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Abstract

In this paper we are concerned with analyzing the behavior of a semiparametric es-

timator which corrects for endogeneity in a nonparametric regression by assuming mean

independence of residuals from instruments only. Because it is common in many applica-

tions, we focus on the case where endogenous regressors and additional instruments are

jointly normal, conditional on exogenous regressors. This leads to a severely ill-posed

inverse problem. In this setup, we show first how to test for conditional normality. More

importantly, we then establish how to exploit this knowledge when constructing an esti-

mator, and we derive results characterizing the large sample behavior of such an estimator.

In addition, in a Monte Carlo experiment we analyze the finite sample behavior of the

proposed estimator.

Our application comes from consumer demand. We obtain new and interesting findings

that highlight both the advantages, and the difficulties of an approach which leads to

ill-posed inverse problems. Finally, we discuss the somewhat problematic relationship

between nonparametric instrumental variable models, and the recently emphasized issue

of unobserved heterogeneity in structural models.
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1 Introduction

1.1 General Motivation

Regression models with endogenous regressors are a commonplace throughout much of applied

Economics, and perhaps the rule rather than the exception. To deal with this problem, most

of the time applied researchers employ instrumental variables (in the following denoted W ).

While it is well established how they are to be used if the model is known to be linear, it is

much less clear in more general settings. Indeed, in this paper we will be concerned with the

most general, the nonparametric setting, where it is only known that the structural relationship

between a variable Y and an endogenous regressor X is a smooth, but otherwise unrestricted

function m. In this setting, we focus specifically on the case when the endogenous regressor X

and the instrument W are jointly normally distributed.

This choice of focus is intentional: Indeed, the aim of the paper is to show the scope of the

nonparametric IV approach in a typical economic application - and (approximate) normality

is arguably the leading distribution of continuous variables we find in applications1. Consider

for instance figure 3 which shows a kernel density estimate of the marginal distribution of log

total expenditure against a maximum likelihood estimate of a normal distribution using the

same data. Judging from the marginals, normality of the joint distribution of log income and

total expenditure seems to provide an acceptable description of the data.

In consumer demand, a well developed area of application, log total expenditure is sug-

gested by economic theory as one of the regressor. However, it is believed to be endogenous,

and log disposable income is usually taken as instrument. As we will demonstrate below, both

variables are well characterized by joint normality, conditional on household covariables. While

normality is commonly associated with benign behavior, this is not at all the case in a non-

parametric regression with endogenous regressors. Indeed, joint normality can lead to very slow

rates of convergence as is established by various authors (Blundell, Chen and Kristensen 2006,

henceforth BCK, Darolles et al. 2004 and Severini and Tripathi 2006).

In this paper we examine what can be learned about the relationship of interest m in such

a scenario, and by what means. Specifically, we consider the population model

Y = m(X, Z) + U, E(U |W,Z) = 0, (1.1)

where m is an unknown function, Y, X and W are as defined above, Z denotes additional

exogenous regressors, and U is an (unobservable) random error. This model will be called a

1Of course, joint (conditional) normality can be tested, and we will propose and implement a test below. A

byproduct is that once conditional normality is accepted, it is actually possible to derive a test for identification,

as demonstrated below.
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nonparametric IV regression model.

We propose a series estimator in the Hermite polynomials where the coefficients are obtained

by additional nonparametric regression of the relevant quantities on Z. In comparison with

other estimators in related settings, our estimator has the main advantages that its construction

is intuitive, that it is simple and transparent, that it is fairly easy to compute, and that it is

designed for an economically particularly relevant situation (model (1.1) with continuously

distributed Z and conditional normality of (X, W ) given Z). Given the complexity of the other

approaches in this area, for these reasons it should be rather attractive for applied researchers.

1.2 Relationship to the Literature

The approach put forward in this paper is nonparametric, but under a semiparametric spec-

ification. Moreover, it is motivated by an application and also provides, to the best of our

knowledge, the first application of a kernel based nonparametric model to an economic appli-

cation in an ill-posed scenario. Therefore, it is most closely related to the model of BCK, who

successfully implement a semiparametric generalized partially linear model using the method of

sieves. We will compare our approach to theirs at various places throughout the paper. Specif-

ically, we discuss specification issues arising from heterogeneity of a population of rational

individuals for both approaches in section 5. Here we just mention that BCK assume discrete

exogenous covariates Z, and model their influence semiparametrically. For the nonparametric

part, BCK use a sieve estimator. As candidate sieve spaces they consider the Hermite functions

(not the polynomials), but in addition other bases like spline bases as well. Thus, their esti-

mation strategy allows for quite some flexibility by allowing to choose the appropriate sieves.

They introduce a sieve measure of ill-posedness, and obtain rates of convergence both for the

mildly ill-posed (polynomial decay) as well as severely ill-posed (exponential decay) case.

Other than through the (testable) semiparametric element of joint normality, our paper is

entirely nonparametric. Fully nonparametric estimation of m in model (1.1) has been studied

quite intensively in recent years. Here we briefly put our assumptions and results into per-

spective by comparing it with the existing literature, specifically with Carrasco, Florens and

Renault (2005) and Darolles, Florens and Renault (2004), Hall and Horowitz (2005), and Newey

and Powell (2003).

Carrasco et al. (2005) and Darolles et al. (2004) consider primarily model (1.1) without an

exogenous variable Z, i.e. Y = m(X) + U where E(U |W ) = 0. Darolles et al. (2004) do not

impose any distributional restrictions, but rather use a Tikhonov regularization of the inverse

of the estimated operator A : L2(µX) → L2(µW ), (Aψ)(w) = E(ψ(X)|W = w), where they plug

in kernel estimates in the expression of A. Thus, in case that joint normality holds true, their

estimator is similar to the series estimator with Tikhonov regularization scheme, except that
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they have an additional estimation error arising from nonparametric estimation of the operator

A. Carrasco et al. (2005) also consider other regularization schemes like the Landweber-

Friedmann regularization. Both Carrasco et al. (2005) and Darolles et al. (2004) restrict the

class of functions for m more narrowly, and then obtain polynomial rates of convergence even

in case when (X, W ) are jointly normal.

Hall and Horowitz (2005) allow for a continuously distributed exogenous variable Z in model

(1.1). They do not make any parametric distributional assumptions but rather assume that X,

W and Z have compact support, and therefore exclude any normally distributed components.

Further, they restrict attention to the case when the problem is mildly ill-posed, meaning that

the eigenvalues of the operators Az decay at a polynomial rate, and not, as in the case of joint

normality considered here, exponentially fast. Moreover, they use a density weighting that

leads them to consider (in the univariate endogenous case) rates of convergence in L2(I) (I is

the compact interval under consideration) instead of L2(µX) (as used in Carrasco et al 2005,

Darolles et al. 2004 and BCK). Indeed, one could argue that it is more natural to use L2(µX)

since one should aim to estimate m(x) more precisely where many observations X are available.

Newey and Powell (2003) also allow for continuously distributed Z without any additional

parametric assumptions or assumptions on the support of the distribution of Z. Instead, they

make stronger assumptions on the function m itself, namely that it belongs to a certain compact

subset of L2. Thus, they impose stronger (untestable) assumptions on the unknown regression

function, where we prefer to restrict the distribution of (X,W,Z), which is justified in our

application, and leave m as general as possible. Their estimator is a truncated series estimator

in the Hermite functions (roughly the Hermite polynomials weighted by the standard normal

density).

Finally, inverse problems in a statistical framework like noisy integral equations and density

deconvolution problems were more generally studied within the last two decades (cf. e.g.

O’Sullivan 1986, Nychka and Cox 1989, Donoho 1995, Johnstone and Silverman 1990, Mair

and Ruymgaart 1996 and Cavalier and Tsybakov 2002).

1.3 Structure of the Paper

The paper proceeds as follows. In section 2, we introduce the exact assumptions for model (1.1),

in particular conditional normality of (X,W ) given Z. In order to check this assumption in

applications, we propose a novel bootstrap test for conditional normality against nonparamet-

ric alternatives. Section 2.3 contains a result on identification of m under our semiparametric

specification. In contrast to fully nonparametric specifications, identification in our semipara-

metric framework can be tested statistically. We suggest an estimator based on the principle

of sample counterparts, and establish rates of convergence of this estimator, both in L2 as well
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as uniformly. As an illustration, in Section 2.5 we briefly discuss the case where all variables

(X, W,Z) are jointly normally distributed. In section 3 we investigate the finite sample behav-

ior of our estimator in a Monte Carlo experiment, before we turn to an application in section

4. Specifically, we analyze the behavior of our estimator in a real world scenario, by using food

expenditure from the British Family Expenditure Survey. The greater perspective of our appli-

cation is discussed in section 5, where we argue that the conditions when a model with additive

error arises are restrictive from an economic perspective. In particular, as an example we show

that the the semiparametric specification of BCK is only compatible with a population with

heterogeneous preferences if all individuals are identical (and the error is an orthogonal mea-

surement error or the like), or a set of fairly implausible and untestable additional conditions

hold. We conclude this paper with a summary.

