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Abstract

Homogeneity of degree zero has often been rejected in empirical studies that employ

parametric models. This paper proposes a test for homogeneity that does not depend on

the correct specification of the functional form of the empirical model. The test statistic

we propose is based on kernel regression and extends nonparametric specification tests to

systems of equations with weakly dependent data. We discuss a number of practically

important issues and further extensions. In particular, we focus on a novel bootstrap

version of the test statistic. Moreover, we show that the same test also allows to assess the

validity of functional form assumptions. When we apply the test to British household data,

we find homogeneity generally well accepted. In contrast, we reject homogeneity with a

standard almost ideal parametric demand system. Using our test for functional form

we obtain however that it it precisely this functional form assumption which is rejected.

Our findings indicate that the rejections of homogeneity obtained thus far are due to

misspecification of the functional form and not due to incorrectness of the homogeneity

assumption.

Keywords: Homogeneity, Nonparametric, Bootstrap, Specification Test, System of Equa-

tions.

∗Brown University, Department of Economics, Robinson Hall #302C, Providence, RI 02912, USA, email:

stefan hoderlein@yahoo.com. We have received helpful comments from Joel Horowitz, Enno Mammen and from

seminar participants at the ESEM, in Stanford and UCL/IFS. Excellent research assistance by David Hohlfeldt,

as well as financial support by Landesstiftung Baden-Württemberg ”Eliteförderungsprogramm” is gratefully
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1 Introduction

Homogeneity of degree zero, more colloquially also sometimes called “absence of money il-

lusion”, is arguably the key implication of a linear budget constraint in a standard utility

maximization problem and appears in many areas of applied economics. Parametric tests of

this hypothesis are very common in the analysis of consumer demand. Indeed, testing this

hypothesis as well as the other integrability constraints has spurned much of the research on

parametric flexible functional form models throughout the 70s and 80s, e.g., the Translog, Jor-

genson et al. (1982), and the Almost Ideal, Deaton and Muellbauer (1980). Results of these

tests were often negative or inconcusive, and as a result there is today a certain scepticism

towards the homogeneity assumption, see Lewbel (1999) for an overview.

This paper argues that scepticism is not warranted. By testing homogeneity within a given

parametric model it is actually the joint hypothesis of homogeneity and functional form that is

analyzed. Hence, even though many studies find homogeneity rejected, it is not clear whether

it is truly homogeneity that is rejected, or whether it is not rather the functional form that is

not compatible with the data.

As alternative we propose a direct test of homogeneity that does not rely on any parametric

form assumption. Moreover, this test allows us to simultaneously check the functional form

assumptions, and therefore allows to understand better the previously obtained results. The

test we propose is of the type of a nonparametric specification test for omission of variables,

and is related to Fan and Li (1996), Lavergne and Voung (2000) and Aı̈t-Sahalia, Bickel and

Stoker (2002).

From an methodological point of view, we extend this literature in two main directions:

First, we extend these tests to cover hypotheses in systems of equations. This is important in

our specific application. But it is also obviously of greater importance throughout economics

where many applications feature systems of equations1. Second, we propose a “wild bootstrap”

procedure and establish formally its validity. The bootstrap is extremely valuable for applied

work as it helps to avoid dealing with involved limiting distributions, and complicated pre-

estimation of elements thereof. In addition, it is well known that L2- distance tests are an

instance when the asymptotic distribution theory provides a poor approximation, see Hjellvik

and Tjøstheim (1995). In this case, the bootstrap has the advantage of generating better ap-

proximations to the unknown finite sample distribution. For recent work on the bootstrap,

consider Davidson and Flachaire (2008). In addition to these two main contributions, we also

extend the literature by discussing additional issues that are important for applications: Specif-

1Alternative applications appear throughout Economics. Examples include the standard sample selection

and IV models, but also in simultaneous equations (market equilibrium) models.
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ically, we show how to handle local polynomials, semiparametric alternatives and dependent

data.

From an economic point of view, to the best of our knowledge this is the first nonparametric

test of homogeneity of degree zero. There are some nonparametric tests of related economic

hypothesis: Lewbel (1995) and Haag, Hoderlein and Pendakur (2009) are both concerned with

testing Slutsky symmetry. Because this hypothesis involves levels and derivatives, the specific

structure of these tests are quite different. Kim and Tripathi (1999) discuss nonparametric

estimation under the restricion of homogeneity of degree zero. Other parametric tests of ho-

mogeneity of degree zero date back at least to the flexible functional forms demand systems

(Jorgenson et al. (1982), Deaton and Muellbauer (1980)). Related is also the work of Stoker

(1989), but he discusses testing in an average derivative setup which is very different from

ours. In Hoderlein (2009) we discuss identification and implementation of economic hypotheses,

amongst them also homogeneity. The test is only applied at fixed positions of nonparametric

estimators, and does hence not integrate over the function. Moreover, in Hoderlein (2009) we

do not provide any large sample theory, and thus the paper is very different. Finally, related is

also the work of Yatchew and Bos (1997) who provide specification testing that may be applied

to homogeneity, using a nonparametric least squares method that is related to spline estimation

and different from our kernel based approach.

This paper is organized as follows: We consider the test statistic in the second section.

This will proceed in the following fashion. We introduce the test formally, and discuss the

conventional asymptotic theory. Moreover, in the same section we propose also a bootstrap

version of the test statistic. We establish the validity of this bootstrap version, along with

a cooking recipe for implementation. Finally, we discuss three extensions to the basic test

statistic which are particularly important for our application. These are local polynomials,

(semi-)parametric alternatives and dependent (i.e., mixing) data.

In the third section, we focus on the application. We will implement the test for homogeneity

of degree zero and functional form using the British FES data. Broadly speaking, our results

are affirmative of the homogeneity hypotheses and trace rejections previously obtained in the

literature to misspecifications of the functional form. Finally, we conclude with an outlook.

2 From Economic Hypothesis to Test Statistic

2.1 Economic Background

Homogeneity of degree zero is arguably the key implication of a linear budget constraint in a

standard utility maximization problem and appears in many areas of applied economics. To
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define this property formally, let the demand function of an individual be defined as follows.

Assume the individual has preferences b ∈ B, where B is a preference space, e.g., the space

of r times continuously differentiable utility functions. Let the corresponding utility optimal

demand be denoted as y = φ(p, z; b). Here, p is a H vector of log prices, z is log income (in

demand income is - under a separability assumption on preferences - usually total expenditure),

and y is a H−1 vector of budget shares. We assume that the adding up constraint has already

been imposed, and we take H to be the outside alternative.

On individual level, the linearity of the budget constraint imposes that

φ(p, z; b) = φ(p + λ, z + λ; b),

for λ ∈ R, and any (b, p, z) ∈ B× RH+1. Substituting for λ = −z, Homogeneity of degree zero

corresponds then to the property that φ(p, z; b) = φ(p − z, 0; b), implying also φ(p − z, z; b) =

φ(p− z; b), i.e., using the notation x = p− z, this imposes the restriction that

φ(x, z; b) = φ(x; b), (2.1)

for any (b, x, z) ∈ B× RH+1. The original homogeneity of degree zero hypotheses can thus be

transformed to an omission of variables hypothesis for every individual.

This hypothesis on the H−1 dimensional system of equations has to hold for any preference

ordering b. However we do not observe the individual’s preference ordering b, and only observe a

finite dimensional vector of household covariates (denoted q), as well as the economic variables

y, x, z. Moreover, we assume that there exists a heterogeneous population, so that all variables

B, X, Z, Q are random variables, and have a nondegenerate distribution function FBXZQ. To

bridge the gap between the unobservable world of preference and the observable regressions, we

assume that FB|XZQ = FB|XQ, which is implied if homogeneity of degree zero in x and z also

were to hold for the distribution of unobservables, but more generally holds if Z is independent

of B given X. This conditional independence assumption of matching type is typical for the

general nonseparable setup we consider. We establish in Hoderlein (2009) in this scenario that

φ(X,Z; B) = φ(X; B) a.s. PXZB =⇒ E(Y |X,Z,Q) = E(Y |X, Q) -a.s. PXZQ, (2.2)

i.e., we can use the observable mean regression to test for homogeneity of degree zero. Finally,

we can extend this approach to allow for endogeneity in a control function fashion by assuming

that we have instruments S such that

Z = E(Z|S, P ) + V ,

if we assume that FB|XZQV = FB|XQV , cf. again Hoderlein (2009), by simply adding the control

function residuals V to our list of control regressors Q in the mean regression.
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2.2 Transforming the Hypothesis

In the following, for ease of notation we neglect possible dependencies of the regression function

on Q and V , and focus on a model that captures the relationship between the random vectors

Y, X and Z. Here Y ∈ RdY is a dY -dimensional dependent variable, and X ∈ RdX , Z ∈ RdZ are

predictors, such that dY = H − 1, dX = H and dZ = 1. The hypothesis to be tested is whether

Z can be omitted from the regression of Y on (X,Z). For testing this hypothesis, we define

the following functions

µ(x, z) = E(Y | X = x, Z = z)

m(x) = E(Y | X = x).

If it is possible to exclude Z from the regression, then these functions should coincide almost

surely. Hence, we will base the test statistic on the null hypothesis

H0 : P(µ(X, Z) = m(X)) = 1,

while the alternative is that they differ on a subset of the support of Z of positive measure.

