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Abstract

A new uniform expansion is introduced for sums of weighted kernel-based regression residu-

als from nonparametric or semiparametric models. This result is useful for deriving asymptotic

properties of semiparametric estimators and test statistics with data-dependent bandwidth, random

trimming, and estimated weights. An extension allows for generated regressors, without requiring

the calculation of functional derivatives. Example applications are provided for a binary choice

model with selection, including a new semiparametric maximum likelihood estimator, and a new

directional test for correct specification of the average structural function. An extended Appendix

contains general results on uniform rates for kernel estimators, additional applications, and primitive

sufficient conditions for high level assumptions.
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1 Introduction

This paper provides a new uniform expansion for a sum of weighted kernel-based regression residuals

from nonparametric or semiparametric models, which has a variety of applications in semiparametric

estimation and testing. Consider an independent and identically distributed (iid) data set {Yi,X⊤
i }ni=1

drawn from the joint distribution of the vector-valued random variable (Y,X⊤). Henceforth, A⊤

denotes the transpose of A. Let W := W (X) denote a vector of measurable functions of X with

Wi := W (Xi), let m̂(·|W ) be a Nadaraya-Watson (NW) kernel estimator of E[Y |W = ·], let t̂ni(W )

be a data dependent trimming function that may depend on a kernel density estimator f̂(·|W ) of the

unknown density of W , f(·|W ), and let φ (X) be any generic measurable and integrable function of X.

Both m̂(·|W ) and f̂(·|W ) use a common possibly data dependent bandwidth ĥn.

Our primary contribution is a general representation of the empirical process

∆̂n(W,φ) :=
1√
n

n∑

i=1

{Yi − m̂ (Wi|W )}t̂ni(W )φ(Xi) (1)

that is uniform in the bandwidth ĥn, and uniform in both W and φ. In addition, when φ and W are

unknown but can be consistently estimated by φ̂ and Ŵ , and if E[Y |X] fulfills the index condition

E[Y |X] = E[Y |W (X)] almost surely (a.s.), we also provide a uniform representation of the process

∆̂n(Ŵ , φ̂) that accounts for the estimation effects of Ŵ and φ̂ without requiring calculation of pathwise

functional derivatives.

For the example applications we list in the following paragraphs (and many others like them), the

results here can be used to extend otherwise known asymptotic properties of estimators and tests to

allow for data dependent bandwidths and random trimming. We also show that ∆̂n can be used to

develop inference for some new semiparametric models and objects of interest. Our results include

simple theoretically justified data dependent bandwidth choice procedures.

Equation (1) has the form of typical terms that show up in expansions of semiparametric estimators

and test statistics. For example, by defining φ accordingly, if W (X) = (X⊤θ1, . . . ,X
⊤θJ) for a collec-

tion of J-finite dimensional unknown parameters θ1, . . . , θJ , ∆̂n could be the first order conditions for

a semiparametric weighted least squares estimator of index parameters as in Ichimura and Lee (1991)

or when J = 1, ∆̂n could be the first order conditions for semiparametric weighted least squares or

maximum likelihood estimators as those in Ichimura (1993) and Klein and Spady (1993), respectively.

Similarly, if X := (X⊤
1 ,X

⊤
2 , Z

⊤
1 , Z

⊤
2 )⊤ and W (X) = (Z⊤

1 θ1 +X⊤
2 θ2,X2 − g(Z1, Z2)), then ∆̂n could be

the first order conditions for semiparametric weighted least squares or maximum likelihood estimators

that uses ‘control function’ approaches as in Escanciano, Jacho-Chávez and Lewbel (2011) and Rothe

(2009) respectively. Alternatively, if W (X) = X1 ⊂ X, ∆̂n also has the form of test statistics designed

to test nonparametrically the significance of a subset of covariates as in Delgado and González Manteiga

(2001).

When Ŵ replaces W in (1), we have a generated regressors model, as (parametrically) described

by Pagan (1984). Semiparametric models with generated regressors include Ichimura and Lee (1991),

Ichimura (1993), Ahn and Powell (1993), Ahn and Manski (1993), Olley and Pakes (1996), Ahn (1997),
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Heckman, Ichimura and Todd (1998), Newey, Powell and Vella (1999), Pinkse (2001), Li and Wooldridge

(2002), Das, Newey, and Vella (2003), Blundell and Powell (2004), Heckman and Vytlacil (2005), Lewbel

and Linton (2007), Imbens and Newey (2009), Rothe (2009), and Mammen, Rothe and Schienle (2011b),

among others. The asymptotic variance of general estimators within this class of models is studied by

Hahn and Ridder (2010). Analyses of the properties of generic nonparametric two step estimators with

nonparametric generated regressors, include Song (2008), Sperlich (2009), and Mammen, Rothe and

Schienle (2011a).

We contribute to these literatures in several ways. First, we provide results allowing for stochastic

bandwidths, which can be difficult to obtain using more standard methods of analysis such as U -

statistic or U -processes theory. Second, we show how simple stochastic equicontinuity arguments can

be used to derive the impact of generated regressors on inference. Third, we propose a unified method

for inference in semiparametric models with generated regressors, including estimation, testing, and

bandwidth choice. Fourth, we contribute to the literature on nonparametric two step estimation with

nonparametric generated regressors by providing results for kernel estimators that are uniform in the

bandwidth. In particular, the Appendix to this paper shows how our new results can be used to prove

that, under primitive conditions, the infinite-dimensional nuisance parameter belongs to a certain

class of smooth functions. This then provides primitive conditions for a high level assumption that

is commonly employed in the semiparametric estimation literature (see e.g, Chen, Linton, and van

Keilegom, 2003 and Ichimura and Lee, 2010).

Works devoted to estimation of general semiparametric models include Bickel, Klaassen, Ritov and

Wellner (1993), Andrews (1994), Newey (1994), Newey and McFadden (1994), Ai and Chen (2003),

Chen, Linton, and van Keilegom (2003), Ichimura and Lee (2010) and references therein. Applica-

tions of these general results are frequently difficult because they require an investigation of pathwise

functional derivatives (often up to a second order) and their limits. Our uniform representation of the

process ∆̂n(Ŵ , φ̂) accounts for the estimation effects of Ŵ and φ̂ without requiring the calculation

of pathwise functional derivatives. This is possible here by means of an approach based on stochastic

equicontinuity arguments. Andrews (1994) also used stochastic equicontinuity for estimating semipara-

metric models, but he relied on an asymptotic orthogonality condition that does not always hold in

our setting. One purpose of our results is to show how stochastic equicontinuity can still be used in

situations where the orthogonality condition fails.

Related to our derivation is work on nonparametric and semiparametric estimation with possi-

bly parametric or nonparametric generated covariates. In particular, Mammen, Rothe and Schienle

(2011a,b) study these problems using kernel estimators, and characterize the asymptotic contribution

of generated regressors to the pointwise distribution of their local linear estimator, as well as to the

distribution of optimization estimators. Unlike Mammen, Rothe and Schienle (2011a,b), our results

permit data dependent bandwidths and random trimming for both semiparametric estimation and

testing. In the Appendix material we also provide sufficient conditions for the uniform (in evaluation

point, conditioning variable, and bandwidth) consistency of the NW estimator and related quantities.

Also related is a recent paper by Li and Li (2010) which provides sufficient conditions for the

first-order asymptotic properties of a larger class of kernel-based semiparametric estimators and test
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statistics to hold with data dependent bandwidths. Their method of proof requires one to use an

estimated bandwidth first with a ‘rule-of-thumb’ asymptotic representation, i.e. a constant term times

a known power of the sample size, and then establish the stochastic equicontinuity of these generic

estimators and test statistics with respect to this constant term. Our development does not require

this last step. Instead, our results are shown to hold uniformly over sets of admissible bandwidths

which include estimated bandwidths with ‘rule-of-thumb’ asymptotic representations as a special case.

A useful by-product of our proposed method is that bandwidth choice procedures can be readily justified

without further calculations under our assumptions.

To illustrate the general applicability of our results for both estimation and testing, we first apply

them to a semiparametric binary threshold crossing model with sample selection. This model has the

form Y = I
(
X⊤θ0 − e ≥ 0

)
D with D = I [g0 (X)− u ≥ 0], where I (·) represents the indicator function

that equals one if its argument is true and zero otherwise. Here D is a binary variable that indicates if

an individual is selected. An individual who is not selected has both D = 0 and Y = 0, while selected

individuals have D = 1 and choose outcome Y to be either zero or one based on a threshold crossing

model. The function g0 (X) and the distribution of e given u are nonparametric, with the motivation

that economic theory drives model specification for the outcome Y , but relatively less is known about

the selection mechanism. We propose a semiparametric maximum likelihood estimator for θ0 as in

Klein and Spady (1993), but with a nonparametric generated regressor estimated in a first stage. The

estimator includes both observation weighting and data dependent trimming to increase efficiency. It

also includes a data dependent bandwidth choice that is justified by our asymptotic theory.

For a second application, we construct a directional test for the correct specification of a policy

parameter in this model. More precisely, we consider a researcher who is concerned about misspecifica-

tion of the semiparametric model only to the extent that the misspecification may lead to inconsistent

estimates of an average structural function (ASF) parameter. We show how a directional test can be

developed for this situation using our uniform expansions. Our uniform expansion permits the use

of a data-driven bandwidth choice procedure for this example that leads to a test with better power

properties than alternatives that use bandwidths chosen for estimation.

The paper is organized as follows: Section 2 provides our main uniform expansion results, including

the extension allowing for generated regressors. Section 3 illustrates the utility of these results by

applying them to the new estimator and new test statistic for the binary threshold crossing model with

sample selection described above. Section 4 concludes, and the main proofs of Sections 2 and 3 are

gathered into an Appendix A.

Appendix B for this paper contains new results on uniform rates of convergence of kernel estimators

based on our theorems, and Appendix C contains examples of primitive conditions that suffice to satisfy

some high level assumptions. Similarly, Appendix D provides more example applications of our results,

including a description of how they could be generically applied to derive the asymptotic properties

of semiparametric estimators such as Ichimura (1993), Klein and Spady (1993) and Rothe (2009),

while allowing for data-driven bandwidths, data-driven asymptotic trimming, and estimated weights.

Similarly, to provide another application of the proposed results for testing, Appendix D also contains

a new test for the null hypothesis of zero conditional average treatment effect under selection on
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observables. The test is justified under minimal regularity conditions.

2 A Uniform Expansion

Let {Yi,X⊤
i }ni=1 represent a random sample of size n from the joint distribution of (Y,X⊤) taking

values in XY × XX ∈ R
1+p. Let (Ω,F , P ) be the probability space in which all the variables of this

paper are defined. Henceforth, Xξ denotes the support of the generic random vector ξ. Let W be a

class of measurable functions of X with values in R
d, and let f (w|W ) denote the Lebesgue density of

W (X) evaluated at w ∈ XW . Define XW := {W (x) ∈ R
d : W ∈ W and x ∈ XX}. To simplify notation

define Wi :=W (Xi) and W :=W (X). We assume that E |Y | <∞, so that the regression function

m (w|W ) := E[Y |W = w], w ∈ XW ⊂ R
d,

is well defined a.s., for each W ∈ W. Under standard regularity conditions, the function m (w|W ) can

be consistently estimated by the nonparametric NW kernel estimator

m̂ (w|W ) := T̂ (w|W ) /f̂ (w|W ) ,

T̂ (w|W ) :=
1

n

n∑

i=1

YiKĥn
(w −Wi) ,

f̂ (w|W ) :=
1

n

n∑

i=1

K
ĥn

(w −Wi) ,

where Kh (w) =
∏d
l=1kh(wl), kh (wl) = h−1k (wl/h), k (·) is a kernel function, w = (w1, . . . , wd)

⊤ and

ĥn denotes a possibly data dependent bandwidth parameter satisfying regularity conditions described

in Assumption 5 below. Appendix B provides sufficient conditions for the uniform (in w, W and ĥn)

consistency of m̂ and related quantities. These new uniform in bandwidth convergence results should

be of some independent interest.

Let fX (x|w,W ) be the density, with respect to a σ-finite measure µW (·) , of X conditional on

W = w, and evaluated at x ∈ XX . Note that X does not need to be absolutely continuous as we

do not require µW (·) to be the Lebesgue measure. To measure the complexity of the class W, we

employ covering numbers. For a measurable class of functions G from R
p to R, let ‖·‖ be a generic

pseudo-norm on G, defined as a norm except for the property that ‖f‖ = 0 does not necessarily imply

that f ≡ 0. Let N(ε,G, ‖·‖) denote the covering number with respect to ‖·‖, i.e., the minimal number

of ε-balls with respect to ‖·‖ needed to cover G. Given two functions l, u ∈ G a bracket [l, u] is the

set of functions f ∈ G such that l ≤ f ≤ u. An ε-bracket with respect to ‖·‖ is a bracket [l, u]

with ‖l − u‖ ≤ ε, ‖l‖ < ∞ and ‖u‖ < ∞. The covering number with bracketing N[·](ε,G, ‖·‖) is the

minimal number of ε-brackets with respect to ‖·‖ needed to cover G. These definitions are extended

to classes taking values in R
d, with d > 1, by taking the maximum of the covering or bracketing

numbers of the coordinate classes. Let ‖·‖2,P be the L2(P ) norm, i.e. ‖f‖22,P =
∫
f2dP . When

P is clear from the context, we simply write ‖·‖2 ≡ ‖·‖2,P . Let λ denote the Lebesgue measure.

Let |·| denote the Euclidean norm, i.e. |A|2 = A⊤A. Let ‖·‖∞ and ‖·‖W ,∞ denote the sup-norms
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‖f‖∞ := supx∈XX
|f(x)| and ‖q‖W ,∞ := supW∈W ,w∈XW

|q (w|W )| , respectively. Henceforth, P ∗ and

E∗ denote the outer probability and expectation, respectively; see van der Vaart and Wellner (1996).

Finally, throughout C denotes a positive constant that may change from expression to expression. We

consider the following regularity conditions.

Assumption 1 The sample observations {Yi,X⊤
i }ni=1 are a sequence of iid variables, distributed as

(Y,X⊤), satisfying E[|Y |s |X = x] < C a.s., for some s > 2.

Assumption 2 The class W is such that logN(ε,W, ‖·‖∞) ≤ Cε−vw for some vw < 1.

Assumption 3 For all W ∈ W and x ∈ XX : f (w|W ), m (w|W ) and fX (x|w,W ) are r-times

continuously differentiable in w, with uniformly (in w, W and x) bounded derivatives (including zero

derivatives), where r is as in Assumption 4.

Assumption 4 The kernel function k (t) : R → R is bounded, r-times continuously differentiable and

satisfies the following conditions:
∫
k (t) dt = 1,

∫
tlk (t) dt = 0 for 0 < l < r, and

∫
|trk (t)| dt < ∞,

for some r ≥ 2; |∂k(t)/∂t| ≤ C and for some v > 1, |∂k(t)/∂t| ≤ C |t|−v for |t| > L, 0 < L <∞.

Assumption 5 The possibly data dependent bandwidth ĥn satisfies P (an ≤ ĥn ≤ bn) → 1 as n → ∞,

for deterministic sequences of positive numbers an and bn such that: (i) bn → 0 and adnn/ log n → ∞;

(ii) nb2rn → 0.

The conditional bounded moment of Assumption 1 can be relaxed to E[|Y |s] < C by working with

bracketing entropies of weighted L2−norms instead. Assumption 2 restricts the “size” of the class W
with respect to ‖·‖∞. van der Vaart and Wellner (1996) contains numerous examples of classes W
satisfying Assumption 2. To give an example, define for any vector a of p integers the differential

operator ∂ax := ∂|a|1/∂xa11 . . . ∂x
ap
p , where |a|1 :=

∑p
i=1 ai. Assume that X is the finite union of convex,

bounded subsets of Rp, with non-empty interior. For any smooth function h : X ⊂ R
p → R and some

η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η := max
|a|

1
≤η

sup
x∈X

|∂axh(x)|+ max
|a|

1
=η

sup
x 6=x′

|∂axh(x) − ∂axh(x
′)|

|x− x′|η−η
.