2 Nonparametric IV Regression when Instruments and

Regressors are Gaussian

In this section we discuss the core elements of our model. In particular, we show how the

additional information about the joint distribution of observables may be incorporated when

discussing identification and constructing estimators in model (1.1), and characterize the large

sample behavior of such an estimator.

2.1 Basic Assumptions and Notations

Throughout this paper, we assume to have i.i.d. observations (Xi, Zi, Yi,Wi), i = 1, . . . , n from

the population model (1.1). This assumption can be relaxed to allow for some mixing type of

dependence, but this is beyond the scope of this paper. Moreover, we focus on the case where

Xi ∈ R and Wi ∈ R (i.e., the univariate case), but we invoke this assumption only to keep

the exposition concise. In Remark 2.2 we briefly sketch how to extend our approach to the

multivarite case.

The main additional assumption that we add to the specification of model (1.1) is the

following: The conditional distribution of (X, W ) given Z = z is normal:

(X, W )|Z = z ∼ N
((

µ1(z)

µ2(z)

)
,

(
σ2

1(z) ρ(z)σ1(z)σ2(z)

ρ(z)σ1(z)σ2(z) σ2
2(z)

))
. (2.1)

This assumption does not imply that the regression function m(x, z) itself in (1.1) is paramet-

rically specified, only that there are certain restrictions on the joint distribution of (X, W,Z).

Moreover, we assume that Z ∈ Rd is continuously distributed, but this assumption can be
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relaxed, see the discussion after theorem 2. This set of assumptions will be invoked without

further mentioning. In Sections 2.3 and 2.4 we discuss identification and estimation under this

model specification, respectively. As an illustration of the features of the model, in Section 2.5

we go one step further and assume full joint normality of (X,Z,W ). In the following section,

however, we discuss first how to scrutinize the assumption of conditional normality. As we

will see below, this assumption admits a test for identifiability of m and is supported in our

application by the data.

To proceed, we introduce the following notation: Let µXZW denote the joint distribution

of (X,Z,W ), and let the marginal distributions be denoted in a similar fashion (e.g. µXW

is the distribution of (X,W )). Let fXZW denote the Radon-Nikodym derivative of µXZW

with respect to Lebesgue measure (i.e., a density under our assumptions, and set µXZ(dx dz) =

fXZ(x, z) dx dz, µZW (dz dw) = fZW (z, w) dz dw, where the marginal densities are again denoted

in an obvious fashion. The conditional distribution of X given Z = z is denoted by µX|Z=z, it

has density fXZ(x, z)/fZ(z), and similarly for the conditional distribution of W given Z = z.

We denote the L2 norm w.r.t. the probability measure µX|Z=z by ‖ · ·‖µX|Z=z
, and similarly for

µW |Z=z.

2.2 Testing Conditional Normality

Although there is an abundance of methods to test the goodness of fit of a parametric family

of distributions, tests for a parametric form of a conditional distribution are surprisingly rare.

In a recent contribution, Delgado and Stute (2008) suggest tests for parametric families of

conditional distributions based on the martingale transform method. Here we propose a simple

test based on comparing the L2 distance of densities, using the bootstrap. To start with, the

hypothesis needs to be specified. We want to test whether

H0 : P(f(X, W |Z) = f(X,W |Z; θ)) = 1,

is true. Here, f(x,w|z) denotes the joint (nonparametric) density of X, W conditional on

Z = z, and f(X, W |Z; θ)) denotes the joint density of X, W conditional on Z = z under the

assumption that they are normally distributed with parameter θ, depending on Z, i.e. θ = θ(Z).

The alternative is that these functions differ on a subset of the support of (X,W,Z) of positive

measure. The null is equivalent to the condition that the L2 distance of the two functions is

zero. Using a nonzero and bounded weighting function a, this condition can be written as

Γ1 = E
((

f(X, W |Z)− f(X, W |Z; θ)
)2

a(X, W,Z)
)

= 0. (2.2)

The natural sample counterpart to Γ1 is given by

Γ̂1 = n−1
∑

i

(
f̂(Xi,Wi|Zi)− f(Xi,Wi|Zi; θ̂)

)2
a(Xi,Wi, Zi), (2.3)
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where f̂(Xi,Wi|Zi) = f̂(Xi,Wi, Zi)/f̂(Zi) is the ratio of two standard leave–one-out nonpara-

metric kernel density estimators (e.g., f̂(Zi) =
∑

j 6=i

(
nhd

)−1
K((Zj − Zi)/h), and K is a

standard kernel. Moreover, f(Xi, Wi|Zi; θ̂) is a semiparametric ML estimator defined as the

minimizer of a local ML problem, where a bivariate normal density likelihood problem is min-

imized, locally to Zi, i.e.

L (θ(Zi)) =
(
nhd

)−1
∑

j 6=i

log [φ (Xj,Wj; θ(Zi))] K((Zj − Zi)/h),

where φ is the density of the standard normal distribution. The asymptotic distribution of the

test statistic (2.3) can be obtained using arguments as in Ait-Sahalia, Bickel and Stoker (2002),

and because the large sample behavior of this test is not in the center of the paper we desist

from presenting it here. Arguments for the consistency of bootstrap based procedures for the

asymptotic distribution may be found there, as well as in Härdle and Mammen (1993). The

following bootstrap procedure seems natural:

1. For each Zi = zi, i = 1, ..., n, estimate θ(zi) in f(Xi,Wi|Zi = zi; θ(zi)) through semipara-

metric ML.

2. Next, draw Z∗
i = Zi, from the data.

3. For each i = 1, ..., n, draw one observation (X∗
i ,W ∗

i ) from f(Xi,Wi|Zi = z∗i ; θ̂(z
∗
i )). This

gives the bootstrap tuple (X∗
i ,W ∗

i , Z∗
i ).

4. From (X∗
i ,W ∗

i , Z∗) , i = 1, ..., n, compute Γ̂∗1.

5. Repeat steps 2 to 4 often enough to obtain critical values for Γ̂1.

This summarizes how to obtain a bootstrap test for conditional normality. We leave the as-

sociated large sample theory for future research, and proceed by discussing how the assumption

of conditional normality simplifies things.

2.3 Identification under Conditional Normality

First, to see how an integral equation arises in model (1.1), consider the conditional expectation

operator

A : L2(µXZ) → L2(µZW ), Aψ(z, w) = E(ψ(X, Z)|Z = z, W = w) (2.4)

=

∫
ψ(x, z)

fXZW (x, z, w)

fZW (z, w)
dx.

The regression function m is determined as the solution of the integral equation

E(Y |Z = z, W = w) = (Am)(z, w). (2.5)
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Thus, both the left hand side of (2.5) as well as the operator A are unknown in general and

have to be estimated from the data.

Next, to understand how conditional normality helps in identifying and estimating m, as-

sume for the moment that

(X, W )|Z = z ∼ N
((

0

0

)
,

(
1 ρ(z)

ρ(z) 1

))
, (2.6)

and consider the conditional expectation operator given Z = z,

Az : L2(µX|Z=z) → L2(µW |Z=z), (Azφ)(w) =

∫
φ(x)

fXW |Z=z(x, z, w)

fW |Z=z(z, w)
dx,

where obviously both µX|Z=z and µW |Z=z are the standard normal distribution for any z. Under

assumption (2.6), the spectral decomposition of Az involves the Hermite polynomials and the

correlation ρ(z). More precisely, consider the normalized Hermite polynomials Hj(x) defined

by

Hj(x) = (−1)j ϕ(j)(x)

(j!)1/2ϕ(x)
,

where ϕ(x) is the density of the standard normal distribution. The (Hj)j≥0 form an orthonomal

basis of L2(µX). Moreover, (
Az(Hk)

)
(w) = ρk(z) Hk(w), (2.7)

i.e. they form the orthonormal bases in the singular value decomposition of Az, where the

singular values are given by ρk(z). Now expand

m(x, z) =
∑

k≥0

αk(z) Hk(x),

where

αk(z) =

∫
m(x, z) Hk(x) dµX(x) (2.8)

is the Fourier coefficient (w.r.t. the Hermite basis), conditional on z. Then in view of (2.7),

(
Az m(·, z)

)
(w) =

∑

k≥0

βk(z) Hk(w) =
∑

k≥0

ρk(z) αk(z) Hk(w),

where βk(z) = E
(
Y Hk(W )|Z = z

)
. Hence E

(
Y Hk(W )|Z = z

)
= ρk(z) αk(z), and the coeffi-

cients αk(z) and hence the function m is identified on R× I with I ⊂ Rd if and only if ρ(z) 6= 0

for all z ∈ I (or at least µZ-almost all z ∈ I). In the general case (2.1), since all the objects µi

and σ2
i , i = 1, 2, are identified, we can simply assume that (X,W )|Z is standardized. Thus, we

obtain the following theorem giving sufficient and necessary conditions for identification under

conditional normality:
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Theorem 1. Under assumption (2.1), the function m(x, z) in model (1.1) is identified on R×I

with I ⊂ Rd if and only if ρ(z) 6= 0 for µZ-almost all z ∈ I.

