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Abstract

This paper considers measurement error from a new perspective. In surveys, response
errors are often caused by the fact that respondents recall past events and quantities
imperfectly. We explore the consequences of recall errors for such key econometric is-
sues as the identification of marginal effects or economic restrictions in structural models.
Our identification approach is entirely nonparametric, using Matzkin-type nonseparable
models that nest a large class of potential structural models. We establish that measure-
ment errors due to poor recall are generally likely to exhibit nonstandard behavior, in
particular be nonclassical and differential, and we provide means to deal with this situa-
tion. Moreover, our findings suggest that conventional wisdom about measurement errors
may be misleading in many economic applications. For instance, under certain conditions
left-hand side recall errors will be problematic even in the linear model, and quantiles
will be less robust than means. Finally, we apply the main concepts put forward in this
paper to real world data, and find evidence that underscores the importance of focusing
on individual response behavior.

Keywords: Measurement Error, Nonparametric, Survey Design, Nonseparable Model, Identi-

fication, Zero Homogeneity, Demand.

1 Introduction

Motivation. Consider a question in a household survey about an economic quantity like

the following: “How much did you spend on food items in the last month?” We will call the
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target quantity of a survey question Z. Most often, individuals do not know the exact answer

and make an informed guess Z̃, which can be viewed as a “backcast” using the immediately

available information. Obviously, this recall Z̃ is only an imperfect measurement of true food

consumption Z, and any analysis based on this imperfect measurement may potentially be

flawed.

Traditionally, the econometrics literature has focussed on the error in the measurement of

Z, i.e., on Z − Z̃, when dealing with such situations. In this paper we reverse the viewpoint

and focus on properties of the backcast Z̃ instead. Unlike in parts of the natural sciences where

(mis)measurements are given exogenously, in surveys in the social sciences individuals actively

decide about their response. From this perspective, measurement errors are only a byproduct

of this process. Consequently, we argue in this paper that the survey design and measurement

error literatures can gain important new insights by focusing on the properties of the backcast

Z̃ rather than concentrating on properties of the response error.

Reversing the viewpoint in this way has several advantages: First, viewing the object from

a different perspective allows us to gain new insights. For instance, it is well documented in

validation studies that left-hand side measurement errors are not as well behaved as they are in

the textbook (classical measurement error) case. In this paper, we give conditions for when left-

hand side and right-hand side measurement errors are likely to exhibit “nonstandard” behavior,

and provide explanations. Second, armed with a better understanding of the measurement

error, it is possible to investigate the design of survey questions formally, and to minimize the

distortions arising from response behavior ex ante rather than having to deal with them ex

post (see also McFadden, et al., 2006, and McFadden, 2006). We emphasize the latter point

because there is now ample experimental and empirical evidence suggesting important effects

of the design of a survey on the actual response behavior of individuals.

Throughout this paper, we concentrate on distorting effects that are caused by the respon-

dent. We neither consider effects caused by (social) interaction between the interviewer and

the respondent, nor do we consider the case where Z is elicited accurately but is used only as

a proxy for another variable in an econometric model. Specifically, we are concerned with the

respondents’ limited ability to acquire, process, and recall information. By focusing on this

key type of measurement error, we can allow for heterogeneity of individuals in preferences and

mental abilities in a very general fashion.

Related literature. There is a significant amount of work in econometrics on mismeasured

variables. Within this body of literature, our approach contributes to the line of work that dis-

cusses measurement errors in nonlinear models, and contributes more generally to work that

explores nonparametric identification using nonseparable models. Key recent contributions in

the nonlinear measurement error literature are, inter alia, Hausman, Newey, and Powell (1995)

for classical measurement errors, and Hu and Schennnach (2006) for nonclassical measurement

errors. In this literature, Matzkin (2008) is most closely related to our work in terms of the

nonseparable framework, see also Matzkin (2007) for a survey of these type of models. For

additional literature, see references in the cited papers as well as the monograph of Wansbeek
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and Meijer (2000), the extensive survey of Bound, Brown, and Mathiowetz (2001), and the

conceptual paper by Hausman (2001). Compared with our approach, this strand of the mea-

surement error literature is of fairly reduced form. There is no behavioral model that explains

the respondents’ error, and consequently the error is a purely statistical object. The advan-

tages of either approach are obvious: While the reduced form approach provides a broader

safeguard against all types of measurement errors, our structural approach is more restrictive

as it only considers one type of error, although perhaps an important one. However, focusing

on only one type of measurement error allows us to describe more accurately its determinants

and implications.

Our work shows some overlap with the parametric work of Hyslop and Imbens (2001), who

as we argue that the measurement literature in social sciences should rather view measurement

errors as a byproduct of a forecasting problem. While we share this similarity in philosophy, our

approach is markedly different in several dimensions. First, we consider general nonparamet-

ric identification, estimation and testing results, including nonparametric quantile and mean

regressions. In contrast, Hyslop and Imbens (2001) consider a restrictive linear setting with

normally distributed errors. Moreover, in our more general setting we provide conditions for

when recall errors are relatively well behaved, and when they are less well behaved, and we

provide bounds as a possible remedy in the case of less well behaved recall errors.

From the general philosophy, our approach is more closely related to work in survey research

and psychology (for a review see Tourangeau, Rips, and Rasinski, 2000). Indeed, our work al-

lows to link this literature to econometrics via nonparametric identification. In a companion

paper, we provide a behavioral model for the recall process, which helps to clarify conditions

under which the error is less well behaved (see Hoderlein and Winter, 2008). There is also a

strand of work in economic theory which considers the response behavior under a market per-

spective, see Philipson (1997, 2001), but McFadden (2006) is the only paper we know of that

aims at unifying insights from the psychological literature on survey response behavior and an

incentive-based economic analysis of survey response in an econometric setup. Finally, concep-

tually there is some overlap between our paper and the work of Manski and his collaborators,

see Manski (2004) for an overview.

Key issues and contributions. In considering the behavior of respondents in detail and

relating it to nonparametric identification, we aim specifically at the following issue: Under

which conditions can we identify marginal effects of the economic relationship of interest? As

a minimal requirement, can we at least identify some average structural marginal effects in a

world of heterogeneous agents? Indeed, if these quantities are not identified, not much scope for

any type of econometric analysis remains. Also, are conditional means or conditional quantiles

better suited to deal with difficulties arising in this situation?

To illustrate the contributions in this paper related to these questions, we illustrate some

important issues through the following textbook example of a linear model1. We assume that

1Throughout the rest of the paper, many of the ideas will be discussed in an abstract fashion with the
intention to show that these ideas apply generically to a large class of models, e.g. to nonlinear models or
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the model is defined as follows: Let

Y = X ′β + A, (1.1)

where Y is a random scalar, β is a fixed K-vector of coefficients, X is a random K-vector

of regressors, and A is a random scalar such that E[A|X] = 0. Due to limitations in the

individual’s ability to recall, we do not observe Y , but rather Ỹ , which we model as a function

of the variables which span the individuals’ information set F .

What are the implications? Since the individual answers Ỹ , instead of (1.1) we use the

regression Ỹ = X ′β̃ + Ã, where Ã is defined through E
[
Ỹ |X

]
= X ′β̃. By standard arguments,

β̃ = E [XX ′]−1 E
[
XỸ

]
, provided E [XX ′] is nonsingular. Suppose first that when backcasting

individuals use the squared error loss, and assume that F ⊇ σ (X). Then, Ỹ = E [Y |F ] , and

β̃ = E [XX ′]−1 E [XE [Y |F ]] = β + E [XX ′]−1 E [XE [A|F ]] .

But due to 0 = E [A|X] = E [E [A|F ] |X] and the law of iterated expectations, the second

term vanishes and consequently β̃ coincides with β. This case is analogous to the conventional

wisdom that left hand side measurement errors do not matter for identification in linear models.

However, turn to the scenario where individuals do not actively use all information available

to the econometrician. Formally, consider the case where in order to form a backcast individuals

use the squared error loss in connection with F = σ (X ′γ,A1), where γ is a nonrandom nonzero

vector and A1 contains additional information not available to the econometrician. Assume for

simplicity that E [A|F ] = E [A|A1] 6= 0 and that A1 is independent of X. Then,

β̃ = E [XX ′]−1 E [XE [Y |F ]] =
{

IK − E [XX ′]−1 E [XV ′]
}

β,

where V = X − E [X|X ′γ]. Obviously, the second term in curly brackets will not vanish in

general. Consequently, even though one may identify and consistently estimate β̃, this will only

produce a biased version of β.

What is going wrong with conventional wisdom here? The answer is that the measurement

error is nonstandard in the sense that U = Y − Ỹ is not independent of Y . More importantly

for the linear model, E [U |X] 6= 0, i.e. the regressors become endogenous.

