, i.e. violations of assumption 1, we use labor income

as an instrument. It is constructed as in the household below average income study (HBAI),

that is, it is roughly defined as labor income after taxes and transfers. We include the remaining

household covariates as regressors. Specifically, we use principal components to reduce the vector

of remaining household characteristics to a few orthogonal, approximately continuous components,

mainly because we require continuous covariates for nonparametric estimation. Since we already

condition on a lot of household information by using the specific subgroup, we only use the first

principal component. While this is arguably ad hoc, we perform some robustness checks like

alternating the component or adding several others, and results do not change appreciably.
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4.2 Econometric Specification and Empirical Results

We estimate conditional probabilities (πyz, ψyz) via a locally linear estimator with a standard

Epanechnikov kernel. The bandwidth is selected by cross validation. We checked the sensitivity

of our results by varying the bandwidth; there was no material effect on results. Sampling distri-

butions of φ
1/2
n

(
ψ̂yz − ψyz

)
and φ

1/2
n (π̂yz − πyz) were simulated by a hybrid bootstrap (Shao and

Tu (1995)). Specifically, we use the inverted c.d.f. of Fψ̂∗yz−ψ̂yz
, where ψ̂∗yz denotes the bootstrap es-

timator and ψ̂yz the original estimator, to derive a consistent estimator for Fψ̂yz−ψyz
, and similarly

for π̂yz. As elaborated before, we also assume that ψ̂yz and π̂yz are generated from independent

samples.

When applying our local polynomial estimators to the choice data, we proceed as follows:

We first group the population into “bands” of three years, e.g., we collect all people surveyed in

the years 1974-1976 into one group. This is done to increase the number of observations. As a

consequence, our cross sections actually comprise 3 years, and we assume the individuals to face

the mean price in this period.12 We then make pairwise comparisons for all pairs of groups that

are not too distant in time. This is done because for groups that are many years apart, apparent

violations of WARP could plausibly be driven by changing preferences. Specifically, we compare

every cross section with the two adjacent ones only.

Our first important finding is that for most such comparisons, the income change swamps the

price effect, leading to upper bounds of zero. This is easy to explain: The order of magnitude of

the relative price change is −0.05, while most quantities are around 10. Thus, the overall effect of a

price change on quantities is Ξts = (pt − ps) Qs ≈ 0.5. Figure 2 provides a graphical representation

of the density of this effect in the second year (so the variable is Ξ22 = (p3 − p2) Q2, corresponding

to the years of 1978 and 1981).

Fig. 2 approx. here

The probability mass is highly concentrated between −1 and 0. In contrast, mean real income

increased in the same two periods from 50.4 to 54.3, and median income increased less dramatically

from 43.5 to 45.5. Still, the typical case is that πyz = 1−ψyz = 0, so that Pyz(WARP violated) is

point identified at 0.

Of course, this observation might not attest to the population’s rationality but rather to the

income and price processes being uninformative. Hence, we focus on regions in the data that

are at least potentially informative, as operationalized by a nonzero upper bound on Pyz(WARP

12This induces a measurement error. Compared to the already incurred measurement error, and in light of the

fact that all that matters is the change in prices, we feel that this is a minor issue.
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violated). For instance, given the distribution of Ξ22, we focus on income changes that are be-

tween 0 and −1, i.e. individuals who become marginally poorer. The following density shows

the distribution of the upper bound on a 10 × 10 grid that combines each of the (9, 18, ..., 90)-

quantiles of the income distribution in the period (1977-1982) with all of the income changes in

(−1,−0.9, ...,−.1). Hence, we focus on consumers who experienced small income losses but look

at varying positions of the income distribution; see figure 2. This choice of subsample is certainly

ad hoc; we leave to future research a more systematic treatment of the choice of region for which

the data is informative. Figures 3 and 4 display our results. We start with the distribution of the

point estimate for the upper bound in our subsample.