Remark 2.1 In the absence of restrictions on the joint distribution of (X, W,Z), in order

to achieve identification one has to require that the conditional operators Az are one-to-one for

(a.e.) z or equivalently, that the singular values λk,z, k ≥ 1, are non-zero for each z. This is

clearly not a testable assumption, since it involves all the λk,z simultaneously. Thus, even if

one is not willing to assume any parametric restrictions on the joint distribution of (X, W,Z),

in order to achieve identification for m (and therefore to estimate m), there are still implicit

assumptions involved.

In contrast, under the (testable) assumption (2.1), one can establish identification. Suppose that

ρ̂(z) is a nonparametric estimate of ρ(z) which does not change sign (otherwise identifiability is

questionable), w.l.o.g. assume that ρ̂(z) > 0. For a compact interval I with high concentration

of observations Zi, one can now bootstrap the distribution of infz∈I ρ̂(z). If the 5% quantile of

this distribution is larger than zero, the hypothesis of identification is not rejected.

Remark 2.2 The diagonalization of the conditional expectation operators Az in terms of

the Hermite polynomials is based on the so-called Mehler’s formula, for which also multivariate

and in particular bivariate extensions exist (cf. Erdelyi 1939). Using these formulae in principle

allows extensions of the above theory to bivariate (or even multivariate) X and W , although

the explicit formulas quickly become quite involved.

Remark 2.3 A more general class of (conditional) distributions than just the normal dis-

tribution for which the conditional expectation operators Az allow an explicit form for the

diagonalization are distributions with densities which allow so-called diagonal expansions (cf.

Barrett and Lampard 1955).

2.4 Estimation under Conditional Normality

Now let us turn to estimation under Assumption (2.1). Let µ̂i, σ̂i, i = 1, 2, and ρ̂(z) be

nonparametric estimates of µi, σi and ρ(z). Generally, we have E
(
Y Hk(W

∗)|Z = z
)

= βk(z),

where W ∗ = (W − µ2(Z))/σ2(Z). Therefore, using the estimated normalized variables

Ŵ ∗
i =

Wi − µ̂2(Zi)

σ̂2(Zi)
.

we can estimate βk(z) by nonparametric regression. For example, the Nadaraya-Watson esti-

mator for βk(z) is given by

β̂NW
k (z) =

1
n

∑n
j=1 Yj Hk(Ŵ

∗
j ) Kh(z − Zj)

f̂Z(z)
,
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where f̂Z(z) = 1
n

∑n
i=1 Kh(z − Zj) and Kh(x) = K(x/h)/hd. In the following, we shall use a

local linear estimator and for simplicity, restrict the following discussion to the case d = 1.

Then the estimator for βk(z) is given by

β̂k(z) =

∑n
j=1 lj(z)YjHk(Ŵ

∗
j )∑n

j=1 lj(z)
, (2.9)

where

lj(z) = K
(z − Zj

h

)(
sn,2(z)− (z − Zj)sn,1(z)

)
,

sn,i(z) =
n∑

j=1

K
(z − Zj

h

)
(z − Zj)

i, i = 1, 2,

and K is a kernel function and h > 0 the bandwidth.

The final estimator of m(x, z) is hence given by

m̂(x, z) =
∑

k≥0

β̂k(z) w
(
ρ̂(z), k; M

)
Hk

(x− µ̂1(z)

σ̂1(z)

)
. (2.10)

Here, w(·, ·) is a regularisation scheme, and M its regularisation parameter. For example, if

ρ̂(z) 6= 0 for all z, one can use a simple truncation scheme (spectral cut-off)

wsco

(
ρ̂(z), k; M

)
=

{
ρ̂(z)−k, k ≤ M,

0 k > M.

Alternatively, the Tikhonov regularization scheme with regularization parameter α > 0 (α → 0

as n →∞) is given by

wTyk(ρ̂(z), k; α) =
ρ̂(z)k

α + ρ̂(z)2k
.

We analyze the asymptotic behavior of this estimator under the following set of Assumptions.

Here, C > 0 is an arbitrarily large but fixed constant.

Assumption 1. The coefficients αk(z) in the expansion (2.8) satisfy |αk(z)| ≤ Ck−γ, γ > 3/4,

uniformly in z, are two-times continuously partially differentiable with uniformly bounded (in

z and k) first and second derivatives.

Assumption 2. The functions µi(z) and σi(z), i = 1, 2, and ρ̂(z) are two-times continuously

partially differentiable and uniformly bounded up to the second derivative by C > 0. Further,

1 > ρmax ≥ |ρ(z)| ≥ ρmin > 0 for z ∈ I ⊂ R, and m is uniformly bounded by C > 0.

Assumption 3. The estimators µ̂i(z), σ̂i(z) and ρ̂(z) for ρ(z) converge uniformly on compact

intervals I ⊂ R with polynomial rate, e.g. there is a ε0 > 0 such that supz∈I |ρ̂(z) − ρ(z)| =

O(n−ε0).
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Assumption 4. The density fZ of the Zj is bounded away from 0 by 1/C on compact intervals

I ⊂ R.

Assumption 5. The kernel function K in the local linear estimators (2.9) is a bounded, sym-

metric probability density function,
∫

zK(z)dz = 0,
∫

z2K(z)dz < ∞ and
∫

K2(x)dx < ∞.

The bandwidth is chosen as h ∼ n−1/5.

Assumptions 1 and 2 are similar to assumption MV.3 in Hall and Horowitz (2005). As-

sumptions 4 and 5 are standard in nonparametric regression and are taken from Fan (1992).

Finally, note that in Assumption 3 we do not further specify the nonparametric estimators

of the functions µi(z), σi(z) and ρ(z). Uniform convergence is proved for µi(z) in Mack and

Silverman (1982) for the Nadaraya-Watson estimator and in Blondin (2007) for the local linear

estimator, and for σi(z) and ρ(z) in Neumann (1994) for kernel estimators.

The following result, whose proof can be found in the appendix, summarizes the asymptotic

behavior:

Theorem 2. Suppose that I ⊂ R is compact. Let assumptions 1 – 5 be true. For the estimator

(2.10) based on the spectral cut-off regularization scheme, for M = c log n with sufficiently small

c we have that for every δ > 0 there is Cδ and n0 such that for all n ≥ n0, and for all z ∈ I,

P
(
‖m̂sco(·, z)−m(·, z)‖2

L2(µX|Z=z) > Cδ

(
log n

)−2γ+1
)

< δ. (2.11)

Further, for compact J ⊂ R we have that for all z ∈ I,

P
(

sup
x∈J

|m̂sco(x, z)−m(x, z)| > Cδ

(
log n

)−γ+3/4
)

< δ. (2.12)

Remark 2.4 The first part of the theorem, eq. (2.11), is similar in spirit to Theorem 4.3 in

Hall and Horowitz (2005), though they consider the rate in expectation, and not in probability

(2.11). However, they only consider operators Az which are mildly ill-posed. Moreover, their

rate of convergence also depends on the additional exogenous regressors Z. Surprisingly, this is

not the case for the severely ill-posed problem with conditionally normal endogenous regressors

and instruments as considered in Theorem 2. Intuitively, the reason is that the rate is already

so slow (due to the severely ill-posed inverse problem), that the additional regressors Z does

not have an additional effect. We indicate the mathematical reason for this in the proof of

Theorem 2, which is given in the appendix.

Remark 2.5 If Z is discrete, one may still estimate m even if ρ(z) changes sign. For

example, if Z is binary, one simply performs two separate regressions. If Z has countably many

values with distinct signs, one still has to estimate ρ(z) by smoothing, but in such a way that

the estimate stays bounded away from 0.
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2.5 Identification and Estimation under Full Joint Normality

In general the eigenvalues ρk(z) of the operator Az in section 2.3 will depend on z, and although

the rate is independent of the magnitude of ρ(z), the relevant constants will strongly depend

on it. Therefore, we investigate the dependence of ρ(z) on z in a particular case, namely when

we have joint normality of the vector (X, W,Z). It turns out that in this important special

case, ρ(z) will be constant. We shall suggest an alternative estimator under full joint normality

and study its large sample behaviour.

Assume for simplicity that the (X, Z, W ) have been standardized, so that they are jointly

normally distributed with mean-vector zero and covariance matrix

Σ =




1 ρXZ ρXW

ρXZ 1 ρZW

ρXW ρZW 1


 . (2.13)

Then the entries in the conditional distribution (2.1) are given by µ1(z) = ρXZz, µ2(z) = ρWZz,

and σ2
1 = 1− ρ2

XZ , σ2
2 = 1− ρ2

WZ and

ρ =
(
ρXW − ρXZρZW

)(
(1− ρ2

XZ) (1− ρ2
WZ)

)−1/2
, (2.14)

so that σ1, σ2 and ρ are in this case independent of z. Thus, global regularization in z is

reasonable in this case. Also note that identification of m is now equivalent to ρ 6= 0, which

can easily be tested parametrically. Under joint normality, one can also give the spectral

decomposition of the unconditional operator A. It is in fact easy to show that the functions

ψj,k(x, z) = Hj

(x− ρXZz

σ1

)
Hk(z), χj,k(z, w) = Hj

(w − ρZW z

σ2

)
Hk(z),

form orthonormal bases of the spaces L2(µXZ) and L2(µZW ), respectively, and

(Aψj,k)(z, w) = ρjχj,k(z, w),

where ρ is given in (2.14). Therefore, under joint normality one can also use a double series

estimator. Let

βj,k =

∫
(Am)(z, w) χj,k(z, w) µZW (dz dw), αj,k =

∫
m(x,w) ψj,k(x,w) µXW (dx dw).