The null is equivalent to the condition that the L2 distance of the two functions is zero. Using

a positive and bounded weighting function a(x, z) this condition can be written as

Γ = E
( dY∑

j=1

(
µj(X,Z)−mj(X)

)2
a(X, Z)

)
= 0. (2.3)

Using the fact that mj(X) = E(mj(X) | X,Z), we base the test on

Γ = E
( dY∑

j=1

(
µj(X, Z)− E(mj(X) | X, Z)

)2
a(X, Z)

)
. (2.4)

As mentioned above, alternative test statistics for the single equation case (dY = 1) have been

proposed in the literature. Aı̈t-Sahalia, Bickel and Stoker (2002) base their test statistic directly

on equation (2.3), while Fan and Li (1996) propose to base a test statistic on

E
(
(Y −m(X))E(Y −m(X) | X, Z)f(X, Z)a(X,Z)

)
.

To avoid technical problems, Fan and Li (1996) use a(X, Z) = f 2(X,Z)a′(X, Z) and a leave-

one-out estimator for the conditional expectation. Another possibility would be to compare

residual sums of squares, i. e. basing a test statistic on

E
(
((Y −m(X))2 − (Y − µ(X, Z))2)a(X,Z)

)

which would be an adaptation of the tests by Dette (1999) and Fan, Zhang and Zhang (2001)

to the problem of omitting variables. To our knowledge such a test has not yet been imple-

mented. We expect that its local power properties are worse than those of a test based on (2.3)

or (2.4) (see Dette (1999), who shows these worse power properties for the case of a linear null

hypothesis).
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2.3 Sample Counterpart Test Statistic

As test statistic serves the sample counterpart of Γ in (2.4). Given a sample of n inde-

pendent and identically distributed random vectors (Y1, X1, Z1), . . . , (Yn, Xn, Zn), we replace

the unknown functions m(x) and µ(x, z) by their Nadaraya-Watson estimators m̂h̃(x) and

µ̂h(x, z). Formally, these are defined as vectors with the one-dimensional estimators, m̂j

h̃
(x) =∑n

i=1 Kh̃(x−Xi)Y
j
i /

∑n
i=1 Kh̃(x−Xi) and µ̂j

h(x, z) =
∑n

i=1 Kh(x−Xi, z−Zi)Y
j
i /

∑n
i=1 Kh(x−

Xi, z−Zi), where Kh(u) = K(u/h)/h with a kernel K and bandwidths h and h̃. As an estimator

for E(mj(X) | X = x, Z = z) we propose

K̂nm
j

h̃
(x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)m̂

j

h̃
(Xi)∑n

i=1 Kh(x−Xi, z − Zi)
.

Then, the statistic is given by

Γ̂K =
1

n

dY∑
j=1

n∑
i=1

(
µ̂j

h(Xi, Zi)− K̂nmj

h̃
(Xi, Zi)

)2
Ai (2.5)

with Ai = a(Xi, Zi). The additional smoothing step associated with K̂nmh̃(x, z) eliminates the

bias coming from µ̂h(x, z), thereby reduces the number of bias components in the asymptotic

expression. This reduction in turn allows to employ less restrictive requirements on the band-

widths. The superiority of Γ̂K over the tests of Aı̈t-Sahalia, Bickel and Stoker (2002) and Fan

and Li (1996) can be stated in terms of the local power properties of the tests and will be

discussed after theorem 2.

2.4 Asymptotic Distribution of the Test Statistic

In order to treat the asymptotic distribution of the test statistic, we introduce the following

assumptions. The first two assumptions are concerned with the data generating process.

Assumption 1. The data (Yi, Xi, Zi), i = 1, . . . , n are independent and identically distributed

with density f(y, x, z).

Assumption 2. For the data generating process

1. The continuously differentiable weighting function a(x, z) is nonzero and bounded with

compact support A ⊂ RdX+dZ .

2. f(y, x, z) is r-times continuously differentiable (r ≥ 2). f and its partial derivatives are

bounded and square-integrable on A.

3. µ(x, z) and m(x) are r + 1-times continuously differentiable.
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4. f(x, z) =
∫

f(y, x, z) dy is bounded from below on A, i. e. inf(x,z)∈A f(x, z) = b > 0.

5. The covariance matrix

Σ(x, z) = (σij(x, z))1≤i,j≤dY
= E((Y − µ(X, Z))(Y − µ(X,Z))′ | X = x, Z = z)

is square-integrable (elementwise) on A and.

6. E((Y j − µj(X,Z))2(Y k − µk(X, Z))2) < ∞ for every 1 ≤ j, k ≤ dY .

The first assumption may be relaxed to allow for dependent data. We will discuss this

extension in section 2.6.3. Assumption 2 contains standard differentiability and integrability

assumptions that do not deserve further mentioning.

The following assumptions are concerned with the kernel and the bandwidth sequences. For

simplicity, we assume product kernels in both regressions. Therefore we formulate our assump-

tions for one-dimensional kernel functions. To simplify things further, instead of bandwidth

vectors h ∈ RdX+dZ and h̃ ∈ RdX we assume that we have only one single bandwidth for each

regression (h, h̃). We shall make use of the following notation: Define kernel constants

κk =

∫
ukK(u) du and κ2

k =

∫
ukK(u)2 du

κ∗ =

∫ (∫
K(u)K(u− v) du

)2

dv

Then, our assumptions regarding kernels and bandwidths are as follows:

Assumption 3. The one-dimensional kernel is Lipschitz continuous, bounded, has compact

support, is symmetric around 0 and of order r (i. e.
∫

ukK(u) du = 0 for all k < r and∫
urK(u) du < ∞).

Assumption 4. For the bandwidths

1. For n →∞, the bandwidth sequence h = O(n−1/δ) satisfies

dX + dZ < δ (2.6)

2. For n →∞, the bandwidth sequence h̃ = O(n−1/δ̃) satisfies

2δ
dX

dX + dZ

< δ̃ (2.7)

3. For the order r of the kernel holds

δ̃
2δ − dX − dZ

4δ
< r (2.8)
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While the assumptions on the kernel are standard, the assumptions on the bandwidths do

merit some discussion. Observe first that the optimal rate for estimating the full dimensional

regression function µ(x, z), given by

δopt = (dX + dZ) + 2r.

is not excluded from inequality (2.6). Under the null hypothesis, µ(x, z) does not depend on z.

Then, the derivatives with respect to z are zero and the corresponding bias terms disappear.

It follows that under H0 the optimal bandwidth in the z-directions is infinite. But under the

alternative and in the x-directions there exists an optimal bandwidth.

If we want to make use of this fact, however, through employing rate-optimal methods of

bandwidth choice in the full dimensional regression (e.g., cross validation), then the inequali-

ties (2.7) and (2.8) impose restrictions on the bandwidth h̃ of the dimension-reduced regression

m. More specifically, because of (2.7), it might be necessary to use a larger-than-optimal band-

width, and because of (2.8), to employ higher order kernels. As an example, take dX = 1, dZ = 1.

It is not possible to use both δopt and δ̃opt for any choice of r, because inequality (2.7) yields

the restriction δ < δ̃.

An alternative representation of (2.6) - (2.8) may be given in terms of n and h. We obtain

nhdX+dZ → ∞ (necessary for consistency of the kernel density estimator), hdX+dZ h̃−dX → 0

and nh(dX+dZ)/2h̃2r → 0.2 The last two conditions ensure that the estimation error of the

dimension-reduced regression does not dominate the test statistic.

The restrictions on the bandwidths are much weaker than those restrictions assumed by

Aı̈t-Sahalia, Bickel and Stoker (2002). In their case the optimal rate for estimation is excluded

for all regressions and higher order kernels are always needed, provided dX + dZ ≥ 3. In

contrast, our assumptions allow to trade the use of higher order kernel and an larger-than-

optimal bandwidth.

In practise we propose to calculate data-driven bandwidths (by cross-validation) for the

dimension reduced regression. In case the optimal rate is excluded, we suggest to adjust the

bandwidth by n1/δ̃opt−1/δ̃. Although we do not formally address the issue of data-driven band-

widths ĥ we assume that our results will hold if ĥ/h
P−→ 1.

For the first theorem, we introduce the following quantities

σij
Γ =

∫∫
σij(x, z)2a(x, z)2 dx dz bi

Γ =

∫∫
σii(x, z)a(x, z) dx dz.

The asymptotic normality of the test statistic is given by the following

2Note that these restrictions imply nh̃dX → ∞, which ensures the consistency of the dimension reduced

regression.
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Theorem 1. Let assumptions 1–4 hold. Then we have that under H0

Σ−1
K (nh(dX+dZ)/2Γ̂K − h−(dX+dZ)/2BK)

D−→ N (0, 1)

where

Σ2
K = 2(κ∗)dX+dZ

( dY∑
i=1

σii
Γ + 2

∑
i<j

σij
Γ

)
BK = (κ2

0)
dX+dZ

dY∑
i=1

bi
Γ.

Simplifying the proofs in the appendix to one line, the test statistic can be written as

Γ̂K = Γn + In + Un (2.9)

where Γn = 0 under H0, Un depends upon the uniform rate of convergence of the restricted

estimator, and In is a degenerated U-statistic which dominates asymptotically. This U-statistic

converges at the rate nh(dX+dZ)/2, which is faster than n1/2, under the admissible bandwidth

sequence.

Next, we investigate the behavior of the test statistic under the alternative. There are a

number of efficiency measures (e. g. Bahadur efficiency or Hodges-Lehman efficiency) to com-

pare two test statistics. The most common one is the asymptotic relative efficiency (Pitman

efficiency) which compares the behavior of the tests under local alternatives. To this end, define

a sequence of alternatives

H1n : µ(x, z) = m(x) + εn(x, z)

where εn(x, z) is a converging sequence of functions. Note that fixed alternatives are included

for εn(x, z) = ε(x, z) 6= 0.