Fig. 3 approx. here

The point estimate of the upper bound exceeds 1% in 93 out of the 100 points of support of the

regressors; it exceeds 5% (the threshold indicated by the vertical line) in 80 cases. Thus, the data

appear potentially informative about WARP. To check whether the positive values are statistically

significant, we use lemma 3.2 to compute a lower confidence bound for the upper bound. That

is, we pre-test for equality of πyz and (1− ψyz) at significance level τn = 0.01 (of course, the idea

is that τn → 0 as n → ∞). If equality is rejected, we form a standard 95% confidence band for

whichever of πyz and (1− ψyz) appears smaller; if it is not rejected, we form joint confidence sets,

which are effectively 97.5% for either parameter because πyz ≈ (1− ψyz) in these cases. (See the

elaborations after lemma 3.2 for a more detailed explanation.) We reiterate that this inference is

locally conservative if πyz ≈ (1− ψyz), but that this feature is unavoidable unless one is willing to

sacrifice validity of confidence regions for these local cases.

Many of the positive upper bounds are statistically significant. In 84 out of 100 cases, the lower

confidence interval is above 0.01. The mean and median of the upper bound are 0.177 respectively

0.146. More than a third of cases are above 0.25, while the 95% bootstrap CI usually has length

between 0.10 and 0.15. Figure 4 shows the distribution of the upper bound and that of the lower

end of the 95% bootstrap CI around the upper bound.

Fig. 4 approx. here

While these numbers should be interpreted with care due to our failure to control familywise error

rates, they do suggest that the data are reasonably informative – in the sense of allowing for

potential violation of WARP – in this selected subpopulation. Still, figure 5 illustrates that we

find hardly any evidence against WARP.

Fig. 5 approx. here
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The lower bound is typically close to zero even in this informative subpopulation; it exceeds 0.05

in only 1 out of 100 instances. What is more, one-sided 95% bootstrap confidence intervals for

πyz − ψyz, constructed in accordance with lemma 3.1, include zero at 97 of 100 positions on our

grid. Hence, we cannot statistically distinguish the positive lower bounds from zero even with

confidence regions that fail to control familywise error rates.

We now showcase the effect of one of the refinements discussed in section 2. Specifically, we

impose positive quadrant dependence (PQD; see section 2.1.3). The refined bounds are illustrated

in figure 6, and figure 7 shows through a comparison the effect of the introduction of PQD on the

distribution of the upper bound.

Figs. 6,7 approx. here

As explained in section 2, PQD will not induce refined upper bounds of zero unless worst-case

upper bounds were zero, however the upper bounds are much reduced, typically by 50−75%. The

highest possible proportion of “violators” is substantially reduced and exceeds 20% only at very

select data points. Having said that, most of the positive bounds are statistically significantly

so, with many p-values being small enough that controlling for familywise error rates would not

overturn this conclusion. Hence, the data are still consistent with some violations of WARP. Lower

bounds on Pyz(WARP violated) remain zero because in the two-dimensional case, PQD refines

worst-case bounds from above but not below; recall that this is not true for natural generalizations

of it in the higher dimensional case. We interpret this finding as being supportive of rationality:

While WARP in isolation may be a rather weak restriction, combined with the plausible PQD

property imposed on the population, the restriction becomes more stringent. And while the data

are still potentially informative about this restriction (as indicated by the significantly positive

upper bound), we still do not detect violations.

None of these results change appreciably if we include a measure of household characteristics

and/or correct for endogeneity using a control function approach. Moreover, they are stable across

the large groups of goods we consider, for pairwise comparisons (e.g., energy vs. non-energy). In

summary, we tend to think that at least as a reasonable approximation to behavior, WARP is

more corroborated than questioned by these data, but we would like to emphasize the need for

further research with other data.

5 Conclusion

This paper investigated exactly what power revealed preference assumptions have under realistic

data constraints. The leading question was to bound the fraction of a population that violates
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WARP given repeated cross-section data. Side results were to elucidate the exact empirical content

of WARP and to carry out an inference exercise that applies recent insights about inference under

partial identification. The empirical result with respect to the U.K. Family Expenditure Survey is

that even for those observations where budget planes meaningfully overlap, as reflected by large

upper bounds on the probability of violating WARP, lower bounds are not significantly positive,

i.e. WARP cannot be rejected. Furthermore, imposing a very weak, nonparametric limitation

on heterogeneity (namely, positive quadrant dependence with respect to budget shares spent on

different goods) leads to uniformly rather small, though not uniformly zero, upper bounds.