An estimator with a truncation regularisation scheme is given as follows.

m̂JN(x, z) =

M1∑
j=0

M2∑

k=0

β̂j,k

ρ̂j
ψ̂j,k(x, z), (2.15)
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where M1 and M2 are truncation parameters, and

β̂j,k =
1

n

n∑
i=1

YiHj

(Wi − ρ̂WZZi

σ̂2

)
Hk(Zi),

ψj,k(x, z) = Hj

(x− ρ̂XZz

σ̂1

)
Hk(z).

Further, one can e.g. choose ρ̂XZ = 1
n

∑n
k=1 XkZk, and ρ̂ZW and ρ̂XW are similar parametric

estimators. Further, ρ̂, σ̂1 and σ̂2 are obtained by plugging these into the corresponding ex-

pressions for ρ, σ1 and σ2, respectively. The convergence rates (2.11) and (2.12) also hold for

this estimator. Moreover, one can give an even more global convergence result (w.r.t. the joint

distribution µXW ) under the following assumptions.

Assumption 6. The coefficients αj,k of m satisfy |αj,k| ≤ Cj−γk−δ for some γ, δ > 1/2.

Assumption 7. The conditional variance function σ2(w, z) = E(U2|Z = z, W = w) and m

are uniformly bounded (bounded in ‖ · ‖∞).

Assumption 8. The parameter estimates ρ̂XZ, ρ̂ZW , ρ̂XW , ρ̂, σ̂1 and σ̂2 converge in probability

with parametric rate n−1/2.

Assumption 6 is a standard smoothness assumption for the function m, Assumption 7 is

also rather common in nonparametric regression. Assumption 8 is satisfied by e.g., maximum

likelihood estimators.

Theorem 3. Suppose that (X, W,Z) are jointly normal and standardized with covariance struc-

ture given in (2.13), and that Assumptions 6, 7 and 8 are satisfied. Then for M1 = c log n with

c > 0 small enough and M2 = n−ε for ε > 0 small we have for the estimator m̂JN in (2.15) that

‖m̂JN −m‖2
L2(µXZ) = OP

(
(log n)−2γ+1

)
(2.16)

Remark 2.6: This appears to be the first result in which a rate of convergence is derived

for an nonparametric IV estimator with additional continuous exogenous variables in L2(µXZ),

i.e. w.r.t. the joint distribution of (X, Z). Again, the rate in (2.16) does not depend on the

additional regressors Z.

Remark 2.7: If exogenous regressors Z are present in the regression problem (1.1), then

the unconditional operator A in (2.4) is no longer a Hilbert Schmidt operator, since it acts as

the identity on functions g(z) ∈ L2(µZ) ⊂ L2(µXZ). Therefore, the image A∗Am can no longer

be estimated at a fast rate (in case of known A which is Hilbert-Schmidt, this rate is n−1/2), and

the strategy in Darolles, Florens and Renault (2006) to first estimate A∗Am and then to apply

a regularized version of the inverse of A∗A (or its estimated version) can no longer be pursued.
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In Section 2.4 (and similarly in Hall and Horowitz 2005), this is overcome by assuming that

the conditional operators Az are Hilbert Schmidt and moreover satisfy a uniformity condition

(expressed in the assumption that ρ(z) is bounded away from 0). In this section under joint

normality, we show that one can simply construct a bivariate series estimator which covers

both the identity component of A as well as the Hilbert Schmidt component, and for which

two distinct truncation parameters are required which grow at different rates.

3 Simulation

In this section we report the results of an extensive simulation study. We start with a scenario

with conditional normality. More precisely, our simulation setup is as follows. We generate

data (Yi, Xi, Zi,Wi) from model (1.1) for distinct functions mj, where

m1(x, z) = (−1.5x)(z + 2), m2(x, z) = (x2 + 2)(z2x + 0.5) m3(x, z) = exp(−0.2(z + 2)x).

The (X, Z,W,U) are generated as follows. Generate a three-dimensional normal random vector

(U,X∗,W ∗) with mean vector zero and covariance matrix

Σ =




1 0.5 0

0.5 1 0.7

0 0.7 1


 .

Further, draw Z independent from (U,X∗,W ∗) from a Beta distribution B(1/2, 1/3), and stan-

dardize it. Then set X = X∗ + Z2 and W = W ∗ − (Z3 − Z)/2. Thus, we have µ1(z) = z2,

µ2(z) = −(z3 − z), σ2
1(z) = σ2

2(z) = 1 and ρ(z) = 0.7 are constant. We estimate these func-

tions nonparametrically by a local polynomial estimator of order one with a data-driven plug-in

bandwidth choice. Then, we simulate 10000 times samples of size N = 5000 for each mj, and

use the estimator (2.10) with the simple truncation scheme and different truncation parameters.

As in (2.11), we are mainly interested in the behavior of the mj as a function of x for fixed z.

Therefore, for two distinct values of z (z1 = 0.1, z2 = 1) we record the values of the coefficient

β̂k(zi), k = 0, . . . , 4 and i = 1, 2. Further, for each of these truncation parameters we compute

‖m̂(x, zi)−mj(x, zi)‖2
L2(X|Z=zi)

(the weighted error) and ‖m̂(x, zi)−mj(x, zi)‖2 (the unweighted

error over the interval [−2.5, 2.5]).

The results for estimation at z1 are presented in Tables 1 - 3, for z2, the results were similar

though a little less good. We see that for suitably chosen truncation parameter M , the esti-

mator performs well for all target functions mj, j = 1, 2, 3. However, if M is chosen too high,

then the estimation precision decreases significantly, in particular the 0.75 and 0.95 quantiles of

the distribution of the (weighted or unweighted) MISE increase. This effect is stronger for the
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unweighted case then for the weighted case. A similar effect can be observed for the coefficients

βj(zi). The estimates of higher order coefficients have high variance. Thus, even though the

median of these estimates is reasonable, the variability becomes large, which can lead to very

bad estimators in some cases if these coefficients are included. Nevertheless, since only a few

(small and discrete) values of M have to be tested, a proper choice of the smoothing parameter

is no problem in practice.

We also perform simulations for the Tikhonov regularization scheme, see Tables 1 - 3. Here,

the estimator does not depend that strongly on the choice of the (continuous) regularization

parameter. However, we find that for proper choice of M the truncation regularization scheme

outperforms the Tikhonov regularization scheme. One reason is that in the Tikhonov regular-

ization scheme, all Hermite polynomials influence the estimator, even though the coefficients of

higher order Hermite polynomials are very poorly estimated. See also figures 1 and 2 for plot

of typical results.

As a benchmark, we also performed simulations for estimating m2 keeping Z fixed at z1, and

viewing it is a function of X only (this amounts to excluding the exogenous covariates). Al-

though there is no asymptotic effect when regressing additionally on Z, there is quite a finite

sample effect, compare tables 4 to table 2 above. The results without exogenous covariate are

much more stable. One reason is the automatic bandwidth choice in the nonparametric estima-

tion of the various quantities by a local linear estimator in the setting with exogenous covariate.

We use a direct plug-in rule for estimating the bandwidth, which performs reasonably well in

the majority of cases, but sometimes is also much too small, so that the estimator behaves

rather poorly. When applying the estimator with exogenous covariates in practice, one can of

course check whether the preestimates look reasonably (and are not extremely wiggly), and

therefore this problem is somewhat reduced.

We furthermore conducted simulations with a nonconstant correlation function, in order to

investigate its effect, in particular concerning the uniform choice of the truncation parameter

M . We chose ρ(z) = 0.6 + z 0.3, where Z ∼ B(1.5, 1.5), and considered the regression function

m(x, z) = x2 + 2, which does not depend on z (so that the same conditional function is

estimated). We chose z1 = 0.2 and z2 = −0.2, and compared the estimation results. However,

these did not differ substantially, the errors when estimating nonparametrically the functions

βk(z) and ρ(z) by local linear estimation had the most effect. Further, since only small values

for M are required and ρ(z) is comparatively large, the error when dividing by the small power

of ρ̂(zi) does not have much more effect than the error when estimating β̂k(zi).

Finally, in a different scenario under full joint normality of (X, W,Z) we compare the per-

formance of the estimators (2.10) (which only uses conditional normality) and (2.15) (which

exploits the full joint normality). In turns out that the estimator (2.15) performs only slightly
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better than the estimator (2.10), even though it takes stronger advantage of the distributional

properties. Thus, in practice we recommend to choose the estimator (2.10) which has less

stringent distributional assumptions.

4 Application

4.1 Empirical Specification

Neglecting the issue of preference heterogeneity for the moment, following BCK we simply

assume that the there is a relationship m between a K-vector of dependent variables Y , in our

case budget shares, and total expenditure X as well as a set of exogenous regressors Z such

that

Y = m(X,Z) + U, E [U |W,Z] = 0 (4.1)

holds, where W is disposable income. The reason that X is believed to be endogenous in

demand analysis is that total expenditure and demand for individual goods are both believed

to be parts of a general preference ordering of individuals which is partly incorporated in the

error U (an example of how preference heterogeneity manifests itself in the error was given in

section 2). Disposable income of individuals in contrast is believed to be exogenous, because the

driving unobservables like ability are assumed to be independent of the preference orderings.