The question of whether individuals actively use all information employed by the econome-

trician in their backcast seems to be the crucial question more generally. What differs in the

general nonparametric case, however, is that only average structural effects are identified, even

in the case where individuals use more information than the econometrician. Hence it is impos-

sible to disentangle the heterogeneity in preferences from the heterogeneity in recall abilities.

Moreover, it is our opinion that there will always be limitations in the quality of the backcast

and that the recall errors are bound to be misbehaved. For instance, it is straightforward to see

nonparametric models defined by quantile restrictions. Hence, we will make largely use of nonseparable models
where the dependent variable is a smooth, but otherwise fairly unrestricted function of a K-random vector of
regressors X, and a (potentially infinite dimensional) vector of unobservables A.
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that in general recall errors on right hand side variables X are differential in the sense of Carroll,

Ruppert and Stefanski (1995). The reason is that the additional information individuals use

will generally cause dependence between Y and the backcast X̃, even after controlling for X.

Hence, some way of dealing with this problem is called for: We explore the standard economet-

ric remedy of instruments, but argue that this route may be treacherous as individuals have

to employ the information in the instruments in their backcast. As an alternative, we propose

bounds. Using a simplified version of the bounds provided in theorem 2 and specializing it to

the linear model (1.1) with poorly recalled Y (and the added assumption that A = σ(X)P ,

where σ is a smooth function and P is independent of X), we obtain for the first coefficient β1:

|E [∂x1m(X)]− β1| ≤ E
[
Y 2

]1/2 E
[
Q2

x1

]1/2
,

where m denotes the nonparametric regression of Ỹ on X = (X ′
1, X

′
−1)

′, and ∂x1g denote the

partial derivative of a vector valued function g with respect to a scalar x1, fX−1|X1(x−1, x1) de-

notes the conditional density, and Qx1 = ∂x1 log fX−1|X1(X−1, X1). Finally, whenever convenient

we suppress the arguments of the respective functions.

There are a couple of things worthwhile noting, all of which will be shown below in generality:

First, the term E [Y 2] reflects knowledge of the true population distribution of Y . Hence, we do

not require a validation dataset, but we do require a correct aggregate statistic. Second, if we

are willing to invoke an assumption about the variance of the error, E [U2], then we may replace

E [Y 2] by E
[
Ỹ 2

]
+E [U2]. Third, we may come up with alternative bounds which replace E [Y 2]

by E [V ar [Y 2|F ]], where V ar [Y 2|F ] may be obtained by eliciting a measure of the individuals’

uncertainty. This line of thought connects our approach to that of Manski (2004). Fourth,

the assumption about the structure of the recall information shows up in the second term

E
[
Q2

x1

]
, but we do not have to invoke any structural assumption about the measurement error.

More specifically, the bounds are free of γ so we do not have to know how individuals exactly

reduce the information. Finally, it is the average nonparametric regression and not the marginal

effect β̃1 for which we will derive natural bounds. The fact that individuals reduce information

introduces a nonlinearity. If bounds on β1 are to be obtained using β̃1, then we also have to take

into account a measure of distance of the nonparametric regression from the linear projection.

Organization of the paper. Throughout the paper, we are mainly interested in identifi-

cation of the partial derivative of a structural economic model Y = φ(X,A) with respect to its

first component X1, where Y, X and A are as above, but A may now be infinite dimensional.

Now, due to imperfect recall we do not observe either Y or X1 correctly. Instead, we observe

Ỹ or X̃1, which are the backcasts the individuals form, given a certain loss function and an

information set. For instance, if respondents use the squared error loss and the information set

σ(X, J), where J denotes additional information, their backcast would be Ỹ = E[Y |X, J ]. In

this specific case for instance, the structural model is given by

Y = φ(X, A), (1.2)

Ỹ = E[Y |X, J ],
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where A ⊥ X. In section 2, we consider the implications of such a model for the measurement

of the partial derivative ∂x1 . Because it is the most significant innovation, we consider only

the case where the dependent variable Y is poorly recalled, and leave the case where the

independent variable X1 is poorly recalled to future work.

Our identification approach is entirely nonparametric. To show the important advantage

that this directly allows to study all relationships between variables in a nonparametric fashion

we retain an entirely nonparametric structure. More specifically, we briefly introduce nonpara-

metric test statistics (section 3) and show in an empirical application that nonstandard recall

errors can explain important negative findings in the demand literature (section 4). In particu-

lar, we show that the common rejection of homogeneity of degree zero may be related to recall

errors in self reported consumption. Finally, summary and outlook conclude.

2 Identifying Marginal Effects in the Presence of Recall

Errors

Throughout this paper, as a result of incomplete recollection of the dependent variable Y ∈
R, we assume to observe the data D = (Ỹ , X ′, S ′)′ only. Here, Ỹ denotes either E [Y |F ] if

individuals use the squared error loss, or the median medY (F) if they use the absolute error

loss, X ∈ RK denotes the set of regressors in the economic relationship of interest, S denote

variables that determine the precision of the recall (eg, time used or mental capacity), and

we let W = (X ′, S ′).′ In the following, we will largely be concerned with the derivative with

respect to a typical regressor. Hence, let X = (X1, X
′
−1)

′ define a partition of X, where X1

is the variable of interest, for simplicity a scalar. Finally, denote by A ∈ A an unobservable

possibly infinitely dimensional vector (element of a Borel space A), and introduce the partitions

W = (X1, W
′
−1)

′, i.e. W−1 = (X−1, S
′)′, and A = (A′

1, A
′
−1)

′. Let FG and FG|H be the cdf and

conditional cdf of a random variable G given H. We assume that FG|H is absolutely continuous

w.r.t. a measure ν, with fG|H the associated Radon-Nykodim derivative (a conditional density

when ν is the Lebesgue measure, or a conditional probability if ν is the counting measure).

The first element of our analysis consists of a causal relationship between variables generated

by an economic decision. As econometricians we are interested in estimating this relationship

as well as in the validity of restrictions economic theory places upon it. For instance, in the

case of demand for a single good, Y would be a log expenditure for the good, while X would

be a K-vector of prices, income and individual characteristics. In this example, allowing A to

be in a Borel space is very important as it allows for (unobserved) heterogeneity in piecewise

continuous utility functions.

With these definitions we can characterize the economic relationship of interest:

Assumption 1. The relationship of interest is

Y = φ(X, A),
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where φ as a fixed, scalar valued Borel-measurable function defined on RK × A, continuously

differentiable in x1, with derivatives ∂x1φ that are uniformly bounded.

Assumption 1 is typical for the literature on nonparametric identification and nonseparable

functions. Note, however, that we explicitly allow for an infinite dimensional error and we do

not impose monotonicity on the function φ. Analysis of this model has been considered by

Altonji and Matzkin (2006), Imbens and Newey (2005), Hoderlein (2005, 2008) and Hoderlein

and Mammen (2007). Like these papers, we will be interested in local average structural

derivatives (LASD) with respect to some σ-algebra, e.g., E [∂x1φ(X,A)|X = x] . This type of

object reduces often to well known quantities, e.g., to β in the linear model2.

The question we are interested is now: what can we learn from the data D = (Ỹ , X ′, S ′)′

about the derivative with respect to a typical economic variable of interest, i.e. ∂x1φ? To answer

this question, we focus on the mean regression function E
[
Ỹ |W = w

]
= m(w), as well as the

conditional α-quantile of Ỹ given W = w, denoted kα(w), α ∈ (0, 1). And we want to define

circumstances under which it is more appropriate to use one or the other.

As always in econometrics we require an identification restriction. Given the generality of

our assumptions, it comes in the following form:

Assumption 2. For the joint distribution FD, either of the following restrictions hold:

1. FA|X1W−1 = FA|W−1 .

2. FA|XS = FA|S.

Basically, the first assumption states that – conditional on recall factors S and other re-

gressors X−1 – the regressor of interest X1 and unobserved heterogeneity are independently

distributed. To give an example: let Y be wage, Ỹ reported wage, X1 be experience in years

and suppose we were given data of working individuals including the characteristics “type of

work”, “gender” and, as an example for S, “time elapsed since decision”. Consider a specific

subgroup of the population, e.g. female workers in the iron industry, for which the survey is

elicited 20 days after their economic decision. Suppose there are only two kinds of individuals

in this group, those who are in the company for a while (“long” experience), and those who

recently joined (“short” experience). Suppose further that there are two types of unobserv-

ables, type 1 and 2, where the unobservables might include unobservable ability to recall things

and unobservable job related abilities more generally. Then, for individuals with long and

2More precisely, if the underlying model is truly linear, i.e., Y = X ′β + ε, with fixed K-coefficient β and
(mean independent and heteroscedastic) scalar ε = Σ(X)A, where Σ is a smooth function and A ⊥ X as
well as E [A] = 0, then E [∂x1φ(X, A)|X = x] = β1. If it is a random coefficient model, i.e., Y = X ′β(A) with
E [β1(A)|X] = β̄1 where β̄1 is a constant, then E [∂x1φ(X,A)|X = x] = β̄1. Finally, if the underlying model is an
index model, Y = G (X ′β, A) with A ⊥ X, then E [∇xφ(X, A)|X = x] = β (here, ∇x denotes the gradient), up
to a scale normalization. Note that from the LASD, average marginal effects E [∂x1φ(X, A)] are straightforwardly
obtained by simply averaging.
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short experience within this subpopulation, the proportion of type 1 and 2 must be identical.