The core difference between this paper and existing work that estimates demand for applied

purposes is that we consider the revealed preference paradigm on individual level in isolation,

being careful to impose no or very weak homogeneity assumptions. This, of course, leads to less

conclusive results. While the data may be interpreted to be mildly supportive of WARP, this

could certainly be due not to the population being substantively rational, but to the weak axiom

being, well, weak. To be sure, we do not mean to implicitly criticize other papers, but rather to

augment them by showing how much mileage can be gained from revealed preference assumptions

proper. Thus, our motivation is somewhat similar to early papers on partial identification of

treatment effects, which frequently stress the conceptual value of understanding just how much

one could learn from the data without identifying assumptions. Insofar as the result is somewhat

negative, the substantive upshot might well be a corroboration of approaches that use stronger

assumptions. We hope, however, to illuminate just how much sharper conclusions than ours will

depend on using sharper assumptions, whether or not these assumptions are formally semi- or

nonparametric.
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Appendix I - Summary Statistics of Data: Household Char-

acteristics, Income and Normalized Expenditures

Variable Minimum 1st Quartile Median Mean 3rd Quartile maximum

number of female 0 1 1 1.073 1 2

number of retired 0 0 0 0.051 0 1

number of earners 0 1 2 1.692 2 2

Age of HHhead 19 31 49 46 58 90

Fridge 0 1 1 0.987 1 1

Washing Machine 0 1 1 0.882 1 1

Centr. Heating 0 1 1 0.804 1 1

TV 0 1 1 0.874 1 1

Video 0 0 0 0.407 1 1

PC 0 0 0 0.792 0 1

number of cars 0 1 1 1.351 2 10

number of rooms 1 4 5 5.455 6 26

HHincome 6.653 37.550 52.210 61.820 73.920 3981.000

Food 0 5.565 7.346 7.867 9.602 52.519

Housing 0 4.052 7.859 9.715 12.910 375.486

Energy 0 1.271 1.812 2.121 2.509 34.103
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Appendix II - Proofs

Proposition 1 Recall the Fréchet-Hoeffding bounds: For any two random variables X1 and X2

and events (in the relevant algebras) A1 and A2, one has the tight bounds

max{P(X1 ∈ A1) + P(X2 ∈ A2)− 1, 0} ≤ P(X1 ∈ A1, X2 ∈ A2) ≤ min{P(X1 ∈ A1),P(X2 ∈ A2)}.

To see validity of the lower bound, note that

Pyz(WARP violated)

= Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps), Qs 6= Qt)

= Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps))−
Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps), Qs = Qt)

≥ Pyz(Qs ≤ (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps))− Pyz(Qs = Qt = (yt − ys)/(pt − ps))

≥ max {Pyz(Qs ≤ (yt − ys)/(pt − ps))− Pyz(Qt < (yt − ys)/(pt − ps)), 0} −
min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps))} ,

where the first equality spells out the event that WARP is violated, the next two steps use

basic probability calculus, and the last step uses the lower Fréchet-Hoeffding bound on Pyz(Qs ≤
(yt − ys)/(pt − ps)), Qt ≥ (yt − ys)/(pt − ps)) as well as the upper Fréchet-Hoeffding bound on

Pyz(Qs = Qt = (yt − ys)/(pt − ps)). The expression in the lemma is generated by taking the

maximum between the last expression and zero, observing that this renders redundant the max-

operator in the preceding display.

To see that the bound is tight, consider the joint distribution of (Qs, Qt) characterized as

follows: (i) a probability of min {Pyz(Qs = (yt − ys)/(pt − ps)),Pyz(Qt = (yt − ys)/(pt − ps))} is

assigned to the event (Qs = Qt = (yt − ys)/(pt − ps)), (ii) the remaining probability mass of Qs

and Qt is linked by the Fréchet-Hoeffding lower bound (perfectly positive dependence) copula.