Further, let CηM (X ) be the set of all continuous functions h : X ⊂ R
d → R with ‖h‖∞,η ≤ M . Then,

it is known that logN(ε, CηM (X ), ‖·‖∞) ≤ Cε−vw , vw = d/η, so if W ⊂ CηM (XX), then d < η suffices

for our Assumption 2 to hold in this example. For extensions to unbounded X see Nickl and Pötscher

(2007).

Assumption 3 is used for controlling the bias of m̂ and related quantities. Assumption 4 is stan-

dard in the nonparametric kernel estimation literature, while Assumption 5 permits data dependent

bandwidths, as in e.g. Andrews (1995). In particular, our theory allows for plug-in bandwidths of the

form ĥn = ĉhn with ĉ stochastic and hn a suitable deterministic sequence converging to zero as n→ ∞.

Andrews (1995) points out that this condition holds in many common data dependent bandwidth se-

lection procedures, such as cross-validation and generalized cross-validation. Similarly, our results also
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apply to deterministic sequences. In particular if ĥn is of the form ĥn = cn−δ, for some constant c > 0,

then Assumption 5 requires that 1/2r < δ < 1/d, so r needs to be greater than d/2. That is, a simple

second-order Gaussian kernel can be used when d < 4, in view of Assumption 5.

We now introduce a class of functions that will serve as a parameter space for m. We assume that

for each W ∈ W, XW is a finite union of convex, bounded subsets of Rd, with non-empty interior. Let

T η
M be a class of measurable functions on XX , q (W (x)|W ) say, such that W ∈ W and q satisfies for a

universal constant CL and each Wj ∈ W, j = 1, 2,

‖q (W1(·)|W1)− q (W2(·)|W2)‖∞ ≤ CL ‖W1 −W2‖∞ . (2)

Moreover, assume that for each W ∈ W, q ( ·|W ) ∈ CηM (XW ), for some η ≥ 1, and ‖q‖W ,∞ <∞.

Assumption 6 (i) m ∈ T ηm
M ; and (ii) P (m̂ ∈ T ηm

M ) → 1, for some ηm > d/2 and M > 0.

Assumption 6 is a high level condition, some version of which is commonly required in the literature

of semiparametric estimation. See e.g. Assumption 2.4 in Chen, Linton, and van Keilegom (2003)

and Assumption 3.4(b) in Ichimura and Lee (2010). Even for simple cases such as standard kernel

estimators, the verification of assumptions like 6(ii) is rather involved, see e.g. Akritas and van Keilegom

(2001) and Neumeyer and van Keilegom (2010). Appendix C provides primitive conditions for 6(ii)

and similar assumptions, showing how they can be used in complex settings (including ours) that can

include possibly data dependent bandwidths and generated regressors.

We next introduce some technical conditions to handle the random trimming factor

t̂ni(W ) := I(f̂ (Wi|W ) ≥ τn),

where τn satisfies Assumption 7(ii) below. Define the rates pn := E [supW∈W I(f (w|W ) ≤ 2τn)] ,

λn := supW∈W λ(w : f (w|W ) < 2τn) and

dn :=

√
log a−dn ∨ log log n

nadn
+ brn.

Note that dn is the rate of convergence of quantities like ‖ f̂ − f ‖W ,∞ , where an and bn are as in

Assumption 5.

Assumption 7 (i) For all W ∈ W, and all u > 0 and δ > 0 sufficiently small, P (u−2δ ≤ f(W |W ) ≤
u + 2δ) ≤ Cδ; and (ii) τn is a sequence of positive numbers satisfying τn → 0, λ2na

−d
n log n → 0 and

n(τ−4
n d4n + p2n) → 0.

Assumption 7 is a strong assumption, but it is hard to relax given that uniform results in W ∈ W
are pursued. A sufficient condition for Assumption 7(i) is that f/ḟ is bounded, where ḟ is the derivative

of f . In simpler settings, like for instance when the class W is parametric, these assumptions can be

relaxed by using a similar approach to that in Robinson (1988). Note that Assumption 7 is only
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required if the estimator includes asymptotic trimming, otherwise it can be omitted as in e.g. when

using fixed trimming. Assumption 7(ii) will be weakened in Theorem 2.2 below.

We assume that the weight function φ lies in a class Φ of real-valued measurable functions of X

satisfying the following regularity condition:

Assumption 8 The class Φ is a class of uniformly bounded functions such that logN[·](ε,Φ, ‖·‖2) ≤
Cε−vφ for some vφ < 2.

Assumption 8 restricts the size of the class Φ. The boundedness restriction in Assumption 8 can

be relaxed by requiring instead suitable high order bounded moments for errors and weights.

For any generic measurable and integrable function φ(·) define

φ⊥W (Xi) := φ(Xi)− E[φ(Xi)|W (X)].

Define the parameter space A := W × Φ and a generic element α := (W,φ) ∈ A. We are interested in

the asymptotic representation of the process (1), i.e.

∆̂n(α) :=
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}t̂ni(W )φ(Xi),

that is uniform over α ∈ A.

Define the error-weighted empirical process ∆n(α) as

∆n(α) :=
1√
n

n∑

i=1

{Yi −m(Wi|W )}φ⊥W (Xi).

We prove below that ∆̂n and ∆n are asymptotically uniformly equivalent. This provides a general

uniform representation for ∆̂n(α) in terms of iid variables. This uniform expansion quantifies the

asymptotic effect from estimating true errors by nonparametric kernel regression residuals. To give

some informal intuition for the asymptotic equivalence between ∆̂n and ∆n, ignore trimming effects

for now and write, for each α ∈ A,

1√
n

n∑

i=1

{Yi − m̂(Wi|W )}φ(Xi) =
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}φ⊥W (Xi)

+
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}E[φ(Xi)|W (X)] =: I1n + I2n.

Roughly, the term I2n = oP (1) by a nonparametric version of the least squares normal equations, and

the term I1n is asymptotically equivalent to ∆n(α), because the latter when viewed as a mapping of m

is (stochastically) continuous in m, since φ⊥W (Xi) is orthogonal to functions of W and m is a function

of W. The following theorem formalizes this intuition and extends it to a uniform result in α ∈ A and

in the (possibly data dependent) bandwidth, while also allowing for random trimming.

Theorem 2.1 Let Assumptions 1 – 8 hold. Then,

sup
an≤ĥn≤bn

sup
α∈A

|∆̂n(α)−∆n(α)| = oP ∗(1).
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Remark 2.1 If φ(X) is such that E(φ(X)|W ) = 0 a.s., so φ⊥W ≡ φ, then estimation of m has no

asymptotic effect in the limit distribution of ∆̂n(α).

Theorem 2.1 has many applications for semiparametric inference as discussed in the Introduction,

the next section and Appendix D.

2.1 Generated Regressors and Estimated Weights

In this section, we apply our uniform expansion to a setting where residuals are from a semiparamet-

ric index regression model with nonparametric generated regressors, and possibly nonparametrically

estimated weights. Specifically, in this section we assume that

E[Y |X] = E[Y |v(g0(X1),X)] a.s.,

for some d-dimensional known function v ofX and a conditional mean function g0(x1) := E[D|X1 = x1],

where D is a random variable and X1 is a subvector of X, X1 ⊆ X. Thus, the conditioning variable

W0 := v(g0(X1),X) is known up to the unknown regression g0. For notational simplicity we only

consider univariate D but the extension to multivariate D is straightforward. Later in Section 3

we further extend the current setting to W0 = v(θ0, g0(X1),X) for an unknown finite-dimensional

parameter θ0 ∈ Θ ⊂ R
q. To simplify the notation, denote W0i := v(g0(X1i),Xi), m0i := m(W0i|W0),

gi := g(X1i) and g0i := g0(X1i), for i = 1, ..., n.

We observe a random sample {Yi,X⊤
i ,Di}ni=1 from the joint distribution of (Y,X⊤,D) and esti-

mate g0 by some nonparametric estimator ĝ, possibly but not necessarily a kernel estimator. Let φ0

denote a weight function, and let φ̂ denote a ‖·‖2-consistent estimator for φ0. The estimator φ̂ can

be nonparametric, e.g. a kernel or series estimator. We investigate the impact of estimating W0 by

Ŵ = v(ĝ(X1),X) and then estimating φ0 by φ̂ in the empirical process ∆̂n(Ŵ , φ̂). The goal is to

provide an expansion in iid terms for the standardized sample mean of weighted and trimmed residuals

∆̂n(α̂) =
1√
n

n∑

i=1

{Yi − m̂(Ŵi|Ŵ )}t̂ni(Ŵ )φ̂(Xi), (3)

where α̂ := (Ŵ , φ̂) and Ŵi := v(ĝ(X1i),Xi). Define φ⊥0 (Xi) := φ0(Xi)− E[φ0(Xi)|W0i], εi := Yi −m0i

and ui := Di − g0i. We show that under regularity conditions

∆̂n(α̂) =
1√
n

n∑

i=1

{
εiφ

⊥
0 (Xi)− uiE[∂ḡm(W0i)φ

⊥
0 (Xi)|X1i]

}
+ oP (1), (4)

where ∂ḡm(W0i) := ∂m(v(ḡ, Xi)|W0)/∂ḡ|ḡ=g0i .
A convenient feature of the expansion in (4) is that it does not require an analysis of pathwise

functional derivatives, as in, e.g., Newey (1994). This is particularly useful here because the map

g → E[Y |v(g(X1),X)] has no closed form and can be highly non-linear. Note that ∂ḡm(W0i) is

a standard (finite-dimensional) derivative of the regression involving the ‘true’ index W0, and the

derivative is with respect to the evaluation point.

9



To better understand the expansion in (4) and how we use Theorem 2.1 to obtain it, note that

denoting φ̂⊥W (X) := φ̂(X) −E[φ̂(Xi)|Ŵ ], we can write

∆̂n(α̂) =
1√
n

n∑

i=1

{Yi −m(Ŵi|Ŵ )}φ̂⊥W (Xi) + oP (1)

=
1√
n

n∑

i=1

εiφ̂
⊥
W (Xi) +

1√
n

n∑

i=1

(g0i − ĝi)∂ḡm(W0i)φ̂
⊥
W (Xi) (5)

+
1√
n

n∑

i=1

{m(W0i|W0)−m(Ŵi|Ŵ )− (g0i − ĝi)∂ḡm(W0i)}φ̂⊥W (Xi) + oP (1),

where the first equality follows from Theorem 2.1 and P (α̂ ∈ A) → 1. We then show that the third term

in the last expansion is asymptotically negligible. To see this, notice that by adding and subtracting

m(W |W0),

E
[
{m(W0|W0)−m(W |W )− (g0 − g)∂ḡm(W0)}φ⊥W (X)

]

= E
[
{m(W0|W0)−m(W |W0)− (g0 − g)∂ḡm(W0)}φ⊥W (X)

]

+E
[
{m(W |W0)−m(W |W )}φ⊥W (X)

]

= E
[
{m(W0|W0)−m(W |W0)− (g0 − g)∂ḡm(W0)}φ⊥W (X)

]
,

where the second equality follows from the orthogonality of φ⊥W (X) and functions of W (X). The

absolute value of the last expectation is shown to be of the order ‖g0 − g‖2∞ (and it can be made

of smaller order by accounting for higher order derivatives, see the proof of Theorem 2.2 below).

These simple equalities show, without the need to introduce functional derivatives, that there is zero

contribution from estimating W0 in m(W |W0), and that there is a trade-off between smoothness in

m(v(·,X)|W0) and rates of convergence of ‖g0 − g‖∞. The rest of the proof of the expansion (4) then

follows from stochastic equicontinuity of the first and second terms of (5) at α0, as shown below.

To handle the second summand in (5) for a generic first step estimator ĝ, and accounting for higher

derivatives in m(v(·,X)|W0), we define the empirical processes, for j = 1, ..., κ, κ ≥ 1, and α = (W,φ),

Rjn(α) :=
1√
n

n∑

i=1

(g0i − gi)
j∂

(j)
ḡ m(W0i)φ

⊥
W (Xi), and

Gn(α) :=
1√
n

n∑

i=1

uiE[∂ḡm(W0i)φ
⊥
W (Xi)|X1i], (6)

where ∂
(j)
ḡ m(W0i) := ∂jm(v(ḡ, Xi)|W0)/∂ḡ

j
∣∣
ḡ=g0i

. Define also the rates p0n := P (f (W0|W0) ≤ 2τn),

wn := ‖ĝ − g0‖∞ and qn := τ−1
n dn + wn.

Assumption 9 The function m(v(ḡ, x)|W0) is κ-times continuously differentiable in ḡ with bounded

derivatives, for all x.

Assumption 10 The estimator α̂ is such that: (i) |R1n(α̂) +Gn(α̂)| = oP (1) and |Rjn(α̂)| = oP (1)

for all j = 2, ..., κ; (ii) E[D2|X] < C a.s., wn = oP (n
−1/2κ), W0 ∈ W and P (Ŵ ∈ W) → 1; and (iii)

‖ φ̂− φ0 ‖2 = oP (1), φ0 ∈ Φ, and P (φ̂ ∈ Φ) → 1.

10



Assumption 11 τn is a sequence of positive numbers satisfying τn → 0, λ2na
−d
n log n→ 0 and n(τ−4

n q6n+

q4n + p20n) → 0.

Assumption 9 is a standard smoothness condition. Assumption 10(i) is a high level assumption

regarding expansions related to the first step estimator. Appendix C provides primitive conditions

for Assumption 10 when ĝ is a NW kernel estimator of g0. Alternative primitive conditions for series

estimators can be found in Escanciano and Song (2010).

Assumption 10(ii) describes the trade-off between number of derivatives in m(v(·, x)|W0) and the

required rate for ‖ĝ − g0‖∞. Similar smoothness trade-offs are noted by Mammen, Rothe and Schienle

(2011a). See also Cattaneo, Crump, and Jansson (2011) for a related finding in a different context.

The high level assumption 10(iii) can be replaced by rates of convergence on ‖ φ̂ − φ0 ‖2 as shown

in the examples of Section 3. As mentioned earlier, Assumption 11 replaces and relaxes Assumption

7(ii). The condition on p0n can be relaxed to nq2np
2
0n → 0 if, for instance, {εi}ni=1 are conditionally

uncorrelated given {α̂i}ni=1.

Theorem 2.2 Let Assumptions 1 – 7(i) and 8 – 11 hold. Assume that E [Y |X] = E [Y |W0] a.s.

Then the expansion in (4) holds uniformly in an ≤ ĥn ≤ bn.

Theorem 2.2 quantifies the estimation effect of α̂, that is, ĝ and φ̂, in the empirical process ∆̂n(α̂).

AlthoughW depends on g0, the Theorem shows that the estimation error ĝ−g0 only has an asymptotic

impact through the first argument in m(Wi|W ). For the process ∆̂n(α̂), the contribution from the

second argument is asymptotically negligible due to the orthogonality of φ⊥W with functions of W .

To illustrate the usefulness of Theorem 2.1 and Theorem 2.2 for estimation and testing, and to show

how they would be applied in practice, in the next section we use them to derive asymptotic theory for

a new estimator of a binary choice model with selection, and then we apply them to the construction

of a new directional specification test.

3 Example: A Binary Choice Model with Selection

Suppose a latent binary variable Y ∗ satisfies the ordinary threshold crossing binary response model

Y ∗ = I
(
X⊤θ0 − e ≥ 0

)
with e independent of X, in short e ⊥ X, and the distribution function of e, Fe,

may be unknown. Suppose further that we only observe Y ∗ for some subset of the population, indexed

by a binary variable D, i.e. we only observe Y = Y ∗D. This is a sample selection model with a binary

outcome. The econometrician is assumed to know relatively little about selection D other than that

it is binary, so let D be given by the nonparametric threshold crossing model D = I [g0 (X)− u ≥ 0]

where u ⊥ X and the function g0(X) is unknown. Based on Matzkin (1992), we may without loss

of generality assume g0 (X) = E[D|X] and u has a uniform distribution, since then P (D = 1|X) =

P [u ≤ g0 (X)] = g0 (X).