Assumption 2.2 strengthens assumption 2.1 so that all X are independent of unobservables.

Regarding the individual’s information set F , there are two cases that are worthwhile dis-

tinguishing, and they are contained in the following assumption.

Assumption 3. Let all variables be as defined above. The relationship between the individual’

s σ-algebra F and the variables at the disposal of the econometrician is given by either of

1. F = σ(W,J) ⊇ σ(W ).

2. F = σ(ϕ(W ), J) such that σ(ϕ(W ), J) + σ(W ) where ϕ is a Borel function.

Here, J ∈ J , J denotes additional information, and J is a Borel space. The first case is

when the individuals actively use more information when backcasting than the econometrician

has in the regressors. The second case is when individuals do not use the entire information

given to the econometrician, but (potentially) use additional information3. In order to assess

all implications of our assumptions, we require some additional conditions, which may be found

in the appendix. The one essential restriction is that we confine our analysis to continuously

distributed (recalled) dependent variables, the rest are regularity restrictions.

2.1 Individuals Actively use all Information Available to the Econo-

metrician

Consider the scenario defined by assumption 3.1 first. This turns out to be a rather benign

scenario, as is seen by the following results on the marginal effects with respect to X1 and S1,

proof of which may be found in the appendix. We use the notation S = (S ′1, S
′
−1)

′, θ(ỹ, w) =[
fỸ |W (kα (w) , w)

]−1

1[ỹ ≤ kα (w)] and Qx1 = ∂x1 log fJ |X1W−1(j; w). All equalities involving

conditional expectations are meant to hold everywhere except possibly on a set of zero measure.

Theorem 1. (Consequences of Large Information under Squared Error Loss): Let all the vari-

ables and functions be as defined above. Let assumptions 1, 2.1, 3.1 and 5 hold. First, suppose

that J = A1, i.e., the additional information is conditionally independent of X1. Then we obtain

for the derivatives of the conditional quantile, for all w:

1. ∂x1kα(w) = E[∂x1φ(X, A)|W = w, Ỹ = kα(w)].

2. If instead of assumption 2.1, FA|S1XS−1 = FA|XS−1 holds, then ∂s1kα(w) = 0.

If assumption 6 holds instead of assumption 5, we obtain for derivatives of the conditional

mean, for all w:

3The latter nests the case when the individuals use less information than the econometrician. However,
this subcase is not very attractive: As in immediate implication of our assumptions, by measurability Ỹ =
E[Y |Fm] = E[Ỹ |W ] = kα(Ỹ |W ) holds for all α. But this is in contradiction to the observed residual variation
in Ỹ after controlling for regressors in virtually any micro data set.
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3. ∂x1m(w) = E[∂x1φ(X, A)|W = w].

4. If instead of assumption 2.1, FA|S1XS−1 = FA|XS−1 holds, ∂s1m(w) = 0.

For general additional information J , J " A and possibly dependent on X1 conditionally on

W1, ∂x1m(w) = E[∂x1φ(X,A)|W = w] continues to hold, but

5. ∂x1kα(w) = E[∂x1φ(X, A)|W = w, Ỹ = kα(w)] + Cov[θ(Ỹ , W ), Qx1|W = w],

under slightly modified regularity conditions.

Discussion of Theorem 1. This theorem analyzes the situation when the backcast is the

conditional mean. It states that in this case each individual’s empirically obtained marginal

effect is the best approximation (in the sense of minimizing distance with respect to L2-norm)

to the individual’s theoretical marginal effect conditioning on either all variables D in the case

of the quantile, or just on all regressors W in the case of the mean. We may identify the

average structural derivative of all female workers in the iron industry who have been surveyed

20 days after payday and – in the case of the quantile regression – earn high wages, but not

the marginal effect of every single individual woman. This quantity is hidden from us by the

“double veil” of unobserved heterogeneity both in job related abilities, as well as ability to

recall. We may summarize: If individuals use the squared error loss and more information than

the econometrician to backcast Y , then (local) average structural derivatives are identified. Note

that both the derivative of the conditional mean regression and of the quantile regression identify

something meaningful, as long as the additional information of the individual is independent

of the regressor of interest (Theorem 1.1 and 1.3). In the more plausible scenario where the

additional information and the regressor are dependent, essentially due to the law of iterated

expectations the mean regression yields an unbiased estimator of a sensible average, while the

quantile inherits a bias term. Contrary to conventional wisdom, the quantile is less robust to the

presence of this measurement error (Theorem 1.5). As an example, suppose that the underlying

population is Y = X ′β + A, with A⊥W and E [A] = 0. Assume in addition that E[A|J,W ] =

τ(J), but J not independent of W . Then, ∂x1m(w) = β1, but ∂x1kα(w) = β1 + ∂x1kα,τ(J)|W (w).

This failure may be attributed to the fact that a law of iterated expectations holds for the

conditional mean, but not for the conditional quantile. Finally, if we differentiate with respect to

a recall production factor s1 for which (conditional) independence of unobservables is plausible,

then this factor should not have an effect. If we are convinced to possess such exogenous factors

then we may use them to test our model specification (Theorem 1.2 and 1.4).

This theorem has a number of interesting extensions. In particular, it is to a surprising

degree a knife edge results as the following extensions establish:

Extension 1: Endogenous regressors and instruments. Consider now the case where

in addition X1 is endogenous, i.e., A is not independent of X1 given W−1, for instance due to

simultaneity of Y and X1, as arises in supply and demand models. In the mean regression case,

∂x1m(x1, w−1) = E[∂x1φ(X,A)|X1 = x1,W−1 = w−1]+Cov[Y, Q̄x1|X1 = x1,W−1 = w−1], (2.1)
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where Q̄x1 = ∂x1 log fA|X1W−1(a; x1, w−1), provided assumption 3.1 still holds, and a similar re-

sult holds for the quantile. A standard remedy would be to introduce instruments. At this level

of generality, the natural way is a control function approach (see Imbens and Newey (2007),

Hoderlein (2005, 2008) or Hoderlein and Mammen (2007)). It amounts to including control

function residuals V (i.e., the residuals from a regression of endogenous regressors on instru-

ments), such that W ∗ = (W ′, V ′)′. For this modified set of controls W ∗, the above assumptions

are now required to hold. This means in particular that F∗ = σ(W ∗, J) ⊇ σ(W ∗) has to hold,

meaning that the individuals have to use the additional information in the instruments in their

recall if the econometrician wants to employ them. Indeed, by arguments analogous to those

following theorem 2, it is possible to show that otherwise a bias arises.

Extension 2: Median as backcast. When individuals use the absolute error loss to

backcast (i.e., their backcast is the conditional median) and strictly more information than

the econometrician, it is possible to show that ∂x1E
[
Ỹ |W = w

]
6= E [∂x1φ(X, A)|W = w] in

general, see the appendix. Hence, individuals should rather be made to remember the mean,

and not the median, provided both differ substantially. The reason for this failure is again

that iterated expectations cannot be used. If we assume that Ỹ = medY (W,A1) = ψ(W,A1)

is strictly monotone in the scalar second component, with assumption 2.1 strengthened to

A1|W ∼ U [0, 1], then

∂x1kα(w) = E [∂x1φ(X, A)|W = w,A1 = α, Y = medY (w, α)] , (2.2)

may be established. As in the literature on triangular models, monotonicity allows for iterative

arguments. However, one should emphasize that modelling the information by assuming mono-

tonicity in a scalar A1 independent of the regressors is not an innocuous set of assumptions.

2.2 Individuals Reduce Information Available to Econometrician

In this scenario, it turns out to be very hard to say something in general. For concreteness, we

therefore assume several specifications listed in the following assumption. All of them cover an

important scenario. Recall that we are interested in the derivative with respect to x1 :

Assumption 4. Let all variables be as defined above. The relationship between the individuals’

σ-algebra F and the variables to the disposal of the econometrician is given by either of

1. F1 = σ(X−1, S, A1)

2. F2 = σ(X1, S, A1)

3. F3 = σ(B, S, A1), where B = X ′γ and γ1 > 0.

These three specifications are designed to capture three different cases. The first is that

individuals completely discard the information given in X1. The second is that they use the

information in X1, but discard all other variables of interest that are potentially correlated.