Theorem 2. Let Assumptions 1–4 hold. If there exists a constant BL such that

λn

dY∑

k=1

1

n

n∑
j=1

(εk
n(Xj, Zj)

f(Xj, Zj)

)2

a(Xj, Zj)
P−→ BL

for λn = O(nh(dX+dZ)/2). Then we have that under H1n

Σ−1
K (nh(dX+dZ)/2Γ̂K − h−(dX+dZ)/2(BK + κ2

0BL))
D−→ N (0, 1).

For a fixed alternative it holds that nh(dX+dZ)/2Γ̂K →∞.

The test cannot detect alternatives that converge to zero at a rate faster than n−1/2h−(dX+dZ)/4.

This means that the test suffers from the curse of dimensionality because the rate decreases

as the number of dimensions increase. Aı̈t-Sahalia, Bickel and Stoker (2002) and Fan and Li

(1996) have established local power properties of their tests and both obtain the same rate.

Theorem 2 holds for the test of Aı̈t-Sahalia, Bickel and Stoker (2002) in an analogous fash-

ion. A comparison with the test of Fan and Li (1996) is only possible using a(x, z)f(x, z)−2

as a weighting function, since Fan and Li (1996) use density weighting. The asymptotic vari-

ance differs through a kernel related constant. Because κ∗ < κ2
0 for a density K, our test is

asymptotically relatively more efficient than the test of Fan and Li (1996).

9



2.5 Bootstrap-Implementation

The direct way to implement the test is to estimate the expected value BK and the variance

Σ2
K. This requires the estimation of integrals like

∫
σjj′(x, z)ka(x, z)k dx dz k = 1, 2, j, j′ = 1, . . . , dY . (2.10)

Therefore estimators of the conditional (co)variances are needed. A Nadaraya-Watson-type

estimator may be defined as

σ̂jj′
h (x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)(Y

j
i − µ̂j

h(Xi, Zi))(Y
j′
j − µ̂j′

h (Xi, Zi))∑n
i=1 Kh(x−Xi, z − Zi)

.

This estimator has better properties than the difference between estimators of the second and

the squared first conditional moment of Y given X and Z (see Fan and Yao, 1998). Now the

integral in (2.10) can be calculated numerically. To ensure consistency of the standardized test

statistic the underlying (co)variance estimators (as well as the density estimator) have to be

chosen such that

sup
(x,z)∈A

|σ̂jj′
h (x, z)− σjj′(x, z)| = oP (h−(dX+dZ)/2)

Estimating the components of the asymptotic distribution of Γ̂K is cumbersome. Moreover,

it is also problematic: In the proof of the asymptotic normality of the test statistic many

terms of lower magnitude are omitted. Asymptotic approximations involving U -statistics work

often very poorly in a finite sample, as was pointed out by Hjellvik and Tjøstheim (1995). To

avoid this problem we propose a wild bootstrap procedure to derive critical values for the test

statistic, as in Härdle and Mammen (1993). In our setting this is performed in the following

way

1. Calculate (multivariate) residuals ε̂i = Yi − m̂h̃(Xi).

2. For each i randomly draw ε∗i = (ε1∗
i , . . . , εdY ,∗

i )′ from a distribution F̂i that mimics the

first three moments of ε̂i.

3. Generate the bootstrap sample (Y ∗
i , X∗

i , Z∗
i ), i = 1, . . . , n by Y ∗

i = m̂h̃(Xi) + ε∗i and

X∗
i = Xi, Z

∗
i = Zi.

4. Calculate Γ̂∗K from the bootstrap sample (Y ∗
i , X∗

i , Z∗
i ), i = 1, . . . , n.

5. Repeat steps 2 to 4 often enough to obtain critical values for Γ̂K.

Assumption 5. For the bootstrap distribution

The bootstrap residuals ε∗i , i = 1, . . . , n are drawn independently from distributions F̂i, such that

EF̂i
ε∗i = 0,EF̂i

ε∗i (ε
∗
i )
′ = ε̂iε̂

′
i and EF̂i

(εk,∗
i )4 < ∞ for all k = 1, . . . , dY .
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This set of admissible distributions is very general. Apart from the simple wild bootstrap,

a smooth conditional moment bootstrap as in Gozalo (1997) may also be used. In the clas-

sical wild bootstrap, residuals are drawn from a two-point distribution that takes the value

ε̂i(1−
√

5)/2 with probability (5 +
√

5)/10 and ε̂i(1 +
√

5)/2 else. Assumption 5 is fulfilled for

discrete distributions, distributions with compact support and - among others - for the normal

distribution. These are the most commonly used distributions in practice.

The theoretical result concerning this bootstrap procedure is given in

Theorem 3. Let assumptions 1–5 be true. Under H0,

Σ−1
K (nh(dX+dZ)/2Γ̂∗K − h−(dX+dZ)/2BK)

D−→ N (0, 1),

conditional on the data (Y1, X1, Z1), . . . , (Yn, Xn, Zn) with probability tending to one.

To prove theorem 3 it is sufficient to assume that the bootstrap distribution F̂i mimics

the first two moments of ε̂i. Using an Edgeworth expansion in the proof, we conjecture that

matching the first three moments yields a higher order approximation. Therefore we recommend

to mimic three moments in applications.

2.6 Extensions

In this section we discuss extensions to the test statistic along three lines that are important

modifications of our tests that we implement in our application. First, we explore the use

of local polynomial estimators to replace the Nadaraya-Watson estimator, because they allow

higher order bias reduction without employing higher order kernels. Second, we extend the test

statistic to (semi-)parametric hypotheses. Third, we investigate the behavior of the test in the

case of dependent data, because in our application we pool several cross sections, but the main

variation in prices is across time. In the following discussion, we focus on the modifications of

theorem 1. Changes in the proofs of the bootstrap result and the local power properties are

straightforward and omitted for brevity of exposition..

2.6.1 Local Polynomials

In nonparametric regression analysis the superiority of local polynomial estimators to Nadaraya-

Watson estimators is well known (see Fan and Gijbels, 1996). As a consequence, local polyno-

mials have become the dominant approach in applied work. Therefore it is a natural extension

to use local polynomial estimators for µ(x, z) and m(x) in the test statistic. Recall that they

are defined via minimizing

n∑
i=1

(
Y j

i −
∑

0≤|k|≤p

bj
k(x, z)

(
Xi − x, Zi − z

)k)2
Kh(Xi − x, Zi − z), (2.11)
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with respect to all bj
k for j = 1, .., dY . For vectors k = (k1, . . . , kdX+dY

) we have utilized the

notation |k| =
∑

i ki and xk =
∏

i(x
i)ki . Then µ̂j,LP

h (x, z) is defined as the solution for bj
0.

Introducing the quantities

t̂jk(x, z) =
1

n

n∑
i=1

Y j
i

((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z),

f̂h,k(x, z) =
1

n

n∑
i=1

((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z),

which are arranged in a vector T̂ j(x, z) = (t̂jk(x, z))k and a matrix Ŝ(x, z) = (f̂h,k+j(x, z))k,j in

a lexicographical order.3 With this notation, the estimator can be written explicitly as

µ̂j,LP
h (x, z) = bŜ−1(x, z)T̂ j(x, z)c1,

where b·c1 extracts the first element of a vector. m̂j,LP

h̃
(x) is defined analogously. The local

polynomial version of E(mj(X) | X, Z) is defined as the solution to (2.11) where Y j
i is replaced

with m̂j,LP

h̃
(Xi). Explicitly it can be written as

K̂nm
j,LP

h̃ (x, z) = bŜ−1(x, z)T̃ j(x, z)c1,

where the elements of the vector T̃ j(x, z) are given by

t̃jk(x, z) =
1

n

n∑
i=1

m̂j,LP

h̃
(Xi)

((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z).

The new test statistic is then the analog to (2.5)

Γ̂LP
K =

1

n

dY∑
j=1

n∑
i=1

(
µ̂j,LP

h (Xi, Zi)− K̂nm
j,LP

h̃ (Xi, Zi)
)2

Ai (2.12)

To define the kernel constants arising in the bias and variance parts of the asymptotic distribu-

tion, we have to define the matrix M = (κj+k)j,k with entries κk =
∫

ukK(u) du. In an abuse

of notation we denote with κ−1
k the elements of the first row of M−1. This enables to define

κΣ =

∫ (∫ ( ∑

1≤k≤r

(u− v)kκ−1
j K(u− v)

)( ∑

1≤k≤r

ukκ−1
j K(u− v)

)
du

)2

dv

κB =

∫ ( ∑

1≤k≤r

ukκ−1
j K(u)

)2

du

which we require for the derivation of the asymptotic distribution of Γ̂LP
K in the following

theorem:

3Addition is in the Hadamard-sense, i. e. j + k = (j1 + k1, . . . , jdX+dZ + kdX+dZ ).
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Theorem 4. Let the assumptions 1–3 hold. Let assumption 4 hold for r = p + 1 for p odd and

r = p + 2 for p even, where p is the order of the local polynomial estimator. Then we have that

under H0

Σ−1
L (nh(dX+dZ)/2Γ̂LP

K − h−(dX+dZ)/2BL)
D−→ N (0, 1)

where

Σ2
L = 2(κΣ)dX+dZ

( dY∑
i=1

σii
Γ + 2

∑
i<j

σij
Γ

)
BL = (κB)dX+dZ

dY∑
i=1

bi
Γ.