We then have the model

D = I [g0 (X)− u ≥ 0] (7)

Y = I(X⊤θ0 − e ≥ 0)D (8)
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The latent error terms e and u are not independent of each other, so the model does not have selection

on observables. When g0(·) is assumed to be linear in X, e.g. g0(X) = X⊤δ0 for some unknown

coefficient vector δ0, and the joint distribution of the errors (e, u)⊤ is assumed to be normal, model

(7) – (8) is known as the ‘Censored Probit Model’ or a ‘Probit Model with Sample Selection,’ see

e.g. van de Ven and van Praag (1981) and Meng and Schmidt (1985). Newey (2007) discusses its

semiparametric identification within a larger class of models.1

Let (e, u)⊤ be drawn from an unknown joint distribution function F (e, u) with e, u ⊥ X. Then

g0 (X) = E[D|X] and

E[Y |X] = m[X⊤θ0, g0 (X)]

so an index restriction with W0 := v(θ0, g0,X) = (X⊤θ0, g0(X)) holds, and g0 (X) is identified from

the selection equation as a conditional expectation. Identification of m and θ0 in this model, which

is possible even without an exclusion restriction, has been studied in Escanciano, Jacho-Chávez and

Lewbel (2011), who also propose a semiparametric least squares estimator for this model.2

The class of functions

W = {x→ (x⊤θ, g(x)) : θ ∈ Θ0 ⊂ R
q, g ∈ G ⊂ C

ηg
M (XX), ‖g − g0‖∞ < δ}, (9)

for an arbitrarily small δ > 0 and ηg > p is used for the remaining part of this section.

3.1 Semiparametric Maximum Likelihood Estimation

Following Klein and Spady (1993), we propose a semiparametric maximum likelihood estimator (SMLE)

of θ0 in model (7) – (8), and apply our earlier results to obtain limiting distribution theory for this

estimator. Firstly, we have Y = D = 0 if u > g0 (X), Y = D = 1 if both e ≤ X⊤θ0 and u ≤ g0 (X), and

otherwise Y = 0 and D = 1. Therefore, P (Y = D = 0|X) = P (D = 0|X) = 1− E[D|X] = 1− g0 (X),

P (Y = D = 1|X) = P (Y = 1|X) = E[Y |X] = m[X⊤θ0, g0 (X)] and P (Y = 0,D = 1|X) = 1− P (Y =

D = 0|X) − P (Y = D = 1|X) = E[D|X] − E[Y |X] = g0 (X) − m[X⊤θ0, g0 (X)]. Based on these

probabilities, define the following semiparametric log-likelihood objective function

Ln (θ, ĝ) :=
1

n

n∑

i=1

{Yi log[m̂iθ] + (Di − Yi) log[ĝi − m̂iθ]} t̃inψi, (10)

where ĝi := ĝ(Xi) is the NW estimator of g0 with possibly data-driven bandwidth ĥgn, m̂iθ :=

m̂(Wi(θ, ĝ)|W (θ, ĝ)), W (θ, g) := (X⊤θ, g(X)), Wi(θ, g) := (X⊤
i θ, g(Xi)) with possible data-driven

bandwidth ĥn, and t̃in is a trimming sequence that also accounts for the possibility that m̂ is close to

1Our methods could also be applied to other related models, e.g., if we replaced (8) with Y =
(

X⊤θ0 − e
)

D, then

this would be a semiparametric generalization of the standard Heckman selection model, and if we replaced (8) with

Y = max
(

X⊤θ0 − e, 0
)

D then this would be a semiparametric generalization of Cragg’s (1971) double hurdle model.
2Closely related identification and estimation results include Blundell and Powell (2004) and Ichimura and Lee (1991).

If instead of the assumption e, u ⊥ X we had the more general assumption u ⊥ X and e|u,X ∼ e|u,W0, then the above

model would still hold with Feu (e, u|W0) denoting the conditional distribution of e, u|W0 and the function m (r, g) now

defined as m (r, g) = Feu (r, g|W0).
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zero or to ĝi. More specifically, the trimming has the form

t̃in := I(τn ≤ m̃i ≤ ĝi − τn)× I(τn ≤ f̃i),

where τn is a sequence of positive numbers with τn → 0 as n → ∞, m̃i := m̂(W̃i|W̃ ), f̃i := f̂(W̃i|W̃ ),

W̃i := Wi(θ̃, ĝ), W̃ := W (θ̃, ĝ), and θ̃ is a preliminary consistent estimator for θ0. For instance, θ̃

can be a SMLE with ψi = 1 and fixed trimming t̂ni = I(Xi ∈ A) for a compact set A ⊂ XX (or

non-data-dependent asymptotic trimming). Note that weighting ψi = 1 and either fixed or non-data-

dependent asymptotic trimming will in general make θ̃ inefficient, but that does not violate the required

Assumption 14 below for an initial consistent θ̃. The estimator for θ0 we propose is

θ̂ = argmax
θ∈Θ

Ln (θ, ĝ) . (11)

The estimator θ̂ extends the related estimator in Klein and Spady (1993) for the single-index binary

choice model in two ways. First, the objective function (11) has a nonparametric generated regressor

ĝ associated with selection, which complicates the relevant asymptotic theory. Second, and intimately

related to the first, is that unlike in Klein and Spady (1993), adaptive weighting is necessary here to

improve efficiency due to the presence of the generated regressor.

Sufficient conditions for identification of θ0 in this model (which do not require exclusion restrictions)

are provided by Escanciano, Jacho-Chávez and Lewbel (2011), and given identification it is straight-

forward to demonstrate consistency of θ̂. Given consistency, we now apply the results of the previous

section to derive limiting distribution theory for θ̂, allowing for data dependent choice of bandwidth,

data dependent asymptotic trimming, and data dependent adaptive weighting for efficiency.

Recall εi = Yi −m0i and ui = Di − g0i. Further, define υi := εi − ui∂ḡm(W0i), σ
2
0i := E[υ2i |Xi],

ψi := ψ(W0i) and ∂θm(W0i) := ∂m(Wi(θ, g0)|W (θ, g0))/∂θ|θ=θ0 . Also note that

σ20i = m0i(1−m0i) + (∂ḡm(W0i))
2 g0i(1− g0i)− 2∂ḡm(W0i)m0i(1− g0i). (12)

We shall assume that the following matrix is non-singular and finite (this is little more than a linear

index model identification condition),

Γ0 := E

[
g0i∂θm(W0i)∂

⊤
θ m(W0i)

m0i(g0i −m0i)
ψi

]
. (13)

Define the rates q′n := d′n + wn and τng := inf{x:f(W0(x)|W0)<2τn} fX(x), where

d′n :=

√
log a−2

n ∨ log log n

na4n
+ br−1

n .

Finally, to simplify the notation define mθ := m(W (θ, g0)|W (θ, g0)).

Assumption 12 (i) The kernel function satisfying Assumption 4 also satisfies
∣∣∂(j)k(t)/∂tj

∣∣ ≤ C |t|−v

for |t| > Lj, 0 < Lj <∞, for j = 1, 2; (ii) the sequence τn is such that τn → 0, nτ2n → ∞, nτ−2
n q′4n → 0

and nq′2n q
2
n → 0 (iii) The functions σ2(·), infθ∈Θ0

mθ and infθ∈Θ0
(g0−mθ) are bounded away from zero.
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Assumption 13 (i) The regression function g0 (X) = E[D|X] is estimated by a NW kernel estimator

ĝ with a kernel function satisfying Assumption 4 with r = ρ and a possibly stochastic bandwidth ĥgn

satisfying P (ln ≤ ĥgn ≤ un) → 1 as n→ ∞, for deterministic sequences of positive numbers ln and un

such that un → 0, nτ2ng(l
p
n/ log n)κ/(κ−1) → ∞ and nτ−2

ng u
2ρ
n → 0; (ii) the function g0 and the density

fX (·) of X are ρ-times continuously differentiable in x, with bounded derivatives. Furthermore, g0 is

bounded away from zero, g0 ∈ G ⊂ C
ηg
M (XX) and P (ĝ ∈ G) → 1 for some ηg > p.

Assumption 14 The parameter space Θ0 is a compact subset of Rp and θ0 is an element of its interior.

The estimator θ̃ is
√
n−consistent for θ0 and θ̂ is consistent. The matrix Γ0 is non-singular and

E
[
ψ2
1

]
<∞.

Theorem 3.1 Let Assumption 1 hold for model (7) – (8), and let Assumptions 3 – 7(i), 9, 11, 12 –

14 hold. Then θ̂ is asymptotically normal, i.e.

√
n(θ̂ − θ0) −→d N(0,Γ−1

0 Σ0Γ
−1
0 ),

where Γ0 is given in (13) and

Σ0 := E

[
σ2(W0i)g

2
0i∂θm(W0i)∂

⊤
θ m(W0i)

m2
0i(g0i −m0i)2

ψ2
i

]
.

Remark 3.1 A sufficient primitive condition for the high-level Assumption 6(ii) is that τ2na
6
nn/ log(n) →

∞; see Appendix C.

Remark 3.2 Consider a bandwidth of the form ĥn = chn, with c a constant to be chosen and hn a

suitable deterministic sequence satisfying the assumptions in Theorem 3.1 above. Then, a natural data-

driven choice for the constant c is one that maximizes an estimated semiparametric likelihood criterion,

i.e.

ĉn = argmax
c∈[ǫ,ǫ−1]:ĥn=chn

1

n

n∑

i=1

{
Yi log[m̃i;ĥn

] + (Di − Yi) log[ĝi − m̃
i;ĥn

]
}
I(Xi ∈ A),

where ǫ is an arbitrarily small positive number, and we have made explicit the dependence of the leave-

one-out version of estimator m̃i on the bandwidth ĥn. Note that the resulting bandwidth ĉnhn will

automatically satisfy our required assumptions by construction. Furthermore, when using this choice

in (10) no changes to Theorem 3.1 are needed by virtue of our uniformity-in-bandwidth results.

It can be easily shown that using weights ψ∗
i := m0i[g0i−m0i]/[σ

2
0ig0i] leads to a more efficient estimator3

with asymptotic variance Γ−1
∗ , where the positive definite matrix Γ∗ is given by

Γ∗ := E

[
∂θm(W0)∂

⊤
θ m(W0)

σ2(W0)

]
.

Now let ψ̂∗
i = m̃i(ĝi − m̃i)/(σ̂

2
i ĝi), where σ̂2i = m̃i(1 − m̃i) + (∂ḡm̃i)

2ĝi(1 − ĝi) − 2∂ḡm̃im̃i(1 − ĝi)

and ∂ḡm̃i := ∂m̂(Wi(θ̃, g)|W (θ̃, ĝ))/∂g|g=ĝi . Similarly, let θ̂∗ be the resulting estimator when the

optimal weight ψi = ψ̂∗
i is used in (10). Furthermore, let Γ̂∗ = n−1

∑n
i=1 ∂θm̂iθ̂∗

∂⊤θ m̂iθ̂∗
/σ̂2i , where

∂θm̂iθ̂∗
:= ∂m̂(Wi(θ, ĝ)|W (θ, ĝ))/∂θ|

θ=θ̂∗
.

3Whether Γ−1
∗ coincides with the semiparametric efficiency bound of θ0 in model (7) – (8) is an open question.
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Corollary 3.1 Let the Assumptions of Theorem 3.1 hold. Then
√
n(θ̂∗ − θ0) −→d N(0,Γ−1

∗ ), and

Γ̂∗ →P Γ∗.

The proof of Corollary 3.1 is provided in the Appendix A. The proof of Theorem 3.1 itself is almost

the same (except simpler, since it does not involve estimated weights), and so is omitted. It is shown

that the asymptotic distribution of θ̂∗ is the same as it would be if the optimal weights ψ∗
i and the

regression function m were known instead of estimated.

3.2 A Tailor-Made Specification Test

We next illustrate the usefulness of our uniform convergence results for constructing test statistics.

A policy parameter of considerable interest in applications of binary choice models is the average

structural function (ASF). See, e.g., Stock (1989), Blundell and Powell (2004) and Newey (2007). In

our binary choice model with selection, the ASF is given by

γ∗ :=

∫ ∫
m(x⊤θ0, g)fg(g)dF

∗
X (x)dg,

where F ∗
X is a particular marginal distribution for X and fg is the density of g0. In this context,

suppose we are concerned with possible misspecification of the semiparametric binary choice model

only to the extent that it leads to inconsistent estimation of the ASF γ∗. Our goal is construction both

of a test and an associated bandwidth choice procedure that concentrates power in this direction.

Consider a directional specification test with these alternatives in mind, testing the correct specifi-

cation of the model

H0 : E[Y |X] = m[X⊤θ0, g0 (X)] a.s,

against alternatives for which

E[{Y −m(X⊤θ0, g0 (X))}φ∗(X, g0(X))] 6= 0, (14)

where φ∗(X, g0(X)) := fg(g0(X))dF ∗
X (X)/f (W0|W0).

We propose constructing such a test based on

Tn,hn :=
1√
n

n∑

i=1

{Yi − m̂(Ŵi|Ŵi)}φ̂∗(Xi, ĝi)t̂ni,

where Ŵi := (X⊤
i θ̂, ĝi), θ̂ is a

√
n-consistent estimator for θ0, such as (11) from the previous section,

φ̂∗(Xi, ĝi) = f̂ig(ĝi)dF
∗
X (Xi)/f̂i, f̂ig is a kernel estimator for the density of g0 resulting from integrating

f̂i ≡ f̂(Ŵi|Ŵi), t̂in = I(f̂i ≥ τn) and hn in Tn,hn denotes the bandwidth used in estimating m̂. Set

σ2 := E[ε2i φ
⊥2
∗ (Xi, g0i)], and consider the variance estimator

σ̂2 :=
1

n

n∑

i=1

{Yi − m̂(Ŵi|Ŵ )}2φ̂⊥2
∗ (Xi, ĝi)t̂ni,

where φ̂⊥∗ is based on a uniformly consistent estimator of E[dF ∗
X (Xi)|Wi].
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Theorem 3.2 Let Assumption 1 hold for model (7) – (8), and let Assumptions 3 – 7(i), 9, 11 and 13

– 14 hold. Assume also that φ∗(·, g0) is bounded. Then, under H0,

σ̂−1 max
an≤hn≤bn

Tn,hn −→d N(0, 1),

whereas under the alternative (14), σ̂−1 |maxan≤hn≤bn Tn| −→P ∞.

Remark 3.3 Let ĥn denote the solution to the optimization problem maxan≤hn≤bn Tn,hn. Our uniform

in bandwidth theorems allow us to choose the bandwidth by this optimization, which leads to a test with

better power properties than a test that uses a bandwidth ĥn optimized for estimation like that described

in remark 3.2. See e.g. Horowitz and Spokoiny (2001) for a related approach in a different context.

4 Concluding Remarks

We have obtained a new uniform expansion for standardized sample means of weighted regression resid-

uals from nonparametric or semiparametric models, with possibly nonparametric generated regressors.

The expansion is uniform in the generated regressor, random bandwidth, and the weights. We have

shown by examples how these results are useful for deriving limiting distribution theory for estimators

and tests. Additional example applications of our uniform expansions are provided in Appendix D to

this paper.

For estimation, we showed that a simple data driven bandwidth choice procedure could be used

where the rate is chosen by the practitioner based on theory and the constant is chosen by minimizing

the same objective function that is for estimation. A topic for future research is consideration of more

general selection rules where the rate might also be chosen by minimizing some estimation criterion.

