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Abstract

We provide new conditions for identification of accelerated failure
time competing risks models. These include Roy models and some
auction models. In our set up, unknown regression functions and the
joint survivor function of latent disturbance terms are all nonparamet-
ric. We show that this model is identified given covariates that are
independent of latent errors, provided that a certain rank condition
is satisfied. We present a simple example in which our rank condition
for identification is verified. Our identification strategy does not de-
pend on identification at infinity or near zero, and it does not require
exclusion assumptions. Given our identification, we show estimation
can be accomplished using sieves.
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1 Introduction

Suppose that there are K competing causes of failure indexed by the integers

1 to K with corresponding logarithms (T1, . . . , TK) of latent failure times.

One observes the log duration time to the first failure and the corresponding

cause of failure, denoted by Y = mink Tk and D = arg minkTk, along with a

covariate vector X.

It is well known (Cox, 1962; Tsiatis, 1975) that without some restrictions

on this model, the joint distribution of latent failure times is nonparametri-

cally unidentified. Furthermore, the bounds for the latent distribution im-

plied by the observed competing risks are, in general, wide (Peterson, 1976).

This negative identification result can be mitigated given independent vari-

ation from observed covariates along with some modeling assumptions.

In this paper, we show generic identification of nonparametric accelerated

failure time competing risks models. Assume that

Tk = gk(X) + Uk,(1)

where each function gk is unknown, Uk is an unobserved error, and the vector

(U1, ..., UK) is continuously distributed with an unknown joint distribution.

The purpose of this paper is to provide conditions under which the functions

g1, ..., gK and the joint survivor function (and hence also the joint distribution

function) of U1, ..., UK are nonparametrically identified.

The key assumption we make for identification is that (U1, ..., UK) is in-
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dependent of X. This conditional independence assumption (that is, errors

independent of covariates) is common in empirical practice, and is used exten-

sively as a way of achieving identification in a variety of econometric models.

See, e.g. Matzkin (2007) for a recent survey. The only other assumptions

we require for nonparametric identification are a rank condition and some

regularity. We present a simple example in which our conditions for identifi-

cation are verified. Given our identification, we show that sieve methods can

be used for estimation.

There exists a large literature on identification in competing risks mod-

els. For example, Heckman and Honoré (1989) show that competing risks

versions of mixed proportional hazards and accelerated failure time models

can be identified with covariates. Heckman and Honoré (1990) provide iden-

tification of the corresponding Roy model. Abbring and Van den Berg (2003)

provide weaker conditions than those assumed in Heckman and Honoré for

the mixed proportional hazards competing risks model. Lee (2006) develops

an identification result for a competing risks transformation model. Buera

(2006) develops non-parametric identification and testable implications of

the Roy model using assumptions that are distinct from ours, such as the

continuity of regressors. Khan and Tamer (2009) consider a semiparametric

version of (1) with a parametric gk with K = 2.

Han and Hausman (1990) provide a flexible parametric estimation method

for competing risks models with regressors. Zheng and Klein (1995) obtain

an identification result for the latent marginal distributions when the copula
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between two latent failure times is known. Their identification result can be

used to construct a bound if a class of copula functions is restricted. Bond

and Shaw (2006) obtain bounds for covariate effects under the assumption

that the copula associated with the joint distribution of latent failure times

is invariant to the value of covariates. Abbring and Van den Berg (2005)

apply the result of Bond and Shaw (2006) to bound the treatment effects on

duration outcomes. Honoré and Lleras-Muney (2006) derive bounds in an

accelerated failure time competing risks model with discrete covariates.

Our new identification result is most closely related to that of Heckman

and Honoré (1989, 1990) in terms of the general class of models we identify.

The identification results of Heckman and Honoré are based on the argument

of letting the index of the duration variable go to zero, thereby implying that

corresponding estimation methods would be based only on observations with

failure times close to zero. An estimator of Femanian (2003, Section 4) is an

example. This “identification at (in the neighborhood of) zero,” raises the

same difficulties as those associated with the more well known “identification

at infinity” problem (see, e.g., Heckman 1990 and Andrews and Schafgans

1998), and is an example of what Khan and Tamer (2010) call irregular or

thin set identification. In contrast, our identification is regular, and is not

based on identification at infinity, or in the neighborhood of zero, or other

thin set identification.