Note, that if an even order of the local polynomial fulfills the requirements of assumption 4,

then also the subsequent odd order polynomial fulfills these requirements. The use of one ad-

ditional order gives therefore no gain in flexibility when choosing the bandwidth sequences.

Therefore, in contrast to estimation it is natural to use an even order local polynomial for test-

ing. If we replace the corresponding kernel constants with κΣ and κB the results of theorems 2

and 3 remain to hold. This can be seen directly from the proof of theorem 4.

2.6.2 Semiparametric Modelling

The asymptotic distribution of the test is driven by the fact that the low-dimensional estimator

m̂h̃(x) converges faster than the full-dimensional estimator µ̂h(x, z). This remains true for

semiparametric hypotheses, i. e.

H0S : P(µ(x, z) = m(x) + G(z, θ)) = 1,

where G(z, θ) =
(
G1(z, θ) + · · · + GdY (z, θ)

)
is a known function depending on a finite-

dimensional parameter vector θ ∈ Θ. This includes the case when m = 0, i.e., we have a

purely parametric null, as will be the case in our application. Denote with θ̂ a parametric

estimator that allows us to construct estimators of the nonparametric regression part under

H0S, i. e.,

m̂k
h̃
(x, θ̂) =

∑n
i=1 Kh̃(x−Xi)(Y

k
i −Gk(Zi, θ̂))∑n

i=1 Kh̃(x−Xi)
.

Then we propose to use as test statistic

Γ̂S
K =

1

n

dY∑
j=1

n∑
i=1

(
µ̂h(Xi, Zi)− K̂nm

j,S

h̃ (Xi, Zi)
)2

Ai,

with

K̂nm
j,S

h̃ (x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)(m̂

k
h̃
(x, θ̂) + Gk(Zi, θ̂))∑n

i=1 Kh(x−Xi, z − Zi)
.

To obtain an asymptotic result we require the following assumption on the speed of convergence

of the semiparametric estimator:

13



Assumption 6. Gk(z, θ) − Gk(z, θ̂) = oP (n−1/2h(dX+dZ)/4) for all k = 1, . . . , dY uniformly in

AZ = {z | ∃ x s. t. (x, z) ∈ A} and θ ∈ Θ.

This assumption is stated in a very general fashion. It has to be checked for a specific

model and estimation problem. As an example, consider the linear model with dX = 0 and

G(z, θ) = θ′z. Least squares and GMM estimators are known to be root-n consistent and

Assumption 6 is trivially fulfilled. Moreover, as a special case for dY = 1 we obtain the test

introduced by Härdle and Mammen (1993).

The asymptotic distribution of the test is stated in the following

Theorem 5. Let Assumptions 1–4 and 6 hold. Then we have that under H0S

Σ−1
K (nh(dX+dZ)/2Γ̂S

K − h−(dX+dZ)/2BK)
D−→ N (0, 1),

where ΣK and BK is given as in Theorem 1.

2.6.3 Dependent data

The assumption of independent and identically distributed data is very restrictive, particularly

in demand analysis where in many data sets time series effects are present. To deal with this

complication, we extend the results of the previous sections to the case of mixing random

variables. For a time series Wi = (Yi, Xi, Zi), i = 1, . . . , n we define the sigma algebras F t
s =

σ(Ws,Ws+1, . . . ,Wt with −∞ ≤ s < t ≤ ∞ and the β-mixing coefficients

β(n) = sup
t∈Z

E
(

sup
A∈F∞t+n

|P(A | F t
−∞)− P(A)|)

A process is called absolutely regular if β(n) → 0 for n → ∞. To derive the asymptotic

normality of the test statistic, we invoke the following additional assumptions

Assumption 7. For dependent data

1. The data Wi = (Yi, Xi, Zi), i = 1, . . . , n are strictly stationary and absolutely regular with

mixing coefficients β(n). The stationary density is denoted by f(w).

2. The density of the joint distribution of (Wq,Wr,Ws, Wt) is bounded and continuously

differentiable for all q, r, s, t.

3. For some ν > 1 it holds that E |Y j|4ν < ∞ for all j = 1, . . . , dY .

4. For the mixing coefficients we have the summability conditions

∞∑
i=1

β(i)1−2/ν < ∞
∞∑
i=1

ia
′
β(i)1−2/a

14



with 2 < a < 4ν and a′ > 1− 2/a.

It holds that
∑∞

n=1 ψ(n) < ∞ where

ψ(n) =
nL(n)

r(n)

( nT (n)2

h̃dX log n

)1/4

β(r(n))

with L(n) = (nT (n)2/(h̃dX+2 log n))dX/2, r(n) = (nh̃dX/ log n)1/2/T (n)

and T (n) =
(
n log n(log log n)1+ε)1/4ν.

For m = n1/δm with δm > 4δ and 1/δ + 1/δm < 3/2 it holds that

n6h2(m2β(m)1−1/ν + n2β(m)2−2/ν) → 0

as n →∞.

These assumptions are not restrictive: Many well known time series models have shown to

be absolutely regular, most of them with exponentially decaying mixing coefficients. For mixing

coefficients with geometric decay, the requirements of assumption 7 are directly fulfilled (for

some ν > 1). In our application, we consider the log of relative prices (i.e., the log of prices

divided by income). This quantity is approximately stationary.

The dependence structure of Y,X and Z is only modelled in terms of differentiability as-

sumptions on their joint density. This is general enough to cover the cases where X and Z are

lagged values of Y . Beside time series regression, the test can be used to determine the order

of a nonparametric AR-process as well as to test for parametric AR-structure.

This assumption enables us to state the following extension to the previous theorems.

Theorem 6. Theorems 1–4 remain valid, if we replace assumption 1 by assumption 7.

Asymptotic results under mixing assumptions are obtained by a trade-off between the num-

ber of existing moments and the decaying rate of the mixing coefficients. This is given in terms

of the parameter ν. The use of a larger bandwidth may also reduce the requirements on the

rate of decay (and the moment conditions). Here, this is given in terms of the sequence ψ(n).

3 Application

In this section we put the test to work. We take our application from standard consumer

demand using a workhorse data set, the FES. We start by giving an overview of the data, the

methods of data clearance and of the definitions of variables involved.

Data description and data clearance: Our data source is the British Family Expen-

diture Survey (FES). Every year, the FES reports the income, expenditures, demographic
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composition and other characteristics of about 7 000 households. The sample surveyed repre-

sents about 0.05% of all households in the United Kingdom. The information is collected partly

by interview and partly by records. Records are kept by each household member, and include

an itemized list of expenditures during 14 consecutive days. The periods of data collection are

evenly spread out over the year. The information is then compiled and provides a repeated se-

ries of yearly cross-sections. We use the years 1974-1999, but exclude the respective Christmas

periods as they contain too much irregular behavior.

All the goods are grouped into four categories, Group 1 to 4. The first category is related

to food consumption and consists of the subcategories food bought, food out (catering) and

tobacco, which are self explanatory. The second category contains expenditures which are

related to the house, namely housing (a more heterogeneous category; it consists of rent or

mortgage payments as well as nondurable household goods and services). Finally, the last

group consists of motoring and fuel expenditures, categories that are often related to energy

prices. All other goods are included in the fourth category. For brevity, we call these categories

food, housing, energy and others. These broader categories are formed since more detailed

accounts suffer from infrequent purchases (recall that the recording period is 14 days) and are

thus underreported. Together the first three categories account for 50-60% of expenditures. We

removed outliers by excluding the upper and lower 2.5% of the population in all groups. The

corresponding price indices which are components of the Retail Price Index are published at

the National Statistics Online web site.

“Income” in demand analysis under an additive separability assumption of preferences over

time and decisions equals total expenditure. It is obtained by adding up all expenditures, with a

few exceptions which are known to have measurement error like tobacco. This is done to define

nominal income; real income is then obtained by dividing through the retail price indices.

In this paper, we stratify the population to obtain more homogeneous subpopulations.

More specifically, like much of the demand literature we focus on one subpopulation, namely

two person households, sampled in a certain time interval, both adults, at least one of which is

working and the head of household is a white collar worker. This focus is also justified because

other subpopulations are much more prone to measurement problems. It is likely that there

is remaining preference heterogeneity. We abstract from this problem here, but see Hoderlein

(2009) on this issue. Finally, we reduce the remaining household variation to one approximately

continuously distributed principal component. We provide summary statistics of the data in

the appendix.

Econometric Issues and Empirical Results: We prove that the rejections obtained in

the literature thus far are due to wrong specification of the functional form. First we apply a

parametric model used often in consumer demand, the Almost Ideal Demand System, and show
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that the hypothesis of homogeneity is rejected. Second, we relax the functional form assumption

and apply a nonparametric demand model and our test. Once the restrictive assumption is

removed, homogeneity is broadly accepted. Then, we assess the validity of the functional form

assumption. We apply the test described in section 2.6.2 to compare nonparametric versus

parametric regression fits and conclude that the parametric model is misspecified.

1. Testing for homogeneity in a parametric model. Our parametric example will be

the workhorse model in the literature, the Almost Ideal Demand System (AIDS) of Deaton and

Muellbauer (1980). The parameters of the model are H vectors α and δ, and a H ×H matrix

γ. The model consists of theoretical demand functions of the form

Y = m(P,Z) + U (3.1)

where E(U | P, Z) = 0H and

m(P,Z) = α + γP + δ [Z − g (P )] (3.2)

where

g (P ) = d + αP +
1

2
P ′γP (3.3)

is the log of a price index that deflates total expenditures.

