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Abstract

This paper discusses new development in nonparametric econometric approaches re-

lated to empirical modeling of demand decisons. It shows how diverse recent approaches

are, and what new modeling options arise in practise. We review work on nonpara-

metric identification using nonseparable functions, semi-and nonparametric estimation

approaches involving inverse problems, and nonparametric testing approaches. We focus

on classical consumer demand systems with continuous quantities, and do not consider

approaches that involve discrete consumption decisions as are common in empirical in-

dustrial organization. Our intention is to give a subjective account on the usefulness of

these various methods for applications in the field.

Keywords: Nonparametric, Integrability, Testing Rationality, Nonseparable Models, De-

mand, Nonparametric IV.

1 Introduction

Economic theory yields strong implications for the actual behavior of individuals. In the stan-

dard utility maximization model for instance, economic theory places significant restrictions

on individual responses to changes in prices and wealth, the so-called integrability constraints.

However, economic theory says very little about the functional form of the preference ordering

of any given individual and the homogeneity of any given population. Indeed, in applications
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using microdata, heterogeneity seems to be a prevalent feature of the data: any least squares

regression explains only around 10% of the variation in the data. While measurement error

is certainly partially responsible for the large amount of unobserved variation, it is very likely

that a large fraction of the variation in the data is due to unobserved preference heterogeneity

on behalf of the individuals surveyed. Put reversely, it is a common empirical finding that

individuals with very similar values of the regressors show widely different values of the depen-

dent variable, a fact that is only hard to reconcile solely with measurement errors, in particular

since the same finding is obtained through several different methods of data recording, includ-

ing scanner data and diaries that are widely believed to be less measurement error ridden. For

both reasons - unrestricted heterogeneity and lack of natural functional form assumptions -

nonparametric methods seem well suited tools for data analysis.

This chapter gives a - necessarily subjective - account of recent research related to nonpara-

metric modeling of consumer decisions, with a particular focus on unobserved heterogeneity.

This section focuses on demand systems in the spirit of Deaton and Muellbauer (1980), or

Lau, Jorgenson and Stoker (1982). Neither do we discuss approaches related to nonparamet-

ric revealed preference type of approaches (see Blundell, Browning and Crawford (2008) and

Cherchye, Crawford, de Rock and Vermeulen (this issue) for an overview), nor do we review

related approaches on discrete choice in empirical IO (see Berry, Levinsohn, Pakes (1995) and

Ackerberg, Benkard, Berry, and Pakes (2008) for an overview). Our focus is on traditional de-

mand analysis involving continuous quantities. Parametric versions of approaches put forward

in this paper are, e.g., the Translog demand system, Jorgenson et al. (1982), and the Almost

Ideal demand system, Deaton and Muellbauer (1980)). Our analysis is also closely related to

textbook modeling of demand in economic theory (see for instance Mas-Colell et al. (2005),

Chapters 2- 4).

2 Models and Literature

Setup: On individual level, we define a demand function to be a causal relationship between

budget shares, a [0, 1] valued random L-vector denoted by W , and regressors of economic

importance, namely log prices P and log total expenditure Y , real valued random vectors of

length L and 1, respectively. Let X = (P ′, Y )′ ∈ RL+1. To capture the notion that preferences
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vary across the population, we assume that there is a random variable V ∈ V , where V is

a Borel space1, which denotes preferences (or more generally, decision rules). We assume

that heterogeneity in preferences is partially explained by observable differences in individuals’

attributes (e.g., age), which we denote by the real valued random G-vector Q. Hence, we let

V = τ(Q,A), where τ is a fixed V-valued mapping defined on the sets Q×A of possible values

of (Q,A), and where the random variable A (taking again values in a Borel space A) covers

residual unobserved heterogeneity in a general fashion. With this notation, we can summarize

a structural model of a heterogenous population through single equations, as shall become

obvious in the following.