Our identification also does not depend on exclusion restrictions, that is,

we permit all of the elements of X to appear in all of the g(x) functions.
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Exclusion restrictions are usually not imposed in competing risks models

(since they are typically difficult to justify in that context), but are commonly

used for identification in other types of multiple index models. See, e.g.,

Ichimura and Lee (1991).

The identification result of Lee (2006) also does not depend on either

identification near zero or exclusion assumption. Lee shows that a paramet-

rically specified g(x) can be identified up to scale and location normalization

for a class of transformation models that include accelerated failure time

competing risks models as special cases. However, his result applies only

to a parametrically specified g(x) with all elements of x being continuously

distributed. We do not require that all elements of x be continuously dis-

tributed and allow for discrete regressors as well. As far as we know, our

theorem is the first identification result in the literature that obtains non-

parametric identification of g(x) in (1) without exclusion assumptions and

without identification at zero, while allowing for both continuous and discrete

regressors.

Our identification result can be translated directly into identification of

a Roy model in which one observes only Y = maxk Tk and D = arg maxkTk

(Heckman and Honoré, 1990). Fox and Gandhi (2009) develop a different

identification result for Roy models without the problem of identification

at infinity. However, their model and our model in (1) are non-nested and

the two identification results are not directly comparable. Bayer, Khan,

and Timmins (2011) consider nonparametric identification and estimation of
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a generalized Roy model without covariates using conditions that are not

comparable to ours. French and Taber (2011) provide a review of the Roy

model in the context of identification of common selection models of the

labor market. Our result also encompasses random censoring, since random

censoring models are equivalent to competing risks models with K = 2 (see

e.g. Khan and Tamer, 2009).

Our model is also related to some auction models considered in, e.g.,

Athey and Haile (2002). For example, when one observes both the highest

bid in a second-price auction and the identity of the auction winner, then

the auction model and observable data are equivalent to our competing risks

set up, and so our identification result then provides an alternative to those

already existing in the auction literature.

The remainder of the paper is organized as follows. Section 2 gives con-

ditions under which the functions g1, ..., gK and the joint survivor function of

U1, ..., UK are identified. In section 3, we consider sieve maximum likelihood

estimation of (1) using a random sample of (Y,D,X). Section 4 presents a

simple example for which we verify identification conditions. All the proofs

that are not given in the main text are in the appendix.

2 The Identification Result

This section presents the identification result. First we note that for each k,

gk(x) is not identified without location normalization, since a shift in gk(x)
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can be offset by a shift in Uk. We therefore fix location by assuming that

there exists a point x0 such that gk(x0) = 0 for each k = 1, . . . , K.

Let P (u1, . . . , uK) denote the joint survivor function of U1, . . . , UK , so

P (u1, . . . , uK) = Pr(U1 > u1, . . . , UK > uK).

Let U be the K vector of elements Uk for k = 1, ..., K. Define

Bk(s | x) := E [I(Y > s,D = k) | X = x] and

C(s | x) :=

∫ ∞
s

E [I(Y > t) | X = x] dt.

We may equivalently write C(s | x) as C(s | x) = E [(Y − s)I(Y > s) | X = x].

Note that C(s | x) exists for any value of s ∈ R if E [Y | X = x] exists for

each x. Let g(x) be the K vector of elements gk(x) for k = 1, ..., K. By con-

struction, the functions Bk(s | x), k = 1, ..., K, and C(s | x) can be identified

directly from the conditional distribution of Y and D given X.

In what follows, we use the notation g to denote the unknown true func-

tion and use f or h to denote a generic element of a function space that

includes g as an element.

The key to our identification result is that we define a function C∗ such

that the equations C∗ (s,h) = C(s | x) and ∂C∗ (s, h1, ..., hK) /∂hk = Bk(s |

x) for k = 1, ..., K, hold when evaluated at h = g (x). Identification of

the true g (x) then follows given the technical conditions required to apply a
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global implicit function theorem, which ensures that these equations express-

ing C∗ and its derivatives in terms of observable functions C and B1,...,BK

have a unique solution.