Less is known about optimal bandwidth rates for testing. We choose the bandwidth to maximize

the test statistic in the region of admissible bandwidths, and show that this choice is permitted by our

asymptotic results.

The appealing properties of our estimators and tests regarding data driven bandwidths, possibly

nonparametric generated regressors, random trimming and estimated weights are made possible by

the use of uniform convergence in these aspects. We have shown how this uniform convergence, when

combined with standard stochastic equicontinuity arguments, allows us to establish the desired expan-

sions without the need to introduce functional derivatives, which can be difficult to deal with in these

contexts.

Our results should have applications beyond the types considered here. For example, expansions of

the kind provided by Theorem 2.1 and Theorem 2.2 are the key ingredient in proving the consistency

of bootstrap procedures for estimation and testing in semiparametric models.

Appendix A Main Proofs

Before we prove our main results we need some preliminary results from empirical processes theory.

Define the generic class of measurable functions G := {z → m(z, θ, h) : θ ∈ Θ, h ∈ H}, where Θ and H
are endowed with the pseudo-norms |·|Θ and |·|H, respectively.
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Lemma A.1 Assume that for all (θ0, h0) ∈ Θ ×H, m(z, θ, h) is locally uniformly L2(P ) continuous,

in the sense that

E

[
sup

θ:|θ0−θ|Θ<δ,h:|h0−h|H<δ
|m(Z, θ, h)−m(Z, θ0, h0)|2

]
≤ Cδs,

for all sufficiently small δ > 0, and some constant s ∈ (0, 2]. Then,

N[·](ε,G, ‖·‖2) ≤ N

(( ε

2C

)2/s
,Θ, |·|Θ

)
×N

(( ε

2C

)2/s
,H, |·|H

)
.

Proof of Lemma A.1: The proof can be found as part of the proof of Theorem 3 in Chen, Linton,

and van Keilegom (2003, p. 1597), and therefore is omitted. Q.E.D.

Lemma A.2 Let Assumptions 3 and 8 hold. Then, for each W1 and W2 in W, and all δ > 0,

sup
φ∈Φ

‖E[φ(X)|W1(X) =W1(·)] − E[φ(X)|W2(X) =W2(·)]‖∞ ≤ C ‖W1 −W2‖∞ .

Proof of Lemma A.2: The proof follows from Lemma A2(ii) in Song (2008), noting that Assumption

3 implies his condition (A.35) with s = 1. Q.E.D.

Let S be a class of measurable functions of X. Let {ξi,X⊤
i }ni=1 denote a random sample from the joint

distribution of (ξ,X⊤) taking values in Xξ × XX ∈ R
1+p, and define the weighted empirical process,

indexed by s ∈ S,

Ψn(s) :=
1√
n

n∑

i=1

ξis(Xi)− E[ξis(Xi)].

We say that Ψn is asymptotically uniformly ρ-equicontinuous at s0 ∈ S, for a pseudo-metric ρ on S, if
for all ε > 0 and η > 0, there exists δ > 0 such that

lim sup
n→∞

P ∗

[
sup

s1∈S:ρ(s1,s0)<δ
|Ψn(s1)−Ψn(s0)| > ε

]
≤ η.

The following result gives sufficient conditions for uniform ‖·‖2-equicontinuity of Ψn. One important

implication of the uniform equicontinuity is that Ψn(ŝ) = Ψn(s0) + oP (1), provided ‖ŝ− s0‖2 = oP (1).

Lemma A.3 Assume E[ξ2i |Xi] < L a.s., and let S be a class of uniformly bounded functions such that

logN[·](ε,S, ‖·‖2) ≤ Cε−vs for some vs < 2. Then, Ψn is asymptotically uniformly ‖·‖2-equicontinuous
at s0 ∈ S, for all s0.

Proof of Lemma A.3: Define the class of functions G := {(ξ, x) → ξs(x) : s ∈ S}. Let a+ :=

max{a, 0} and a− := max{−a, 0} denote the positive and negative parts of a, respectively. Let

{[slj , suj] : j = 1, ..., Nε ≡ N[·](ε,S, ‖·‖2)} be a family of ε-brackets (with respect to ‖·‖2) covering

S. Then, it holds that {[ξ+slj − ξ−suj, ξ
+suj − ξ−slj] : j = 1, ..., Nε} is also a family of L1/2ε-

brackets covering G. Then, by our assumptions, G has finite bracketing entropy, and hence, Ψn is
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‖·‖2-equicontinuous at all points in S. Q.E.D.

Throughout the Appendix we use the notation, for i = 1, ..., n, and W ∈ W,

tni(W ) := I(f (Wi|W ) ≥ τn/2) and ∆tni(W ) := t̂ni(W )− tni(W ). (A-15)

Similarly, define t̂ni ≡ t̂ni(Ŵ ) and ∆tni := t̂ni − tni(Ŵ ).

Lemma A.4 Under the Assumptions of Theorem 2.1, supα∈A |Rn(α)| = oP ∗(1), where

Rn(α) :=
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}∆tni(W )φ(Xi).

Proof of Lemma A.4: Write

Rn(α) :=
1√
n

n∑

i=1

{Yi −m(Wi|W )}∆tni(W )φ(Xi) +
1√
n

n∑

i=1

{m(Wi|W )− m̂(Wi|W )}∆tni(W )φ(Xi)

:= R1n(α) +R2n(α).

We shall prove that supα∈A |R1n(α)| = oP ∗(1). By Cauchy inequality

1√
n
|R1n(α)| ≤

(
1

n

n∑

i=1

|∆tni(W )|
)1/2(

1

n

n∑

i=1

{Yi −m(Wi|W )}2 |∆tni(W )|φ2(Xi)

)1/2

.

Thus, using the simple inequalities, with fi (W ) ≡ f (Wi|W ) and f̂i (W ) ≡ f̂ (Wi|W ) ,

|∆tni(W )| ≤ I(fi (W ) ≥ τn/2)I(f̂i (W ) < τn) + I(f̂i (W ) ≥ τn)I(|f̂i (W )− fi (W ) | > τn/2), (A-16)

I(f̂i (W ) < τn) ≤ I(fi (W ) ≤ 2τn) + I(|f̂i (W )− fi (W ) | > τn), (A-17)

and the uniform rates for ‖ f̂ − f ‖2W ,∞ , we obtain

sup
α∈A

|R1n(α)| = OP ∗

(
√
npn +

√
n
‖ f̂ − f ‖2W ,∞

τ2n

)

= oP ∗(1).

The proof that supα∈A |R2n(α)| = oP ∗(1) follows the same steps as for R1n, hence, it is omitted.Q.E.D.

Proof of Theorem 2.1: We write, with ∆tni(W ) defined in (A-15),

∆̂n(α) =
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}tni(W )φ(Xi) +
1√
n

n∑

i=1

{Yi − m̂(Wi|W )}∆tni(W )φ(Xi)

=: Sn(α) +Rn(α),

By Lemma A.4, Rn(α) = oP ∗(1), uniformly in α ∈ A.

To handle Sn we shall apply Theorem 2.11.9 in van der Vaart and Wellner (1996) to the array

Zni(λ) = n−1/2(Yi − m(Xi))I(f (Wi|W ) ≥ 0.5τn)φ(Xi), where λ = (m,W,φ) ∈ Λ, and Λ := T ηm
M ×

18



W ×Φ. By Triangle inequality, Assumption 7, definition of T ηm
M and the monotonicity of the indicator

function, it follows that

n∑

i=1

E[sup |Zni(λ2)− Zni(λ1)|2]

≤ Cδ2 + CE[I(0.5τn − Cδ2 ≤ f (W1i|W1) ≤ 0.5τn + Cδ2)]

≤ Cδ2,

where the sup is taken over λ2 = (m2,W2, φ2) ∈ Λ such that ‖m2 −m1‖∞ < δ, ‖W2 −W1‖∞ < δ2 and

‖φ2 − φ1‖2 < δ, for a fixed λ1 = (m1,W1, φ1) ∈ Λ. Then, using the notation of Theorem 2.11.9 in van

der Vaart and Wellner (1996), for any ε > 0,

N[·](ε,Λ, L
n
2 ) ≤ N

( ε

2C
,T ηm
M , ‖·‖∞

)
×N

([ ε
2C

]2
,W, ‖·‖∞

)
×N

( ε

2C
,Φ, ‖·‖2

)
.

Hence, by Lemma B.2 in Ichimura and Lee (2010) and Assumption 8, Λ satisfies
∫ 1
0

√
N[·](ε,Λ, L

n
2 ) <∞.

On the other hand, for any δ > 0, by Chebyshev’s inequality

n∑

i=1

E[‖Zni‖Λ I(‖Zni‖Λ > δ)] ≤ Cn1/2E[|(Y −m(X))| I(|(Y −m(X))| > Cn1/2δ)]

≤ CE[|(Y −m(X))|2]
n1/2δ2

→ 0.

Hence, the conditions of Theorem 2.11.9 in van der Vaart and Wellner (1996, p. 211) are satisfied and∑n
i=1 Zni(λ) − E[Zni(λ)] is asymptotic stochastic equicontinuous with respect to the pseudo-metric

ρ(λ1, λ2) := max{‖m2 −m1‖∞ , ‖W2 −W1‖∞ , ‖φ2 − φ1‖2}. The stochastic equicontinuity, Assump-

tion 6 and our results in Appendix B imply that, uniformly in α ∈ A,

Sn(α) =
1√
n

n∑

i=1

{Yi −m(Wi|W )}tni(W )φ(Xi)−
√
nE[{m̂(Wi|W )−m(Wi|W )}tni(W )φ(Xi)] + oP ∗(1),

=: ∆0n(α) −∆1n(α) + oP ∗(1).

We shall prove that

sup
α∈A

∣∣∣∣∣∆0n(α) −
1√
n

n∑

i=1

{Yi −m(Wi|W )}φ(Xi)

∣∣∣∣∣ = oP ∗(1) (A-18)

and

sup
α∈A

∣∣∣∣∣∆1n(α) −
1√
n

n∑

i=1

{Yi −m(Wi|W )}E[φ(Xi)|Wi]

∣∣∣∣∣ = oP ∗(1). (A-19)

The equality in (A-18) follows from the same arguments in Lemma A.4. We prove now (A-19). To sim-

plify notation denote ια (w) := E[φ(Xi)|Wi = w], α ∈ A, and note that ∆1n(α) = E[ια (Wi) tni(W )(m̂(Wi|W )−
m(Wi|W ))]. We write

m̂(w|W )−m(w|W ) = an (w|W ) + rn(w|W ),
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where

an (w|W ) := f−1 (w|W )
(
T̂ (w|W )− T (w|W )−m(w|W )

(
f̂ (w|W )− f (w|W )

))
,

T (w|W ) := m (w|W ) f (w|W ) and

rn(w|W ) := − f̂ (w|W )− f (w|W )

f̂ (w|W ) f (w|W )
an (w|W ) .

From the results in Appendix B we obtain that sup |rn(w|W )| = oP ∗(n−1/2) under our assumptions

on the bandwidth. It then follows that ∆1n(α) is uniformly bounded by

∫
ια (w) tni(w)[T̂ (w|W )− T (w|W )]dw (A-20)

−
∫
ια (w) tni(w)m(w|W )[f̂ (w|W )− f (w|W )]dw (A-21)

+ oP ∗(n−1/2).

We now look at terms (A-20)-(A-21). Firstly, it follows from our results in Appendix B that the

difference between T (w|W ) and E(T̂ (w|W )) is oP ∗(n−1/2). Secondly, under Assumption 7(ii) we can

replace tni(w) by one. Hence, uniformly in α ∈ A,

∫
ια (w) [T̂ (w|W )− T (w|W )]dw =

∫
ια (w) [T̂ (w|W )− E(T̂ (w|W ))]dw + oP ∗(n−1/2)

=
1

n

n∑

j=1

Yj

∫
ια (w)Kh(Wj −w)dw −

∫
ια (w)E(YjKh(Wj −w))dw + oP ∗(n−1/2),

=
1

n

n∑

j=1

ια (Wj)Yj − E[ια (Wj)m(Wj |W )] + oP ∗(n−1/2),

where the last equality follows from the change of variables u = h−1(Wj−w), Assumptions 3, 5 and the

fact that, uniformly in α ∈ A,
∫
ια (w)Kh(Wj − w)dw =

∫
φ(x)

(∫
fX (x|w,W )Kh(Wj −w)dw

)
dx =∫

φ(x)fX (x|Wj ,W ) dx + O(brn). Likewise, the term (A-21) becomes
∫
ια (w)m(w|W )[f̂ (w|W ) −

f (w|W )]dw = n−1/2
∑n

j=1 ια (Wj)m(Wj |W ) − E[ια (Wj)m(Wj |W )] + oP ∗(n−1/2). In conclusion, we

have uniformly in α ∈ A, that ∆1n(α) = n−1/2
∑n

j=1 ια (Wj) [Yj−m(Wj|W )]+oP ∗(n−1/2). This proves

(A-19) and hence the result of the Theorem. Q.E.D.

Proof of Theorem 2.2: We write, using m̂i := m̂(Ŵi|Ŵ ),

∆̂n(α̂) =
1√
n

n∑

i=1

{Yi − m̂i}tniφ̂(Xi) +
1√
n

n∑

i=1

{Yi − m̂i}∆tniφ̂(Xi)

=: Ŝn(α̂) + R̂n(α̂).

We write R̂n(α̂) = n−1/2
∑n

i=1 εi∆tniφ̂(Xi)−n−1/2
∑n

i=1{m̂i−m0i}∆tniφ̂(Xi) =: R̂1n−R̂2n. Note that,

by the arguments of the proof of Lemma A.4, the first term in the last equation satisfies R̂1n(α̂) = oP (1),
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while the second term can be further decomposed as

R̂2n =
1√
n

n∑

i=1

{m̂i −m(Ŵi|Ŵ )}∆tniφ̂ (Xi) +
1√
n

n∑

i=1

{m(Ŵi|Ŵ )−m0i}∆tniφ̂ (Xi)

:= R̂2n;a + R̂2n;b.

We can further write, using (A-16),

E|R̂2n;a| ≤ ‖ (m̂−m)I(f ≥ τn/2) ‖W ,∞

√
nP (f̂(Ŵi|Ŵ ) < τn) (A-22)

+ ‖ (m̂−m)I(f̂ ≥ τn) ‖W ,∞

4
√
n ‖ f̂ − f ‖2∞

τ2n
.

The results in Appendix B and (A-17) yield

√
nP (f̂(Ŵi|Ŵ ) < τn) = OP (n

1/2(pn + τ−1
n dn)),

‖ (m̂ −m)I(f ≥ τn/2) ‖W ,∞ = OP (τ
−1
n dn) and ‖ (m̂ −m)I(f̂ ≥ τn) ‖W ,∞ = OP (τ

−1
n dn). Thus, from

(A-22) and the previous rates

R̂2n;a = OP (τ
−1
n dn)OP (n

1/2
(
pn + τ−1

n dn + τ−2
n d2n

)
)

= oP (1).

Similarly,

R̂2n;b = OP (wn)OP (n
1/2
(
pn + τ−1

n dn + τ−2
n d2n

)
)

= oP (1).