Models: To begin our discussion, suppose that on individual level the model is given by

a linear relationship between all random variables. Specifically, we take the standard applied

shortcut of using the approximate almost ideal model of Deaton and Muellbauer (1980), where

we circumvent the nonlinearity in the income effect by using log real income as regressor. On

individual level, the model is then given by

w = β0 + β1′p + β2y,

where all variables are as defined above, but the small letters indicate that we view an individual

as a realization from a underlying heterogenous population (we could add a subscript i to all

variables, but desist for brevity of notation. Small letters are from now on individuals or

fixed positions, capital letters denote population quantities). The coefficients β vary across the

heterogeneous population, and are a functions of the observable and unobservable determinants

of the preferences, q and a. We will call the fact that all individuals share the same preference

ordering, a “type” of individuals - in our example, everybody is of almost ideal type, and only

the specific value of the parameters varies across the population. If we consider the entire

population, our “heterogeneous approximately almost ideal” population may be formalized as:

W = β0(Q,A) + β1(Q,A)′P + β2(Q, A)′Y. (2.1)

.What has been done traditionally is to assume that βj(Q, A). j = 0, 1, 2, has an additive

structure, e.g., βj(Q,A) = βj
1 +βj

2Q+βj
3A. This correponds to the standard notions of random

1Technically: V is a set that is homeomorphic to the Borel subset of the unit interval endowed with the Borel

σ-algebra. This includes the case when V is an element of a polish space, e.g., the space of random piecewise

continuous utility functions.

3



coefficient models, and leads to estimation of βj
1 and βj

2 by heteroscedasticity robust least

squares methods.

There are three drawbacks of such an approach. First, even if one accepts linearity in

p and y, the additive specification in Q and A is arguably ad hoc. Second, we may only

determine (at best), mean parameters, and do not obtain the distribution of coefficients across

the population. Finally, the random coefficient structue is at odds with correcting endogeneity

using instruments that are mean independent of residuals.

The first point is arguable not a major concern, though one could do better. The second

point is, however, restrictive if the interest centers, say on the worst and least afected parts of

the population. The last point is commonly overlooked in applications, but should be a major

concern. We will take up these points in the second section, and, in particular, we will see that

in this case in general the distribution of random coefficients (“preference heterogeneity”) is

still identified.

A more general alternative is when we do not specify the entire population to be linear (or

nonlinear with a finite dimensional, but heterogeneousparameter)- Instead we assume that the

every individual in the population is characterized by a smooth (in the sense of differentiable)

function φ only, i.e., the model is on individual level given by:

w = φ(p, y).

This nests of course the case of a population consisting of a nonlinear parametric type. It is

a little less obvious how a heterogeneous population looks like. To see this, assume that there

is a (potentially infinte) dimensional parameter that varies across the population, (denoted U,

for utility). Then, the population would be W = φ(P, Y, V ). Assuming that the prefrence

parameter V is determined by Q and A, we obtain that our model for the heterogeneous

population is given by

W = φ(P, Y, Q, A). (2.2)

In contrast to the heterogeneous type AI population given in (2.1), this population is only

identified, if we obsere any indivdiual in this population infinitely often. Certainly, a single cross

section is not suffficient to identify features of interest in the population. The obvious question

that arises is: what can we learn from data about this model? And how does endogeneity

of preferences afftect what we can learn? The answer is given in the third section, where we

consider this model in more detail.
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Related Literature - the Nonparametric Additive Errors Approach: A key feature

of both (2.1) and (2.2) is the nonparametric character of the distribution of preferences. Indeed,

this separates this line of research from other work on that introduces nonparametric elements

in a traidtional model with additive errors. Indeed, while one may criticize the additive error

approach as being restrictive on heterogeneity (see Hoderlein (2002, 2008)), there has been

significant progress on nonparametric modeling related to consumer demand. Suppressing Q,

the standard nonparametric model is defined by

Y = m(X) + ε, (2.3)

with errors ε that are mean independent of regressors. This model is of course not very useful

in high dimensional demand applications because of the curse of dimensionality, and there

have been several suggestions in the demand literature to impose structure. As was pointed

out in Blundell, Browning and Crawford (2003), there is an issue with imposing the general

forms of structure suggested in the econometrics literature: The imposed structure may be

incompatible with economic theory in all but trivial cases. For instance, an additive model

where m(X) =
∑

mj(Xj), and j = 1, .., d denotes the j-the elemnt of X, is only in line with

economic theory in conumer demand if it is linear.