10



Finally, the last scenario is when all information contained in X is shrunk, but in a proportional

fashion and without discarding the variable of interest completely.

The next theorem summarizes the consequences of the variations in information reduc-

tion. We will make use of the score ∂x1 log fX−1|X1S (which we denote as Qx1). Recall

that this was defined as the Radon-Nikodym derivative of FX−1|X1S with respect to some

fixed measure ν. Since this measure does not depend on X1 and S, this mean that we ef-

fectively rule out cases where the support is discrete for some X1 and continuous for oth-

ers. Finally, let S =
{

(p, q) ∈ R2
+|1/p + 1/q = 1, E

[∣∣∣Y − Ỹ
∣∣∣
p]

< ∞,E [|Qx1|q] < ∞
}

and

T =
{
(p, q) ∈ R2

+|1/p + 1/q = 1, E [|Y |p] < ∞,E [|Qx1|q] < ∞}

Theorem 2. Let all the variables and functions be as defined above. Let assumptions 1, 2.2,

4.1 and 6 hold. Then follows ∂x1m(W ) = 0 (a.s.). If 4.1 is replaced by 4.2, then ∂x1m(W ) =

E[∂x1φ(X,A)|X1, S]+Cov
[
Y − Ỹ , Qx1|X1, S

]
. Moreover, for the local average structural deriva-

tive,

|∂x1m(W )− E[∂x1φ(X,A)|X1, S]| ≤ min
(p,q∈S)

E
[
E

[∣∣∣Y − Ỹ
∣∣∣
p

|F2
]
|X1, S

]1/p

E [|Qx1|q |X1, S]
1/q

,

and for the average structural derivative,

|E [∂x1m(W )]− E[∂x1φ(X,A)]| ≤ min
(p,q∈T )

E [|Y |p]1/p E [|Qx1|q]1/q
.

Finally, if 4.2 is replaced by 4.3, then ∂x1m(W ) = E[∂x1φ(X, A)|B, S] + Cov [U,Qx1|X1, S] ,

and the bounds remain unchanged. Similar results hold for the conditional quantile, and may

be found in the appendix.

Discussion of Theorem 2. The first simple – yet important – result is the following: If

individuals do not use any information contained in X1 at all in their mental backcast, then

an econometrician may never be able to recover even average marginal effects. Conversely, if

we obtain a zero marginal effect it does not mean that the true effect has to be zero. Hence it

is imperative that individuals use in particular all variables we are interested in when forming

a backcast. However, even that is not sufficient to obtain unbiasedness, as we learn from the

second part of theorem 2. Neglect the bias term for the moment. Then we conclude that only

E[∂x1φ(X,A)|Fα], Fα ⊆ F is identified, which in turn allows to identify at least the average

marginal effect across the entire population, i.e., E[∂x1φ(X, A)]. But this presupposes that the

bias term E[Y Qx1|X1, S] = Cov
[
Y − Ỹ , Qx1|X1, S

]
can be handled. The bias depends either

on the true variable Y or on the recall error U = Y − Ỹ , both of which are unobserved.

However, we may provide bounds for this effect, if we have either a measure of the p-th

absolute moment of Y or of U. For instance, if we have a measure for the precision of Y , i.e.

V ar [Y |F ] = V ar [U |F ], we may by Cauchy-Schwarz give at least an upper bound for the

absolute value of the bias, because the term E
[
Q2

x1
|X1, S

]
depends entirely on observables.

Observe that the bias term does only depend on aggregate moments if average effects are to be

elicited. Note further that the bias and the bounds remain unchanged if the individual uses the

index-type information reduction, even if the true value of γ is unknown to the econometrician.
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3 Tests in the Presence of Imperfectly Recalled Vari-

ables

There are several important novel features our model suggests: 1. Is there evidence for re-

duction of the information provided to the econometrician? 2. Can we find the quantities

necessary to construct the bounds? 3. How do we incorporate the bounds when evaluating

economic hypotheses? Evaluating these questions will be the topic of this section. We focus on

homogeneity of degree zero in consumer demand, i.e., the property that g(p/ξ, ξ) = g(p/ξ) for p

prices and ξ income, or, equivalently, that a partial marginal effect is zero. We discuss first how

to test this property in the absence of recall error, then we show how to test for information

reduction, and finally we establish how to test the hypothesis of a zero marginal effect in the

presence of information reduction and bounds.

1. Testing for homogeneity of degree zero. Our null hypothesis is:defined as

H0 : P {µ(X1,W−1) = η(W−1)} = 1 where µ and η are mean regressions. The alternative is

that both regressions differ on a subset of their support of positive measure. Using a nonzero

and bounded weighting function a, the null is equivalent to

Γ1 = E
( dY∑

j=1

(
µj(X1,W−1)− E

[
ηj(W−1)|W

])2
a(W )

)
= 0. (3.1)

We may use sample counterparts to check whether Γ1 is significantly different from 0. To obtain

sample counterparts, one simply has to replace all functions by nonparametric estimates.

2. Testing for information reduction. As we have seen in the previous sections, the

question of whether individuals reduce information to make their forecast is of crucial impor-

tance for the ability of econometricians to identify something meaningful. Recall that under

the assumption of dimension reduction, 3.2, the optimal predictor constitutes a nonseparable

model of the form Ỹ = ψ(ϕ(W ), A1), regardless of the specific loss function assumed. If we add

the assumptions that A1 is independent of X given S and that X enters through an index, this

model may be analyzed using Hoderlein and Mammen’s (2007) theorem4. We may estimate

the parameter β (up to scale) in the model Ỹk = ψ(X ′β, S, A1), where Ỹk denote the k-th

component, by use of the equations

∂xkα(w) = βE[∂lψk(X
′β, S,A1)|W = w, Ỹk = kα(w)], k = 1, .., d, (3.2)

where ∂l denotes the derivative with respect to the index. Imposing a normalization condition,

we obtain E
[∫

∂xkα(W )w(α, W )dα
]

= β for some weighting function w. This identifies β. For

testing the hypothesis ϕk(X,A1) = ψk(X
′β, A1), k = 1, .., d, (a.s), we use that equation (3.2)

4At this point we want to emphasize that we could devise a test for dimension reduction more generally, but
for the purpose of this paper we concentrate on the assumption that dimension reduction takes the form of the
index, ie F = σ(B, S, A1), where B = X ′β.
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implies that ∂xl
kα(w)/∂xj

kα(w) = βl/βj, k = 1, .., d, l, j = 1, .., p. This suggests to form

Γ2 = E

[∑

k

∑

j>l

∫ [
∂xl

kα(W )βj − ∂xj
kα(W )βl

]2
γ(W,α)dα

]
, (3.3)

for some bounded nonzero weighting function γ.

Intuitively, a test for information reduction is translated into a test for the validity of the null

that the model has an index. Of course, failure to reject an index restriction may still mean that

the true model has an index. But if we have two measurements of the same object, and we find

the index being rejected at one specification while not at the other (e.g., we have a validation

data set, or several different imperfect measurements of the same variable), we conclude that

the one for which we fail to reject exhibits information reduction. The asymptotic distribution

theory for this test is too involved to be useful in practise, hence we use the following bootstrap

procedure:

1. Calculate (multivariate) single indices X ′
iβ̂, using the estimated coefficients β̂ from equa-

tion (3.2).

2. Randomly draw α∗i from U [0, 1].

3. Generate the bootstrap sample (Ỹ ∗
i , X∗

i , S∗i ), i = 1, . . . , n by Ỹ ∗
i = k̂α∗i (X

′
iβ̂, Si), X∗

i = Xi

and S∗i = Si.

4. Calculate Γ̂∗2 from the bootstrap sample (Ỹ ∗
i , X∗

i , S∗i ), i = 1, . . . , n.