To see validity of the upper bound, note that

Pyz(WARP violated) ≤ min {Pyz(Qs ≤ (yt − ys)/(pt − ps)),Pyz(Qt ≥ (yt − ys)/(pt − ps))}
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by the upper Fréchet-Hoeffding bounds and furthermore that

Pyz(WARP violated)

= Pyz((Qs ≤ (yt − ys)/(pt − ps), Qt > (yt − ys)/(pt − ps))

or (Qs < (yt − ys)/(pt − ps), Qt ≥ (yt − ys)/(pt − ps)))

= 1− Pyz(Qs ≥ (yt − ys)/(pt − ps), Qt ≤ (yt − ys)/(pt − ps))

≤ 1−min {Pyz(Qs ≥ (yt − ys)/(pt − ps)),Pyz(Qt ≤ (yt − ys)/(pt − ps))}
= max {Pyz(Qs < (yt − ys)/(pt − ps)),Pyz(Qt > (yt − ys)/(pt − ps))} ,

where all equalities use basic probability calculus and the inequality utilizes a lower Fréchet-

Hoeffding bound on Pyz(Qs ≥ (yt − ys)/(pt − ps), Qt ≤ (yt − ys)/(pt − ps)).

To see that the bound is tight, note that it is achieved by the Fréchet-Hoeffding upper bound

(perfectly negative dependence) copula.

Lemma 2.1 Validity of the bounds is immediate. To see that they are tight, note that it is

possible for lower [upper] bounds to be achieved simultaneously for every realization of (Ys, Yt, Z).

Lemma 2.2 Assume positive quadrant dependence. Recall that Bs,t is a lower contour set and

Bt,s an upper one, hence

Pyz(Qs /∈ Bs,t, Qt ∈ Bt,s) ≥ Pyz(Qs /∈ Bs,t)Pyz(Qt ∈ Bt,s),

hence

Pyz(Qs ∈ Bs,t, Qt ∈ Bt,s) = Pyz(Qt ∈ Bt,s)− Pyz(Qs /∈ Bs,t, Qt ∈ Bt,s)

≤ Pyz(Qt ∈ Bt,s)− Pyz(Qs /∈ Bs,t)Pyz(Qt ∈ Bt,s)

= (1− Pyz(Qs /∈ Bs,t))Pyz(Qt ∈ Bt,s) = Pyz(Qs ∈ Bs,t)Pyz(Qt ∈ Bt,s).

The refined lower bound for (ii) is established similarly. The old lower and upper bounds are tight

because the distributions that generate them are consistent with positive respectively negative

quadrant dependence. The bounds at Pyz(Qs ∈ Bs,t)Pyz(Qt ∈ Bt,s) are tight because independence

of Qs and Qt cannot be excluded.

Lemma 2.3 The main claim – shown in the next paragraph – is that Pyz(Qs ∈ Bs,t, Qt ∈
Bt,s) ≤ κ + Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

) − 1, which in conjunction with previous results

implies that Pyz(Qs ∈ Bs,t, Qt ∈ Bt,s) is bounded above by the r.h.s. minimum. The additional
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max-operator is needed because Pyz(Qs ∈ Bs,t, Qt ∈ Bt,s) ≥ 0, yet the minimum will be negative

if κ ≤ 1− Pyz(Qs ∈ Bs,t)− Pyz(Qt ∈ Bt,s). This observation also establishes the very last claim.