Let ‖f‖ denote the L2 norm of a K-dimensional-vector-valued function

f = (f1, . . . , fK). That is, ‖f‖L2
=
(∑K

k=1

∫
|fk(x)|2dx

)1/2

. Let L2(X )

denote the L2 space for K-dimensional-vector-valued functions defined on

X , where X is the support of X. Also, let G ⊂ L2(X ) denote the set of

possible vector valued functions that the true g might be.

For each h ≡ (h1, . . . , hK) ∈ G, define

C∗ [s,h(x)] :=

∫ ∞
s

P [t− h1(x), ..., t− hK(x)] dt.

Then it is straightforward to show that C(s | x) = C∗ [s,g(x)] for the true

function g. Therefore, the identification problem in this paper is to obtain

conditions that rule out all solutions h(x) to C(s | x) = C∗ [s,h(x)] other

than the true solution g(x). To do this, it is necessary at a minimum to

consider K different values of s since g is a RK-valued function. Choose K

values s1,...,sK such that
∫
{C∗ [sj,h(x)]}2 dx < ∞ for each j = 1, . . . , K

and for any h ∈ G. Now define a map C∗ : G 7→ L2(X ), where, for any

h ∈ G, the j element of C∗ satisfies

C∗j [h(x)] = C∗ [sj,h(x)] .

The identification problem then reduces to finding conditions that permit
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inverting C∗ (h) globally as a function of h. Let C(x) and C∗ [g(x)] be the

K vectors of elements C(sj | x) and C∗ [sj,g(x)] for j = 1, ..., K.

Let L[G, L2(X )] denote the class of all linear and continuous maps from

G to L2(X ). Let < ·, · > denote the inner product of L2(X ), that is

< f ,h >=

(
K∑
k=1

∫
fk(x)hk(x)dx

)
,

where f = (f1, . . . , fK) and h = (h1, . . . , hK). Define a map Ċ∗ : G 7→

L[G, L2(X )], where the (j, k) element of Ċ∗ satisfies

Ċ∗jk[h(x)] =
∂C∗[sj, h1(x), ..., hK(x)]

∂hk(x)

= −
∫ ∞
sj

Pk [t− h1(x), ..., t− hK(x)] dt,

where Pk(u1, ..., uK) = ∂P (u1, ..., uK)/∂uk. Note that Ċ∗ is the Fréchet-

derivative of C∗, passing the derivative through the integral sign in the defi-

nition of C∗.

To obtain conditions for identification, we first make the following as-

sumptions.

Assumption 1. Assume that (1) each element of g(X) is continuously

distributed; (2) E [Y | X = x] exists for each x in the support of X; (3)

P (u1, . . . , uK) is everywhere continuously differentiable with respect to uk for

all k = 1, ..., K.

Condition (1) allows the covariate vector X to contain discrete elements
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but requires it to have some continuously distributed elements, e.g., it would

generally hold if g(X) is linear with some but not all elements of X being

continuous. Condition (2) is a weak restriction which ensures that C(s | x) is

well defined. Condition (3) imposes some mild smoothness on the underlying

distribution function of U.

For each x, let B(x) denote the K × K matrix whose (j, k) element is

Bk(sj|x). The following theorem is useful to obtain our identification result.

Theorem 1. Let Assumption 1 hold. Then

(2)
∂C∗ [s, h1(x), ..., hK(x)]

∂hk(x)

∣∣∣∣
h=g

= Bk(s | x),

equivalently, Ċ∗(g) = B(x) for each x.

Note that the right-hand side of equation (2) is directly identified from

the data and the left-hand side of equation (2) is a function of g(x). We

now consider identification based on Theorem 1. To do so, we make further

assumptions:

Assumption 2. Assume there exists a set of K constants s1,...,sK used to

define C∗ such that the following conditions hold. (1) sj − h(x) ∈ supp (U)

and C∗ (h) ∈ L2(X ) except, possibly, if x belongs to a set of Lebesgue measure

0; (2) As a matrix, for each h ∈ G, Ċ∗[h(x)] is invertible except, possibly, if

x belongs to a set of Lebesgue measure 0; (3) For any h1 ≡ (h11, . . . , h1K) ∈

G and h2 ≡ (h21, . . . , h2K) ∈ G such that h1 6= h2, there exist universal
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constants δ > 0 and ε > 0 such that

(3) 〈C∗(h1)−C∗(h2),h1 − h2〉 ≥ δ ‖h1 − h2‖1+ε
L2

.