5. Repeat steps 2 to 4 often enough to obtain critical values for Γ̂2.

3. Testing for zero marginal effect in the presence of information reduction. If

we detect information reduction we might be able to provide bounds on the marginal effects,

as outlined in theorem 2. In this section we will consider as examples the bounds introduced

in the introduction, i.e., (E [∂x1m(X)]− E [∂x1φ(X,A)])2 ≤ E [Y 2]E
[
Q2

x1

]
, where m denotes

the nonparametric regression of Ỹ on X = (X ′
1, X

′
−1)

′, fX−1|X1(x−1, x1) denotes the conditional

density, and Qx1 = ∂x1 log fX−1|X1(X−1, X1). Moreover, let β1 = E [∂x1φ(X, A)] , and assume

for the time that E [Y 2] is consistently estimable. Suppose now that we want to test the

hypothesis that β1 = 0. We use the fact that this is equivalent to testing the null hypothesis

that E [∂x1m(X)]2 − E [Y 2]E
[
Q2

x1

] ≤ 0. This suggests to use

Γ3 = E [∂x1m(X)]2 − E [
Y 2

]
E

[
Q2

x1

]
,

and test H0 : Γ3 ≤ 0 versus the (one sided) alternative H1 : Γ3 > 0. To see that the boot-

strap is consistent, rewrite Γ3 = g(E [∂x1m(X)] ,E [Y 2] ,E
[
Q2

x1

]
), where g : R3→ R, g(x, y, z) =

x2 − yz is a smooth function of the sample averages. Assume E [∂x1m(X)] 6= 0, and E [Y 2] >

0,E
[
Q2

x1

]
> 0 which rules out the degenerate case when g is not being differentiable at

(E [∂x1m(X)] ,E [Y 2] ,E
[
Q2

x1

]
), see Datta (1995) for a discussion. While assuming E [Y 2] > 0

13



and E
[
Q2

x1

]
> 0 is fairly innocuous, E [∂x1m(X)] 6= 0 is less obvious. But note that homogene-

ity of degree zero implies (only) that ∂x1m(X) + E [Y Qx1|X] = 0. Since E [Y Qx1|X] 6= 0 on a

set of probability one, under the conditions of theorem 2 this implies that ∂x1m(X) 6= 0 and

hence E [∂x1m(X)] 6= 0 on a set of probability one. This implies that the sample counterpart

statistic

Γ̂3 =

[
n−1

∑
i

∂x1m̂(Xi)

]2

−
[
n−1

∑
i

Y 2
i

][
n−1

∑
i

Q2
x1,i

]
,

is
√

n asymptotically normally distributed. To see this, apply a Taylor expansion to g:

Γ̂3 − Γ3 = 2E [∂x1m(X)]

{
n−1

∑
i

∂x1m̂(Xi)− E [∂x1m(X)]

}

+E
[
Q2

x1

]
{

n−1
∑

i

Y 2
i − E

[
Y 2

]
}

+ E
[
Y 2

]
{

n−1
∑

i

Q2
x1i − E

[
Q2

x1i

]
}

+ op

(
n−1/2

)
.

Note that this expansion only makes sense under the assumption that rule out the degen-

erate case. Moreover, note that in order to obtain
√

n-convergence of n−1
∑

i ∂x1m̂(Xi) by

an U -statistic CLT, we require higher order smoothness assumptions on m and have to em-

ploy a higher order Kernel. Under these assumptions, an iid bootstrap based estimator of

the distribution function of
√

n
(
Γ̂∗3 − Γ̂3

)
yields a consistent estimate of the distribution of

√
n

(
Γ̂3 − Γ3

)
. To test whether Γ3 < 0, we propose to use a hybrid bootstrap based on the

one sided confidence interval using Γ3, where Γ3 is the lower 0.05 confidence bound. If this

value is above zero, then we reject H0. To obtain this bound, in the hybrid bootstrap we invert

the confidence interval, i.e. if γ∗τ denotes the 0.95 percentile of
√

n
(
Γ̂∗3 − Γ̂3

)
we calculate

Γ3 = Γ̂3 − 1/
√

nγ∗τ = 2Γ̂3 − k.95

(
Γ̂∗3

)
, where k.95

(
Γ̂∗3

)
denotes the .95 percentile of Γ̂∗3. To

obtain the distribution of
√

n
(
Γ̂∗3 − Γ̂3

)
, we run the following bootstrap procedure:

1. Generate the bootstrap sample (Ỹ ∗
i , X∗

i , S∗i ), i = 1, . . . , n by i.i.d. resampling from the

data.

2. Calculate
√

n
(
Γ̂∗3 − Γ̂3

)
from the bootstrap sample (Ỹ ∗

i , X∗
i , S∗i ), i = 1, . . . , n.

3. Repeat steps 1-2 often enough to obtain percentiles of F√n(Γ̂∗3−bΓ3).

Can we do something in the case where we only have
∑

i Ỹ
2
i ? Note that if we assume individ-

uals to backcast with squared error loss, we obtain that E
[
Ỹ 2

]
≤ E [Y 2]. Hence, with probabil-

ity approach one, n−1
∑

i Ỹ
2
i ≤ n−1

∑
i Y

2
i . Let Γ̂4 = n−2

[
{∑i ∂x1m(Xi)}2 −∑

i Ỹ
2
i

∑
i Q

2
x1i

]
.

Then, P
[
Γ̂3 ≤ c

]
≥ P

[
Γ̂4 ≤ c

]
for all c, as n gets large. Consequently, if we compute in the same

fashion as above the is the lower 0.05 confidence bound of Γ̂∗4 = n−2
[
{∑i ∂x1m̂(X∗

i )}2 −∑
i Ỹ

∗2
i

∑
i Q

∗2
x1i

]
,

and obtain that it is below zero then we conclude that Γ3 ≤ 0 is not rejected, because a test

based on the bootstrap distribution of Γ̂∗3 would squarely not reject.
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4 Recall Effects in Real World Data: Empirical Evidence

from the HRS

In this section, we are concerned with answering the following question: “What can be learned

about an economic property from a recall error ridden data set?” More specifically, we are

concerned with the impact of recall effects on the evaluation of zero homogeneity of food

consumption, a key economic property commonly known as “absence of money illusion”. It is

a nonparametric property which arises when maximizing any regular utility function subject

to a linear budget constraint, and translates into a zero derivative restriction as mentioned

above. We emphasize the nonparametric character at this point, as it shows the strength

of our approach which allows to analyze zero homogeneity, taking the effect of recall errors

into account without assuming a functional relationship between all variables or specifying the

distribution of the errors.

Distortions in response behavior in questions on consumption items are of great interest in

applied economic research (see Battistin, Miniaci, and Weber, 2003, and Browning, Crossley,

and Weber, 2003, for reviews). We focus on food consumption data, because they are usually

considered to be relatively accurately measured. However, we find huge recall errors alongside

with severe implications for economic analysis, and we therefore feel that it is a particular

fruitful area for the application of our theoretical analysis.

Data description. The data we use comes from the Health and Retirement Study (HRS)

and a supplemental survey, the Consumption and Activities Mail Survey (CAMS). We use

data from the 2000, 2002, and 2004 waves of the HRS main survey and from the 2001 and

2003 waves of CAMS. The HRS is a biennial panel of older Americans; the target population

of the HRS was the cohorts born in 1931–1941 (see Juster and Suzman, 1995). In 2000 the

HRS interviewed about 20,000 subjects in 13,100 households. For the first wave of CAMS, a

random sample of 5,000 HRS households was interviewed, see Hurd and Rohwedder (2005).

The dependent variable in our analysis is food expenditure. Specifically, we use the item

“Food and beverages: food and drinks, including alcoholic, that you buy in grocery or other

stores”. The covariates are mostly taken from the RAND version of the HRS 2000, 2002, and

2004 data, and matched to CAMS where necessary. Self-rated memory and change of self-rated

memory are not contained in RAND’s HRS distribution; these variables are taken directly

from the HRS raw data. A more detailed documentation of the covariate data is available

on request (some descriptive statistics can be found in tables A1-A3 in the Appendix). Price

data are taken from seasonally adjusted U.S. CPI time series provided by the Bureau of Labor

Statistics (BLS), separately for “all items less food” and “food and beverages”. Following

the demand literature we assume additive separability of demand from labor supply and the

intertemporal allocation decision. Thus, we use primarily total expenditure defined as sum over

all expenditure categories as income concept, but we also use total household income.

Evidence on recall measurement error. To answer this question, we exploit the fact
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that in the CAMS respondents can decide about the reporting horizon for consumption items

themselves. The respondents were provided with the following options: “We have included

three time periods so that you can estimate your spending in the way that is easiest for you

for each category. For example, if it is easiest for you to think about what you spent on food

and beverages last week, then please enter the amount in the first column.” The four options

given for each item are: “Amount spent last week / Amount spent last month / Amount spent

in last 12 months / No money spent on this in last 12 months.”

Since food is not subject to infrequent purchases, economic theory predicts that there should

not be a difference in response behavior between the three measures. However, psychological

research tells us that memory deteriorates over time, and that frequently occurring events are

“estimated” and not memorized in detail (see Tourangeau, Rips, and Rasinski (2000)). Hence

we would expect to find some differences between any two mean regressions that use alternative

time horizons. Moreover, our theory predicts that the association between income and food

consumption should be the weaker the more time elapsed since the decision is made. For

instance, assume that there is heterogeneity in σ-algebras in the sense that a fraction of the

population uses more information than the econometrician when backcasting while another

fraction discards the information in the regressor of interest completely (as in the first part of

theorem 2). Then we would expect the marginal effects of the mean regression (a local average

of the two subpopulations!) to attenuate.