Recall φ̂⊥W (X) := φ̂(X) − E[φ̂(X)|Ŵ ]. Then, using R̂n(α̂) = oP (1) and Theorem 2.1, we can write

∆n(α̂) =
1√
n

n∑

i=1

εiφ̂
⊥
W (Xi) +

κ∑

j=1

1√
n

n∑

i=1

(g0i − ĝi)
j 1

j!
∂
(j)
ḡ m(W0i)φ̂

⊥
W (Xi)

+
1√
n

n∑

i=1

κ∑

j=1

{m(W0i|W0)−m(Ŵi|W0)− (g0i − ĝi)
j 1

j!
∂
(j)
ḡ m(W0i)}φ̂⊥W (Xi)

+
1√
n

n∑

i=1

{m(Ŵi|W0)−m(Ŵi|Ŵ )}φ̂⊥W (Xi) + oP (1)

=: ∆̃n(α̂) +
κ∑

j=1

Rjn(α̂) + R̃1n(α̂) + R̃2n(α̂) + oP (1). (A-23)

To handle ∆̃n(α̂), we apply Lemma A.3 with S = {s(x) = φ(x) − E[φ(X)|W = W (x)] : α ∈ A}. Let

{Wk : k = 1, ..., N1ε} be an ε2-net covering of W with respect to the sup-norm ‖·‖∞. Let {[φlj , φuj ] :
j = 1, ..., N2ε} be an ε-bracket covering of Φ. Then, it holds that {[φlj − E[φuj(X)|Wk] − Cε2, φuj −
E[φlj(X)|Wk] + Cε2]} is an ε-bracket covering of S with respect to ‖·‖2. In fact, for each E[φ(X)|W ]

we can find j and k such that φlj ≤ φ ≤ φuj and ‖W −Wk‖∞ < ε2, and by Lemma A.2,

E[φlj(X)|Wk]− Cε2 ≤ E[φ(X)|W ] ≤ E[φuj(X)|Wk] +Cε2.
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Hence, logN[·](ε,S, ‖·‖2) ≤ Cε−vs for some vs < 2.

In A we define the pseudo-metric

ρA(α1, α2) := max {‖W1 −W2‖∞ , ‖φ1 − φ2‖2} , αj := (Wj , φj), j = 1, 2.

A consequence of the stochastic equicontinuity of ∆̃n(α) and that ρA(α̂, α0) = oP (1) is that

∆̃n(α̂) = ∆̃n(α0) + oP (1). (A-24)

On the other hand, by our Assumption 10(i) and an application of Lemma A.3 with S = {s(x) =

E[∂gm(W0i)φ
⊥
W (X)|X1 = x1] : α ∈ A}, we obtain

κ∑

j=1

Rjn(α̂) = −Gn(α̂) + oP (1)

= −Gn(α0) + oP (1). (A-25)

The proof concludes by showing that both R̃1n(α̂) and R̃2n(α̂) are oP (1). It follows from a Taylor

expansion that |R̃1n(α̂)| = OP (
√
n ‖ĝi − g0‖κ∞) = oP (1). To show that R̃2n(α̂) = oP (1), we first show

that the empirical process Qn(α) := n−1/2
∑n

i=1 φ
⊥
W (Xi)m(Wi|W ) is stochastically ρA-equicontinuous.

To that end, consider the class of functions H = {z → s(z, α) = {φ(x)− E[φ(x)|W ]}m(W |W ) : φ ∈
Φ,W ∈ W}. By the Triangle inequality and Lemma A.2, it follows that E[sup |s(Z,α2)− s(Z,α1)|2] ≤
Cδ2, where the sup is taken over α2 ∈ A such that ρA(α2, α1) < δ, for a fixed α1 ∈ A. Then, the

stochastic equicontinuity follows from Lemma A.1. Then, by continuity and ρA(α̂, α0) = oP ∗(1), it

follows that R̃2n(α̂) = n−1/2
∑n

i=1{m(W0i|W0)−m(W0i|W0)}φ⊥0 (Xi) + oP ∗(1) = oP ∗(1). These results

along with the equality in (A-23) and the expansions (A-24) – (A-25) yield the desired result. Q.E.D.

Proof of Corollary 3.1: Our estimator satisfies the first order condition

0 =
1

n

n∑

i=1

[Yiĝi −Dim̂iθ̂∗
]

∂θm̂iθ̂∗

m̂
iθ̂∗

(ĝi − m̂
iθ̂∗

)
ψ̂∗
i t̃in.

Simple algebra and a standard Taylor series expansion around θ0 yield

Yiĝi −Dim̂iθ̂∗
= [Yi − m̂iθ0 ]ĝi − [Di − ĝi] m̂iθ0 −Di∂

⊤
θ m̂iθ̄(θ̂

∗ − θ0),

where θ̄ is such that |θ̄ − θ0| ≤ |θ̂ − θ0| a.s. It then follows that, for a sufficiently large n,

√
n(θ̂∗ − θ0) = Γ−1

n

(
1√
n

n∑

i=1

[Yi − m̂iθ0 ]
ĝi∂θm̂iθ̂∗

m̂
iθ̂∗

(ĝi − m̂
iθ̂∗

)
ψ̂∗
i t̃in −

1√
n

n∑

i=1

[Di − ĝi]
∂θm̂iθ̂∗

(ĝi − m̂
iθ̂∗

)
ψ̂∗
i t̃in

)

≡ Γ−1
n (A1n −A2n) (A-26)

where

Γn :=
1

n

n∑

i=1

Di∂θm̂iθ̂∗
∂⊤θ m̂iθ̄

m̂
iθ̂∗

(ĝi − m̂
iθ̂∗

)
ψ̂∗
i t̃in.
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We obtain now some rates of convergence for kernel estimates that will be useful in subsequent argu-

ments. Note that

f̂ (w| θ, g) ∂θm̂(w|θ, g) = ∂θT̂ (w| θ, g)− m̂ (w| θ, g) ∂θ f̂ (w| θ, g) .

To show the convergence of the right hand side (r.h.s), using a simplified notation, we write

sup |∂θ f̂(w|θ, g) − ∂θf(w|θ, g)| ≤ sup |∂θ f̂(w|θ, g) − E∂θ f̂(w|θ, g)|
+ sup |E∂θ f̂(w|θ, g)− ∂θf(w|θ, g)|
≡ I1n + I2n,

where the sup is over the set an ≤ ĥn ≤ bn, θ ∈ Θ0, w ∈ XW and g ∈ G. From Lemma B.8, it follows

that

I1n = OP ∗



√

log a−2
n ∨ log log n

na4n


 .

By the classical change of variables and integration by parts, for any an ≤ h ≤ bn,

E
[
∂θf̂(w|θ, g) − ∂θf(w|θ, g)

]
=

1

h3
E

[
X∂w1

K

(
w −W (θ, g)

h

)
− ∂θf(w|θ, g)

]

=

∫
∂w1

m(w − uh|θ, g)K (u) du− ∂θf(w|θ, g),

where m (w| θ, g) = r (w| θ, g) f (w| θ, g) and r (w| θ, g) := E[X|W (θ, g) = w]. By a Taylor series

expansion,

I2n = O

(
br−1
n

1

r!

∥∥∂r−1
w ∂w1

m
∥∥
Θ×G,∞

)
= O

(
br−1
n

)
.

The proof for T̂ follows the same arguments as for f̂ , and hence is omitted. Therefore by simple but

somewhat tedious algebra one can show that
∥∥∥f̂∂θm̂θ̂∗

( ·| θ̂∗, ĝ)− f∂θmθ0 ( ·|W0)
∥∥∥
∞

= OP ∗

(
d′n
)
+
∥∥∥f∂θmθ̂∗

( ·| θ̂∗, ĝ)− f∂θmθ0 ( ·|W0)
∥∥∥
∞

= oP ∗(1),

where the second equality uses that f∂θmθ̂∗
(W ) is Liptschitz in W , and where

d′n =

√
log a−2

n ∨ log log n

na4n
+ br−1

n .

To simplify the notation, we define

ϕ̂i :=
∂θm̂iθ̂∗

∂⊤θ m̂iθ̄

σ̂2i
× m̃i(ĝi − m̃i)

m̂
iθ̂∗

(ĝi − m̂
iθ̂∗

)
=: ϕ̂1i × ϕ̂2i,

and note that Γn = n−1
∑n

i=1Diĝ
−1
i ϕ̂it̃in can be written as

Γn = n−1
n∑

i=1

ϕ̂i t̃in + n−1
n∑

i=1

(Di − ĝi)ĝ
−1
i ϕ̂i t̃in

= n−1
n∑

i=1

ϕ̂i t̃in + oP (1).
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By the continuous mapping theorem it can be shown that, uniformly in 1 ≤ i ≤ n and an ≤ ĥn ≤ bn,

ϕ̂1i ≡
∂θm̂iθ̂∗

∂⊤θ m̂iθ̄

σ̂2i
=
∂θm(W0i)∂

⊤
θ m(W0i)

σ20i
+ oP (1)

=: ϕ1i + oP (1)

and

ϕ̂2i = ϕ2i(θ̂
∗) +OP

(
τ−1
n

{
dn + n−1/2 + wn

})
(A-27)

= 1 + oP (1),

where ϕ2i(θ) := m0i(g0i −m0i)/miθ(g0i −miθ). Hence, since n
−1
∑n

i=1(t̃in − 1) = oP (1), we obtain by

the uniform consistency of ϕ̂i and the law of large numbers,

Γn = n−1
n∑

i=1

ϕi + n−1
n∑

i=1

(ϕ̂i − ϕi)(t̃in − 1) + n−1
n∑

i=1

ϕi(t̃in − 1) + n−1
n∑

i=1

(ϕ̂i − ϕi) + oP (1)

= Γ + oP (1).

We now show that A1n in (A-26) has the expansion

A1n =
1√
n

n∑

i=1

[Yi − m̂iθ0 ]φ1i(θ̂
∗)ϕ2i(θ̂

∗)t̂in + oP (1)

=
1√
n

n∑

i=1

viφ1i + oP (1), (A-28)

where φ̂1i ≡ φ̂1i(θ̂
∗) := ∂θm̂iθ̂∗

/σ̂2i is a uniformly consistent estimate of φ1i ≡ φ1i(θ0), with φ1i(θ) :=

∂θmiθ/σ
2
i , θ ∈ Θ0. To prove the first equality of the last display it suffices to prove that

1√
n

n∑

i=1

[Yi − m̂iθ0 ]φ̂1i(ϕ̂2i t̃in − ϕ2i(θ̂
∗)t̂in) = oP (1) (A-29)

and
1√
n

n∑

i=1

[Yi − m̂iθ0 ](φ̂1i − φ1i(θ̂
∗))ϕ2i(θ̂

∗)t̂in = oP (1). (A-30)

To that end, write the l.h.s of (A-29) as

1√
n

n∑

i=1

εiφ̂1i(ϕ̂2i t̃in − ϕ2i(θ̂
∗)t̂in) +

1√
n

n∑

i=1

[miθ0 − m̂iθ0 ]φ̂1i(ϕ̂2i t̃in − ϕ2i(θ̂
∗)t̂in).

We shall focus on the second term in the last display, as the first term is of smaller order. This second

term can be written as

1√
n

n∑

i=1

[miθ0 − m̂iθ0 ]φ̂1i(ϕ̂2i − ϕ2i(θ̂
∗))t̃in +

1√
n

n∑

i=1

[miθ0 − m̂iθ0 ]φ̂1iϕ2i(θ̂
∗)(t̃in − t̂in)

≡ C1n + C2n.
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The uniform rates in (A-27) and our results on kernel estimates imply that

C1n = OP (n
1/2q2nτ

−1
n )

= oP (1).

Similarly, since for sufficiently large n,

∣∣t̃in − t̂in
∣∣ ≤ I(|m̃i −mi| > τn) + I(|(ĝi − m̃i)− (g0i −mi)| > τn),

it can be shown that

C2n = OP (n
1/2q2nτ

−1
n )

= oP (1).

On the other hand, we write φ̂1i − φ1i as

φ̂1i − φ1i(θ̂
∗) =

1

b
iθ̂∗

+ b̂i − b
iθ̂∗

{
âi − a

iθ̂∗
− φ1i(̂bi − b

iθ̂∗
)
}
,

where, with a simplified notation,

âi := f̂2i ∂θm̂iθ̂∗
= f̂i∂θT̂i − T̂i∂θf̂i, aiθ̂∗ := f2

iθ̂∗
∂θmiθ̂∗

,

b̂i := f̂2i σ̂
2
i = T̂i(f̂i − T̂i) + (ĉi)

2 ĝi(1− ĝi)− 2ĉiT̂i(1− ĝi),

ĉi := ∂ḡT̂i − m̂i∂ḡf̂i and b
iθ̂∗

:= f2
iθ̂∗
σ2i . Then, from these expressions and the previous rates for

derivatives, we obtain that uniformly in 1 ≤ i ≤ n and an ≤ ĥn ≤ bn,

φ̂1i − φ1i(θ̂
∗) = OP (q

′
n).

The last display shows (A-30) in a routine fashion.

Finally, to prove the second equality in (A-28) we apply Theorem 2.2 with the class

Φ =

{
x→ ϕ(x, θ) :=

∂θmθ

mθ(g0 −mθ)

m(g0 −m)

σ2(x)
: θ ∈ Θ0

}
,

where ∂θmθ ≡ ∂m(Wi(θ, g0)|W (θ, g0))/∂θ|θ=θ and mθ ≡ m(W (θ, g0)|W (θ, g0)). By our assumptions

ϕ(X, θ) is bounded and satisfies

|ϕ(x, θ1)− ϕ(x, θ2)| ≤ CL(x) |θ1 − θ2| ,

for all θ1, θ2 ∈ Θ0 and CL(·) such that E[C2
L(X)] < ∞. Hence, Assumption 8 is satisfied. Then, using

E[∂θm(Wi0)|W0] = 0 a.s., which can be shown as in Ichimura (1993, Lemma 5.6, p. 95), we conclude

(A-28).

Similar arguments to those used above for A1n show that

A2n =
1√
n

n∑

i=1

[Di − ĝi]
m̃i(ĝi − m̃i)∂θm̂iθ̂∗

σ̂2i ĝi(ĝi − m̂
iθ̂∗

)
t̃in =

1√
n

n∑

i=1

[Di − ĝi] φ̂2iφ̂1it̃in + oP (1)

=
1√
n

n∑

i=1

[Di − ĝi]φ2i(θ̂
∗)φ1i(θ̂

∗)t̂in + oP (1)

= oP (1),
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where φ̂2i := m̂
iθ̂∗
/ĝi estimates consistently φ2i ≡ φ2i(θ0), with φ2i(θ) := miθ/g0i. The last equality fol-

lows from an application of Theorem 2.2 withW = {x→ W (x) = x} and Φ = {Xi → φ2i(θ)φ2i(θ) : θ ∈ Θ0} .
Thus, we conclude that

√
n(θ̂∗ − θ0) = Γ−1

n

1√
n

n∑

i=1

viφ1i + oP (1),

and the result of the corollary follows from the Lindeberg-Lévy Central Limit Theorem and Slutsky’s

Lemma. The proof that Γ̂∗ = Γ∗ + oP (1) follows the same arguments as that of Γ−1
n = Γ−1 + oP (1)

and is therefore omitted. Q.E.D.

Proof of Theorem 3.2: Using our uniform rates for kernel estimators one can show that φ̂∗(Xi, ĝi)

converges uniformly to φ∗(X, g0(X)) with a rate OP (τ
−1
n (qn + n−1/2)), so that

1√
n

n∑

i=1

[Yi − m̂(Ŵi|Ŵi)]
(
φ̂∗(Xi, ĝi)− φ∗(Xi, g0i)

)
t̂ni = OP (n

1/2τ−1
n q2n).

Hence, by Theorem 2.2 in the main text with Φ = {x→ φ∗(x, g0i)} , uniformly in an ≤ ĥn ≤ bn,

Tn,h =
1√
n

n∑

i=1

[Yi − m̂(Ŵi|Ŵi)]φ∗(Xi, g0i)t̂ni =
1√
n

n∑

i=1

viφ
⊥
∗ (Xi, g0i) + oP (1).

On the other hand, it is straightforward to prove that σ̂2 = σ2 + oP (1). The limiting null distribu-

tion then follows from the Lindeberg-Lévy Central Limit Theorem and Slutsky’s Lemma. Under the

alternative,

1√
n
Tn,h :=

1

n

n∑

i=1

[Yi − m̂(Ŵi|Ŵi)]φ̂∗(Xi, ĝi)t̂ni,

converges to E (εiφ∗(Xi, g0i)) 6= 0, and hence the consistency follows. Q.E.D.