The following theorem shows that under Assumption 2, C∗(h) is globally

invertible as a function of h.

Theorem 2. Let Assumption 2 hold. Then C∗ is invertible and its inverse

map, say H, is continuously Fréchet-differentiable. That is, g(x) = H [C(x)]

and its Fréchet-derivative, say H′, satisfies

(4) H′ [C(x)] =
(
Ċ∗ {H [C(x)]}

)−1

.

Condition (1) of Assumption 2 is a relatively weak assumption, requiring

U to have a nonzero density over a large region. Conditions (2) and (3)

together comprise the key rank condition that ensures identification of the

model. Condition (2) assumes that the columns of Ċ∗[h(x)] are linearly

independent for each h ∈ G. This condition is needed to guarantee the local

identification of g. Condition (3) implies that C∗ is a proper mapping (i.e.

the inverse image of a compact set is compact), thereby ensuring that the

local identification result extends to global identification. Komunjer (2008)

adopts a similar strategy to obtain identification of a class of parametric

nonlinear models with a finite number of unconditional moment restrictions.

Note that these rank conditions generally require that X contain at least K
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continuously distributed elements and also that no one element of g (x) can

be expressed as a function of the other elements of g (x).

Given the smoothness assumption on P (u1, . . . , uK) from Theorem 1,

condition (3) is equivalent to assuming that there exist universal constants

δ > 0 and ε > 0 such that

K∑
j=1

K∑
k=1

∫
Ċ∗jk[h̃j(x)] [h1j(x)− h2j(x)] [h1k(x)− h2k(x)] dx

≥ δ

{
K∑
j=1

∫
[h1j(x)− h2j(x)]2 dx

}(1+ε)/2

,

(5)

where h̃j(x) is between h1(x) and h2(x) for each j = 1, . . . , K. Note that the

mean value h̃j(x) could be different across j’s since the mean-value theorem is

applied for componentwise. Abusing notation a bit, for any (h1, . . . ,hK) ∈

GK , let Ċ∗(h1, . . . ,hK) denote the K × K matrix whose (j, k) element is

Ċ∗jk[hj(x)]. A sufficient condition for (5) to hold with ε = 1 is the following:

Assumption 3. There exists a universal constant δ > 0 such that Ċ∗(h1, . . . ,hK)

is a positive-semi-definite matrix for any (h1, . . . ,hK) ∈ GK, where IK is the

K-dimensional identity matrix.

Note that this sufficient condition also implies condition (2) of Assump-

tion 2 since Ċ∗(h) is a positive-definite matrix for any h ∈ G under Assump-

tion 3. A simple example in Section 4 illustrates a case when conditions (2)

and (3) of Assumption 2 and also Assumption 3 are satisfied.

Theorems 1 and 2 can be combined to obtain the identification of g. The
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following theorem provides the main result of this paper. Since its proof is

constructive, we present the proof of this theorem in the main text.

Theorem 3. Let Assumptions 1 and 2 hold. It then follows from identifica-

tion of the conditional distribution of Y and D given X that the vector valued

function g(x) is identified for all x ∈ supp (X).

Proof of Theorem 3. The functions Bk for k = 1, ..., K and C are identified

from the conditional distribution of Y and D given X. It suffices to show

that Theorems 1 and 2 provide a construction of g(x) given the functions Bk

and C, so g(x) is identified.

To do this, first note that the Fréchet-derivative in (4) is equivalent to

the usual derivative since the right-hand of (4) is not an integral equation.

Define bk(s | C(x)) := E [I(Y > s,D = k) | C(x)]. Since by Theorem 2,

g(x) = H [C(x)] and H is one-to-one, we have that

E [I(Y > s,D = k) | C(x)] = E [I(Y > s,D = k) | g(x)](6)

for each s and x. Also, note that by construction, (Y,D) is a function only

of g (X) and U, and by assumption U ⊥ X. Therefore, the distribution of

(Y,D) given X = x equals the distribution of (Y,D) given g (X) = g (x).