Figures 1 and 2 show the levels and derivatives of the nonparametric regression of the food

budget share on total expenditure, using different time horizons as well as different definitions

of the dependent variable.

These pictures illustrate that left-hand side recall error matters dramatically for the eco-

nomic issue we want to consider. Moreover, we obtain the predicted attenuation effect. The

average derivatives are: weekly −0.065026, monthly −0.044245, yearly −0.033798. The picture

changes slightly if we control for endogeneity of total expenditure. In this case, we obtain the

ADEs: weekly −0.070767, monthly −0.029048, yearly −0.031103. This difference is statisti-

cally significant, as is corroborated by a test available from the author’s upon request. We

conclude that there is a persistent difference between the remembered weekly expenditures,

and the “estimated” monthly and yearly ones. Note that the effect of total expenditure is

more than twice as strong with the weekly than with the monthly or yearly response category,

demonstrating that left hand side recall effects can be enormous.

Before we jump hastily to the conclusion that everything behaves as we predicted, we should

consider first alternative explanations, in particular possible self selection into the different

response categories. A possible explanation could for instance be that individuals in institutions

(e.g., retirement homes – recall that our sample consists largely of individuals around retirement

age) are used to think in annual rates, while individuals outside these institutions are not. If

we compare the various groups in our data using the descriptive statistics in table A2 in the

appendix, we find little difference between the groups. Nevertheless, we correct for selection

by including the propensity score of choosing a certain type of answer as control function. As
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Figure 1: Regressions of Food Consumption vs Total Expenditure based on Weekly, Monthly

and Yearly Budget Share Data.

Table 1: Comparison Weekly, Monthly, Yearly

Index Test for Information Reduction

weekly monthly annual

mc = low 0 0.21 0.10

mc = medium 0 0.09 0.24

mc = high 0 0 0.18

P-values of the test for information reduction for the three groups of reported food consumption,

and for three levels of mental capacity (mc).

exclusion restriction we use the fact that mental capacity and time used for answering may

influence whether one is in an institution, but not the preferences for food. Including these

propensity scores, the results remain materially unchanged. Together with the fact that the

average derivatives do not change much when selection is accounted for (weekly −0.065808,

monthly −0.043622, yearly −0.033902, with correction for endogeneity, weekly −0.078327,

monthly −0.029762, yearly −0.026364) we can rule out selection effects as driving force.

An alternative explanation for our results is that our measure of food consumption (es-

sentially “food at home”) generates selection. For instance, it is imaginable that those who

answer the weekly category are the ones who most often eat at home, while those who eat

out frequently also buy food less frequent in stores and hence select themselves into the yearly
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Figure 2: Derivatives of Total Food Consumption (at Home and outside Home) vs Total Ex-

penditure based on Weekly, Monthly and Yearly Budget Share Data.

category. While plausible in principle, however, this is not the case. If we use a different food

measure that includes dining out, the results remain unchanged, see fig.2.

Having established that there is a significant effect of the time horizon people choose, and

in particular (as our theory predicts) an attenuation-like effect, we proceed by looking at the

results of a formal test for information reduction shown in table 1. Our theory predicts that

information reduction may create structures where there are previously none. To assess this, we

use the test described above in section 3. The findings confirm the intuition that information

reduction is more probable the further away in time things are, and the less mental capacity

respondents have. Consequently, we may expect at least parts of the population to exhibit

response behavior that cause left hand side recall errors of the problematic type.

Effect of recall errors on testing zero derivatives. In the light of the evidence on

information reduction, it is appropriate to use the more conservative bounds put forward in

theorem 2. To see the effect, we first test for homogeneity of degree zero without bounds. We

apply a conventional nonparametric test described in section 3. We strongly reject homogeneity

with a p-value of virtually zero. As reported frequently in the literature, the nonparametric tests

are quite powerful and detect even small deviations from the null, see Lewbel (1999). However,
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following our discussion, there is strong evidence for left hand side “information reduction”

recall error which bias our results. To account for the possible effect of the latter on our results,

we implement the test statistic Γ̂4 discussed in section 3, which accommodates for recall errors

through bounds. The point estimate is −2.11∗10−6, and fig. 3 shows the bootstrap distribution

of the test statistic. Not surprisingly, Γ4 is soundly negative, and we conclude that we cannot

reject homogeneity any longer. Indeed, the bootstrap distribution in fig. 3 suggests that we

might even reject H0 : Γ4 = 0 in favor of the one sides alternative that it is smaller, but in light

of our theory this would have no added implication.

One may criticize the bounds on grounds that they are too wide, and the test hence lacks

power. However, they are reasonably tight. The first squared term in Γ̂4 is 0.74 ∗ 10−6 and

the second is −2.85 ∗ 10−6, i.e., the bounds are four times bigger than the effect. While

this seems wide, it is instructive to compare this with the squared average income effect we

obtained before when we were not imposing homogeneity. This is in the order of magnitude of

c∗10−4, or roughly 100 times bigger than the effect when we impose homogeneity. We conclude

that imposing homogeneity makes the coefficient already very weak, but in the absence of

bounds the effect is significant largely because the employed L2-distance test is quite powerful.

Summarizing, this is evidence that an explanation for the frequent rejection of homogeneity in

consumer demand is indeed left hand side recall error. Accounting for this effect, we do not

find homogeneity rejected any longer.
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Figure 3: Bootstrap Distribution of Γ̂4 (scaled by 104)

5 Summary and Outlook

In this paper, we characterize the properties and consequences of measurement error in house-

hold surveys from a new perspective: We argue that econometricians should model the response

itself since it has behavioral content rather than focusing on the properties of the response error.

We focus on the role of respondents’ limited ability to recall information, but our analysis can

potentially be extended to other aspects of the survey response processes, such as respondent-

interviewer interaction. We leave this to future research.
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One important practical implication of our findings is that in the social sciences, left-hand

side measurement errors should be regarded as potentially as problematic as right-hand side

errors (see also the discussion in Hausman, 2001). Also, quantiles may be less robust than

means. Another interesting insight is that it is crucial whether respondents really use all the

information the econometrician is interested in when they recall a quantity – including instru-

ments, for example. Our results suggest that instruments may become useless if respondents

do not use them actively in the survey response process.

For the various problems that appear when survey responses are subject to limited recall, we

devise a number of remedies. The remedies are of two sorts. Ex post : We already pointed out

immediate cures that an applied researcher could implement to accommodate recall problems in

the analysis data from existing household surveys. Ex ante: Our approach also suggests survey

techniques that help researchers and field institutions to reduce response errors at the design

stage of a survey questionnaire. Specifically, the following strategies should be explored in

future research. First, when asked for one specific variable, respondents should be encouraged

to actively memorize all variables of importance for the economic decision that involves this

variable. Second, when trying to recall their decisions, respondents should be encouraged to

report the average decision rather than the median (“typical”) decision, provided these differ

substantially. Third, if instruments are to be employed in the econometric analysis, these

variables should be highlighted to the respondents so that they use this information when

forming their response. Forth, a measure of precision of the answer should be elicited.

Of course, it remains to be determined how useful these remedies are in practice, but we

believe that this is a fruitful area for future research. In an empirical application we have

illustrated what type of problems arise due to limited recall, and in how far they may be

tackled with the tools and remedies we propose in this paper.

6 Appendix 1: Proofs of the Identification Results

Regularity Conditions

Assumption 5. Regularity Assumptions Quantiles: The conditional distribution of Ỹ given W

is absolutely continuous w.r.t. the Lebesgue measure (for w). The conditional density fỸ |W (y|w)

of Ỹ given W = w is bounded in y ∈ R. kα

[
Ỹ |W = w

]
is continuously partially differentiable

with respect to the first component. The conditional distribution of (Ỹ , ∂x1ψ), given W , is

absolutely continuous w.r.t. the Lebesgue measure. For the conditional density fY,∂x1ψ|W the

following inequality holds with a constant C and a positive density g on R with finite mean (i.e.∫ |y′|g(y′) dy′ < ∞): fY,∂x1ψ|W (y, y′|w) ≤ Cg(y′). Finally, E [Y ] = c < ∞, where c is a generic

constant.

Assumption 6. Regularity Assumptions Mean: The conditional distribution of Ỹ given W is

absolutely continuous w.r.t. the Lebesgue measure (for w). The conditional density fỸ |W (y|w)
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of Ỹ given W = w is bounded in y ∈ R. E
[
Ỹ |W = w

]
is continuously partially differentiable

with respect to the first component with uniformly bounded derivatives. E [Y ] = c < ∞.