Appendix B Uniform Consistency Results for Kernel Estimators

This section establishes rates for uniform consistency of kernel estimators used in the paper. These

auxiliary results complement related ones in Andrews (1995) and Sperlich (2009), among others, but

we impose different conditions on the kernel functions and provide alternative methods of proof. Unlike

Mammen, Rothe and Schienle (2011a), we consider uniform in bandwidth consistency and rates, though

we do not provide uniform limiting distributions. Einmahl and Mason (2005) also study uniform in

bandwidth consistency of kernel estimators, but they did not consider the extension to kernel estimators

of (possibly nonparametrically) generated observations, as we do. The results of this section, which

should be potentially useful in other settings, are more general than required for the proofs of the main

the results in the text.

We first state some well-known results from the empirical process literature. Define the generic

class of measurable functions G := {z → m(z, θ, h) : θ ∈ Θ, h ∈ H}, where Θ and H are endowed with

the pseudo-norms |·|Θ and |·|H, respectively. The following result is Theorem 2.14.2 in van der Vaart

and Wellner (1996, p. 240).
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Lemma B.1 Let G be a class of measurable functions with a measurable envelope G. Then, there

exists a constant C such that

E∗[‖Gn‖G ] ≤ C ‖G‖2
∫ 1

0

√
1 + logN[·](ε,G, ‖·‖2)dε.

The following result is the celebrated Talagrand’s inequality (see Talagrand, 1994). Rademacher vari-

ables are iid variables {εi}ni=1 such that P (εi = 1) = P (εi = −1) = 1/2.

Lemma B.2 Let G be a class of measurable functions satisfying ‖g‖∞ ≤ M < ∞ for all g ∈ G. Then

it holds for all t > 0 and some universal positive constants A1 and A2 that

P ∗


 max

1≤m≤n
‖Gm‖G ≥ A1


E

∥∥∥∥∥
n∑

i=1

εig(Zi)

∥∥∥∥∥
G

+ t




 ≤ 2

{
exp

(
−A2t

2

nσ2G

)
+ exp

(
−A2t

M

)}
,

where {εi}ni=1 is a sequence of iid Rademacher variables, independent of the sample {Zi}ni=1 and σ2G :=

supg∈Gvar(g(Z)).

We now proceed with the main results of this section. Let Υ be a class of measurable real-valued

functions of Z and let W be a class of measurable functions of X with values in R
d. Define XW :=

{W (x) ∈ R
d : W ∈ W and x ∈ XX}. We denote by ψ := (ϕ,w,W ) a generic element of the set

Ψ := Υ×XW ×W. Let ΨI := Υ× I ×W, for a compact set I ⊂ XW . Let f (w|W ) denote the density

of W (X) evaluated at w. Define the regression function c(ψ) := E[ϕ(Z)|W (X) = w]. Henceforth,

we use the convention that a function evaluated outside its support is zero. Then, an estimator for

m(ψ) := c(ψ)f (w|W ) is given by

m̂h(ψ) =
1

nhd

n∑

i=1

ϕ (Zi)K

(
w −W (Xi)

h

)
,

whereK (w) =
∏d
l=1k(wl), k (·) is a kernel function, h := hn > 0 is a bandwidth and w = (w1, . . . , wd)

⊤.

We consider the following regularity conditions on the data generating process, kernel, bandwidth and

classes of functions.

Assumption B.1 The sample observations {Zi := (Y ⊤
i ,X

⊤
i )

⊤}ni=1 are a sequence of independent and

identically distributed (iid) variables, distributed as Z ≡ (Y ⊤,X⊤)⊤.

Assumption B.2 The class W is such that logN(ε,W, ‖·‖∞) ≤ Cε−vw for some vw < 1.

Assumption B.3 The density f (w|W ) is uniformly bounded, i.e. ‖f‖W ,∞ < C.

Assumption B.4 The kernel function k (t) : R → R is bounded, r-times continuously differentiable

and satisfies the following conditions:
∫
k (t) dt = 1,

∫
tlk (t) dt = 0 for 0 < l < r, and

∫
|trk (t)| dt <

∞, for some r ≥ 2; |∂k(t)/∂t| ≤ C and for some v > 1, |∂k(t)/∂t| ≤ C |t|−v for |t| > L, 0 < L <∞.

Assumption B.5 The possibly data-dependent bandwidth h satisfies P (an ≤ h ≤ bn) → 1 as n→ ∞,

for deterministic sequences of positive numbers an and bn such that bn → 0 and adnn/ log n→ ∞.
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Given the class W and the compact set I ⊂ XW , we define the class of functions

K0 :=

{
x→ K

(
w −W (x)

h

)
: w ∈ I,W ∈ W, h ∈ (0, 1]

}
.

Our first result establishes the complexity of the class K0, which is crucial for the subsequent analysis.

Lemma B.3 Under Assumption B.4, for a positive constant C1,

N[·] (C1ε,K0, ‖·‖2) ≤ Cε−vN(ε2,W, ‖·‖∞), for some v ≥ 1. (B-31)

Proof of Lemma B.3: Let W1, ...,WN1ε be the centers of an ε2−cover of W with respect to ‖·‖∞,

where N1ε = N(ε2,W, ‖·‖∞). Fix j, j = 1, ..., N1ε, and consider the marginal class

K0,j :=

{
x→ K

(
w −Wj (x)

h

)
: w ∈ I, h ∈ (0, 1]

}
.

We will show that under our assumptions, K0,j is a VC class for each j, hence N(ε,K0,j) ≤ Cε−v for

some v ≥ 1. Notice that K0,j =
d∏

l=1

K0,j,l where

K0,j,l :=

{
x→ k

(
wl −Wjl (x)

h

)
: wl ∈ Il, h ∈ (0, 1]

}
,

where Il := {wl : w ∈ I} and Wj (x) = (Wj1 (x) , ...,Wjd (x))
⊤. Hence, by Lemma 2.6.18 in van der

Vaart and Wellner (1996, p. 147) it suffices to prove that K0,j,l is a VC subgraph class. Moreover, by

the same lemma, without loss of generality (as k is of bounded variation), we can assume that k is

non-decreasing on R. Recall that K0,j,l is a VC subgraph class if and only if its class of subgraphs is a

VC class of sets, which holds if the class

SK =

{{
(x, t) : k

(
wl −Wjl (x)

h

)
< t

}
: wl ∈ Il, h ∈ (0, 1]

}
,

is a VC subgraph class. But this follows from an application of Lemma 2.6.18 in van der Vaart and

Wellner (1996, p. 147), after noticing that

SK =
{{

(x, t) : hk−1(t)− wl +Wjl (x) > 0
}
: wl ∈ Il, h ∈ (0, 1]

}
,

where k−1(t) = inf{u : k(u) ≥ t}. Then, Lemma 2.6.15 and Lemma 2.6.18(iii) in van der Vaart and

Wellner (1996, p. 146-147) imply that the class K0,j is a VC class for each j = 1, ..., N1ε. Set, for each

ε > 0, N2εj := N(ε,K0,j).

On the other hand, our assumptions on the kernel imply that

|K(x)−K(y)| ≤ |x− y|K∗(y), (B-32)
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where K∗(y) is bounded and integrable, see Hansen (2008, p. 741). Hence, for any K (w −W (·) /h) ∈
K0, there exist Wj ∈ W, wjk ∈ I and hjk ∈ (0, 1], j = 1, ..., N1ε and k = 1, ..., N2εj , such that

E

[∣∣∣∣K
(
w −W (X)

h

)
−K

(
wjk −Wj (X)

hjk

)∣∣∣∣
2
]
≤ 2E

[∣∣∣∣K
(
w −W (X)

h

)
−K

(
w −Wj (X)

h

)∣∣∣∣
2
]

+ 2E

[∣∣∣∣K
(
w −Wj (X)

h

)
−K

(
wjk −Wj (X)

hjk

)∣∣∣∣
2
]

≤ Cε2h−1E

[
K∗

(
w −Wj (X)

h

)]
+ 2ε2

≤ C2
1ε

2,

where recall Wj is such that ‖W −Wj‖∞ ≤ ε2, and the second inequality uses that K is bounded to

conclude |K((w −W (X))/h) −K((w −Wj (X))/h)| ≤ C. Hence, (B-31) follows. Q.E.D.

The following lemma extends some results in Einmahl and Mason (2005) to kernel estimators with

nonparametric generated regressors.

Lemma B.4 Let J = Iε = {w ∈ XW : |w − v| ≤ ε, v ∈ I}, for I a compact set of XW ⊂ R
d for some

0 < ε < 1. Also assume that Assumptions B.1 – B.5 hold. Further, assume that Υ is a VC class, with

envelope function G satisfying

∃M > 0 : G (Z) I {W (X) ∈ J} ≤M , a.s. (B-33)

or for some s > 2

sup
(W,w)∈W×J

E[Gs (Z) |W (X) = w] <∞. (B-34)

Then we have for any c > 0 and bn ↓ 0, with probability 1,

lim sup
n→∞

sup
cγn≤h≤bn

sup
ψ∈ΨI

√
nhd |m̂h(ψ)− Em̂h(ψ)|

√
((log(1/hd)) ∨ log log n)

=: Q (c) <∞,

where cn := c (log n/n), γ := 1/d in the bounded case (B-33) and γ := (1/d − 2/ds) under assumption

(B-34).

Proof of Lemma B.4: We only prove this lemma for the unbounded case, the proof for the bounded

case follows similar steps and therefore is omitted. For any k = 1, 2, ..., and ϕ ∈ Υ, set nk := 2k, and

ϕk (Zi) := ϕ (Zi) I
{
G (Zi) < c−1/s

nk

}
,

where s is as in (B-34).

For fixed h0, 0 < h0 < 1, and for nk−1 ≤ n ≤ nk, w ∈ I, cγnk ≤ h ≤ h0 and ϕ ∈ Υ, let

m̂
(k)
h (ψ) =

1

nhd

n∑

i=1

ϕk (Zi)K

(
w −W (Xi)

h

)
.
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First, we shall prove that under our assumptions there exists a constant Q1 (c) < ∞, such that with

probability 1,

lim sup
k→∞

∆k = Q1 (c) , (B-35)

where

∆k := max
nk−1≤n≤nk

sup
cγnk

≤h≤h0

sup
ψ∈ΨI

√
nhd

∣∣∣m̂(k)
h (ψ) − Em̂

(k)
h (ψ)

∣∣∣
√

((log(1/hd)) ∨ log log n)
.

To that end, for ψ ∈ ΨI and cγnk ≤ h ≤ h0, let

vh(Zi, ψ) := ϕ (Zi)K

(
w −W (Xi)

h

)
and v

(k)
h (Zi, ψ) := ϕk (Zi)K

(
w −W (Xi)

h

)
.

Define the class Vk(h) := {v(k)h (·, ψ) : ψ ∈ ΨI} and note that for each v
(k)
h ∈ Vk(h),

sup
z∈Z

‖ v(k)h (z, ·) ‖ΨI
:= sup

z∈Z
sup
ψ∈ΨI

|v(k)h (z, ψ)| ≤ ‖K‖∞ c−1/s
nk

.

Also, observe that

E[|v(k)h (Z,ψ)|2] ≤ E[|vh(Z,ψ)|2] ≤ E

[∣∣∣∣ϕ (Zi)K

(
w −W (Xi)

h

)∣∣∣∣
2
]
.

Using a conditioning argument, we infer that the last term is

≤
∫
E[G2 (Z) |W (X) = w′]K2

(
w − w′

h

)
f
(
w′
∣∣W

)
dw′

≤ C

∫
hdK2 (u) f (w − uh|W ) du

≤ C ‖K‖22,λ ‖f‖W ,∞ hd =: C1h
d.

Thus,

sup
v∈Vk(h)

E[|v(Z)|2] ≤ C1h
d. (B-36)

Set for j, k ≥ 0, hj,k := 2jcγnk and define Vj,k := {v(k)h (·, ψ) : ψ ∈ ΨI and hj,k ≤ h ≤ hj+1,k}. Clearly by

(B-36),

sup
v∈Vj,k

E[|v(Z)|2] ≤ Chdj,k =: σ2j,k. (B-37)

Define the product class of functions G0 := K0 · C ·Υ, where

K0 =

{
x→ K

(
w −W (x)

h

)
: w ∈ I,W ∈ W, h ∈ (0, 1]

}

and C = {z → f (z) = I {G (z) < c} : c > 0}. It is straightforward to prove that, for some positive

constant C,

N[·](ε,G0, ‖·‖2) ≤ N (Cε,K0, ‖·‖2)×N (Cε, C, ‖·‖2)×N (Cε,Υ, ‖·‖2) . (B-38)
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Hence, by Lemma B.3 and our assumptions on the class Υ, we obtain that logN[·](ε,G0, ‖·‖2) ≤ Cε−v0 ,

for some v0 < 2. Note that Vj,k ⊂ G0, so logN[·](ε,Vj,k, ‖·‖2) ≤ Cε−v0 also holds.

Define lk := max{j : hj,k ≤ 2h0} if this set is non-empty, which is obviously the case for large

enough k. Also, define

aj,k :=

√
nkh

d
j,k

(∣∣∣log(1/hdj,k)
∣∣∣ ∨ log log nk

)
.

Then, by Lemma B.1 and (B-37), for some positive constant C3, for all k sufficiently large and all

0 ≤ j ≤ lk − 1,

E∗

[
sup
v∈Vj,k

∣∣∣∣∣

nk∑

i=1

εiv(Zi)

∣∣∣∣∣

]
≤ C3

√
nkh

d
j,k

≤ C3aj,k (B-39)

where {εi}ni=1 is a sequence of iid Rademacher variables, independent of the sample {Zi}ni=1.

By definition, 2hlk ,k = hlk+1,k ≥ 2h0, which implies that for nk−1 ≤ n ≤ nk, [c
γ
n, h0] ⊂ [cγnk , hlk ,k].

Thus, for large enough k and for any ρ > 1,

Ak(ρ) := {∆k ≥ 2A1(C3 + ρ)} ⊂
lk−1⋃

j=0

{
max

nk−1≤n≤nk

∥∥√nGn

∥∥
Vj,k

≥ A1(C3 + ρ)aj,k

}
,

where C3 is the constant in (B-39) and A1 is the universal constant in Lemma B.2.

Set for any ρ > 1, j ≥ 0 and k ≥ 1,

pj,k(ρ) := P ∗

(
max

nk−1≤n≤nk

∥∥√nGn

∥∥
Vj,k

≥ A1(C3 + ρ)aj,k

)
.

Note that
√
nkh

d
j,kc

1/s
nk = 2jd/2

√
nkcnk

, nkcnk
log log nk ≥ c (log log nk)

2 and that a2j,k/nkh
d
j,k ≥ log log nk,

for all k sufficiently large. Hence, applying Talagrand’s inequality, see Lemma B.2, with σ2G = σ2j,k,

M = ‖K‖∞ c
−1/s
nk and t = ρaj,k, we obtain

pj,k(ρ) ≤ 2

[
exp

(
−
A2ρ

2a2j,k

nkCh
d
j,k

)
+ exp

(
−A2ρaj,kc

1/s
nk

‖K‖∞

)]

≤ 2

[
exp

(
−A2ρ

2

C
log log nk

)
+ exp

(
−2jd/2A2ρ

‖K‖∞
√
nkcnk

log log nk

)]

≤ 2 (log nk)
−

A2ρ
2

C + 2 (log nk)
−

A2ρ2
jd/2c1/2

‖K‖∞

≤ 4 (log nk)
−ρA3 ,

where A3 := A2

(
1/C ∧ c1/2/ ‖K‖∞

)
. Since lk ≤ 2 log nk for large enough k,

P ∗(Ak(ρ)) ≤ Pk(ρ) :=

lk−1∑

j=0

pj,k(ρ) ≤ 8(log nk)
1−ρA3 .