This has lead several researchers to suggest partially linear models with scaling factors, see

Pendakur (1999) and Blundell, Duncan and Pendakur (1998). The general aim of this research

is to tackle the curse of dimensionality by being parametric in the price dimension (where there

is little variation in the data), and nonparametric in the income dimension, where there is

a lot. To this date, like many nonparametric methods, these models have not been employed

frequently, although their performance is quite satisfactory, and reveals very interesting findings,

like the fact that many consumers seem to share the same shape of the demand function, just

shifted by different values of the intercept. In a similar spirit (i.e., being parametric in the

price dimension) is also Pendakur’s EASI approach (Lewbel and Pendakur (2008), Pendakur

and Sperlich (2008), the latter one is semiparametric). All of these models aim at greater

flexibility of in particular the income effect on consumption.

Introducing endogeneity in these models proves to be a major challenge, as the standard

mean independence restriction of instruments Z from errors (e.g., ε in (2.3)) leads in the case of

semi- or nonparametric models generally to so called ill-posed inverse problems, meaning that

the estimator can be obtained by inverting an integral equation. For instance, in model (2.3),
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the equation that has to be solved for m is

E [Y |Z] = E [m(X)|Z] . (2.4)

In the language of this literature, the conditional expectation is treated as an operator T acting

on a function m (think of this operator as a matrix). Hence, what is required is inversion of

T . However, this inversion is non trivial and not well behaved, and to achieve a stable solution

regularization has to be employed2. Such an approach has been put forward in Blundell, Chen

and Kristensen (2007). From an applied perspective, this adds another layer of difficulties to

an already involved analysis, while from a theoretical point of view many problems (including

such important issues as having additional exogenous control variables) remain unresolved.

From our perspective, the main drawback is the lack of compatibility with a heterogeneous

population, see Hoderlein and Holzmann (2008) for a discussion. The core argument can easily

be illustrated with the linear random coefficients model. Suppose the population is of the

approximate AI type, with parameters that vary across the population, i.e.,

W = β0(A) + β1(A)′P + β2(A)′Y, (2.5)

where for simplicity we suppressed the dependence on Q. Assume in addition that we have

correlation between preferences A and Y . A common heuristic in demand is that total expen-

diture is also determined by a part of the preference ordering. Assume, however, that we have

instruments Z (including the exogenous prices P ), such that

Y = α + γ′Z + U,

where α, γ are fixed coefficients, and U are residuals. Suppose in addition that instruments are

independent of both A and U jointly3. Then, (2.5) can be rewritten in a form involving an

additive error,

W = β0 + β1′P + β2′Y + ε, (2.6)

where (β0, β1, β2) denotes the mean of the vector of random coefficients, and ε = β0(A)− β0 +

(β1(A)− β1)
′
P + (β2(A)− β2)

′
Y contains the preference heterogeneity. Then it is straight-

forward to show that E [ε|Z] 6= 0 unless there is no randomness in β2(A). In Hoderlein and

2Roughly speaking, Ridge regression, i.e., using [X′X + λI]−1
, instead of [X′X]−1 in OLS, is the closest ana-

log in parametric regression. In this analogy, adding λI would be the regularization, and λ is the regularization

parameter. This regularization is performed in the case when the inversion of the matrix X ′X would produce

an unstable result
3This is stronger than needed, but economically plausible.
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Holzmann (2008) we show a more general case, and argue that this issue is only aggravated in

the nonparametric case. The upshot of this dicussion is that the ”additive error mean inde-

pendent of instruments restriction” requires the population to be identical but for an additive

shift parameter. This is clearly not a very attractice heterogeneous population, and the effort

going into more refined versions of nonparametric IV estimators seems hard to be justified.