Of course, this assumption is questionable, but in this paper we follow the demand literature

in assuming that this is the case. Additionally, we assume that preferences are such that they

admit a sufficiently smooth demand relationship (e.g., preferences are strictly convex, with

associated differentiable utility functions). We use household data, but abstract from any inter

family allocation issues, which we feel is justified given the focus of this paper.

At the core of the paper is the joint normality of X and W , conditional on Z, which we ar-

gue to be a reasonable assumption in our application. Indeed, our approach aims at exploiting

this knowledge about the distribution, or turned a bit more negatively, argues that even using

this knowledge the situation is difficult. One advantage associated with this semiparametric

element is the standard semiparametric one: It allows to mitigate the curse of dimensionality.

This is however not the only feature we employ to make nonparametric analysis tractable in

the high dimensional environment that we are working in. Specifically, when conditioning on

household observables we use a low dimensional vector of principal components instead of the

original high dimensional vector of household covariables. Like much of the demand literature

we condition on some of them because we are working in a specific subpopulation, defined by

household characteristics. However, in the original data there are more than 100 household co-

variates, many of which are discrete. Including them in an unrestricted nonparametric analysis
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is impossible. Instead, we have some consistency checks for our use of principal components.

In a mild abuse of notation we refer to these components from now on also as Z. We now turn

to a precise description of the data.

4.2 Data Description

For our analysis we employ the British FES. Every year, the FES reports the income, expen-

ditures, demographic composition and other characteristics of about 7,000 households. The

sample surveyed represents about 0.05% of all households in the United Kingdom. The in-

formation is collected partly by interview and partly by records. Records are kept by each

household member, and include an itemized list of expenditures during 14 consecutive days.

The periods of data collection are evenly spread out over the year. The information is then

compiled and provides a repeated series of yearly cross-sections.

The category of goods we consider is food related, and consists of the subcategories food

bought and catering, which are self explanatory. Together our food category accounts for 28%

of expenditures on average. We removed outliers by excluding the upper and lower 2.5% of the

population. Income is constructed as in the definition of the “household below average income

study” (HBAI). It is roughly defined as net income after taxes, but including state transfers.

This is done in both data sets to define nominal income. Real income is then obtained by

dividing through the retail price indices. As mentioned, we stratify the population to obtain

a relatively homogeneous subpopulation, which is equivalent to controlling for the influence

of discrete controls nonparametrically. Like much of the demand literature we focus on one

subpopulation (namely two person households, both adults, at least one working and the head

of household a white collar worker), to minimize measurement error.

4.3 Results

We first start by reporting the results for the test of conditional normality. The value of the

test statistic Γ̂1 is 0.13463 which corresponds to a p-value of the bootstrap distribution of 0.85.

This indicates clearly that conditional normality is not rejected. The stronger hypothesis of

joint normality, however, is rejected using a standard normality test with a p-value of virtually

zero.

Since our analysis is nonparametric, much of our findings can be conveniently summarized

in univariate graphs. We will be particularly concerned by the following issues, all of which will

be illustrated by a comparative graph: Sensitivity of our results with respect to the choice of

the truncation parameter M , variation across values of Z, comparison with the exogenous and

the control function IV case, and the effect of assuming joint normality.
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Start with the choice of M . Figures 4 and 5 illustrate the effect of variations in M , the degree

of the polynomial. The first graph illustrate the Conditional Normal Estimator (henceforth

CNE) when M = 1, respectively M = 3, while the second one shows what happens when going

from M = 3 to M = 4, always at Z = 0. Clearly, the first picture shows that we obtain

qualitatively similar results, while M = 3 reveals the additional structure of a stronger decay

at low totexp which is masked by the linear specification.

Trying to be more complex, however, results in problems as demonstrated by figure 5. With

only M = 4 components we obtain implausible structures like the upswing of the food budget

share at higher levels of totexp. Indeed, for M > 4 this upswing increases further, rendering

this method ineffective. This is in accordance with the simulation results, which show that the

variance of the estimator increases significantly with increasing M , cf. Section 4.

All figures displayed up to now showed the behavior of the estimator at the center of Z

distribution. With slightly varying Z, the behavior still remains acceptable. However, for

Z = −0.3, the estimator shows an oscillation that is economically implausible (cf. figure 6).

Here it has to be taken into account that the estimator is designed for estimation in L2(µX|Z=z),

and thus cannot be expected to be very precise for values of Z that are far from the center of

the data. Moreover, this suggests that different values of M , the degree of Hermite polynomial,

are required for different values of Z, because even if a specification of M = 3 seems acceptable

for Z = 0, for Z = −0.3 and the same M we end up with results that are implausible, and that

further aggravate as Z increases.

The effect of correcting for endogeneity is analyzed in the following graph (figure 7), which

shows a comparison of an exogenous nonparametric regression with our CNE. Moreover, an

alternative way of controlling for endogeneity is displayed: control function IV. Indeed, we

find only moderate evidence that correcting for endogeneity does affect the results too much.

Certainly, the downward trend in food budget shares is unambiguous and very pronounced

throughout the specifications. Correcting for endogeneity does seem to have a mitigating effect

on the marginal effect. This effect is perhaps most pronounced when comparing exogenous

with control function IV, while our CNE is somewhere in the middle. These findings seem to

suggest that our estimators are robust to misspecification. However, they are not: If instead of

conditional normality we employ joint normality, much less sensible results appear, cf. figure

8.

Indeed, we observe an implausible strong decline in food budget shares across the totexp

range, which is in contradiction with virtually all findings in the literature. But then again,

we already know that joint normality is rejected. We conclude that the CDE is sensitive to

small changes in the specification. That this effect is not apparent when analyzing endogeneity

in figure 7 is more of an indication that the effect of endogeneity is rather moderate in our
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application (which is in surprising contradiction to BCK, who used very similar data). How

the estimator performs in a setting where the regressors are strongly endogenous remains to be

determined.

5 Are Nonparametric IV and Heterogeneous Popula-

tions Compatible in Empirical Work?

In the previous sections, we have shown that feasible nonparametric IV techniques can be pro-

posed and implemented even in situations where the problem at hand is severely ill-posed. Since

many continuous variables in economic applications are approximately normally distributed,

our results are encouraging for the applicability of this method. However, at this point we

would like to raise an issue which suggests to apply these type of methods with caution and

only after careful deliberation, at least in some economic applications. This issue is unobserved

heterogeneity, and the related question about the identification of structural parameters in a

heterogeneous population. Indeed, we will argue in this section that the mean independence

restriction we employ, namely E [U |W,Z] = 0 is not likely to identify meaningful parameters of

interest in a heterogeneous population.

We illustrate this issue with the model of BCK. We take their approach, because their paper

is (to the best of our knowledge) the only successful attempt for application of the techniques

put forward in the econometric literature on ill-posed inverse problems, and hence is most closely

related to our work. Also, the point we make can be illustrated best in the semiparametric

specification they suggest. But it is by no means confined to their paper, and hence is not a

specific drawback of their approach. Indeed, it will become obvious that if anything the point

aggravates in the entirerly nonparametric approach. Moreover, the approach put forward in

our paper does not really offer a means to circumvent this problem, it (only) allows to deal

with observable heterogeneity in a slightly more general fashion.

But let us sketch the problem: On individual level, BCK consider the class of preferences

giving rise to following model:

Y = h(X − Z ′θ1) + Z ′θ2, (5.1)

where, in their semiparametric specification, θ = (θ′1, θ
′
2)
′ denotes a (individual specific) vector

of coefficients, and h an unrestricted smooth function2. On individual level, this model can

be shown to be in line with the economic theory, see Pendakur (1998). Of course, as much

2They consider an L-vector Y , but we restrit ourselves to the scalar case. For the point we raise, this is

immaterial.
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of microeconometrics BCK estimate their model with data coming from a heterogeneous pop-

ulation. BCK acknowledge this fact by appending an additive error U , and assuming that

E [U |W,Z] = 0 holds, motivating the need for an IV restriction by the correlation of total

expenditure contained in X and unobserved preference heterogeneity contained in U .

The question one might ask is why an appended additive error captures preference hetero-

geneity at all? Starting from Brown and Walker (1983), the demand literature has questioned

the use of an additive error as means of capturing unobserved heterogeneity. Indeed, when

moving from the individual level model (5.1) to a heterogeneous population, it would be quite

natural to consider

Yi = hi(Xi − Z ′
iθ1i) + Z ′

iθ2i, i = 1, . . . , n. (5.2)

Obviously, this model is distinct from the one considered in BCK. If the population were

completely identical, i.e., ∀i : hi = h, θi = θ, these common coefficients h, θ could be estimated

from the data. But in this case there were also no residual U and no endogenous regressor.

Returning to the unrestricted model defined through equation (5.2), in Hoderlein, Klemelä and

Mammen (2007), the estimation of the distribution of coefficients fθ in the much simpler model

of the form Yi = Z ′
iθi is discussed, but model (5.2) is beyond the scope of their approach as it

stands.