When estimating the standard AIDS model defined through equations (3.1) and (3.2), there

are a number of issues to consider. The most important one is endogeneity. In consumer de-

mand, total expenditure is taken as income concept, which is justified by assuming intertem-

poral separability of preferences. Since the categories of goods considered are broad and they

frequently constitute a large part of total expenditure, the latter is believed to be endogenous.

We follow the demand literature that usually employs as instrument labor income whose de-

terminants are thought to be exogenous to the unobserved preferences determining, say, food

consumption. To allow for endogeneity, we estimate equation (3.1) using three stage least

squares (specifically, GMM with a weighting matrix that is efficient under homoscedasticity).

Estimation is based on the moment conditions

E
[(

Y − α− γP − δ

[
Z − α′P − 1

2
P ′γP

])
Rl

]
= 0n, l = 1, ..., L (3.4)

where R1,...,RL is the set of instruments.

In this parametric setup, the adding up constraint is that budget shares sum to one and

requires 1′Hα = 1, 1′Hδ = 0, and 1′Hγ = 0′H . Homogeneity requires γ1H = 0H .

By analogy with the common approximate AID model, we first linearly regress Y on a

constant, P , and on Z−P ′Y . This is not a consistent estimator, but yields reasonable starting

values α̂, δ̂, and γ̂ for the calculation of g(P ). We can obtain new estimates exploiting the
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conditional linearity of equation (3.2) given g(P ). That is, given g(P ), the system is linear in

parameters, and this suggests a natural iterative procedure conditioning on an updated g(P )

at each iteration.

A second remark concerns the possibility of the estimation of d. When the total price

index and the demand system are estimated simultaneously, the magnitude of d will have an

impact on the estimated coefficients via the change of g(P ). In order to avoid the difficulties of

such simultaneous estimation, we choose to estimate d using the coefficients α, and γ from the

estimation of Y , to calculate the translog price index, and re-estimate factor demand equations

Y , until convergence is achieved, i.e. until α, and γ are the same in g(P ) and Y . However, the

convergence properties of this procedure in finite samples are very poor. Therefore we adopt

the simplification carried out in most of the applied studies and we set the value of d to zero.

When estimating the system we only impose the adding up constraints by omitting one

good from the system. We estimate the model without the homogeneity restriction γ1H = 0H ,

so this restriction can be tested. To allow for endogeneity we estimate the model a second time

using GMM where the set of instruments consists of a constant, log labor income, the first

principal component of the demographic characteristics, time trend and all elements of P .

Table 1 presents Wald tests of the homogeneity restriction. The systemwide test reveals

that homogeneity is rejected, both under exogeneity and endogeneity. The table also lists test

statistics and p-values of the homogeneity test separately in each demand equation. Homo-

geneity is rejected for food under exogeneity and for food and energy under endogeneity at the

10 % significance level.

Table 1: Parametric Model Homogeneity Test

Under Exogeneity Under Endogeneity

test statistic p-value test statistic p-value

systemwide test

68.5427 (0.0000) 48.2073 (0.0000)

equation by equation

food 55.1441 (0.0000) 34.0508 (0.0000)

housing 0.5528 (0.4571) 0.5210 (0.4704)

energy 1.0137 (0.3140) 2.9403 (0.0864)

2. Testing for homogeneity in a nonparametric model. When testing this hypoth-

esis, we use the following specifications: The basic specification entails a regression of budget
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shares on log prices, deflated total expenditures and a principal component of demographic

household characteristics. We also estimate the model under endogeneity, using labor income

as instrument and employing a control function residuals approach as in Hoderlein (2009).

As already mentioned in the second section, we employ a local constant kernel regression

combined with a higher order kernel. To test homogeneity when the number of goods is four, we

choose the order of the kernel to be 4 and we set δ = 7 and δ̃ = 12, which satisfies assumption

3 in section 2.

We choose the bandwidths h and h̃ according to the rule that h = h0n
−1/δŝd(P̃ ), and

h̃ = h0n
−1/δ̃ŝd(P̃ , X), and we choose h0 by cross validation (i.e. a data-driven method). For

the homogeneity test, we construct the bootstrap version of Γ̂ as discussed in section 2 above

with 199 bootstrap iterations.

Table 2 shows the result of our test statistic for homogeneity of degree zero. For the purpose

of checking robustness we display the results at various values of the bandwidth constant h0 in

a neighborhood of the cross validated parameter. The p-values are in brackets.

Table 2: Nonparametric Model Homogeneity Test for different Choice of Bandwidth Constant.

Under Exogeneity Under Endogeneity

test statistic p-value test statistic p-value

hcv 0.0026 (0.5327) 0.0052 (0.5628)

0.7*hcv 0.0004 (0.5327) 0.0029 (0.4020)

1.3*hcv 0.0025 (0.2714) 0.0050 (0.1608)

We conjecture that homogeneity is accepted, as the p-values are large both under exogeneity

and under endogeneity. The result is also robust to deviation from the cross validated band-

width. The obvious question that arises now is the following: Why is homogeneity rejected

by the parametric tests, but not by our nonparametric test in this application? Does this

result reflect lack of power of the nonparametric testing procedure, or is it due to parametric

misspecification?

3. Testing the functional form assumption. At the end we assess the validity of

the functional form assumption. In table 3 we present the results of the test described in

section 2.6.2. Again, we display the results at various values of the bandwidth constant h0 in

a neighborhood of the cross validated parameter. The hypothesis that consumer behavior can

be described by the specific functional form of AID is generally rejected, as there is only one

positive p-value. Both under exogeneity and endogeneity the test rejects, when the bandwidth

is obtained by cross validation. Reducing the bandwidth does not alter the result. The only

19



case of acceptance is under exogeneity and a larger bandwidth. From the rejection at the cross

validated bandwidth, we can generally infer the wrong specification of the function form of the

demand system.

Table 3: Testing nonparametric versus parametric regression fits.

Under Exogeneity Under Endogeneity

test statistic p-value test statistic p-value

hcv 0.0125 (0.0000) 0.0146 (0.0000)

0.7*hcv 0.0179 (0.0000) 0.0245 (0.0000)

1.3*hcv 0.0101 (0.1307) 0.0079 (0.0000)

Taken together, these findings cast some doubts on previously obtained rejections of homo-

geneity using parametric models. Clearly it is the parametric specification - not homogeneity

of degree zero - which is rejected.

4 Conclusion

Homogeneity of degree zero is a core property of rational consumer behavior. Since it cor-

responds to a linear budget constraint, which is a plausible assumption in a market economy

without frictions, one would expect to find it widely accepted in the literature. Yet the contrary

is true - many parametric demand studies find homogeneity rejected, see Lewbel (1999) for an

overview.

This paper offers a convenient explanation for this phenomenon. Since tests of the homo-

geneity property based on parametric demand systems actually test the joint hypothesis of

parametric specification and homogeneity, it is not always clear what is being rejected. This

paper proposes a nonparametric, distribution free test of the homogeneity hypothesis, and es-

tablishes its large sample properties. We also discuss important extensions for applications

like the use of higher order polynomials. When we implement the test using British consumer

data, we find that homogeneity is not any more rejected, suggesting that it was misspecified

parametricity assumptions that led to previous rejections. Can we provide evidence to support

this conjecture? Indeed, when we perform a parametric test of the same hypothesis, using

the most commonly employed demand system (the almost ideal demand system) we find that

homogeneity is rejected with exactly the same data. While this could be due to the better

power properties of the test based on the parametric demand system, it may also be indicative

of the effect of parametric misspecification. To this end, we perform a test of the parametric
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specification based on the same nonparametric testing principle that we employed when testing

homogeneity. This time, however, we do find rejection. We conclude that the parametric model

is rejected by the data, not homogeneity of degree zero. More general nonparametric tests like

the one we propose may allow us to get a more accurate picture of real consumer behavior,

and a better assessments of the merits of the theory of rational consumer behavior. Hence we

advocate their use in practise.
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Appendix: Data

Table 4: Descriptive statistics

10% quantile mean median 90% quantile stdev

Budget share food 0.1145 0.2134 0.2017 0.3320 0.0829

Budget share housing 0.1641 0.3227 0.3094 0.5038 0.1282

Budget share energy 0.0583 0.1789 0.1578 0.3342 0.1059

Budget share others 0.0335 0.1515 0.1250 0.3115 0.1091

Priceindex food 4.5914 4.6218 4.6194 4.6593 0.0256

Priceindex housing 4.5653 4.7195 4.7415 4.8507 0.1072

Priceindex energy 4.6270 4.6747 4.6724 4.7309 0.0394

Priceindex others 4.3258 4.4205 4.4196 4.5220 0.0733

Log total expenditure 4.2344 5.2124 5.2804 6.0603 0.6858

Log income 4.4064 5.3328 5.3773 6.1726 0.6616
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Appendix: Proofs

Proof of Theorem 1

For abbreviation we introduce Vi = (Xi, Zi) and Wi = (Yi, Xi, Zi) and decompose the statistic

in the following way

Γ̂K =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)

f̂h(Vi)
(Y k

j − m̂k
h̃
(Xj))

)2

Ai

= Γ̂K1 + Γ̂K2 + Γ̂K3 + Γ̂K4, (5.1)

where

Γ̂K1 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f̂h(Vi)

)2

Ai

Γ̂K2 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
µk(Vj)−mk(Xj)

f̂h(Vi)

)2

Ai

Γ̂K3 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
mk(Xj)− m̂k

h̃
(Xj)

f̂h(Vi)

)2

Ai

and Γ̂K4 contains all cross terms. Note that under H0 we have that Γ̂K2 = 0 almost surely. We

start by investigating Γ̂K1, which yields the asymptotic distribution and show that Γ̂K3 and Γ̂K4

are of lower order afterwards.