This seems to raise questions about the usefulness of instruments as a means to correct for

endogeneity. However, as we will show below, instruments may still be used in a heterogeneous

population, albeit in a different fashion.

Other Developments: Demand has more facets than just obtaining unrestricted estimates

of consumers reaction to prices and income. Indeed, economic theory places restrictions - in

particular the so called integrability constraints - on demand systems which can be either tested

or imposed. Imposing restrictions of consumer demand on nonparametric models has been done

in several papers. Tripathi (2003) imposes homogeneity on nonparametric regression models

of the form discussed in (2.2). Lewbel and Linton (2004) discuss how to impose homotheticity

on a (demand) function. Haag, Hoderlein and Pendakur (2008) show how to impose negative

symmetry of the Slutsky matrix. Hall and Yatchew (2008) estimate a nonparametric regression

if data on the derivatives are also present.

Less common in applied work than nonparametric estimation are nonparametric testing

approaches. Testing integrability constraints dates back at least to the early work of Stone

(1954), and has spurned the extensive research on (parametric) flexible functional form demand

systems. Nonparametric analysis of some derivative constraints was performed by Stoker (1989)

and Härdle, Hildenbrand and Jerison (1991), but none of these has its focus on modelling

unobserved heterogeneity. We will discuss recent work on testing below, but first focus on

estimation approaches.
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3 Linear Models in a Heterogeneous Population - Non-

parametric Estimation of the Density of Random Co-

efficients

We start now by sketching the estimator for the density of random coefficients in the heteroge-

neous approximate AI model, introduced in Hoderlein, Klemelä and Mammen (2008, henceforth

HKM). For simplicity, we focus on the case of a scalar dependent variable, and neglect the de-

pendence on Qi. Throughout this chapter, we will always assume to have i.i.d. sequence of

random vectors (Wi, Xi, βi), i = 1, . . . , n, with Wi ∈ R and Xi, βi ∈ Rd, where d = L + 1, with

the following structural relationship between the variables:

Wii = β′iXi, i = 1, . . . , n. (3.1)

Our goal is to estimate the density of the vector βi, which we denote by fβ : Rd → R. The key

identification assumption is that Xi and βi are independent. Note that we require at this point

full independence, which may seem a strong assumption. It may be relaxed, however, at the

expense of introducing instruments.

To derive the estimator, the data is transformed by dividing it through the norm ‖Xi‖,
so that Si = ‖Xi‖−1Xi and Ti = ‖Xi‖−1Yi. The key observation is now that the conditional

density of U given S is given by the Radon transform of the density fβ:

fT |S(t|s) = Rfβ(s, t), (3.2)

see again HKM (2008) for details. We construct now an estimator by inverting the operator R

much like a matrix. Then,

fβ(t, s) = R−1fT |S(t|s). (3.3)

This, however, is an ill-posed inverse problem. The inverse operator is not smooth, i.e. small

changes in the argument may result in big changes in the value. To solve this problem, one

has to use a regularized inverse Ah of the Radon transform. We show in HKM (2008) that a

regularized inverse is given by the operator Ah, defined by

(AhfT |S)(ξ) =

∫

Sd−1

∫ ∞

−∞
Kh(s

T ξ − t)
fTS(t, s)

fS(s)
dtdµ(s), ξ ∈ Rd, (3.4)
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where µ is the Lebesgue measure on the unit sphere Sd−1. The definition of Kh is involved, see

HKM (2008). However, its properties will turn out to make it similar to a smoothing kernel.