However, a distribution of marginal effects is not what is of interest in the nonparametric

IV literature. Hence, in this section and throughout the rest of the paper, we assume that

interest centers on some average or “typical” effect in a heterogeneous population. Since BCK

are not explicit about this issue, we assume it is the mean value of the coefficient (denoted θ)

across the heterogeneous population3. From now on, for the rest of this section we will drop

the subscript i on the coefficients, and assume that all variables other than the means θ vary

across the population. To make life simple, we assume that the model on individual level is the

less general

Y = (X − Z ′θ1)θ3 + Z ′θ2,

where θ3 is a scalar random coefficient, i.e. h(ξ) = θ3ξ. In loose analogy to the semiparametric

efficiency literature, we could argue that the case with general h cannot be better than the

worst parametric submodel. It is easy to show that we may rewrite this model as

Y = (X − Z ′θ1)θ3 + Z ′θ2 + U,

with U =
(
θ3 − θ3

)
X + Z ′ {(

θ1 − θ1

)
)θ3 +

(
θ3 − θ3

)
θ1 +

(
θ2 − θ2

)}
. The remaining question

is now: How do we arrive at E [U |W,Z] = 0?

To this end, we assume that we have instruments that are independent of unobserved

preference heterogeneity. In our setup, assume that (W,Z) ⊥ θ, which corresponds also to the

3We could consider the median or other quantities. Unsurprisingly, this would only make matters worse.
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economic motivation BCK provide. Then,

E [U |W,Z] = E
[(

θ3 − θ3

)
X|W,Z

]
+ E

[(
θ3 − θ3

)
Z ′θ1|W,Z

]

= Cov {θ3, V + Z ′θ1|W,Z}

where V = X −E [X|W,Z]. Even full joint independence of (θ, V ) from (W,Z) is not sufficient

to reduce E [U |W,Z] to a constant, yet alone to zero. Consequently, we have to assume that

Cov {θ3, V + Z ′θ1|W,Z} = 0 holds for which there is no plausible economic reason. Of course,

for any other parametric specification of h a similarly implausible untestable restriction were

required to hold, and for the model with unknown infinite dimensional parameter h it would

be the envelope of these restrictions. This effectively rules out that a model like Y = h(X −
Z ′θ1) + Z ′θ2 holds on the individual level with meaningful heterogeneity in parameters across

the population. If we believe the model with errors mean independent of instruments to be

correct, then we have effectively assumed that the population shares the identical structural

model defined by m, up to an additive shift parameter which varies and is endogenous. Needless

to mention, this is restrictive.

This type of observation has predecessors: Other than Brown and Walker (1983), Lew-

bel (2001) has made a related observation for a heterogeneous “Almost Ideal” population in

the purely exogenous setting. Moreover, in the literature in economic theory on aggregation,

findings that are similar in spirit emerge, see Hildenbrand (1993). The deeper reason is that

models defined by some type of conditional mean restriction implicitly aggregate across a het-

erogeneous population, and aggregation is a step by which many properties vanish. Instead,

features of the aggregation process, in our example conditional covariances are introduced. And

the nonparametric regression model involving an additive error U, and obeying a restriction

E [U |W,Z] = 0 is just a case in point.

What are the alternatives? If the goal is to get an overview of the distribution of the

coefficients, one possible route is the afforementioned random coefficients model, Hoderlein,

Klemelä and Mammen (2007). This framework can allow for preference heterogeneity, and

regressors that are endogenous. However, the drawback is that it is, as of yet, limited to

linear models on individual level. Another alternative are nonseparable models as in Hoderlein

(2005, 2008), Hoderlein and Mammen (2007) or Imbens and Newey (2007), which can allow for

endogenous regressors even in setups that are more general than the one considered by BCK.

The drawback of these alternative approaches is that they employ control function meth-

ods to correct for endogeneity, i.e., they require that the control functions V be correctly

specified and hence require correct specification of the relationship that defines it, e.g., V =

X − E [X|W,Z]. It is the advantage of the ill-posed inverse literature that this equation need

not be specified, and no risk of misspecification arises. But, as we have seen, there may be a
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price to pay in terms of economic foundation in a heterogeneous population.

6 Conclusion and Outlook

This paper is concerned with analyzing issues in the application of nonparametric IV regression

models, which lead to ill-posed inverse problems for economic questions. As an example of a

simple setup in which rationality restrictions and economic behavior may be analyzed we take

consumer demand. We establish that the relationship between nonparametric IV models and

the recently emphasized issue of unobserved heterogeneity in structural models is tenuous at

best for the case of consumer demand. As such, we believe that in such a problem a nonseparable

control function approach is perhaps more suitable to deal with the issues of endogeneity and

preference heterogeneity (see, e.g., Lewbel (2001) or Hoderlein (2005, 2008)). Still, the fact that

approaches like the one put forward in this paper dispense with the requirement in the control

function models that one has to specify the relationship that defines the control functions

(i.e., the relationship between endogeneous regressors and instruments) make these models

attractive. Therefore, approaches involving nonparametric IV which lead to ill-posed inverse

problems may have some scope in demand analysis if one is not too concerned about unobserved

heterogeneity.

The obvious following question is then: How do these models perform in practice? As in

many applications that involve continuous endogenous regressors and instruments, it is also the

case in consumer demand that these are approximately normally distributed. Unfortunately,

for the literature on inverse problems this is bad news, since a normal specification leads to

a severely ill-posed inverse problem with very slow (in general only logarithmic) convergence

rates. Moreover, an additional error is introduced when estimating the operator. To achieve the

best possible performance and to construct a simple and transparent estimator, in this paper

we show how knowledge of joint (conditional) normality may be incorporated when estimating

these models semiparametrically, and we devise and analyze such an estimator. An interesting

feature of our semiparametric approach is that it suggests a test of identification.

Both in our simulation, as well as in the application, we do find our estimator to perform

reasonably well, at least when one takes into account that it is designed to provide a good fit

in the center of the data (in the tails, the behavior is less satisfactory). However, the estimator

turns out to be quite sensitive towards specification issues, like the choice of the truncation

parameter, and to misspecification (e.g., the breakdown when wrongly assuming joint, instead

of conditional normality). In particular, higher order Hermite polynomials in particular exhibit

a high degree of variability. Choosing other basis functions may improve the performance of

the estimator in finite sample situations, but at the cost of a more sophisticated estimator, and
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the precise performance still has to be investigated in our setup with continuous exogenuous

covariates.

In summary, this paper has shown that estimation methods work reasonably well even in

severely ill-posed problems, and as such may be a useful tool in those applications where the

structural model is indeed given by a nonparametric model with additive error.

Proofs

For simplicity, we give the proof of Theorem 2 only for the conditionally normalized case (2.6).

Estimating the error when standardizing is detailed in the proof of Theorem 3, and the case of

Theorem 2 is quite similar. First we prove two lemmas.

Lemma 6.1. Under the Assumptions 2 and 3, we have that

(
sup
z∈I

M∑

k=0

∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2)

= OP

(
M2(2/ρmin)2(M+1)n−2ε0

)
. (6.1)

where ρmin is as in Assumption 2. Further,

(
sup
z∈I

M∑

k=0

∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
)

= OP

(
M(2/ρmin)M+1n−ε0

)
. (6.2)

Proof. From Assumptions 2 and 3, given δ > 0 there is an n0 such that for all n ≥ n0,

P
(|ρ̂(z)− ρ(z)| > |ρ(z)/2| ∀z ∈ I

)
< δ/2.

Hence

P
(|ρ̂(z)| > ρmin/2∀z ∈ I

)
< δ/2. (6.3)

Now, we have that ρ̂−k(z) − ρ−k(z) = −kξ−k+1
k,z (ρ̂(z) − ρ(z)), where ξk,z is between ρ̂(z) and

ρ(z). Since |ρ(z)| > ρmin, from (6.3) we get for n ≥ n0 with probability > 1− δ/2,

∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

≤ k2 (ρmin/2)−2(k+1)|ρ̂(z)− ρ(z)|2.

From Assumption 3, given η > 0 we can choose n0 so large that for n ≥ n0, we also have

P
(|ρ̂(z)− ρ(z)|2 > η/n2ε0 ∀z ∈ I

)
< δ/2.

Using
∑M

k=1 k2xk ≤ C M2xM+1 for some C > 0 we conclude that for n ≥ n0,

P
( M∑

k=0

∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

> Cη M2(2/ρmin)2(M+1)n−2ε0 ∀z ∈ I
)

< δ,

which proves (6.1). The proof of (6.2) proceeds along completely similar lines.
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Lemma 6.2. Under the assumptions of Theorem 2, there is a C > 0 such that for any k ≥ 0

and any z ∈ I,

E
(
β̂k(z)− βk(z)

)2 ≤ Cn−4/5 (6.4)

Proof. Using Assumptions 1 and 2 it is easy to show that the regression functions βk(z) =

ρk(z)αk(z) have uniformly bounded second derivatives. When estimating βk(z), note that the

distribution of the covariate Z is the same for all k. The conditional variance does depend on

k, but it will be enough to show that it is uniformly bounded (in z and k). To this end, we

estimate

V ar
(
Y 2H2

k(W )|Z = z
) ≤ E

(
Y 2H2

k(W )|Z = z
)

≤ 2
(
E

(
m2(X, Z) H2

k(W )|Z = z
)

+ E
(
U2 H2

k(W )|Z = z
))

.