This implies that

E [I(Y > s,D = k) | g (x)] = E [I(Y > s,D = k) | x] .(7)
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Hence, it follows from (6) and (7) that we have that

bk [s | C(x)] = Bk(s | x).

Let b [C(x)] be the matrix of elements bk [sj | C(x)] for j = 1, ..., K and

k = 1, ..., K with previously chosen s1,...,sK . Then equations (2) and (4)

mean that

dH(c)

dc′

∣∣∣∣
c=C(x)

= b(c)−1

∣∣∣∣
c=C(x)

,

where dH(c)/dc′ is the Jacobian matrix. Integrating this expression to obtain

the function H then gives g(x) = H [C(x)] (using the location normalization

H [C(x0)] = 0). More specifically, let L be a K-dimensional smooth curve

connecting C(x) to C(x0). Then the line integral of the k-th row of dH(c)/dc′

(viewed as the gradient of gk(x)) along L gives gk(x) by the fundamental

theorem for line integrals. This then allows us to solve for g(x).

Note that (7) holds without g being necessarily one-to-one. This is be-

cause by construction, (Y,D) is a function only of g (X) and U, and by

assumption U ⊥ X, as explained in the proof.

It can be seen from the identity between C(t|x) and C∗ [s,g(x)] that

the model (1) belongs to the class of multiple-index models (see, for ex-

ample, Ichimura and Lee (1991)). Often some exclusion restrictions (for

example, having some components of parameter vectors be zero) are needed

for multiple-index models to achieve identification of parameters. As is com-
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mon in the literature on identification in competing risks models, exclusion

restrictions are not required for the identification of (1), though if present,

exclusions could be useful for verifying the required rank condition.

As a corollary, we also obtain the following identification result for the

joint survivor distribution of U.

Theorem 4. Let Assumptions 1 and 2 hold. Then the joint survivor function

of U is identified for every value of U in the support of Y − g(x).

3 Sieve Maximum Likelihood Estimation

In this section, we consider estimation of (1) using a random sample {(Yi, Di,Xi) :

i = 1, . . . , n} of (Y,D,X). Our identification results are constructive, so an

analog estimator would be possible. For example, estimation could based on

minimizing a quadratic form of the equations in Theorem 2, using estimates

of the functions Bk and C = C∗. However, this would involve either a some-

what arbitrary choice of values of s1, . . . , sK , or minimizing over a set of such

chosen values. We instead propose a more standard sieve-type estimator.

To do so, define qj(y|x) to be a sub-density associated with the j-th cause.

That is,

qj(y|x) := −∂Bj(s|x)

∂s

∣∣∣
s=y

.
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Note that

qj(y|x) =

∫ ∞
y−g1(x)

· · ·
∫ ∞
y−gK(x)︸ ︷︷ ︸

K−1 integrals excluding j

fU(u1, . . . , uj−1, y−gj(x), uj+1, . . . , uK) du1 · · · duK︸ ︷︷ ︸
duj is excluded

,

where fU is the joint density function of U. Let θ0 := (g, fU) denote un-

known, true infinite-dimensional parameters in the model. Then the log

likelihood function has the form

Qn(θ) := n−1

n∑
i=1

K∑
j=1

1(Di = j) log qj(Yi|Xi, θ),

where θ denotes generic elements in the parameter space and the dependence

of qj on θ is now explicit. The corresponding sieve maximum likelihood

estimator (MLE), say θ̂n, can then be defined as

θ̂n := argmaxθ∈Θn
Qn(θ),

where Θn is a sieve space that depends on n and approximates the parameter

space Θ as n→∞.

It is rather straightforward to obtain consistency for this sieve MLE using

general results available in the literature. See, for example, Ai and Chen

(2003), Chen (2007), Chen and Shen (1998), Chernozhukov, Imbens, and

Newey (2007), Gallant and Nychka (1987), Newey and Powell (2003), Shen

(1997), among many others. One weakness with the sieve approach is that
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the identification condition becomes implicit. For example, to prove the

consistency of the sieve MLE, we will need to assume that

(8)
K∑
j=1

1(d = j) log qj(y|x, θ) 6=
K∑
j=1

1(d = j) log qj(y|x, θ0)

for any θ 6= θ0. This is a reasonable assumption given our identification

result, but is a high-level condition relative to Assumptions 1 and 2.