Then, (B-35) follows from Borel-Cantelli by taking ρ sufficiently large, e.g. ρ ≥ 3/A3.
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Next, for nk−1 ≤ n ≤ nk, w ∈ I, cγnk ≤ h ≤ h0 and ϕ ∈ Υ, let

m
(k)
h (ψ) =

1

nhd

n∑

i=1

ϕk (Zi)K

(
w −W (Xi)

h

)
,

where ϕk (Zi) = ϕ (Zi) I
{
G (Z) ≥ c

−1/s
nk

}
. Then, following the same steps as in Lemma 4 in Einmahl

and Mason (2005, p. 1400), we obtain, with probability 1,

lim
k→∞

max
nk−1≤n≤nk

sup
cγn≤h≤h0

sup
ψ∈ΨI

√
nhd

∣∣∣m(k)
h (ψ)− Em

(k)
h (ψ)

∣∣∣
√

((log(1/hd)) ∨ log log n)
= 0. (B-40)

Finally, (B-35) and (B-40) together prove the result. Q.E.D.

Our next results involve uniform convergence rates for kernel estimators. For an and bn as in

Assumption B.5 and r as in Assumption B.4 , define

dn :=

√
log a−dn ∨ log log n

nadn
+ brn.

The following are classical smoothness conditions that are needed to control bias.

Assumption B.6 For all W ∈ W and x ∈ XX : (i) f (w|W ) and (ii) m (w|W ) and fX (x|w,W ) are

r-times continuously differentiable in w, with uniformly (in w, W and x) bounded derivatives (including

zero derivatives), where r is as in Assumption B.4.

Define as in the main text m (w|W ) := E[Y |W = w], w ∈ XW ⊂ R
d, and its nonparametric NW

estimator is m̂ (w|W ) := T̂ (w|W ) /f̂ (w|W ), where T̂ (w|W ) := n−1h−d
∑n

i=1 YiK ((w −Wi)/h) and

f̂ (w|W ) := n−1h−d
∑n

i=1K ((w −Wi)/h).

Lemma B.5 Let Assumptions B.1 – B.6(i) hold. Then, we have,

sup
an≤h≤bn

sup
w∈XW ;W∈W

|f̂(w|W )− f(w|W )| = OP ∗(dn).

Proof of Lemma B.5: Write

sup |f̂(w|W )− f(w|W )| ≤ sup |f̂(w|W )− Ef̂(w|W )|+ sup |Ef̂(w|W )− f(w|W )|
≡ I1n + I2n,

where henceforth the sup is over the set an ≤ h ≤ bn, w ∈ XW and W ∈ W. An inspection of the proof

of Lemma B.4 with ϕ (·) ≡ 1 shows that we can take I = XW , so we obtain

I1n = OP ∗



√

log a−dn ∨ log log n

nadn


 .

By the classical change of variables, Taylor expansion and Assumptions B.4 and B.6, I2n = OP ∗ (brn).

Q.E.D.

The following results establish rates of convergence for kernel estimates of m (w|W ) and T (w|W ).
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Lemma B.6 Let Assumptions B.1 – B.6 hold. Then, we have

sup
an≤h≤bn

sup
w∈XW ;W∈W

|T̂ (w|W )− T (w|W )| = OP ∗(dn).

Proof of Lemma B.6: The proof for T̂ follows the same arguments as for f̂ , and hence, it is omitted.

Q.E.D.

Define

tn(w|W ) := I(f (w|W ) ≥ τn) and t̂n(w|W ) := I(f̂ (w|W ) ≥ τn).

Lemma B.7 Let Assumptions B.1 – B.6 hold. Then, we have

sup
an≤h≤bn

sup
w∈XW ;W∈W

|m̂(w|W )−m(w|W )|tn(w|W ) = OP ∗(τ−1
n dn) +OP ∗(τ−2

n d2n)

and

sup
an≤h≤bn

sup
w∈XW ;W∈W

|m̂(w|W )−m(w|W )|t̂n(w|W ) = OP ∗(τ−1
n dn).

Proof of Lemma B.7: We write

m̂(w|W )−m(w|W ) = an (w|W ) + rn(w|W ),

where

an (w|W ) := f−1 (w|W )
(
T̂ (w|W )− T (w|W )−m(w|W )

(
f̂ (w|W )− f (w|W )

))
,

T (w|W ) := m (w|W ) f (w|W ) and

rn(w|W ) := − f̂ (w|W )− f (w|W )

f̂ (w|W ) f (w|W )
an (w|W ) .

Since f−1 (w|W ) tn(w|W ) is bounded by τ−1
n , we obtain from previous results sup |rn(w|W )| =

OP ∗(τ−2
n d2n). For the second equality, note that

m̂(w|W ) −m(w|W ) =

{
T̂ (w|W )− T (w|W )

f̂ (w|W )
−m(w|W )

f̂ (w|W )− f (w|W )

f̂ (w|W )

}
.

Hence, since m is uniformly bounded, we obtain the uniform bound

|m̂(w|W )−m(w|W )|t̂n(w|W ) ≤ τ−1
n

∣∣∣T̂ (w|W )− T (w|W )
∣∣∣

+ τ−1
n

∣∣∣f̂ (w|W )− f (w|W )
∣∣∣ |m(w|W )|

= OP ∗(τ−1
n dn).

Q.E.D.
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We now consider stronger versions of Assumptions B.5 and B.4 that are applicable to derivatives

of kernel estimates such as

ṁh(ψ) =
1

nhd+1

n∑

i=1

ϕ (Zi) K̇

(
w −W (Xi)

h

)
,

where K̇ (w/h) = k̇(w1/h)
∏d
l=2k(wl/h), where k̇ (u) = ∂k(u)/∂u is the derivative of the kernel function

k.

Assumption B.7 The possibly data-dependent bandwidth h satisfies P (an ≤ h ≤ bn) → 1 as n→ ∞,

for deterministic sequences of positive numbers an and bn such that bn → 0 and ad+2
n n/ log n→ ∞.

Assumption B.8 The kernel function k (t) : R → R is bounded, r-times continuously differentiable

and satisfies the following conditions:
∫
k (t) dt = 1,

∫
tlk (t) dt = 0 for 0 < l < r, and

∫
|trk (t)| dt <

∞, for some r ≥ 2,
∣∣∂(j)k(t)/∂tj

∣∣ ≤ C and for some v > 1,
∣∣∂(j)k(t)/∂tj

∣∣ ≤ C |t|−v for |t| > Lj ,

0 < Lj <∞, for j = 1, 2.

Lemma B.8 Under the conditions of Lemma B.4 but with B.7 and B.8 replacing B.5 and B.4, respec-

tively, we have for any c > 0 and bn ↓ 0, with probability 1,

lim sup
n→∞

sup
cγn≤h≤bn

sup
ψ∈ΨI

√
nhd+2 |ṁh(ψ)− Eṁh(ψ)|

√
((log(1/hd)) ∨ log log n)

=: Q (c) <∞.

Proof of Lemma B.8: The proof follows the same steps as that of Lemma B.4, and hence it is

omitted. Q.E.D.

Appendix C Some Primitive Conditions

This section provides primitive conditions for some of the high level assumptions in the main text of

the paper. These high level conditions can be classified into into three classes: 1. Assumptions on the

smoothness and boundedness conditions regarding densities and regression functions; 2. Asymptotic

inclusion assumptions for nonparametric estimators; and 3. Other high-level assumptions regarding

properties of these estimates. Assumptions 3, 6(i) and 9 in the main text belong to class 1. Assumptions

6(ii) and 10(ii-iii) in the paper are of the type 2, while Assumptions 10(i) in the main text is an example

of type 3. Primitive conditions for assumptions in the class 1 are generally model specific, see e.g. Klein

and Spady (1993) for parametric generated regressors. Here we focus on primitive conditions for classes

2 and 3.

Assumption 6(ii) in the main text requires that P (m̂ ∈ T ηm
M ) → 1, for some ηm > d/2 and M > 0.

That is, it requires one to prove that

sup
x∈XX ,W1,W2∈W

|m̂ (W1(x)|W1)− m̂ (W2(x)|W2)|
‖W1 −W2‖∞

= OP ∗(1) (C-41)
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and

P (m̂ ( ·|W ) ∈ CηmM (XW )) → 1 for all W ∈ W. (C-42)

We now provide primitive conditions for (C-41) and (C-42) when densities are bounded away from

zero. Similar arguments can be used to find primitive conditions with vanishing densities when random

trimming is used, simply multiplying the rates d1n and d2n below by τ−1
n .

To verify (C-41), we write

m̂ (W1(x)|W1)− m̂ (W2(x)|W2) =
T̂ (W1(x)|W1)− T̂ (W2(x)|W2)

f̂ (W1(x)|W1)
(C-43)

+

[
f̂ (W2(x)|W2)− f̂ (W1(x)|W1)

]
m̂ (W2(x)|W2)

f̂ (W1(x)|W1)
.

Define ψ := (x,W1,W2) ∈ Ψ := XX ×W ×W,

vh,1(Zi, ψ) := Yi
h

‖W1 −W2‖∞

{
K

(
W1 (x)−W1 (Xi)

h

)
−K

(
W2 (x)−W2 (Xi)

h

)}

and

m̂h,1(x, ψ) :=
1

nhd+1

n∑

i=1

vh,1(Zi, ψ).

It is straightforward to prove that, for each ψ ∈ Ψ,

E[|vh,1(Zi, ψ)|2] ≤ Chd.

Then, arguing as in Lemma B.4 one can show that

sup
an≤h≤bn

sup
ψ∈Ψ

|m̂h,1(ψ)− Em̂h,1(ψ)| = OP ∗(d1n),

where

d1n =

√
log a−dn ∨ log log n

nad+2
n

.

On the other hand, the typical arguments used to handle the bias of kernel derivatives yield

sup
an≤h≤bn

sup
ψ∈Ψ

|Em̂h,1(ψ)| = OP ∗(1).

A similar conclusion can be obtained for the other terms in (C-43). Then, a primitive condition for

(C-41) is that d1n = O(1).

To give a primitive condition for (C-42) we consider the case d = 2, which arises in models such as

the binary choice model with selection discussed in the main text. In this case, we can take ηm = 1+ηq,

with 0 < ηq < 1. Then, (C-42) reduces to showing that, for j = 1, 2, for each W ∈ W,

sup
w 6=w′

|∂m̂ (w|W ) /∂wj − ∂m̂ (w′|W ) /∂wj |
|w − w′|ηq = OP ∗(1). (C-44)
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To that end, define for ψ := (w,w′) ∈ Ψ := XW × XW ,

m̂h,2(ψ) :=
1

nhd+2

n∑

i=1

Yi
h

|w − w′|ηq
{
K̇j

(
w −W (Xi)

h

)
− K̇j

(
w′ −W (Xi)

h

)}
,

=:
1

nhd+2

n∑

i=1

vh,2(Zi, ψ),

where K̇1(w) = ∂k(w1)/∂w1k(w2) and K̇2(w) = ∂k(w2)/∂w2k(w1), w = (w1, w2). Then, using the

arguments of Lemma B.4 one can show that

sup
an≤h≤bn

sup
ψ∈Ψ

|m̂h,2(ψ)− Em̂h,2(ψ)| = OP ∗(d2n),

and

sup
an≤h≤bn

sup
ψ∈Ψ

|Em̂h,2(ψ)| = OP ∗(1),

where

d2n =

√
log a−dn ∨ log log n

nad+4
n

.

Hence, for d = 2 a primitive condition for Assumption 6(ii) is that na6n/ log(n) → ∞ and Assumption

B.8 above hold. For a general d a similar approach can be used, provided that the corresponding kernel

derivatives are of bounded variation. Similar conditions such as Assumptions 10(iii) and 13(ii) can be

verified analogously.

Next, we consider primitive conditions regarding the first step estimator in Assumption 10 when ĝi

is the NW estimator. Consider the following assumption:

Assumption C.1 (i) The regression g0 is estimated by a NW kernel estimator with a kernel function

satisfying Assumption B.4 with r = ρ and a possibly stochastic bandwidth ĥgn satisfying P (ln ≤ ĥgn ≤
un) → 1 as n → ∞, for deterministic sequences of positive numbers ln and un such that un → 0,

n(lpn/ log n)κ/(κ−1) → ∞ and nu2ρκn → 0; (ii) the function g0 and the density fX (·) of X are ρ-times

continuously differentiable in x, with bounded derivatives. The density fX (·) is bounded away from

zero. Furthermore g0 ∈ G ⊂ C
ηg
M (XX), P (ĝ ∈ G) → 1, for some ηg > d.

Examples of random bandwidths that satisfy our assumptions are plug-in bandwidths of the form

ĥgn = ĉhgn with ĉ is bounded in probability and hn a suitable deterministic sequence. If hgn = cn−δ,

for some constant c > 0, then Assumption C.1(i) requires that 1/2ρ < δ < (κ − 1)/pκ, so ρ needs to

be greater than pκ/2(κ − 1).

We now prove that under the primitive condition C.1 above, the high level Assumption 10(i) in the

main text and ‖ĝ − g0‖∞ = oP (n
−1/2κ) hold. To that end, using our Theorem 2.1, without trimming
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and with the class W (x) = {x1}, we obtain that

R1n(α̂) :=
1√
n

n∑

i=1

(g0i − ĝi)∂ḡm(W0i)φ̂
⊥
W (Xi)

=
1√
n

n∑

i=1

(Di − ĝi)∂ḡm(W0i)φ̂
⊥
W (Xi)−

1√
n

n∑

i=1

(Di − g0i)∂ḡm(W0i)φ̂
⊥
W (Xi)

=
−1√
n

n∑

i=1

(Di − g0i)E(∂ḡm(W0i)φ̂
⊥
W (Xi)|X1i) + oP (1).

Hence, |R1n(α̂) +Gn(α̂)| = oP (1). Similarly, for 2 ≤ j ≤ κ,

Rjn(α̂) =
1√
n

n∑

i=1

(g0i − ĝi)(g0i − ĝi)
j−1∂

(j)
ḡ m(W0i)φ̂

⊥
W (Xi)

=
1√
n

n∑

i=1

(Di − ĝi)(g0i − ĝi)
j−1∂

(j)
ḡ m(W0i)φ̂

⊥
W (Xi)

− 1√
n

n∑

i=1

(Di − g0i)(g0i − ĝi)
j−1∂

(j)
ḡ m(W0i)φ̂

⊥
W (Xi)

=
−1√
n

n∑

i=1

(Di − gi)E((g0i − ĝi)
j−1∂

(j)
ḡ m(W0i)φ̂

⊥
W (Xi)|X1i) + oP (1)

= oP (1),

where the last equality follows from Lemma A.4 in Appendix A. On the other hand, an application of

Lemma B.7 implies

‖ĝ − g0‖∞ =

√
log n

nlpn
+ uρn = oP (n

−1/2κ).

Finally, the condition P (ĝ ∈ C
ηg
M (XX)) → 1 can be verified as in (C-42) above.

Appendix D Some Generic Applications

In this section, we illustrate the general applicability of Theorems 2.1 and 2.2 in the main text to

a variety of settings in semiparametric estimation and testing. In particular, we summarize how the

asymptotic distribution of semiparametric estimators such as Ichimura (1993), Klein and Spady (1993)

and Rothe (2009) may be derived using our results, which allow for data-driven bandwidths, random

trimming and estimated weights. We also propose a new test for the null hypothesis of zero conditional

average treatment effect, and discuss its properties based on the main results of the paper. Throughout

this section technicalities are omitted for the sake of clarity, since our goal here is only to sketch how

our results could be used for classes of applications beyond the specific ones provided in the main text.