Since m is uniformly bounded by Assumption 2, and we are under the conditionally normalized

case,

E
(
m2(X,Z) H2

k(W )|Z = z
) ≤ ‖m2‖∞E

(
H2

k(W )|Z = z
)

= ‖m2‖∞,

and

E
(
U2 H2

k(W )|Z = z
) ≤ ‖σ2‖∞E

(
H2

k(W )|Z = z
)

= ‖σ2‖∞.

Therefore, using results of Fan (1992) (Theorem 1 and Remark 1), under Assumptions 4 and 5

we have for the pointwise MSE that

E
(
β̂k(z)− βk(z)

)2 ≤ Cn−4/5

where C > 0 can be chosen independently of k and z.

Proof of Theorem 2. First we prove (2.11). We have

‖m̂sco(·, z)−m(·, z)‖2
fX|Z=z

=
∥∥∥

M∑

k=0

β̂k(z)

ρ̂k(z)
Hk(·)−

∑

k≥0

αk(z)Hk(·)
∥∥∥

fX|Z=z

=
M∑

k=0

∣∣∣ β̂k(z)

ρ̂k(z)
− βk(z)

ρk(z)

∣∣∣
2

+
∑

k≥M+1

∣∣αk(z)
∣∣2. (6.5)

The bias term
∑

k≥M+1

∣∣αk(z)
∣∣2 can be easily estimated using Assumption 1 as O(M−2γ+1).

Now let us turn to the variance term in (6.5). We have

M∑

k=0

∣∣∣ β̂k(z)

ρ̂k(z)
− βk(z)

ρk(z)

∣∣∣
2

≤ 2
M∑

k=0

|β̂k(z)|2
∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

+ 2
M∑

k=0

∣∣∣ β̂k(z)− βk(z)

ρk(z)

∣∣∣
2

. (6.6)
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In order to bound the second term on the right in (6.6), we estimate by using (6.4) that for

any z ∈ I,

E
( M∑

k=0

∣∣∣ β̂k(z)− βk(z)

ρk(z)

∣∣∣
2)

≤ ρ−2M
min

M∑

k=0

E
∣∣β̂k(z)− βk(z)

∣∣2

≤ C M n−4/5 ρ−2 M
min ,

where ρ is as in Assumption 2 and C > 0 does not depend on z. Thus, we also get convergence

in probability with constant not depending on z.

In order to bound the first term on the right in (6.6), we estimate

M∑

k=0

|β̂k(z)|2
∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

≤ M
max
k=0

|β̂k(z)|2
M∑

k=0

∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

.

We have

∣∣∣ M
max
k=0

β̂k(z)2 − M
max
k=0

βk(z)2
∣∣∣ ≤

∣∣∣ M
max
k=0

(
β̂k(z)2 − βk(z)2

)∣∣∣

≤ M
max
k=0

∣∣β̂k(z)− βk(z)
∣∣ M

max
k=0

∣∣β̂k(z) + βk(z)
∣∣

Further,

sup
z∈I

E
(

M
max
k=0

|β̂k(z)− βk(z)|2
)
≤ sup

z∈I

M∑

k=0

E |β̂k(z)− βk(z)|2 ≤ C M n−4/5.

Therefore, we get maxM
k=0 |β̂k(z)− βk(z)|2 = OP (M n−4/5), where the constant in OP does not

depend on z, and therefore also

M
max
k=0

|β̂k(z)− βk(z)| = OP (M1/2 n−2/5),

where the constant in OP does not depend on z. Moreover, since the βk(z) are bounded

uniformly in k and z, we furthermore get that

M
max
k=0

|β̂k(z) + βk(z)| = OP (1).

Combining these estimates and (6.1), we get that

M∑

k=0

|β̂k(z)|2
∣∣∣ 1

ρ̂k(z)
− 1

ρk(z)

∣∣∣
2

= OP (1)OP

(
M2(2/ρmin)2(M+1)n−2ε0

)
,

where the constants do not depend on z. Therefore, we get that

‖m̂sco(·, z)−m(·, z)‖2
fX|Z=z

= OP

(
n−min(4/5,2ε0)M2(2/ρmin)2(M+1)

)
+ O(M−2γ+1), (6.7)
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where the constants in OP and O do not depend on z. Letting M = c log n for sufficiently small

c, we get (2.11).

Remark: The additional nonparametric regression on Z does not occur in the final rate, but

it occurs in the estimate (6.7) (in the term n−min(4/5,ε0) instead of the typical n−1). For the

severely ill-posed case under consideration here, for properly chosen M the bias term O(M−2γ+1)

dominates the variances, and therefore the nonparametric rate n−min(4/5,ε0) does not occur in

the final rate (2.11). In contrast, in the mildly ill-posed case as studied in Hall and Horowitz

(2005), both terms are balanced, and therefore the regression on Z also enters the final estimate.

The proof of (2.12) proceeds along similar lines. We start with

∣∣m̂sco(x, z)−m(x, z)
∣∣ ≤

∣∣∣
M∑

k=0

β̂k(z)

ρ̂k(z)
Hk(x)−

∑

k≥0

βk(z)

ρk(z)
Hk(x)

∣∣∣

≤
M∑

k=0

∣∣∣ β̂k(z)

ρ̂k(z)
− βk(z)

ρk(z)

∣∣∣|Hk(x)|+
∑

k≥M+1

∣∣αk(z)
∣∣|Hk(x)|. (6.8)

On any compact subset, the Hk(x) are uniformly bounded. In fact, one even has that

|Hk(x)| ≤ C(J)(k + 1)−1/4, x ∈ J, k ≥ 0,

cf. Szegö (1959, p. 242), and note that this also hold for the Hermite polynomials (not only the

Hermite functions) since ex2/2 is also bounded on a compact set J . Therefore, using Assumption

1 the second term in (6.8) can be bounded by

∑

k≥M+1

∣∣αk(z)
∣∣|Hk(x)| ≤ C(J)

∑

k≥M+1

k−(γ+1/4) ≤ CM−γ+3/4.

Furthermore, arguing as above by using (6.2) one can show that

M∑

k=0

∣∣∣ β̂k(z)

ρ̂k(z)
− βk(z)

ρk(z)

∣∣∣|Hk(x)| ≤ C(J)
M∑

k=0

∣∣∣ β̂k(z)

ρ̂k(z)
− βk(z)

ρk(z)

∣∣∣ = OP

(
n−min(2/5,ε0)M (2/ρmin)M+1

)
,

where the constant in OP does not depend on z. Therefore, for any z ∈ I,

max
x∈J

∣∣m̂sco(x, z)−m(x, z)
∣∣ = OP

(
n−min(2/5,ε0)M (2/ρmin)M+1

)
+ O

(
M−γ+3/4

)
,

where the constants in Op and O do not depend on z. Letting once more M = c log n for

sufficiently small c gives (2.12).

Proof of Theorem 3. Let m̃JN(x, z) denote the estimator (2.15), where the true values for the

parameters σ1, σ2 and ρ are used. We first bound the difference between this estimator and m,
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even in expectation. Assume ρ > 0. Compute

E‖m̃JN −m‖2
L2(µXZ) =

∑
j≥0

∑

k≥M2+1

|αj,k|2 +
∑

j≥M1

∑

k≤M2

|αj,k|2 (6.9)

+
1

n

M1∑
j=0

M2∑

k=0

E2
1H

2
j (W1 − ρWZZ1)H

2
k(Z1)− β2

j,k

ρ2j

First consider the bias terms in (6.9). These can be estimated by using Assumption 6. as

follows. ∑
j≥0

∑

k≥M2+1

|αj,k|2 +
∑

j≥M1

∑

k≤M2

|αj,k|2 = O
(
M−2δ+1

2 + M−2γ+1
1

)
.

Using Assumption 7, we have for the variance

EY 2
1 H2

j (W1 − ρWZZ1)H
2
k(Z1)− β2

j,k ≤ 2E
((

m2(X1, Z1) + U2
1

)
H2

j (W1 − ρWZZ1)H
2
k(Z1)

)

≤ 2
(‖m‖2

∞ + σ2
)
.

Hence

1

n

M1∑
j=0

M2∑

k=0

EY 2
1 H2

j (W1 − ρWZZ1)H
2
k(Z1)− β2

j,k

ρ2j
≤ 2

n

M1∑
j=0

M2∑

k=0

‖m‖2
∞ + ‖σ2‖∞

ρ2j

≤ C

n
(M2 + 1) ρ−2(M1+1).

Hence, we get that

E‖m̃JN −m‖2
L2(µXZ) = O

(
n−1 (M2 + 1) ρ−2(M1+1) + M−2δ+1

2 + M−2γ+1
1

)
.

Letting M1 = c log n for sufficiently small c > 0 and M2 = n−ε for small ε gives the rate in

(2.16), since the term M−2γ+1
1 dominates.