A natural sample counterparts estimator is given by,

f̂β(b) =
1

n

n∑
i=1

1

f̂S(Si)
Kh

(
ST

i b− Ui

)
, b ∈ Rd, (3.5)

and hence this estimator has a structure similar to nonparametric kernel density estimators.

Despite the appealing structure, this estimator suffers from two shortcomings that make

this apporach unattractive for many applications: 1. It requires strong assumptions on the

distribution of regressors. If a random intercept is included, the assumptions effectively rule

out joint normality of regressors. While it may be the case that violations of this assumption

do not seriously affect the results in applications, this issue remains not clear, and obviously

a concern in applications. 2. The estimator exhibits slow rates of convergence, and the curse

of dimensionality is twice as bad as it is standard nonparametric density estimation (in terms

of rates, n−1/2d+3 instead of n−1/d+4). This is not a shortcoming of the specific estimator we

propose. Indeed, in HKM (2008) we show that the rate is the optimal one for this nonparametric

problem. Translated into applications, this means that it is virtually impossible to estimate any

high dimensional regression without further assumptions. In HKM (2008), we give examples of

such assumptions, which are similar in spirit to partially linear modeling. However, in economic

terms these specifications mean that, say, the income effect varies across the population, but

the price effect stays invariant across the population. This is clearly restrictive, and further

research is required on how to combine these method with semiparmetric structure so as to

make it applicable with finite amounts of data.

Testing economic restrictions is also not always straightforward. Suppose that the restriction

we want to test is whether R(βi) < 0, for all i = 1, .., n. Essentially, it requires to check whether

the density fR(β) is positive on a subset of R+
0 with positive probability. One could employ, e.g.

a L2 distance test, but no formal model has as of yet been proposed.

A final issue that remains to be discussed is the treatment of endogeneity. In HKM (2008),

we specified the relationship between endogenous regressors and instruments to be linear with-

out variation in parameters (i.e., random coefficients). This is clearly restrictive, and more

general forms of dependence in a heterogeneous population are being called for. In the follow-

ing section we discuss less restrictive specifications of the functional form of all relationships

in the system. But the drawback of such approaches is that we loose identification in general,
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and are only able to work of the consequences.

4 Nonlinear Models in a Heterogeneous Population - the

Implications for Testing Rationality Restrictions

Moving away from linearity makes the model both less restrictive, and harder to identify and

estimate. If we do not want to assume that the heterogeneous population is linear from the

outset, and we want to allow for several types of individuals, we could consider a heterogeneous

population consisiting of two types of individuals, one linear in coefficients like model (3.1), one

with a nonlinear, but parametric, both with (finite) parameters that vary across the population,

may be formalized as

W = 1 {A0 > 0}X ′A1 + 1 {A0 ≤ 0} g(X,A2), (4.1)

for a known function g and random vector A = (A0, A
′
1, A

′
2)
′ of parameters that vary across the

population (here we have set A1 = β). In this model, fA is not identified. More generally, there

may be infinitely many types, and the parameters may be infinitely dimensional, and hence

we formalize the heterogeneous population as W = φ(X, A), for a general mapping φ. Still, for

any fixed value of A, say a0, we obtain a demand function having standard properties. The

hope is now that when averaging over the unobserved heterogeneity A, rationality properties

of individual demand may still be preserved by some structure.

Discussion of this type of models has a long tradition in comsumer demand, or rather, in the

econometrics literature that is bordering consumer demand. Models of the form W = φ(X,A)

havebeen introduced by Röhrig (1988). However, he considered these models under the added

restriction of monotonicity in a scalar unobservable. This line of research was popularized and

greatly expended by the work of Matzkin (see Brown and Matzkin (1996), Matzkin (2003) and

Altonji and Matzkin (2005)), but also other authors Chesher (2003) and Imbens and Newey

(2008). The predominat theme in this literature is the monotonicity assumption already men-

tioned. In a nutshell, what is required is to make assumptions that allow to link heterogeneity

in responses as given for instance in the various quantiles to unobservables. In a system of

equations, which is of course the situation typically encountered in demand, monotonicity is

usually enriched by the assumption of triangularity, which means that the first equation is
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monotonic in exactly one scalar unobservable, the second equation has two scalar unobserv-

able, where the first is the same as in the first equation, and the function is monotonic in the

second equation, the third equation has three unobservables, etc. While this model might be

sensible in sequential decision making, it is arguably ad hoc in consumer demand, where all

equations are driven by the same infinite dimensional unobservable, namely the individual’s

preference ordering.