Proof of Theorem 1

Start with the conditional quantile kα(w), i.e. Theorem 1.1. Let W = (X ′, S ′)′, A = (A′
1, A

′
−1)

′

and write E[Y |F ] = ϕ (W,A1). Then, by the conditional independence assumption 2.1, and

under the regularity assumptions 5, using a theorem of Hoderlein and Mammen (2007) we

obtain that

∂x1kα(w) = E[∂x1ϕ (A1,W ) |W = w, Ỹ = kα(w)],

for all w ∈ W . But ∂x1ϕ (W,A1) = E[∂x1φ|F ], using uniform boundedness of ∂x1φ, together with

the the facts that σ(A1,W, Ỹ ) = σ(A1,W ) and that assumption 2.1 implies that A−1⊥X|A1,W .

Then, under assumption 3.1 specialized to J = A1, we may apply the law of iterated expecta-

tions (LIE) to obtain ∂x1kα(w) = E[∂x1φ|W = w, Ỹ = kα(w)]. To see Theorem 1.2, note that

φ is not a function of s1, which combined with the same arguments produces the result.

For the conditional mean, note that by the regularity assumption 6, m(w) = E[E[Y |F ]|W =

w] = E[Y |W = w] = E[φ(X,A)|W = w], by assumption 3.2 and application of LIE. Then by

bounded convergence in connection with the regularity assumption 6, we may interchange

differentiation and integration. Finally, ∂x1m(w) = E[∂x1φ(X,A)|W = w] by assumption 2.1.

Note that this argument does not require J to be conditionally independent of X1. This

contrasts with the derivative of the conditional quantile, cf. Theorem 1.5. To show the latter,

we apply another theorem of Hoderlein and Mammen (2007). Under regularity conditions

stated there,

∂x1kα(w) = E[∂x1ϕ (J,W ) |W = w, Ỹ = kα(w)] + lα (w) ,

where lα (w) = fỸ |W (kα(w); w)−1E
[
1[Ỹ ≤ kα(w)]∂x1 log fJ |W (J ; w)|W = w

]
. Rearranging terms

produces the result. Q.E.D.

Proof of Statements in Extension 2 to Theorem 1

To see that ∂x1E
[
Ỹ |W = w

]
6= E [∂x1φ(X,A)|W = w] in general, observe that

∂x1E
[
Ỹ |W = w

]
= E[∂x1medY (W,A1)|W = w],

=

∫

A1

E[∂x1φ(X,A)|W = w,A1 = a1, Y = medY (w, a1)]FA1|W (da1; w)

6=
∫

A1

∫

Y
E[∂x1φ(X, A)|W = w, A1 = a1, Y = y]FY |A1W (dy; a1, w)FA1|W (da1; w)

= E[∂x1φ(X, A)|W = w],

where we used first conditional independence assumption 2.1, and then again Hoderlein and

Mammen’s theorem. Hence, no law of iterated expectations applies. Example: let A =
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(A1, A2), W = X1, Y = φ(X1, A) = A2
1A2X1, and assume that medA2(x1, a1) = 1 from

which medY (x1, a1) = a2
1x1. Note that assumption 2.1 reduces to A ⊥ X1. Then, observe

that E[∂x1φ(X,A)|W = w,A1 = a1, Y = medY (w, a1)] = a2
1, implying that ∂x1E

[
Ỹ |W = w

]
=

E [A2
1] . Next, E[∂x1φ(X, A)|W = w, A1 = a1, Y = y] = yx−1

1 and hence E[∂x1φ(X, A)|W = w] =

E[Y |X1 = x1]x
−1
1 = E[A2

1A2] 6= E [A2
1] unless e.g., Cov(A1, A2) = 0 and E[A2] = 1.

In fact, it is difficult to construct nontrivial examples where the equality holds. Similar

arguments hold for the quantile in general. However, if we assume that Ỹ = medY (W,A1) =

ψ(W,A1) is strictly monotone in the scalar first component, with 2.1 strengthened to A1|W ∼
U [0, 1], i.e. the conditions of equation (2.2) hold, then

∂x1kα(w) = ∂x1ψ (w, α) = ∂x1medY (w, α) = E [∂x1φ(X,A)|W = w,A1 = α, Y = medY (w,α)] .

This shows equation (2.2). Q.E.D.

Theorem 3

The next theorem establishes what may be learned from quantiles under information reduction:

Theorem 3. Let all the variables and functions be as defined above. Let assumptions 1, 2, 4.1

and 5 hold. Then follows ∂x1kα(w) = 0 (a.s.). If 4.1 is replaced by 4.2, then

∂x1kα(w) = E[ψ(X1, S, A1)|W = w, Ỹ = kα(w)], for all w ∈ W ,

where ψ(X1, S, A1) = E[∂x1φ|X1, S, A1] + Cov [U,Qx1|X1, S, A1]. Finally, if 4.2 is replaced by

4.3, then

∂x1kα(w) = E[η(B, S,A1)|W = w, Ỹ = kα(w)], for all w ∈ W ,

where η(B, S,A1) = E[∂x1φ|B,S, A1] + Cov [U,Qx1|X1, S, A1] .

Remark A.1: Discussion of Theorem 3. Compared to the mean, quantiles have the

drawback that even if the respective bias term vanishes, the leading term does not produce a

sensible average derivative. However, like in the case of the large information scenario, if we

assume monotonicity of Ỹ in scalar A1, then one can show that the leading term identifies again

something meaningful, namely E[∂x1φ(X,A)|F ]. Bounds may be derived as in theorem 2.

Proof of Theorems 2 and 3

To see the first statement, start by noting that by assumption 6, E[Y |F ] exists and is differen-

tiable. Then, by assumption 4.1 and the LIE,

E [E[Y |F ]|W = w] = E[E [φ(X,A)|W−1, A1] |W = w].

Hence,

∂x1m(w) =

∫

A1

E [φ(X,A)|W−1 = w−1, A1 = a] ∂x1fA1|W (a; w)v(da).
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But by 2, FA1|X−1W−1(a; w) = FA1|W−1(a; w), and hence ∂x1m(w) = 0 follows. For the case of the

quantile, note that by applying Hoderlein and Mammen (2007) to Ỹ = E[Y |F ] = ψ(W−1, A1)

in connection with assumption 2, we obtain that

∂x1kα(w) = E[∂x1ψ(W−1, A1)|W = w, Ỹ = kα(w)] = 0,

where the last equality follows by ∂x1ψ = 0.

To the second statement, note again that by assumption 4.2 and the LIE that

∂x1E [E[Y |F ]|X = x, S = s] = E [∂x1E[φ(X,A)|X1, S, A1]|X = x, S = s]

= E[∂x1φ(X,A)|X1 = x1, S = s]

+

∫

A×X 1

φ(x1, ξ−1, a)∂x1fAX−1|X1S(a, ξ−1; x1, s)v (da, dξ−1) .

where the first equality comes from assumption 2. This assumption implies also

∂x1fA−1X−1|A1X1S(a−1, ξ−1; a1, x1, s) = fA−1|A1S(a−1; a1, s)∂x1fX−1|X1S(ξ−1; x1, s),

and using the transformation ∂x1fX−1|X1S =
[
∂x1 log fX−1|X1S

]
fX−1|X1S, we obtain that the last

term equals

E
[
Y ∂x1 log fX−1|X1S|X1 = x1, S = s, A1 = a1

]
.

Taking expectations with respect to A1 and using E
[
∂x1 log fX−1|X1S|X1 = x1, S = s

]
= 0, this

may be rewritten as Cov [U,Qx1|X1 = x1, S = s]. To see the bounds, note that with probability

one

|∂x1m(X, S)− E[∂x1φ(X, A)|X1, S]| =
∣∣∣E

[(
Y − Ỹ

)
∂x1 log fX−1|X1S|X1, S

]∣∣∣
≤ E

[∣∣∣
(
Y − Ỹ

)
∂x1 log fX−1|X1S

∣∣∣ |X1, S
]

≤ min
(p,q)∈S

E
[∣∣∣Y − Ỹ

∣∣∣
p

|X1, S
]1/p

E [|Qx1|q |X1, S]
1/q

,

by Hölder’s inequality. For the case of the quantile, we apply again Hoderlein and Mammen

(2007) to Ỹ = E[Y |F ] = ψ(W−1, A1) in connection with assumption 2.1. This produces

∂x1kα(w) = E[∂x1ψ(X1, S, A1)|W = w, Ỹ = kα(w)].

The result follows by using ∂x1ψ(X1, S, A1) = E[∂x1φ|X1, S, A1] + Cov [U,Qx1|X1, S, A1] .