Now we bound the difference between m̂JN and m̃JN using Assumption 8. Start with

‖m̂JN − m̃JN‖2
L2(µXZ) ≤ 2

∥∥∥
∑

j≤M1

∑

k≤M2

β̂j,k

ρ̂j
(ψ̂j,k − ψj,k)

∥∥∥
2

L2(µXZ)
(6.10)

+ 2
∥∥∥

∑
j≤M1

∑

k≤M2

( β̂j,k

ρ̂j
− βj,k

ρj

)
ψj,k

∥∥∥
2

L2(µXZ)

We start by estimating the second term. Compute

∥∥∥
∑

j≤M1

∑

k≤M2

( β̂j,k

ρ̂j
− βj,k

ρj

)
ψj,k

∥∥∥
2

L2(µXZ)
=

∑
j≤M1

∑

k≤M2

∣∣∣ β̂j,k

ρ̂j
− βj,k

ρj

∣∣∣
2

≤ 2
∑

j≤M1

∑

k≤M2

∣∣∣ β̂j,k − βj,k

ρ̂j

∣∣∣
2

+ 2
∑

j≤M1

∑

k≤M2

β2
j,k

∣∣∣ 1

ρ̂j
− 1

ρj

∣∣∣
2

.
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The second term is estimated similarly as in Lemma 6.1 as follows

∥∥∥
∑

j≤M1

∑

k≤M2

( β̂j,k

ρ̂j
− βj,k

ρj

)
ψj,k

∥∥∥
2

L2(µXZ)
= OP

(
M2

2 (2/ρ)2(M1+1)n−1
)

= OP

(
n−δ

)
.

For the first term, we estimate using H ′
j(x) = j Hj−1(x) that

∣∣β̂j,k − βj,k

∣∣ =
∣∣∣ 1
n

n∑
i=1

YiHk(Zi)
(
Hj

(Wi − ρ̂WZZi

σ̂2

)−Hj

(Wi − ρWZZi

σ2

))∣∣∣

=
∣∣∣ 1
n

n∑
i=1

YiHk(Zi)jHj−1(ξi)Zi

(ρWZ

σ2

− ρ̂WZ

σ̂2

)∣∣∣

= OP

(
jn−1/2

)
,

where the intermediate values ξi can be chosen identically distributed. Hence,

∑
j≤M1

∑

k≤M2

∣∣∣ β̂j,k − βj,k

ρ̂j

∣∣∣
2

= OP

(
M3

1 (2/ρ)2(M2+1)n−1
)

= OP (n−δ).

Now we consider the first term in (6.10). We have

∥∥∥
∑

j≤M1

∑

k≤M2

β̂j,k

ρ̂j
(ψ̂j,k − ψj,k)

∥∥∥
2

L2(µXZ)
≤

( ∑
j≤M1

∑

k≤M2

∣∣∣ β̂j,k

ρ̂j

∣∣∣
∥∥ψ̂j,k − ψj,k

∥∥
L2(µXZ)

)2

.

Estimate

‖ψ̂j,k − ψj,k

∥∥∥
2

L2(µXZ)
=

∫ ∫ ∣∣∣Hj

(
(x− ρ̂XZz)/σ̂1

)−Hj

(
(x− ρXZz)/σ1

)∣∣∣
2

|Hk(z)|2 dµXZ

=

∫ ∫ ∣∣∣jHj−1(ξx,z)
ρXZ

σ1

− ρ̂XZ

σ̂1

z2|Hk(z)|2 dµXZ

= OP (j2n−1).

Therefore

∥∥∥
∑

j≤M1

∑

k≤M2

β̂j,k

ρ̂j
(ψ̂j,k − ψj,k)

∥∥∥
2

L2(µXZ)
= OP

(
M4

1 (2/ρ)2(M1+1)M2
2 n−1

)
.

Collecting terms, this concludes the proof of Theorem 3.
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Tables and Figures

Spectral cut-off regularization

truncation parameter M = 0 M = 1 M = 2 M = 3

weighted MISE median 9.67 0.01 0.04 0.21

upper quartile 9.70 0.01 0.11 0.51

0.95 quantile 9.76 0.07 0.43 1.85

unweighted MISE median 109.70 0.04 0.56 2.41

upper quartile 109.82 0.11 1.55 5.59

0.95 quantile 110.15 0.70 6.04 19.51

coefficient β0(z1) β1(z1) β2(z1) β3(z1)

median -0.08 -3.16 -0.02 0.09

IQR 0.18 0.09 0.36 0.80

0.95-quantile 0.14 -3.02 0.48 1.23

0.05-quantile -0.31 -3.31 -0.51 -1.05

Tikhonov regularization

regularization parameter α = 0.1 α = 0.05 α = 0.13

weighted MISE median 0.41 0.35 0.53

upper quartile 0.56 0.62 0.65

0.95 quantile 1.15 1.75 1.11

unweighted MISE median 4.61 3.82 5.96

upper quartile 6.79 7.16 8.05

0.95 quantile 14.01 20.09 14.09

Table 1: Results for estimation of m1 at z1
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Spectral cut-off regularization

truncation parameter M = 0 M = 1 M = 2 M = 3

weighted MISE median 0.45 0.46 0.06 0.14

upper quartile 0.45 0.49 0.12 0.31

0.95 quantile 0.47 0.55 0.38 1.07

unweighted MISE median 6.54 6.87 0.68 1.84

upper quartile 6.85 7.24 1.54 4.14

0.95 quantile 7.33 7.91 5.48 13.25

coefficient β0(z1) β1(z1) β2(z1) β3(z1)

median 1.50 0.19 0.79 0.18

IQR 0.10 0.17 0.31 0.57

0.95-quantile 1.63 0.38 1.31 1.08

0.05-quantile 1.38 -0.03 0.41 -0.50

Tikhonov regularization

regularization parameter α = 0.1 α = 0.05 α = 0.13

weighted MISE median 0.14 0.18 0.14

upper quartile 0.21 0.31 0.20

0.95 quantile 0.43 0.76 0.37

unweighted MISE median 1.71 2.07 1.81

upper quartile 2.78 3.73 2.85

0.95 quantile 5.69 9.50 5.22

Table 2: Results for estimation of m2 at z1
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Spectral cut-off regularization

truncation parameter M = 0 M = 1 M = 2 M = 3

weighted MISE median 0.22 0.02 0.01 0.02

upper quartile 0.22 0.03 0.02 0.05

0.95 quantile 0.22 0.03 0.06 0.19

unweighted MISE median 2.71 0.29 0.12 0.28

upper quartile 2.74 0.34 0.26 0.67

0.95 quantile 2.80 0.44 0.86 2.16

coefficient β0(z1) β1(z1) β2(z1) β3(z1)

median 1.07 -0.43 0.12 -0.01

IQR 0.05 0.06 0.13 0.24

0.95-quantile 1.13 -0.36 0.30 0.31

0.05-quantile 1.02 -0.52 -0.08 -0.38

Tikhonov regularization

regularization parameter α = 0.1 α = 0.05 α = 0.13

weighted MISE median 0.04 0.05 0.05

upper quartile 0.06 0.08 0.07

0.95 quantile 0.12 0.19 0.11

unweighted MISE median 0.44 0.48 0.50

upper quartile 0.73 0.90 0.78

0.95 quantile 1.59 2.40 1.48

Table 3: Results for estimation of m3 at z1
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Spectral cut-off regularization

truncation parameter M = 0 M = 1 M = 2 M = 3

weighted MISE median 0.44 0.44 0.01 0.02

upper quartile 0.44 0.44 0.01 0.03

0.95 quantile 0.44 0.44 0.03 0.07

unweighted MISE median 6.62 6.61 0.08 0.20

upper quartile 6.70 6.69 0.17 0.39

0.95 quantile 6.80 6.81 0.39 0.85

coefficient β0(z1) β1(z1) β2(z1) β3(z1)

median 1.49 0.05 0.69 0.02

IQR 0.02 0.07 0.11 0.20

0.95-quantile 1.52 0.13 0.82 0.27

0.05-quantile 1.46 -0.03 0.56 -0.10

Table 4: Results for estimation of m2 at z1, where z1 is fixed, i.e. without exogenous component.
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Figure 1: Solid lines: True target function m2. Left: Estimates with spectral cut-off regulariza-

tion scheme with M = 2 (dashed line) and M = 3 (dotted line). Right: Left: Estimates with

Tikhonov regularization scheme with α = 0.1 (dashed line) and α = 0.05 (dotted line).
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Figure 2: Solid lines: True target function m3. Left: Estimates with spectral cut-off regulariza-

tion scheme with M = 2 (dashed line) and M = 3 (dotted line). Right: Left: Estimates with

Tikhonov regularization scheme with α = 0.1 (dashed line) and α = 0.05 (dotted line).
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Figure 3: Marginal Density Comparison.
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Figure 4: CN-Estimator with varying choice of the truncation parameter M (M = 1 and

M = 3).
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Figure 5: CN-Estimator with varying choice of M (M = 3 and M = 4)
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Figure 6: CN-Estimator at Different Values of Z.
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Figure 7: Effect of correcting for Endogeneity
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Figure 8: Estimation under conditional and joint normality.
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