We now formally state assumptions that suffice for consistency of our

sieve MLE. The following result is just a slight modification of the general

consistency theorem of Newey and Powell (2003, Theorem 4.1), adapted to

our specific application. Let ‖·‖ denote a general norm and Θ a parameter

space that is compact with respect to ‖·‖.

Theorem 5 (Newey and Powell, 2003). Assume that (1) for any θ 6= θ0,

equation (8) holds; (2) E
[∣∣∣∑K

j=1 1(D = j) log qj(Y |X, θ)
∣∣∣] is bounded; (3)

θ0 ∈ Θ and Θ is compact for the norm ‖θ‖; (4) for any θ ∈ Θ, there exists

θJ ∈ ΘJ such that limJ→∞ ‖θJ − θ‖ = 0; (5) for each j = 1, . . . , K, there

exists Mj(y,x) such that

| log qj(y|x, θ)− log qj(y|x, θ̃)| ≤Mj(y,x)
∥∥∥θ − θ̃∥∥∥

and E[Mj(y,x)2] <∞. Then n→∞,
∥∥∥θ̂n − θ0

∥∥∥→p 0.

As mentioned above, condition (1) assumes identification of the model.

Condition (2) ensures that Qn(θ) is well defined with probability approaching
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one and that the probability limit of Qn(θ) has a unique maximum at θ0.

Conditions (3) and (4) are satisfied if we use the results of Gallant and

Nychka (1987) by considering a Sobolev norm as in Gallant and Nychka

(1987) and Newey and Powell (2003). Condition (5) is a readily verified

smoothness assumption that ensures the uniform convergence of Qn(θ) to its

probability limit.

4 An Example

This section considers a simple example of the accelerated failure time com-

peting risks models. As in Clayton and Cuzick (1985) and Heckman and

Honoré (1989), we consider a competing risks model with frailty. Specifi-

cally, suppose that the model in (1) holds with K = 2 and Uk = σk(η + εk),

where ε1 are ε2 are independently and identically distributed from a Type 1

extreme value distribution, η is a frailty term that induces the dependence

between U1 and U2, and σ1 and σ2 are strictly positive scale parameters sat-

isfying σ1 6= σ2. Further, assume that η is independent of ε1 and ε2. This

model is a special case of our model and can also be viewed as a mixed pro-

portional hazards competing risks model with a different Weibull baseline

hazard function for each risk. Finally, assume that

E[exp(−η)] <∞.(9)
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This finite moment condition is standard in the literature (see, e.g. Elbers

and Ridder (1982) and Heckman and Honoré (1989)).

When hj (x) = gj (x), the joint survivor function of T1 and T2 then has

the form

P [t− h1(x), t− h2(x)]

=

∫
exp

[
− exp

{
1

σ1

[t− h1(x)]− η
}]

exp

[
− exp

{
1

σ2

[t− h2(x)]− η
}]

dGη(η),

(10)

where Gη(·) is the distribution function of η. Now we have

−P1 [t− h1(x), t− h2(x)] =
1

σ1

exp

{
1

σ1

[t− h1(x)]

}
Φ(t,h(x)),

−P2 [t− h1(x), t− h2(x)] =
1

σ2

exp

{
1

σ2

[t− h2(x)]

}
Φ(t,h(x)),

where

Φ(t,h(x))

:=

∫
exp(−η) exp

[
− exp

{
1

σ1

[t− h1(x)]− η
}]

exp

[
− exp

{
1

σ2

[t− h2(x)]− η
}]

dGη(η).

It follows that for j, k = 1, 2,

Ċ∗jk[h(x)] =
1

σk
exp

(
−hk(x)

σk

)
Ψ(sj, σk,h(x)),
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where Ψ(s, σ,h(x)) := Ψ1(s, σ)Ψ2(h(x)),

Ψ1(s, σ) :=

∫ ∞
s

exp

(
t

σ

)
exp

[
− exp

(
t

σ1

)]
exp

[
− exp

(
t

σ2

)]
dt,

Ψ2(h(x)) :=

∫
exp(−η) exp

[
− exp

{
−h1(x)

σ1

− η
}]

exp

[
− exp

{
−h2(x)

σ2

− η
}]

dGη(η).