To see the main claim, observe that Bt,s corresponds to quantile positions [1−Pyz(Qt ∈ Bt,s), 1]

on Bt. It follows that under κ-limited quantile movements, consumers located on Bt,s can occupy

quantile positions on Bs not lower than [1 − Pyz(Qt ∈ Bt,s) − κ, 1 − κ]. On the other hand, Bs,t

corresponds to quantile positions [0,Pyz(Qs ∈ Bs,t)] on Bs. This implies the claim. A refinement

is obtained iff κ + Pyz

(
Qs ∈ Bs,t

)
+ Pyz

(
Qt ∈ Bt,s

) − 1 < min
{
Pyz

(
Qs ∈ Bs,t

)
,Pyz

(
Qt ∈ Bt,s

)}
,

which is equivalent to the inequality given in the lemma. Tightness obtains because whenever the

new upper bound binds, the quantile movements constructed to prove it are feasible. Finally, as

suggested by the bounds’ symmetry in the arguments, the same bound is obtained by projecting

the set of consumers who violate WARP onto Bt.

Example 3 The first and third claim are easy to see, we will establish the one regarding asso-

ciation. To see the lower bound, let U ≡ {q : (1, 2, 1) · q ≥ 5.1}, then U contains a1, a2, and b2

but not a2 or b1. Now write

Pyz(Q1 ∈ U,Q2 ∈ U) ≥ Pyz(Q1 ∈ U)Pyz (Q2 ∈ U)

⇐⇒ Pyz(Q2 ∈ U |Q1 ∈ U) ≥ Pyz (Q2 ∈ U)

⇐⇒ Pyz(Q2 /∈ U |Q1 ∈ U) ≤ Pyz (Q2 /∈ U)

⇐⇒ Pyz(Q2 /∈ U |Q1 /∈ U) ≥ Pyz (Q2 /∈ U)

⇐⇒ Pyz(Q2 = b1|Q1 = a2) ≥ Pyz (Q2 = b1) = 1/2,

implying the claim. The bound is tight because association allows for independence.

Lemma 3.1 Our assumptions immediately imply that

lim
n→∞

P
(
πyz − ψyz ≥ π̂yz − ψ̂yz − Φ−1(1− α)σ̂sumφ−1/2

n

)
= 1− α.

Let πyz − ψyz ≥ 0, then

lim
n→∞

P
(
max{πyz − ψyz, 0} ≥ max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

})

= lim
n→∞

P
(
πyz − ψyz ≥ π̂yz − ψ̂yz − φ−1/2

n cl
1−α

)

= 1− α.
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If πyz − ψyz < 0, then

lim
n→∞

P
(
max{πyz − ψyz, 0} ≥ max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

})

= lim
n→∞

P
(
π̂yz − ψ̂yz − φ−1/2

n cl
1−α ≤ 0

)

> lim
n→∞

P
(
π̂yz − ψ̂yz − φ−1/2

n cl
1−α ≤ πyz − ψyz

)

= 1− α.

Lemma 3.2 We only show the first claim, the proof for the second one is very similar. We

distinguish between three cases.

Case 1: πyz = 1− ψyz.

We then have

lim
n→∞

P
(
min {πyz, 1− ψyz} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

)

= lim
n→∞

P
(
min{π̂yz − πyz, 1− ψ̂yz − (1− ψyz)} ≥ −φ−1/2

n cu
1−α

)

= lim
n→∞

P
(
φ1/2

n min{π̂yz − πyz, 1− ψ̂yz − (1− ψyz)} ≥ −cu
1−α

)

= lim
n→∞

P
(
φ1/2

n max{π̂yz − πyz, ψyz − ψ̂yz} ≤ cu
1−α

)

= 1− α,

where the first step uses that πyz = 1− ψyz, and the last steps use distributional assumptions as

before.

Case 2: πyz < 1− ψyz.

In this case, we have cu
1−α = σ̂πyzΦ

−1(1− α) with probability approaching one, and

lim
n→∞

P
(
min {πyz, 1− ψyz} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

)
= lim

n→∞
P

(
πyz ≤ π̂yz + φ−1/2

n cu
1−α

)
= 1−α.

Case 3: πyz > 1− ψyz.

This case is entirely similar to case 2.