Hence, in Hoderlein (2002, 2008), we have argued in favor of thinking of A in W = φ(X,A)

as infinite dimensional random element that varies across the population. As already mentioned

above, this model is not identified, not even by exploiting all distributional information in the

data, which is given, e.g., through regression quantiles. Indeed, in Hoderlein and Mammen

(2007, 2009), we show that in this setup the partial derivative of the conditional α-quantile

of Y given X = x, denoted kα(x), with respect to the first component ∂x1 , is related to the

underlying heterogeneous population φ through

∂x1kα(x) = E[∂x1φ(X, A)|X = x, Y = kα(x)],

provided A ⊥ X. In words, even the derivative of the conditonal quantile is a local average

over a heterogeneous population. The same is actually true for the conditional mean

∂x1m(x) = E[∂x1φ(X, A)|X = x],

under essentially the same assumptions. While in particular the latter result is straightforward,

this approach has several advantages and features.

1. It provides a direct link between the unobservable world of the nonlinear heterogeneous

population and features of the joint distribution.

2. Since averaging is a transformation that preserves many features of the unnderlying het-

erogeneous population (“the φ world”) remain preserved, even though φ is not identified.

3. Endogeneneity can be handled in a control function fashion. Regressions remain useful

toold for analyzing data.

4. Both conditional means and quantiles convey information about the underlying hetero-

geneous population. It is not the case that one is the structural model, while the other is

useless. In fact, none of them is the structural model, but by averaging certain features

of the observable distribution of the data inherit properties of the structural model.
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5. Sometimes the objects that inherit features and the strutural objects in the underlying

heterogeneous population differ.

Let us elaborate on some of these points: While the first two points are obvious, point 3.

is the first that need some elaboration. Indeed, what we show in Hoderlein (2005, 2008) and

in Hoderlein and Mammen (2007, 2009) is that a control function IV structure generalizes all

the way to the nonseparable nonmonotonic setup. Indeed the system of equations is defined

through

W = φ(X, τ(Q,A)) (4.2)

X = ϑ(Z,Q, U) (4.3)

where φ is a fixed RL-valued Borel mapping defined on the sets X × V of possible values of

(X, V ). Analogously, µ is a fixed RL+1-valued Borel mapping defined on the sets S ×Q× U of

possible values of (S,Q, U). Moreover, ϑ has to be invertible in U . If we let S = (Q′, U ′)′, then

we require that

FA|S,Z = FA|S (4.4)

This assumption is the key identification assumption and discussed in detail in Hoderlein (2005,

2008). Assume for a moment all regressors were exogenous, i.e. Z ≡ X and U ≡ 0. Then this

assumption states that X, in our case total expenditure and prices, and unobserved hetero-

geneity are independently distributed, conditional on individual attributes, and control func-

tion residuals. If there is endogeneity, we would usually specify ϑ to be additive in U , e.g.,

ϑ(Z,Q, U) = ψ(Z,Q) + U , where E [U |Z, Q] = 0. In this case, we can think of ϑ as separating

X into an exogenous part ψ(Z,Q) and an endogenous U . Once we condition on U , we X is in-

dependent of A. The upshot of this discussion is that even in the case of endogeneity a modified

version of a mean or quantile regression including control function residuals helps to identify

the object of interestest, E[∂x1φ(X,A)|X,Q, U ], which is an best unbiased approximation of

the effect of interest ∂x1φ.