First, we write

Γ̂K1 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f(Vi)

)2( f(Vi)

f̂h(Vi)

)2

Ai

= (IKn + ∆Kn)(1 + oP (1)),

where we have defined

IKn =

∫ dY∑

k=1

( 1

n

n∑
j=1

Kh(v − Vj)
Y k

j − µk(Vj)

f(v)

)2

a(v)f(v) dv (5.2)

∆Kn =

∫ dY∑

k=1

( 1

n

n∑
j=1

Kh(v − Vj)
Y k

j − µk(Vj)

f(v)

)2

a(v)(f̂e(v)− f(v) dv, (5.3)

and f̂e = 1
n

∑n
i=1 δ(Vi)(v) denotes the empirical distribution of the sampled data (where δ(Vi) is

the Dirac-measure at Vi).
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Starting with the leading term, we rearrange IKn to obtain

IKn =
1

n2

∑
i<j

dY∑

k=1

∫
Kh(v − Vi)

Y k
i − µk(Vi)

f(v)
Kh(v − Vj)

Y k
j − µk(Vj)

f(v)
a(v)f(v) dv

+
1

n2

n∑
i=1

dY∑

k=1

∫ (
Kh(v − Vi)

Y k
i − µk(Vi)

f(v)

)2
a(v)f(v) dv

= IKn,1 + IKn,2. (5.4)

Now it remains to show

nh(dX+dZ)/2IKn,1
D−→ N (0, Σ2

K) (5.5)

nh(dX+dZ)/2IKn,2 − h−(dX+dZ)/2BK
P−→ 0 (5.6)

nh(dX+dZ)/2∆Kn
P−→ 0. (5.7)

From this the statement of the theorem follows.

Proof of (5.5) Write

IKn,1 =
∑
i<j

hn(Wi,Wj)

as U -statistic with kernel

hn(Wi,Wj) =
2

n2hdX+dZ

dY∑

k=1

(Y k
i − µk(Vi))(Y

k
j − µk(Vj))

×
∫

K(u)K(u + (Vi − Vj)/h)
a(Vi + uh)

f(Vi + uh)
du.

where a change of variables has been applied. Asymptotic normality is shown by using a central

limit theorem for generalized U -statistics (see de Jong, 1987). Under the conditions

max1≤i≤n

∑n
j=1 Ehn(Wi,Wj)

var IKn,1

P−→ 0 and
E I4

Kn,1

(var IKn,1)2

P−→ 3 (5.8)

it follows that √
2

IKn,1√
var IKn,1

D−→ N (0, 1).

It is immediate to see that the kernel is degenerate, symmetric and centered. Now, we introduce

σ2
n = Ehn(Wi,Wj)

2. As we have independent and identically distributed data we can write

max
1≤i≤n

n∑
j=1
j 6=i

Ehn(Wi, Wj)
2 = (n− 1)σ2

n
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and

var IKn,1 =
∑
i1<i2

varhn(Wi1 ,Wi2)

+
∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

cov(hn(Wi1 ,Wi2), hn(Wi3 ,Wi4))

=
n(n− 1)

2
σ2

n

because hn(·, ·) is centered. From these two results the first condition in equation (5.8) is

established. For the second calculate

E I4
Kn,1 =

∑
i1<i2

Ehn(Wi1 ,Wi2)
4 + 3

∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

Ehn(Wi1 ,Wi2)
2hn(Wi3 ,Wi4)

2

+ 24
∑
i1<i2

∑

i3 6=i1,i2

Ehn(Wi1 ,Wi2)
2hn(Wi1 ,Wi3)hn(Wi2 ,Wi3)

+ 3
∑
i1

∑

i2 6=i1

∑

i3 6=i1,i2

∑

i4 6=i1,i2,i3

Ehn(Wi1 ,Wi2)hn(Wi2 ,Wi3)hn(Wi3 ,Wi4)hn(Wi4 ,Wi1) (5.9)

where all vanishing terms (with Ehn(Wi1 ,Wi2) = 0) are omitted. To show the second condition,

the remaining terms have to be calculated. Starting with the denominator, we have to calculate

σ2
n = Ehn(W1,W2)

2. (5.10)

Resolving the square and changing variables4 to ṽ = (v − v1)/h together with expanding a(·)
and f(·) yields

σ2
n =

4

n4h2(dX+dZ)

∑

k,k′

∫∫
K(ṽ)

yk
1 − µk(v1)

f(v1)

×K(ṽ + (v1 − v2)/h)
yk

2 − µk(v2)

f(v1)
a(v1)f(v1) dṽ

×
∫

K(ṽ)
yk′

1 − µk′(v1)

f(v1)
K(ṽ + (v1 − v2)/h)

yk′
2 − µk′(v2)

f(v1)
a(v1)f(v1) dṽ

× f(y1, v1)f(y2, v2) dy1 dv1 dy2 dv2(1 + O(h))

4Here the notation is simplified. As v1 is dX + dZ-dimensional one has to apply dX + dZ substitutions.
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Now substitute ˜̃v = (v1 − v2)/h to obtain

=
4(κ∗)dX+dZ

n4hdX+dZ

∑

k,k′

∫
(yk

1 − µk(v1))(y
k
2 − µk(v1))(y

k′
1 − µk′(v1))(y

k′
2 − µk′(v1))

×
(a(v1)

f(v1)

)2

f(y1, v1)f(y2, v1) dy1 dy2 dv1(1 + O(h))

=
4(κ∗)dX+dZ

n4hdX+dZ

∑

k,k′

∫ (∫
(yk

1 − µk(v1))(y
k′
1 − µk′(v1))

f(y1, v1)

f(v1)
dy1

)2

a(v1)
2 dv1

× (1 + O(h))

=
2

n4hdX+dZ
Σ2
K(1 + O(h)).

Similar calculations show that

Ehn(W1,W2)
4 = O(n−8h−3(dX+dZ))

Ehn(W1,W2)
2hn(W1,W3)

2 = O(n−8h−2(dX+dZ))

Ehn(W1,W2)
2hn(W1,W3)hn(W2,W3) = O(n−8h−2(dX+dZ))

Ehn(W1,W2)hn(W2,W3)hn(W3,W4)hn(W1,W4) = O(n−8h−(dX+dZ)).

Using combinatorial arguments it can be established from equation (5.9) that E I4
Kn,1 is asymp-

totically dominated by terms with Ehn(W1,W2)
2hn(W3,W4)

2 = (Ehn(W1,W2)
2)2. Therefore

the second condition in equation 5.8 is fulfilled as

E I4
Kn,1

(var In)2
=

12n−4h−2(dX+dZ)Σ4
K(1 + o(1))

(2n−2h−(dX+dZ)Σ2
K(1 + o(1)))2

−→ 3

and weak convergence of IKn,1 is established.

Proof of (5.6) The expected value of the test statistic is given by

E IKn,2 =
1

n

dY∑

k=1

∫∫ (
Kh(v − v1)

yk
1 − µk(v1)

f(v)

)2

a(v)f(v) dvf(y1, v1) dy1 dv1.

Changing variables and expanding yields

=
κ2

0

nhdX+dZ

dY∑

k=1

∫
(yk

1 − µk(v1))
2 a(v1)

f(v1)
f(y1, v1) dv1(1 + O(h))

= n−1h−(dX+dZ)BK(1 + O(hr)).

Convergence in probability follows from Markov’s inequality with second moments, which re-

quires to calculate

1

n4

(∫ dY∑

k=1

(
Kh(v − v1)(y

k
1 − µk(v1))

)2 a(v)

f(v)
dv

)2

f(y1, v1) dy1 dv1.
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Changing variables as before results in

κ2
0

n4h2(dX+dZ)

∑

k,k′

∫
(yk

1 − µk(v1))
2(yk′

1 − µk′(v1))
2 a(v1)

2

f(v1)2
f(y1, v1) dy1 dv1(1 + o(1)),

which is bounded by Assumption 2. In total this yields

E I2
Kn,2 = O(n−3h−2(dX+dZ)) = o(n−2h−(dX+dZ))

and convergence in probability of IKn,2 follows.

Proof of (5.7) For this statement we will restrict to the case when dY = 1. Then convergence

in probability has to be shown for

∆Kn =
1

n3

∑

i,j,k

γn(Wi,Wj,Wk),

where

γn(Wi,Wj,Wk) = γ̃n(Wi,Wj,Wk)−
∫

γ̃n(Wi,Wj, w)f(w) dw,

with

γ̃n(Wi,Wj,Wk) = Kh(Vk − Vi)
Yi − µ1(Vi)

f(Vk)
a(Vk)Kh(Vk − Vj)

Yj − µ1(Vj)

f(Vk)
a(Vk).

First we show that the expectation tends to zero

E∆Kn =
1

n3

∑

i,j,k

E γn(Wi,Wj,Wk) = o(n−1h−(dX+dZ)/2),

where only the cases i = k 6= j, j = k 6= i and i = j = k have to be considered, all others have

expectation zero. In the remaining cases, two (resp. one) substitution can be applied and their

total contribution is O(n−1h2(dX+dZ) + n−2hdX+dZ ).