Note finally that the pre-test will not be consistent along local alternatives where πyz+ψyz−1 =

O(φ
−1/2
n ), but it is easy to see that the confidence regions will in fact be conservative in those

cases.
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Lemma 3.3 Coverage properties of CI1−α(θ) depend on where θyz lies in Θyz. Let θyz =

max {πyz − ψyz, 0}, thus θyz assumes its lower bound, then

lim
n→∞

P(θyz ∈ CI1−α(θ))

= lim
n→∞

P
(
max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

}
≤ max {πyz − ψyz, 0} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

)

≥ lim
n→∞

P
(
max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

}
≤ max {πyz − ψyz, 0} ≤ min

{
π̂yz, 1− ψ̂yz

})

≥ lim
n→∞

P


 max

{
π̂yz − ψ̂yz − φ

−1/2
n cl

1−α, 0
}
≤ max {πyz − ψyz, 0} ,

max {πyz − ψyz, 0} ≤ max {πyz − ψyz, 0}+ ε + min
{

π̂yz, 1− ψ̂yz

}
−min {πyz, 1− ψyz}




= lim
n→∞

P


 max

{
π̂yz − ψ̂yz − φ

−1/2
n cl

1−α, 0
}
≤ max {πyz − ψyz, 0} ,

min {πyz, 1− ψyz} −min
{

π̂yz, 1− ψ̂yz

}
≤ ε




= lim
n→∞

P
(
max

{
π̂yz − ψ̂yz − φ−1/2

n cl
1−α, 0

}
≤ max {πyz − ψyz, 0}

)

≥ 1− α.

Here, the first inequality uses that cu
1−α > 0. To see the second inequality, write min

{
π̂yz, 1− ψ̂yz

}
=

min {πyz, 1− ψyz}+ min
{

π̂yz, 1− ψ̂yz

}
−min {πyz, 1− ψyz} and observe that

min {πyz, 1− ψyz} −max {πyz − ψyz, 0} = min{πyz, ψyz, 1− πyz, 1− ψyz} ≥ ε,

thus min {πyz, 1− ψyz} ≥ max {πyz − ψyz, 0}+ε by assumption. The very last step was established

before.

Lemma 3.4 Let πyz − ψyz ≥ 0, then π̂yz − ψ̂yz > −bn with probability approaching one, and

lim
n→∞

P(Θyz ⊆ CI1−α(Θ))

= lim
n→∞

P
(
max

{
π̂yz − ψ̂yz − φ−1/2

n cl, 0
}
≤ πyz − ψyz, min {πyz, 1− ψyz} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
)

= lim
n→∞

P
(
π̂yz − ψ̂yz − φ−1/2

n cl ≤ πyz − ψyz, min {πyz, 1− ψyz} ≤ min
{

π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
)

= lim
n→∞

P
(
φ1/2

n

(
π̂yz − ψ̂yz − (πyz − ψyz)

)
≤ cl, φ1/2

n

(
min{π̂yz, 1− ψ̂yz} −min{πyz, 1− ψyz}

)
≥ −cu

)

≥ lim
n→∞

P
(
φ1/2

n

(
π̂yz − ψ̂yz − (πyz − ψyz)

)
≤ cl, φ1/2

n

(
min{π̂yz − πyz, ψyz − ψ̂yz}

)
≥ −cu

)

= 1− α.

where the steps are either algebraic or justified in earlier proofs.
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Let πyz − ψyz < 0, then π̂yz − ψ̂yz ≤ −bn with probability approaching one, and

lim
n→∞

P(Θyz ⊆ CI1−α(Θ))

= lim
n→∞

P
(
min {πyz, 1− ψyz} ≤ min

{
π̂yz, 1− ψ̂yz

}
+ φ−1/2

n cu
1−α

)

≥ 1− α,

where the last step was shown before.

References

[1] Afriat, S.N., 1973. On a System of Inequalities in Demand Analysis: An Extension of the

Classical Method, International Economic Review, 14, 460-472.

[2] Andrews, D.W.K., and P. Jia, 2008. Inference for Parameters Defined by Moment Inequalities:

A Recommended Moment Selection Procedure. Cowles Foundation Discussion Paper 1676.

[3] Andrews, D.W.K., and G. Soares, 2007. Inference for Parameters Defined by Moment In-

equalities Using Generalized Moment Selection. Cowles Foundation Discussion Paper 1631.