To see point 4,.we note that already

∂x1kα(x) = E[∂x1φ(X, A)|X = x, Y = kα(x)],

and

∂x1m(x) = E[∂x1φ(X, A)|X = x],
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defined two different objects of interest. Both of these might be of interest, as are more

elaborate projections in the case when we have instruments and control function residuals, see

Hoderlein (2005, 2008) and Hoderlein and Mammen (2007, 2009).

To see point 5, consider the Slutsky matrix, i.e. the matrix of utiliy compensated price

deriavtives. In the form usually considered in the demand literature, this is in the underling

heterogeneous population (defined by φ, x, and v), takes the form

S(x, v) = Dpφ(x, v) + ∂yφ(x, v)φ(x, v)′ + φ(x, v)φ(x, v)′ − diag {φ(x, v)} .

Here, diag {φ} denotes the matrix having the φj, j = 1, .., L on the diagonal and zero off the

diagonal. To discuss this object, we need again some notation. Let V [G, H|F ] denote the

conditional covariance matrix between two random vectors G and H, conditional on some σ-

algebra F , and V [H|F ] be the conditional covariance matrix of a random vector H. We will also

make use of the second moment regressions, i.e. m2(ξ, q) = E[WW ′|X = ξ, Q = q]. We also

abbreviate negative semidefiniteness by nsd. Finally, for any square matrix B, let B = B +B′.

The following statement replicates results in Lewbel (2001) and Hoderlein (2002, 2008).

Theorem 1: Let all the variables and functions be defined as above. Let A ⊥ X|Q. Then, the

following implications hold almost surely:

S nsd ⇒ Dpm(X,Q) + ∂ym2(X, Q) + 2 (m2(X, Q)− diag {m(X, Q)}) nsd ,

However , if and only if V [∂yφ, φ|X,Q] is symmetric we have

S symmetric ⇒ Dpm(X,Q) + ∂ym(X,Q)m(X, Q)′ symmetric,

almost surely. For a proof, see Hoderlein (2008).

The importance of this proposition lies in the fact that it allows for testing the key elements

of rationality without having to specify the functional form of the individual demand functions

or their distribution in a heterogeneous population. Indeed, the only element that has to be

specified correctly is the conditional independence assumption, in this case A ⊥ X|Q, which

is implied by A ⊥ (X, Q) and corresponds to a completely exogenous setting. But, as already

mentioned above there is a variety of independence conditions that in general lead to different

structures, see again Hoderlein (2008). Testing can be pointwise, at a fixed position (x0, q0), see

Hoderlein (2002, 2008), or integrated across the population, see Haag, Hoderlein and Pendakur

(2008), depending on whether one aims at a statement for the population in total, or whether

one focusses on subpopulations, see the discussion in the next section.
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The fifth point is also well illustrated by theorem 1. The structure that inherits negative

semidefniteness, i.e. Dpm(X, Q) + ∂ym2(X, Q) + 2 (m2(X,Q)− diag {m(X, Q)}) differs from

the one in the underlying heterogeneous population S(X, V ). Lewbel (2001) was the first

to point out that if we, in order to check for negative semidefiniteness, replicate S(X, V ) by

considering S(X,Q), we require V [∂yφ, φ|X, Q] to be negative semidefinite as well. However,

this assumption is not testable and simply has to be assumed to hold.

5 Nonparametric Tests of Rationality Restrictions

A final issue that deserves mentioning from the perspective of a heterogeneous population is

how to test economic restrictions. Take the issue of symmetry: For instance, under assumptions

stated above, the null hypothesis is that the matrix S(x, q) = Dpm(x, q) + ∂ym(x, q)m(x, q)′ is

symmetric at every (x0, q0). This can be tested in several ways. We would like to mention two:

The first is pointwise, i.e. one picks a “representative grid” of positions at which to evaluate

the truth of the hypthesis, and use standard pointwise asymptotics to derive the behavior of

the test.