D1 Ichimura’s (1993) Estimator

Consider the class of functions W = {x → W (θ) := v(θ, x) : θ ∈ Θ ⊂ R
dX}, where v(·, ·) is a known

function, i.e. v(θ, x) = x⊤θ. The class W trivially satisfies Assumption 2 in the main text. Denote
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W0 := W (θ0), Wi0 := v(θ0,Xi) and Wi(θ) := v(θ,Xi) for i = 1, . . . , n, where
{
Yi,X

⊤
i

}n
i=1

is a random

sample from the joint distribution of
(
Y,X⊤

)⊤
that fulfills the index restriction E[Y |X] = E[Y |W0] =:

m(W0) for θ0 ∈ Θ. Consider the following semiparametric least squares function

Sn(θ) :=
1

n

n∑

i=1

t̂ni{Yi − m̂iθ}2, (D-45)

where m̂iθ := m̂(Wi(θ)|W (θ)), t̂ni := I(f̂(Wi(θ̃)|W (θ̃)) ≥ τn), τn → 0 as n→ ∞ at a rate that satisfies

Assumption 11 in the main text, and θ̃ is a preliminary consistent estimator for θ0, i.e. θ̃ could be an

estimator that minimizes (D-45) but with t̂ni = I(Xi ∈ A) for a compact set A ⊂ XX , and both m̂ and

f̂ defined as in Section 2 in the main text. The proposed estimator θ̂ of θ0 is the minimizer of this

objective function:

θ̂ = argmin
θ∈Θ

Sn (θ) . (D-46)

The asymptotic distribution of the estimator will be established here by a combination of standard

methods and our Theorem 2.1. Consider the first order conditions

0 =
√
n∂θSn(θ̂) =

1√
n

n∑

i=1

{Yi − m̂
iθ̂
}∂θm̂iθ̂

t̂ni, (D-47)

where ∂θm̂iθ̂
:= ∂m̂(Wi(θ)|W (θ))/∂θ|

θ=θ̂
. By a Taylor series expansion,

√
n(θ̂ − θ0) = G−1

n

1√
n

n∑

i=1

{Yi − m̂iθ0}∂θm̂iθ0 t̂ni + oP (1) ,

where Gn = n−1
∑n

i=1 t̂ni∂θm̂iθ̂
∂⊤θ m̂iθ and θ̄ is such that |θ̄ − θ0| ≤ |θ̂ − θ0| a.s. By the uniform

consistency results in Appendix B, and the continuous mapping theorem, it follows that

Gn →P Λ0 =: E[∂θm(Wi0)∂
⊤
θ m(Wi0)], (D-48)

where ∂θm(Wi0) := ∂m(Wi(θ)|W (θ))/∂θ|θ=θ0 . By another application of the results in the main text

with the uniform consistency of ∂θm̂iθ0 shown in Appendix B, we have

Λ−1
0

1√
n

n∑

i=1

{Yi − m̂iθ0}∂θm̂iθ0 t̂ni = Λ−1
0

1√
n

n∑

i=1

{Yi −m(W0i)}∂θm(Wi0) + oP (1) ,

where the equality above follows from the fact that E[∂θm(Wi0)|W0] = 0, see Ichimura (1993, Lemma

5.6, p. 95). An application of Linderberg-Lévy CLT then yields

√
n(θ̂ − θ0) →d N(0,Λ−1

0 ΞΛ−1
0 ),

where Ξ = E[var(Y |X = Xi)∂θm(Wi0)∂
⊤
θ m(Wi0)].

Remark D1.1 Delecroix, Hristache, and Patilea (2006) have also derived the asymptotic properties

of Ichimura’s (1993) estimator with random (non-vanishing) trimming and uniformly in the band-

width, while Härdle, Hall, and Ichimura (1993) have shown the first order asymptotic properties of the

semiparametric least squares estimator are not affected when plugging in a data-dependent bandwidth

chosen jointly with θ̂ in (D-46) using fixed trimming. Our result above essentially combines these

features, while extending them to vanishing trimming.
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D2 Klein and Spady’s (1993) Estimator

Klein and Spady (1993) consider the binary choice model of the form

Y = I(X⊤θ0 − u > 0), (D-49)

where u and X ∈ XX ⊆ R
dX are independent. Consider the class of functions W = {x → W (θ) :=

v(θ, x) : θ ∈ Θ ⊂ R
dX}, where v(·, ·) is a known function, i.e. v(θ, x) = x⊤θ. As before, denote

W0 := W (θ0), Wi0 := v(θ0,Xi) and Wi(θ) := v(θ,Xi) for i = 1, . . . , n, where
{
Yi,X

⊤
i

}n
i=1

is a random

sample from the joint distribution of
(
Y,X⊤

)⊤
generated from model (D-49). In this case, the regression

of Y given X satisfies the index restriction E[Y |X] = E[Y |W0] =: m(W0) for θ0 ∈ Θ. Our results can

be used here to establish the asymptotic properties of a variant of Klein and Spady’s (1993) estimator.

First, define the semiparametric likelihood function as

Ln (θ) :=
1

n

n∑

i=1

{Yi log[m̂iθ] + (1− Yi) log[1− m̂iθ]} t̃in, (D-50)

where m̂iθ, and t̃in are like those in Section D1 above but with ĝ replaced by one, and θ̃ is a preliminary

consistent estimator for θ0 (see Klein and Spady, 1993, footnote 4, p. 399 for examples). Similarly,

both m̂ and f̂ are defined as in Section 2. The proposed estimator θ̂ of θ0 is the maximizer of this

objective function:

θ̂ = argmax
θ∈Θ

Ln (θ) . (D-51)

The asymptotic distribution of the estimator can be established here by a combination of standard

methods and Theorem 2.1 in the main text. Now consider the first order conditions

0 =
√
n∂θLn(θ̂) =

1√
n

n∑

i=1

{Yi − m̂
iθ̂
}ψ̂i t̃in (D-52)

where ψ̂
iθ̂

:= ∂θm̂iθ̂
[m̂

iθ̂
(1 − m̂

iθ̂
)]−1 and ∂θm̂iθ̂

is as in Section D1 above. Now by a Taylor series

expansion,
√
n(θ̂ − θ0) = H−1

n

1√
n

n∑

i=1

{Yi − m̂iθ0}ψ̂iθ̂ t̃in + oP (1) ,

where

Hn =
1

n

n∑

i=1

∂θm̂iθ̂
∂⊤θ m̂iθ

m̂
iθ̂
(1− m̂

iθ̂
)
t̃in, and |θ̄ − θ0| ≤ |θ̂ − θ0| a.s.

From results in the main text, the uniform consistency results in Appendix B, and the continuous

mapping theorem, it follows that

Hn →P ∆0 ≡ E[∂θm(Wi0)∂
⊤
θ m(Wi0)[m(Wi0)(1−m(Wi0))]

−1], (D-53)

where ∂θm(Wi0) is as in Section D1. By another application of the results in the paper along with the

uniform consistency of ψ̂iθ we have, using that E[∂θm(Wi0)|W0] = 0,

1√
n

n∑

i=1

{Yi − m̂iθ0}ψ̂iθ0 t̃in =
1√
n

n∑

i=1

{Yi −m(W0i)}ψiθ0 + oP (1) ,
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where ψiθ0 = ∂θm(Wi0)/[m(Wi0)(1 −m(Wi0))]
−1. It then follows from (D-53) that

√
n(θ̂ − θ0) = ∆−1

0

1√
n

n∑

i=1

[
Yi −m(Wi0)

m(Wi0)(1 −m(Wi0))

]
∂θm(Wi0) + oP (1) ,

and an application of Linderberg-Lévy CLT yields

√
n(θ̂ − θ0) →d N(0,∆−1

0 ).

Remark D2.2 The trimming function t̃in here is slightly different from Klein and Spady’s (1993) in

that the latter behaved like a smoothed indicator. As in Klein and Spady (1993), the asymptotic

variance ∆−1
0 equals the semiparametric efficiency bound for the binary choice model as originally

derived by Chamberlain (1986) and Cosslett (1987). The main novelty here is that this asymptotic

distribution is shown to hold for potentially data-driven bandwidths.

D3 Rothe’s (2009) Estimator

Rothe (2009) considers the estimation of θ0 in the ‘endogenous’ binary choice model of the form

Y = I(X̃⊤θ0 − u > 0), (D-54)

where u is independent of X̃ := (X̃e, X̃−e)⊤ ∈ X
X̃e × X

X̃−e ⊆ R
d
X̃ only conditionally on V where

X̃e = g0(X̃
−e, Z) + V , E[V |X̃−e, Z] = 0, g0 is a vector of conditional mean functions of each of the

d
X̃e-‘endogenous’ components of X̃, i.e. X̃e, given the d

X̃−e-‘exogenous’ components of X̃ , i.e. X̃−e,

and some dZ–vector of exogenous instruments Z. Notice that dX̃ = dX̃e + dX̃−e . Let X := (X̃⊤, Z⊤)⊤,

and consider the class of functions W = {x → W (θ, g) := v(θ, g, x) : θ ∈ Θ ⊂ R
d
X̃ , g ∈ G}, where

v(·, ·, ·) is a (1 + dX̃e)-dimensional known function, i.e. v(θ, g, x) = (x̃⊤θ, x̃e − g(x̃−e, z))⊤. As before,

denote W0 := W (θ0, g0), Wi0 := v(θ0, g0,Xi) and Wi(θ, g) := v(θ, g,Xi) for i = 1, . . . , n, for an iid

sample {Yi,X⊤
i }ni=1 from the joint distribution of (Y,X⊤). In this case, the regression of Y given X

satisfies the index restriction E[Y |X] = E[Y |W0] =: m(Wi0) for θ0 ∈ Θ, and g0 ∈ G. Our results can

be used here to establish the asymptotic properties of an efficient version of Rothe’s (2009) estimator.

Rothe (2009) proposes estimating θ0 as in (D-51) where m̂iθ := m̂(Wi(θ, ĝ)|W (θ, ĝ)), t̂ni = I(X̃i ∈ A)
for a compact set A ⊂ XX̃ , and both m̂ and f̂ defined as in Section 2 in the main text. This

type of fixed trimming affects the asymptotic distribution of his estimator. Consider instead t̂ni :=

I(f̂(Wi(θ̃, ĝ)|W (θ̃, ĝ)) ≥ τn), τn → 0 as n → ∞ at a rate that satisfies Assumption 7 in the main text,

and θ̃ is a preliminary consistent estimator for θ0, i.e. Rothe’s (2009) original estimator, which uses

fixed trimming t̂ni = I(X̃i ∈ A) for a compact set A ⊂ XX̃ . The first order conditions are like (D-52).

Similar arguments as in Section D2 and repeated application of Theorem 2.1 and Theorem 2.2 in the

main text yields

√
n(θ̂ − θ0) = H−1

n

1√
n

n∑

i=1

{Yi − m̂iθ0}ψ̂iθ0 t̂ni + oP (1) ,

= ∆−1
0

1√
n

n∑

i=1

{Yi −m(W0i)}ψiθ0 −∆−1
0

1√
n

n∑

i=1

E[ψiθ0∂gm(W0i)|X̃−e, Z]Vi + oP (1) ,

40



where ∂gm(W0i) := ∂m(Wi(θ0, g)|W0)/∂g|g=g0 , and the last equality holds uniformly in the bandwidth

from Theorem 2.2 in the main text with ψiθ0 = ∂θm(W0i)/[m(W0i)(1 − m(W0i))]
−1. Finally, an

application of Linderberg-Lévy CLT yields

√
n(θ̂ − θ0) →d N(0,∆−1

0 +∆−1
0 Ψ0∆

−1
0 ),

where Ψ0 = E[ξ(W0i)ViV
⊤
i ξ

⊤(W0i)] and

ξ(W0i) = E

[
∂θm(W0i)∂gm(W0i)

m(W0i)(1−m(W0i))

∣∣∣∣ X̃−e, Z

]
.

Remark D3.3 The asymptotic variance of the estimator here is different from Rothe’s (2009) because

Rothe (2009) uses a fixed trimming function, i.e. t̂ni = I(X̃i ∈ A) for a compact set A ⊂ X
X̃
, that

appears everywhere in the limiting distribution. However, if we neglect his trimming effect, taking

t̂ni = 1 for all i = 1, . . . , n, then both expressions for the asymptotic variance will coincide, (see Rothe,

2009, Theorem 3, p. 55). Unlike Rothe’s (2009) original calculations that use results in Chen, Linton,

and van Keilegom (2003), the results in the main text can be used to allow for plug-in data driven

bandwidths and random trimming, while avoiding the need to calculate pathwise derivatives.

D4 A New Nonparametric Test for Treatment Effect Heterogeneity

Consider the potential outcome framework in program evaluation where one observes a random sample

{Yi,Di,X
⊤
i }ni=1 from the joint distribution of (Y,D,X⊤) that satisfies

Y = Y (1)D + Y (0) (1−D) ,

where Y (D) denotes the outcome under treatment (D = 1) or without it (D = 0), and X represents

a vector of observed covariates. Suppose we are interested in the null hypothesis of zero average

effects conditional on the covariates (CATE) as in Crump, Hotz, Imbens and Mitnik (2008) under

unconfoundness (see Imbens and Wooldridge, 2009, for an up-to-date survey). The null hypothesis is

H0 : E[Y (1)− Y (0) |X] = 0, a.s.

where Y (D) is independent of D given X, and the standard overlapping assumption holds, i.e. 0 <

p (x) < 1, where p (x) := Pr (D = 1|X = x) is the propensity score.

Crump, Hotz, Imbens and Mitnik (2008) provide a test of H0. The motivation is that it is useful to

know if a treatment has benefits for individuals with specific characteristics X, regardless of whether it

affects outcomes or not on average in the population. Here we provide a different test, with a bandwidth

that can be tuned in a data dependent way to improve power.

The following proposition demonstrate that H0 can be tested based on the sample mean

R̂n,h (x) :=
1√
n

n∑

i=1

{Di − p̂ (Xi)}YiI (Xi ≤ x) f̂2 (Xi)

where p̂ (x) and f̂ (x) are NW estimators of p (x) and f (x) , respectively, estimated with bandwidth h

that satisfies certain assumptions in the main text. The justification of the testing procedure is given

in the next result, which proof is standard and hence is omitted.

41



Proposition D.1 E[Y (1)− Y (0) |X] = 0 a.s. if and only if E[{D − p (X)}f2 (X)Y |X] = 0 a.s.

From Theorem 2.1 in the main text, the empirical process R̂n,h is asymptotically equivalent under

the null of zero CATE to

Rn (x) :=
1√
n

n∑

i=1

{Di − p (Xi)}{Yi − E[Yi|Xi]}f2 (Xi) I (Xi ≤ x) ,

which can be used to approximate the distribution of the Cramér-von Mises functional

Cn = max
h∈[an,bn]

∫
|R̂n,h (x) |2Fn (dx) ,

where Fn represents the empirical distribution function of {Xi}ni=1 . Let ĥ denote the solution to the

optimization problem for Cn. As pointed out in the testing section of the main text, our results permit

choosing the bandwidth in this way, which should lead to tests with better power properties than when

the bandwidth is chosen with other objectives in mind (such as estimation). See e.g. Horowitz and

Spokoiny (2001).

Set m(·) := E[Yi|X = ·] and let m̂(x) denote the NW estimator of m(x). The asymptotic null

distribution of Cn should be well approximated by the bootstrap process

R∗
n (x) =

1√
n

n∑

i=1

{Di − p̂ (Xi)}{Yi − m̂(Xi)}f̂2 (Xi) I (Xi ≤ x) ζi,

where the variables {ζi}ni=1 are independently generated from the original sample from a random

variable ζ with bounded support, mean zero and variance one. The theoretical justification of this

multiplier-type bootstrap can be demonstrated using standard methods, given our results regarding the

process R̂n,h. The conditions for the justification of the proposed test are rather mild. We only require

Assumptions 1, 4, 5, and the conditions: (3’) m(x) and T (x) := p(x)f(x) are r-times continuously

differentiable in x, with bounded derivatives (including zero derivatives); and (6’) f, T ∈ CηM (XX) and
P (f̂ , T̂ ∈ CηM (XX)) → 1 for some η > d/2, where T̂ (·) := p̂(·)f̂ (·).
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