Finally, to see the last equality, note first that (with b = x′β),

∂x1E
[
Ỹ |X = x, S = s

]
= ∂x1E [E {φ(X,A)|B, S, A1} |X = x, S = s]

= E [∂x1E {φ(X,A)|B = b, S = s, A1} |X = x, S = s] (6.1)

= β1E [∂bE {φ(X, A)|B = b, S = s, A1} |X = x, S = s] .
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Next, observe that

E {φ(X,A)|B = b, S = s, A1 = a1}
=

∫

X−1×A−1

φ(τ(b, ξ−1), a)fA−1X−1|BSA1(a−1, ξ−1; b, s, a1)v(da−1, dξ−1),

where τ(b, ξ−1) =
(
β−1

1 (b− β2ξ2 − ...− βKξK) , ξ2, ..., ξK

)
, and consequently,

∂bE {φ(X, A)|B = b, S = s, A1 = a}
=

∫

X−1×A−1

∂b

[
φ(τ(b, ξ−1), a)fA−1X−1|BSA1(a−1, ξ−1; b, s, a1)

]
v(da−1, dξ−1)

= β−1
1 E {∂x1φ(X, A)|B = b, S = s, A1 = a} (6.2)

+

∫

X−1×A−1

φ(τ(b, ξ−1), a)∂bfA−1X−1|BSA1(a−1, ξ−1; b, s, a1)v(da−1, dξ−1).

Now we focus on the second term on the last rhs of (6.2) . To this end, note that by assumption

2.2

fA−1X−1B|SA1(a−1, ξ−1; b, s, a1) = fX−1B|S(ξ−1; b, s)fA−1|SA1(a−1; s, a1),

and

fX−1B|S(ξ−1; b, s) = β−1
1 fX|S(τ(b, ξ−1); s),

fB|S(b; s) = β−1
1

∫

X−1

fX|S(τ(b, ξ−1); s)dξ−1

fX−1|BS(ξ−1; b, s) =
fX−1B|S(ξ−1; b, s)

fB|S(b; s)
=

β−1
1 fX|S(τ(b, ξ−1); s)

β−1
1

∫

X−1

fX|S(τ(b, ξ−1); s)dξ−1

︸ ︷︷ ︸
H(b,s)

,

with derivatives

H ′(b, s) = β−1
1

∫

X−1

∂x1fX|S(τ(b, ξ−1); s)dξ−1

∂bfX−1|BS(ξ−1; b, s) = H(b, s)−2
{
β−1

1 ∂x1fX|S(τ(b, ξ−1); s)H(b, s)− fX|S(τ(b, ξ−1); s)H
′(b, s)

}
.

Evaluated at b = β′x

H(β′x, s) =

∫

X−1

fX|S(τ(b, x−1); s)dx−1 = fX1(x1)

H ′(β′x, s) = β−1
1

∫

X−1

∂x1fX|S(τ(b, x−1); s)dx−1 = β−1
1 f ′X1|S(x1; s)

β1∂bfX−1|BS(x−1; β
′x, s) =

∂x1fX|S(x; s)

fX1|S(x1; s)
− fX|S(x; s)

f ′X1|S(x1, s)

fX1|S(x1; s)2

= ∂x1

fX|S(x; s)

fX1|S(x1; s)
(6.3)

= ∂x1fX−1|X1S(x−1; x1, s).
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Combining equations (6.1), (6.2) and (6.3) yields

∂x1E
[
Ỹ |X = x, S = s

]
= E [∂x1φ(X, A)|B = b, S = s]

+E
[
Y ∂x1 log fX−1|X1S(x−1; x1, s)|B = b, S = s

]
.

Finally, the quantile follows as direct extension by similar arguments. Q.E.D.
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Appendix 2: Descriptive Statistics - For the Information

of the Referees

Table A1: Descriptive statistics of three groups in CAMS reported weekly, monthly and annual

food consumption

Food Income couple age edyrs hisp male race shlt

mean 0.12 10.42 0.57 68.33 12.60 0.05 0.35 0.10 2.71

min 0.00 8.79 0.00 28.00 0.00 0.00 0.00 0.00 1.00

5p 0.02 9.15 0.00 54.00 8.00 0.00 0.00 0.00 1.00

50p 0.09 10.42 1.00 67.00 12.00 0.00 0.00 0.00 2.50

95p 0.32 11.69 1.00 85.00 17.00 0.00 1.00 1.00 4.50

max 0.59 12.13 1.00 100.00 17.00 1.00 1.00 1.00 5.00

Table A1 shows descriptive statistics of the population. The presented variables are food (budget

share of food expenditure), income (log total household income per year in dollars), couple

(0 = no,1 = yes), age (years), education (years), hispanic (0 = no, 1 = yes), male (0 = no,

1 = yes), race (0 = nonblack, 1 = black), and self-reported health status (1 = excellent, ..., 5 =

poor).
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Table A2: Descriptive statistics of three groups in CAMS reported weekly, monthly and annual

food consumption

Food Income couple age edyrs hisp male race shlt

Weekly food consumption

mean 0.14 10.44 0.57 68.11 12.45 0.05 0.33 0.11 2.70

min 0.00 8.80 0.00 28.00 0.00 0.00 0.00 0.00 1.00

5p 0.03 9.19 0.00 54.00 8.00 0.00 0.00 0.00 1.00

50p 0.11 10.42 1.00 67.00 12.00 0.00 0.00 0.00 2.50

95p 0.36 11.70 1.00 85.00 17.00 0.00 1.00 1.00 4.50

max 0.59 12.13 1.00 96.00 17.00 1.00 1.00 1.00 5.00

Monthly food consumption

mean 0.11 10.35 0.54 68.06 12.65 0.06 0.31 0.12 2.77

min 0.00 8.80 0.00 34.00 0.00 0.00 0.00 0.00 1.00

5p 0.02 9.10 0.00 53.05 8.00 0.00 0.00 0.00 1.00

50p 0.08 10.37 1.00 67.00 12.00 0.00 0.00 0.00 2.50

95p 0.29 11.62 1.00 85.00 17.00 1.00 1.00 1.00 4.50

max 0.59 12.13 1.00 96.00 17.00 1.00 1.00 1.00 5.00

Annual food consumption

mean 0.08 10.48 0.59 69.02 12.80 0.05 0.42 0.09 2.68

min 0.00 8.79 0.00 40.00 0.00 0.00 0.00 0.00 1.00

5p 0.01 9.15 0.00 55.00 8.00 0.00 0.00 0.00 1.00

50p 0.06 10.49 1.00 68.00 12.00 0.00 0.00 0.00 2.50

95p 0.21 11.71 1.00 85.00 17.00 0.00 1.00 1.00 4.50

max 0.55 12.13 1.00 100.00 17.00 1.00 1.00 1.00 5.00

Table A2 shows descriptive statistics of three groups in CAMS reported weekly, monthly and

annual food consumption. The presented variables are food (budget share of food expenditure),

income (log total household income per year in dollars), couple (0 = no, 1 = yes), age (years),

education (years), hispanic (0 = no, 1 = yes), male (0 = no, 1 = yes), race (0 = nonblack,

1 = black) and self-reported health status (1 = excellent, ..., 5 = poor).
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Table A3: Descriptive statistics of individuals reported weekly food consumption in CAMS

and HRS Survey

Food Income couple age edyrs hisp male race shlt srm

Weekly food consumption in CAMS

mean 0.14 10.35 0.46 68.93 12.44 0.04 0.35 0.11 2.72 2.90

min 0.00 8.81 0.00 29.00 0.00 0.00 0.00 0.00 1.00 1.00

5p 0.03 9.21 0.00 56.00 8.00 0.00 0.00 0.00 1.00 2.00

50p 0.11 10.31 0.00 68.00 12.00 0.00 0.00 0.00 2.50 3.00

95p 0.36 11.58 1.00 85.00 17.00 0.00 1.00 1.00 4.50 4.00

max 0.58 12.13 1.00 96.00 17.00 1.00 1.00 1.00 5.00 5.00

Weekly food consumption in HRS

mean 0.13 10.31 0.46 68.90 12.44 0.04 0.35 0.11 2.72 2.90

min 0.02 8.78 0.00 30.00 0.00 0.00 0.00 0.00 1.00 1.00

5p 0.03 9.18 0.00 56.00 8.00 0.00 0.00 0.00 1.00 2.00

50p 0.10 10.25 0.00 67.00 12.00 0.00 0.00 0.00 3.00 3.00

95p 0.32 11.56 1.00 86.00 17.00 0.00 1.00 1.00 5.00 4.00

max 0.59 12.16 1.00 97.00 17.00 1.00 1.00 1.00 5.00 5.00

Table A3 shows descriptive statistics of individuals reported weekly food consumption in CAMS

and HRS Survey. The presented variables are food (budget share of food expenditure), income

(log total household income per year in dollars), couple (0 = no, 1 = yes), age (years), education

(years), hispanic (0 = no, 1 = yes), male (0 = no, 1 = yes), race (0 = nonblack, 1 =

black), self-reported health status (1 = excellent, ..., 5 = poor) and self-rated memory (1 =

excellent, ..., 5 = poor).
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