There are several problems with such an approach: 1, How does one select the grid? An

obvious answer is to draw from the empirical cdf of the data, by repeatedly drawing with

replacement. 2. There is a problem of testing multiple hypothesis. Indeed, in five percent

of the cases, we would be bound to reject even a valid null hypothesis. There is a fix for

this, see Hoderlein (2008), but the more fundamental problem of the axiomatic foundation of

such an apporach remains unresolved. 3. The individual tests have low power, due to the

pointwise and nonparametric character. 4. One always tests implications only, but this is a

process of information loss. It may well be the case that, at every point (x0, q0), all individuals

violate symmetry, but in the conditional average these violations cancel. 5. The elements of

the asymptotic distribution are difficult to estimate, and hence a bootstrap procedure is being

called for. In Hoderlein (2008) we argue that the bootstrap is consistent.

An alternative are more elaborate nonparametric tests, in particular so called L2- distance

tests. To illustrate how these tests are constructed, ignore again for simplicity the dependence

of S on q, and let sjk(x) denote the (j, k)-th element of S(x). The null hypothesis is then that

H0 : P(sjk(X) = skj(X), ∀ j 6= k) = 1
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and the alternative is that there is at least one pair (j, k) with sjk(x) 6= skj(x) over a significant

range. We may express the alternative as H1 : P(sjk(X) = skj(X),∀ j 6= k) < 1. The null

hypothesis is equivalent to the condition that the L2-distance of these functions is zero. Using

a nonnegative and bounded weighting function a(x) this can be written as

ΓS = E
(∑

j<k

(sjk(X)− skj(X))2a(X)
)

= 0.

Of course this is only equivalent to the null hypothesis if a(X) is nonzero over the whole

support of X. However the weighting function allows to restrict the test to certain regions of

the explanatory variables. Secondly, assuming that the support of a(X) is strictly contained in

the support of the density, boundary problems can be avoided.

A nonparametric test statistic may be constructed by the analogy principle. Using esti-

mators ∂km̂
j
h(x) for the partial derivatives of the regression functions ∂kmj(x), are used as

estimators for the derivatives. A possible test statistic is then

Γ̂S =
1

n

M−2∑
j=1

M−1∑

k=j+1

n∑
i=1

(∂km̂
j
h(Xi)+ m̂k

h(Xi)∂xm̂
j
h(Xi)−∂jm̂

k
h(Xi)− m̂j

h(Xi)∂xm̂
k
h(Xi))

2Ai. (5.1)

The large sample behavior of this test statistic is derived in Haag, Hoderlein and Pendakur

(2008), but is even more cumbersome to estimate. As such, the 5th problem above is not

alleviated by such an approach. However, the bootstrap works indeed well, and is recommended

to applied reserachers. This is particularly the case, because it is well known that this is an

instance where asymptotic normality is a poor approximation to the true finite sample behavior

of the test statistic.

How about the other four problems of the pointwise test. Obviously, points 1 and 2 disap-

pear. Also, the third point is mitigated, as the power is dramatically improved by considering

the average. However, there is an added difficulty now. Because we are aggregating over the

(observable!) X dimension we may actually mix up areas where people are rational with those

where they are not. As such, we may reject rationality if we found that the two functions sjk(x)

and skj(x) differ only for a subset of the heterogeneous population. This problem, together with

the fourth issue mentioned above may result in potentially misleading answers: We may reject

rationality even if it is only relatively few individuals who are actually not rational.
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6 Conclusion

In this chapter we have discussed the implications of the recently emphasized issue of preference

heterogeneity for state of the art econometric modeling. We have shown that some well establsi-

hed approaches may have difficulties, and that there are potentially new approaches that may

reveal new and interesting features of the data. Many of these approaches, like nonparametric

random coefficinet models are still in their early stages, and a number of problems are to be

resolved before they become meianstream tools for applied econometrics.
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