Then, Markov’s inequality is applied with the second moments and we have to investigate

E∆2
Kn =

1

n6

∑

ijk

E γn(Wi,Wj,Wk)
2

+
2

n6

∑

ijk

∑

i′j′k′
E γn(Wi,Wj,Wk)γn(Wi′ ,Wj′ ,Wk′).

The covariance parts vanish, whenever k 6= k′. If k = k′ the covariance terms are zero by

the conditional independence of the error terms, in all cases where i 6= i′ or j 6= j′. For the

remaining cases we have to distinguish if the number of different indices is N = 2, 3. Then, the

overall contribution of these terms is O(nN−6h−4(dX+dZ)hN(dX+dZ)) = o(n−2h−(dX+dY )).

Next, consider the variance terms. If there are three different indices, two changes of vari-

ables can be applied and the overall contribution is O(n−3h−2(dX+dZ)) = o(n−2h−(dX+dZ)). If
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there are two different indices, one change of variables can be applied and we obtain terms

of order O(h−3(dX+dZ)) with a total contribution of O(n−4h−3(dX+dZ)) = o(n−2h−(dX+dZ)). If

i = j = k one change of variables is still possible and the contribution is O(n−5h−3(dX+dZ)) =

o(n−2h−(dX+dZ)). This completes the proof of equation (5.7).

Convergence in Probability of Γ̂K3 For the third term in (5.1) it holds that

|Γ̂K3| ≤ max
k=1,...,dY

sup
x∈A

|mk(Xj)− m̂k
h̃
(Xj)|2 sup

v∈A
|a(v)|

= OP (h̃2r +
log n

nh̃dX

)

= oP

(
n−1h−(dX+dZ)/2

)

under Assumption 4.3.

Convergence in Probability of Γ̂K4 The non-zero parts are given by

Γ̂K4 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f̂h(Vi)

)

×
( 1

n

n∑

j′=1

Kh(Vi − Vj′)
mk(Xj′)− m̂k

h̃
(Xj′)

f̂h(Vi)

)
Ai

=
∑

i,j,j′
γijj′ .

Because

E εk
j

(
mk(Vj′)− m̂h̃(Vj′)

) | V1, . . . , Vn) = n−1Kh̃(Vj − Vj′)σ
2(Vj)

we have that

E Γ̂K4 = O(n−1) = o(n−1h−(dX+dZ)/2).

It follows from similar considerations as done to show (5.7) that

E Γ̂2
K4 = o(n−2h−(dX+dZ)).

This completes the proof of the theorem

Proof of Theorem 2

Under H1n the decomposition (5.1) remains valid and the asymptotic analysis of Γ̂K1 and Γ̂K3

is unchanged. However Γ̂K2 is not zero any longer. If it holds that µ(x, z) = m(x) + εn(x, z),
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we have that

Γ̂K2 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
εk

n(Vj)

f(Vi)

)2

Ai(1 + oP (1))

=

dY∑

k=1

∫ ( 1

n

n∑
j=1

Kh(v − Vj)
εk

n(Vj)

f(v)

)2

a(v) dv + oP (n−1h(dX+dZ)/2).

This follows from similar calculations as to show (5.7). Omitting the lower order terms it holds

that

nh(dX+dZ)/2Γ̂K2 =

∫
K(u)2 du

dY∑

k=1

1

n

n∑
j=1

(εk
n(Vj)

f(Vj)

)2

a(Vj) + oP (1)

P−→ h−(dX+dZ)/2BL + oP (1).

The last convergence holds by assumption if λn = O(nh(dX+dZ)/2. In particular for any fixed

alternative, the convergence does not apply and nh(dX+dZ)/2Γ̂K2 = O(n) and diverges. This

yields consistency of the test statistic.

Proof of Theorem 3

In the proof of this theorem we use the notation E∗ and var∗ to denote expectation and variance

conditional on the data. Decompose

Γ̂∗K =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)
Y k,∗

j − m̂k,∗
h̃

(Xi)

f̂h(Xj, Zj)

)2

Ai

=
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

×
( εk,∗

f̂h(Xj, Zj)
+

m̂k
h̃
(Xi)− m̂k,∗

h̃
(Xi)

f̂h(Xj, Zj)

))2

Ai

= (I∗Kn + ∆∗
Kn)(1 + oP (1)) + Γ∗K3 + Γ∗K4,

where I∗Kn and ∆∗
Kn are defined as in (5.2) and (5.3) by replacing Y k

j − µk(Xj) with εk,∗
j . Γ∗K3

can be bounded by showing that

sup
x∈A

|m̂k
h̃
(x)− m̂k,∗

h̃
(x)| = OP

(
h̃r+

( log n

nhdX

)1/2)
. (5.11)

Decomposing I∗Kn as in equation (5.4) into I∗Kn,1 and I∗Kn,2 it remains to show that

nh(dX+dZ)/2I∗Kn,1
D−→ N (0, Σ2

K), (5.12)
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conditional on the data with probability tending to one and

nh(dX+dZ)/2I∗Kn,2 − h−(dX+dZ)/2BK
P−→ 0 (5.13)

nh(dX+dZ)/2∆∗
Kn

P−→ 0. (5.14)

Then the statement of the theorem follows.

Proof of (5.11) First note that

sup
x∈A

|m̂k
h̃
(x)− m̂k,∗

h̃
(x)| = sup

x∈A
|(f̂k

h̃
(x))−1 1

n

n∑
i=1

Kh̃(x−Xi)(Y
k
i − Y k,∗

i )|

≤ sup
x∈A

|mk(x)− m̂k
h̃
(x)|+ sup

x∈A
|(f̂k

h̃
(x))−1 1

n

n∑
i=1

Kh̃(x−Xi)ε
k,∗
i |

+ sup
x∈A

|(f̂k
h̃
(x))−1 1

n

n∑
i=1

Kh̃(x−Xi)ε
k
i |.

The first term already has the desired rate. Because f̂k
h̃
(x) is consistent and f(x) is bounded

from below on A further analysis can be restricted to the numerator. Since the analysis of the

second and the third term in analogous, we concentrate on the second term. First, a truncation

argument is applied. Define ε̃k,∗
i = 1{εk,∗

i ≤nh̃dX }, which allows to decompose

1

n

n∑
i=1

Kh̃(x−Xi)ε
k,∗
i =

1

n

n∑
i=1

Kh̃(x−Xi)ε̃
k,∗
i

+
1

n

n∑
i=1

Kh̃(x−Xi)ε
k,∗
i 1{εk,∗

i >nh̃dX }. (5.15)

Starting with the second term, note that it holds that E |εk,∗
i 1{εk,∗

i >nh̃dX }| = O(n−2h̃−2dX ),

because the forth moment of εk,∗
i is finite. Then, the second term on the right side of (5.15)

can be bounded with Markov’s inequality with first moments

E
∣∣ 1
n

n∑
i=1

Kh̃(x−Xi)ε
k,∗
i 1{εk,∗

i >nh̃dX }
∣∣ ≤ E |Kh̃(x−X1)ε

k,∗
1 1{εk,∗

1 >nh̃dX }|

≤ sup
u
|K(u)|E |εk,∗

i 1{εk,∗
i >nh̃dX }|(1 + O(h̃))

= O(n−2h̃−2dX ),

from which the desired rate follows.

Finally, we turn to the first term in (5.15). Covering the compact set A with N cubes Al =
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{x | ‖x− xl‖ < ηN}, l = 1, . . . , N, ηN = O(N−1/dX ) we write

sup
x∈A

∣∣ 1
n

n∑
i=1

Kh̃(x−Xi)ε̃
k,∗
i

∣∣ ≤ max
l

∣∣ 1
n

n∑
i=1

Kh̃(xl −Xi)ε̃
k,∗
i

∣∣

+ max
l

sup
x∈Al

∣∣ 1
n

n∑
i=1

(Kh̃(x−Xi)−Kh̃(xl −Xi))ε̃
k,∗
i

∣∣. (5.16)

Using the Lipschitz-continuity of the kernel, one directly obtains that the second term on the

right hand side is of OP (ηN h̃−dX/2n−1/2) = oP (n−1/2h̃dX/2(log n)1/2). The first term on the is

bounded using Bonferroni’s inequality first and then Bernstein’s inequality

P
(∣∣ 1

n

n∑
i=1

Kh̃(xl −Xi)ε̃
k,∗
i

∣∣ >
( log n

nh̃dX

)1/2 c1

2

)

≤ 2 exp
(
− c2

1(log n)/(4nh̃dX )

4
∑n

i=1 E( 1
n
Kh̃(x−Xi)ε̃

k,∗
i )2 + c2(

log n

n3h̃3dX
)3/2

)
,

where c2 is the constant arising from Cramer’s conditions on the distribution of ε̃k,∗
i . It follows

from standard arguments that
∑n

i=1 E( 1
n
(Kh̃(x−Xi)ε̃

k,∗
i and so we get that

P
(∣∣ 1

n

n∑
i=1

Kh̃(x−Xi)ε̃
k,∗
i

∣∣ >
( log n

nh̃dX

)1/2 c

2

)
≤ O(n−1).

Then, for N = o(n) the desired rate of convergence is obtained.

Proof of (5.12) To derive the asymptotic distribution of

I∗Kn,1 =
∑
i<j

hn(W ∗
i ,W ∗

j ),

given the data with probability tending to one, again the limit theorem by de Jong (1987) will

be applied. This is done by showing that the conditions hold with probability tending to one,

i.e.
max1≤i≤n

∑n
j=1 E

∗ hn(W ∗
i ,W ∗

j )2

var∗ I∗Kn1

P−→ 0 and
E∗(I∗Kn,1)

4

(var∗ I∗Kn,1)
2

P−→ 3.