Note that the dependence of Ψ1(s, σ) and Ψ2(h(x)) on (σ1, σ2) is implicit

to ease the complexity of the notation. The model (1) in this example has

the feature that ∂P (t− h1, t− h2) /∂hj equals ∂P (t− h1, t− h2) /∂t times

a function that does not depend on t. This feature yields a simple closed

form expression for Ċ∗jk here, since construction of Ċ∗jk involves integrating

∂P (t− h1, t− h2) /∂hj over t. In particular, this feature along with the

simple form of the joint survivor function in (10) is what makes Ψ(s, σ,h(x))

in Ċ∗jk[h(x)] factor into the product of an integral over t (evaluated at s) and

an integral over η.

Now note that Ċ∗jj[h(x)] is strictly positive for each j = 1, 2 for all h(x)

and that Ψ2(h(x)) is bounded uniformly in h(x) in view of (9) and the fact

that exp[− exp{σ−1
k [t− hk(x)]− η}] is a survivor function for each k = 1, 2.

Note also that

Ċ∗11[h(x)]Ċ∗22[h(x)]− Ċ∗12[h(x)]Ċ∗21[h(x)]

=
1

σ1

exp

(
−h1(x)

σ1

)
Ψ(s1, σ1,h(x))

1

σ2

exp

(
−h2(x)

σ2

)
Ψ(s2, σ2,h(x))

− 1

σ1

exp

(
−h1(x)

σ1

)
Ψ(s2, σ1,h(x))

1

σ2

exp

(
−h2(x)

σ2

)
Ψ(s1, σ2,h(x))
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=
1

σ1σ2

exp

(
−h1(x)

σ1

+
−h2(x)

σ2

)
[Ψ2(h(x))]2 ∆(s1, s2, σ1, σ2),

where

∆(s1, s2, σ1, σ2) := Ψ1(s1, σ1)Ψ1(s2, σ2)−Ψ1(s2, σ1)Ψ1(s1, σ2).

We can find a pair of s1 and s2 such that ∆(s1, s2, σ1, σ2) 6= 0 as long as σ1 6=

σ2. Thus, there exist universal constants s1 and s2 such that the determinant

of Ċ∗[h(x)] is non-zero for all h(x) as long as σ1 6= σ2. The condition that

σ1 6= σ2 is important. If σ1 = σ2, the determinant of Ċ∗[h(x)] is zero for any

h(x) and for any s1, s2. In our example, different σk’s mean that different

causes of failure affect the latent baseline hazard functions differently. Given

σ1 6= σ2, we have now shown that condition (2) of Assumption 2 is satisfied.

We now turn to verification of Assumption 3. It suffices to show that

there exist universal constants δ(> 0), s1, s2 such that

Ċ∗jj[hj(x)] > δ(11)

for each j = 1, 2 and that

{Ċ∗11[h1(x)]− δ}{Ċ∗22[h2(x)]− δ} − Ċ∗12[h1(x)]Ċ∗21[h2(x)] > 0(12)

for all h1(x) and h2(x). One sufficient condition for (11) to hold is to assume

that all elements of G are bounded functions, so that h1 and h2 are bounded.
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In other words, condition (11) can be satisfied if the range of regression

functions gk(x) is bounded (or the support of X is compact and gk(x) is

continuous). It is difficult to construct a lower level sufficient condition than

(12) without making stringent assumptions. For example, doing so would

likely require that there exists a sufficiently large difference between σ1 and

σ2, in addition to the boundedness of h1 and h2.

5 Conclusions

We have shown general identification of a competing risks or Roy model,

where each risk is modeled as a nonparametric regression. The conditional

mean functions of each risk and the joint survivor (distribution) function of

the latent risk errors are nonparametrically identified, and can be estimated

using a sieve MLE.

Our results do not depend on identification at infinity or in the neigh-

borhood of zero, and they do not depend on exclusion restrictions. However,

they do assume that the errors in the risks are independent of the covari-

ates (which is a common modeling assumption), and they depend on a rank

condition, which requires at least as many continuous covariates as there are

risks. The necessity of these covariate conditions should not be surprising,

since identification essentially requires that it be possible for each risk to vary

as a function of observables, holding the other risks fixed.