[4] Bandyopadhyay, T., I. Dasgupta, and P.K. Pattanaik, 2002. Demand Aggregation and the

Weak Axiom of Stochastic Revealed Preference. Journal of Economic Theory, 107, 483-489.

[5] —, 2004. A General Revealed Preference Theorem for Stochastic Demand Behavior. Economic

Theory, 23, 589-599.

[6] Becker, G.S., 1962. Irrational Behavior and Economic Theory. Journal of Political Economy,

70, 1-13.

[7] Blundell, R. , M. Browning, and I. Crawford, 2003. Nonparametric Engel Curves and Revealed

Preference. Econometrica, 71, 205-240.

[8] Blundell, R. , M. Browning, and I. Crawford, 2008. Best Nonparametric Bounds on Demand

Responses. Econometrica, 76, 1227-1262.

[9] Chernozhukov, V., S. Lee, and A. Rosen, 2009. Intersection Bounds: Estimation and Infer-

ence. CEMMAP Working Paper 19/09.

[10] Cherchye, L., Crawford, I., De Rock, B., and F. Vermeulen, 2009. The Revealed Preference

Approach to Demand. In D. Slottje (ed.), Quantifying Consumer Preferences. Emerald Books.

36



[11] Deaton, A., and J. Muellbauer, 1980. An Almost Ideal Demand System. American Economic

Review, 70, 312-26.

[12] de Castro, L.I., 2007. Affiliation and Positive Dependence in Auctions. Discussion paper,

University of Illinois, Urbana-Champaign.

[13] Esary, J.D., F. Proschan, and D. W. Walkup, 1967. Association of Random Variables, with

Applications. Annals of Mathematical Statistics, 38, 1466-1474.

[14] Fan, Y. and S.S. Park, 2009. Sharp Bounds on the Distribution of Treatment Effects and

their Statistical Inference, Econometric Theory, forthcoming.

[15] Heckman, J.J., Smith, J.A., and N. Clements, 1997. Making the Most Out of Programme

Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts.

Review of Economic Studies, 64, 487–536

[16] Horowitz, J.L., and C.F. Manski, 1995. Identification and Robustness with Contaminated

and Corrupted Data. Econometrica, 63, 281-302.

[17] Imbens, G., and C.F. Manski, 2004. Confidence Intervals for Partially Identified Parameters.

Econometrica, 72, 1845-1857.

[18] Lewbel, A., 1999. Consumer Demand Systems and Household Expenditure. In H. Pesaran

and M. Wickens (eds.), Handbook of Applied Econometrics. Basil Blackwell.

[19] Manski, C.F., 1997. The Mixing Problem in Programme Evaluation. Review of Economic

Studies, 64, 537–553.

[20] —, 2003. Partial Identification of Probability Distributions. Springer Verlag.

[21] —, 2007. Partial Identification of Choice Probabilities. International Economic Review, 48,

1393-1410.

[22] Matzkin, R., 2006. Heterogeneous Choice. In R. Blundell, W. Newey, and T. Persson (eds.)

Advances in Econometrics: Proceedings of the 9th World Congress. Cambridge University

Press.

[23] Marschak, J., 1960. Binary Choice Constraints on Random Utility Indicators. In K. Arrow

(ed.) Stanford Symposium on Mathematical Methods in the Social Sciences. Stanford Univer-

sity Press.

37



[24] McFadden, D., 2005. Revealed Stochastic Preference: A Synthesis. Economic Theory, 26,

245-264.

[25] McFadden, D., and M. Richter, 1990. Stochastic Rationality and Revealed Stochastic Pref-

erence. In J. Chipman, D. McFadden, and M. Richter (eds.) Preferences, Uncertainty and

Optimality: Essays in Honour of Leo Hurwicz. Westview Press.

[26] Nelsen, R.B., 2006. An Introduction to Copulas (2 nd Edition). Springer Verlag.

[27] Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodŕıguez-Lallena, and M. Úbeda-Flores, 2001.
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