Here,

hn(W ∗
i ,W ∗

j ) =
2

n2

∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

dY∑

k=1

εk,∗
i εk,∗

j .
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First we analyze

E∗ hn(W ∗
i ,W ∗

j )2 =
4

n4

(∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

)2

×
( dY∑

k=1

(Y k
i − m̂k

h̃
(Xi))(Y

k
j − m̂k

h̃
(Xj))

)2

=
4

n4

(∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

)2

×
( dY∑

k=1

(Y k
i − µk(Vi))(Y

k
j − µk(Vj))

)2

(1 + OP

(
h̃r +

( log n

nh̃dX

)1/2)
)

(5.17)

= hn(Wi,Wj)
2 + op(n

−4h−2(dX+dz)).

This holds because under H0 we have that mk(Xi) = µk(Xi, Zi) almost surely. Starting with

the numerator, we utilize the conditional independence of the bootstrap residuals to see that

var∗ IKn,1 =
∑
i<j

E∗ hn(W ∗
i ,W ∗

j ).

To bound this in probability, apply Markov’s inequality with the first moment

E
∣∣∣
∑
i<j

E∗ hn(W ∗
i ,W ∗

j )2
∣∣∣ =

∑
i<j

Ehn(W ∗
i ,W ∗

j )2 = n−2h−(dX+dZ)2Σ2
K(1 + o(1)),

from which it follows that

var∗ IKn,1
P−→ var IKn,1.

This is now used to show the first condition. Together with (5.8) and (5.17) we obtain

maxi=1,...,n

∑n
j=1,j 6=i E

∗ hn(W ∗
i ,W ∗

j )2

var IKn,1

=
maxi=1,...,n

∑n
j=1,j 6=i hn(Wi,Wj)

2 + OP (n−3(h̃r + (log n/(nh̃dX ))1/2))

var IKn,1

=
maxi=1,...,n

∑n
j=1,j 6=i hn(Wi,Wj)

2

var IKn,1

+ OP (n−1(h̃r + (log n/(nh̃dX ))1/2))

= oP (1).

For the second condition we again use the convergence of the denominator. Then using the

first moment to bound the probability leads to similar calculations as done in the proof of

equation (5.5).

Proof of (5.13) The proof of equation (5.13) consists of using iterated expectations and use

there the same calculations as to proof equation (5.12).
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Proof of (5.14) As E∗ εk,∗
j = 0 the same arguments as for ∆Kn remain to hold for ∆∗

Kn.

Proof of Theorem 4

From Masry (1996) it is known that

sup
v∈A

|Ŝ(v)− f(v)M | = OP

(
h2 +

( log n

nhdX+dY

)1/2)
,

therefore we can write

Γ̂L
K =

1

n

dY∑

k=1

n∑
i=1

(bf(Vi)
−1M−1(T̂ k(Vi)− T̃ k(Vi))c1)2Ai(1 + oP (1))

=
1

n

dY∑

k=1

n∑
i=1

( 1

n

∑

0≤|j|≤p

κ−1
j

n∑

l=1

(Vl − Vi

h

)j

Kh(Vl − Vi)
Y k

l − m̂k,L

h̃
(Xl)

f(Vi)

)2

= Γ̂L
K1 + Γ̂L

K2 + Γ̂L
K3 + Γ̂L

K4,

where we decompose according to Y k
l − m̂k,L

h̃
(Xl) = Y k

l − µk(Vl) + µk(Vl)−mk(Vl) + mk(Xl)−
m̂k,L

h̃
(Xl) and transfer all cross terms to Γ̂L

K4. Then Γ̂L
K2 = 0 almost surely under H0. And

Γ̂L
K3 = OP (h2r + log n/(nhdX )) by applying results from Masry (1996) for the density estimator

and the local linear estimator. Next, we decompose

Γ̂L
K1 = IL

Kn,1 + IL
Kn,2 + ∆L

Kn,

where the quantities are given as in (5.2), (5.3) and (5.4) and the kernel is replaced by

K̃h(u) =
∑

1≤j≤p

(u

h

)j

κ−1
j Kh(u).

Since this kernel satisfies the assumptions which are necessary to show (5.5)–(5.7) (note that

higher order properties of the kernel are not used there), the statement of the theorem follows.

Proof of Theorem 5

In this case we can decompose the test statistic into Γ̂S
K = Γ̂S

K1 + Γ̂S
K2 + Γ̂S

K3 + Γ̂S
K4 + Γ̂S

K5, where

Γ̂S
K1 = Γ̂K1,

Γ̂S
K2 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)

× (µk(Xj, Zj)−mk(Xj)−Gk(Zj, θ))
)2

Ai
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Γ̂S
K3 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)
(mk(Xj)− m̂k

h̃
(Xj))

)2

Ai

Γ̂S
K4 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)
(Gk(Zj, θ)−Gk(Zj, θ̂)

)2

Ai

and Γ̂S
K5 contains all cross terms. Under H0S we have that Γ̂S

K2 = 0 almost surely and the other

two terms are bounded by uniform convergence rates. Start with

|Γ̂S
K3| ≤ max

k=1,...,dY

sup
x∈AX

|mk(x)− m̂k
h̃
(x)|2 sup

(x,z)∈A
|a(x, z)|

≤ sup
(x,z)∈A

|a(x, z)|
(

max
k=1,...,dY

sup
x∈AX

|mk(x)− m̃k
h̃
(x)|2

+ max
k=1,...,dY

sup
z∈AZ

|Gk(z, θ)−Gk(z, θ̂)|2
)

= oP (n−1h(dX+dZ)/2).

The quantity m̃k
h̃
(Xj) denotes a nonparametric regression of the unobserved variable Yi −

G(Zi, θ) on Xi. The standard uniform convergence rate holds for this estimator and by our

assumptions it converges faster than the test statistic. For the parametric function G(z, θ) the

convergence rate was assumed. From this assumption we also obtain

|Γ̂S
K4| = oP (n−1h(dX+dZ)/2).

The asymptotic distribution of Γ̂K1 was derived in the proof of Theorem 1.

Proof of Theorem 6

For dependent data, decomposition (5.1) still applies and under H0 it holds that Γ̂K2 = 0.

Because β-mixing implies α-mixing, the results in Masry (1996) hold under Assumption 7.

This means, we have that

sup
x∈A

|mk(x)− m̂h̃(x)| = OP (h̃r +
( log n

nh̃dX

)1/2

)

and the same rate holds for the kernel density estimator. Therefore it remains to analyze Γ̂K1

and to show (5.5)–(5.7) for the dependent case.

Proof of (5.5) To derive the asymptotic distribution, we regard IKn,1 still as U -Statistic, and

apply Theorem 2.1 in Fan and Li (1999). To apply this central limit theorem a large number of

assumptions have to be checked. For brevity we concentrate on those that influence the rates.
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Denote with (W̃i)i=1,...,n a sequence of independent and identically distributed random variables

with the same marginal distribution as (Wi)i=1,...,n

m

n3/2

Ehn(W̃1, W̃2)
4

(Ehn(W̃1, W̃2)2)2
= O

( m

n3/2h

)

m4 maxt>1 E(
∫

hn(w, W1)hn(w, Wt)f(w) dw)2

(Ehn(W̃1, W̃2)2)2
= O(m4h)

n2β(m)1−1/ν m2 + n2β(m)1−1/ν

(Ehn(W̃1, W̃2)2)2
= O

(
n6h2(m2β(m)1−1/ν + n2β(m)2−2/ν)

)

Together with the assumptions on the number of existing moments of Y and the kernel function

(EY 4ν < ∞, κ4ν
0 ), this yields (5.5).

Proof of (5.6) It is easy to see that E IKn,2 is unchanged. To show convergence in probability

using the second moment of IKn,2, the covariances have to be bounded. Writing

IKn,2 =
n∑

i=1

h′n(Xi),

with

h′n(Wi) =
1

nh−(dX+dZ)

dY∑

k=1

∫ (
K(u, v)(Y k

1 −mk(X1))
)2 a(X1 + uh, Z1 + vh)

f(X1 + uh, Z1 + vh)
du dv.

We then use the covariance inequality for strongly dependent processes (ν > 1)

cov(h′n(Wi), h
′
n(Wj)) ≤ c

(
E(h′n(W1))

ν
)2/ν

β(j − i)1−2/ν .

As
(
E(h′n(W1))

ν
)2/ν

= O(n−2h−2(dX+dZ)) (if EY 2ν < ∞ and κ2ν
0 < ∞) the convergence follows

if
∑∞

i=1 β(i)1−2/ν < ∞.

Proof of (5.7) To show that the expected value converges we use

|E γn(Wi,Wj,Wk)| ≤ 4M1/νβ(min{i− k, j − k})1−1/ν ,

where M = max{E γ̃n(Wi,Wj,Wk)
ν ,E

∫
γ̃n(Wi,Wj, w)νf(w) dw}. (Lemma A.1 in Dette and

Spreckelsen, 2004). Convergence in probability is shown by using the first absolute moment

and Lemma A.0 in Fan and Li (1999) to obtain

E |γn(Wi,Wj,Wk)| ≤ 4M1/νβ(min{i− k, j − k})1−1/ν ,

with M as above. Some tedious calculations show that convergence in probability is established

if EY 2ν < ∞ and
∑∞

i=1 β(i)1−1/ν < ∞, establishing the asymptotic distribution.
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