We conclude by noting one small extension. Many empirical applications
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of competing risks models include censoring, for example, if the risks corre-

spond to different ways one could exit unemployment (such as finding a job or

dropping out of the labor force) then in a data set with attrition, incomplete

unemployment spells will be observed for those people who are unemployed

when they drop out of the survey. Such censoring is immediately encom-

passed by our result, since it can be treated as just another risk, as if exiting

the survey were another way to exit unemployment. In the sieve estimator,

this risk may be given a simplified model, with a conditional mean function

that depends only on covariates that affect the probability of attrition (such

as time in the survey), and possibly an error that is independent of the latent

errors in the other risks. Indeed, since random censoring can be intepreted

as a special case of a risk, our result with K = 2 also provides identification

for a general class of ordinary random censoring models.

A Appendix: Proofs of Theorems

Proof of Theorem 1. Define M(t1, ..., tK | x) = Pr(Tk > tk, k = 1, ..., K |

X = x) and Mk(t1, ..., tK | x) = ∂M(t1, ..., tK | x)/∂tk. Observe that Bk and

C are related by

Bk(s | x) = −
∫ ∞
s

Mk(t, ..., t | x)dt and C(s | x) =

∫ ∞
s

M(t, ..., t | x)dt.
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Define

P (u1, ..., uK) := Pr(Uk > uk, k = 1, ..., K) and Pk(u1, ..., uK) := ∂P (u1, ..., uK)/∂uk.

Then

M(t1, ..., tK | x) = P [t1 − g1(x), ..., tK − gK(x)]

and

Mk(t1, ..., tK | x) = Pk [t1 − g1(x), ..., tK − gK(x)]

= −∂P [t1 − g1(x), ..., tK − gK(x)] /∂gk(x).

Therefore,

C(s | x) =

∫ ∞
s

M(t, ..., t | x)dt

=

∫ ∞
s

P [t− g1(x), ..., t− gK(x)] dt

= C∗[s, g1(x), ..., gK(x)]

and

∂C∗[s, h1(x), ..., hK(x)]

∂hk(x)

∣∣∣∣
h=g

=
∂
∫∞
s
P [t− g1(x), ..., t− gK(x)] dt

∂hk(x)

= −
∫ ∞
s

Pk [t− g1(x), ..., t− gK(x)] dt

= −
∫ ∞
s

Mk(t, ..., t | x)dt = Bk(s | x).
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Proof of Theorem 2. For each h1, note that Ċ∗(h1)h2 is bijective (as a linear

function of h2 from L2(X ) to itself while h1 being fixed) since Ċ∗[h(x)]

is invertible for all h ∈ G (condition (2)). Then C∗(h) is a local C1-

diffeomorphism at each h ∈ G by the (local) inverse mapping theorem (see,

e.g., Theorem 4.F of Zeidler, 1986, p.172). Furthermore, (4) is a direct con-

sequence of that (see, also, Corollary 4.37 of Zeidler, 1986, p. 172). Note

that C∗ is a continuous mapping and L2(X ) is a reflexive Banach space with

its dual L2(X )∗ being isometrically isomorphic to L2(X ). Now inequality (3)

verifies condition (†) in (5.1.6) of Berger (1977, p.223) by taking a positive

function η(r) in Berger’s condition (using his notation) to be η(r) = δrε.

This shows that C∗ is a (global) C1-diffeomorphism, or equivalently that C∗

is proper in view of Theorem 4.G of Zeidler (1986, p.174).

Proof of Theorem 4. For identifying the distribution of U given the identifi-

cation of g(x), let A (s | g) = E [I(Y > s) | g(x) = g] for any s in the sup-

port of Y . Then A (s | g) = P (s− g1, ..., s− gK). It follows that A (s | g)

identifies this joint survivor distribution over the range of values of u1 =

s− g1(x), ..., uK = s− gK(x).

Proof of Theorem 5. This can be proved as in the proof of Theorem 4.1 of

Newey and Powell (2003) with minor modifications.
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