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Abstract

One problem caused by cycles of choice functions is indecisiveness

— decision makers will be paralyzed when they face choice sets with

more than two options. We investigate the procedure of “random sam-

pling” where the alternatives are random variables. When comparing

any two alternatives, the decision maker samples each of the alterna-

tives once and ranks them according to the comparison between the

two realizations. We show that while this procedure may lead to vio-

lations of transitivity, the probability of such cycles is bounded from

above by 8
27 . Even lower bounds are obtained for some other related

procedures.
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1 Introduction

The indecisiveness argument is used to justify the transitivity assumption

in decision theory. Suppose that A � B, B � C, and C � A. If the

decision maker has to choose from the set {A, B, C} he will be frozen: for

each alternative he may choose he will find a better one. This may bring

him to re-evaluate his preferences and probably to change them so that the

cycles will be eliminated.

This argument might be applied to procedures of choice where the decision

maker is using a random procedure to determine his attitude to each pair of

alternatives. Such a procedure may yield indecisiveness. The higher is the

probability that a random procedure of choice yields indecisiveness, the more

likely it is that the decision maker will conclude that he should avoid this

procedure.

In this paper we focus on a nondeterministic procedure of preference for-

mation which we call Random Sampling procedure. When comparing two

lotteries, the decision maker samples once from each lottery and ranks them

according to the two realizations. (This concept is related to the S-1 proce-

dure proposed in Osborne and Rubinstein (1998)).

The main message of our paper is that when applied to random pref-

erences, the scope of the indecisiveness argument is limited. Whereas the

argument is always applicable for deterministic procedures which yield cy-

cles, the random procedures which we study would be less vulnerable to the

indecisiveness argument. Our formal analysis provides a characterization of

the upper bound on the probability that the random procedure we study

yields indecisiveness and shows that this bound is quite low.

Our first result refers to the case where when choosing from three random
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variables the decision maker independently compares each pair of them. He

starts by comparing some alternatives A and B, continues into comparing B

and C, and then finally compares A and C. In each of the three stages he

draws new samples from the relevant pair of random variables and does not

use the values he observed before. We find that the bound on the probability

that this random sampling procedure yields a cycle is 8/27 (Claim 1). This

is somewhat lower than 1/3, which we show in Claim 2 to be the bound for

the Block and Marschak’s (1960) Random Ordering procedure. According to

this alternative procedure the decision maker has in mind a set of orderings.

When comparing two alternatives, he randomly samples one of the orderings

and ranks the two alternatives according to that ordering.1

We then turn to the case where the decision maker activates the three

comparisons in a pre-determined order, starting by comparing the alterna-

tives A and B and continues with comparing B and C and then C and A,

but unlike the random sampling procedure, he partially recalls past obser-

vations. In the second comparison the decision maker remembers the value

of the observed sampling from B which he got in the first comparison, and

in the last comparison he recalls the value of C which was used in the sec-

ond comparison. However, in the third comparison he samples afresh from

A. In other words, this decision maker remembers the outcomes of the last

comparisons, but not what he has seen two stages ago.

This procedure will reduce the bound on the probability of a cycle only

slightly to 1/4. But we then show that the probability of indecisiveness can

be reduced significantly if someone else (for example, an agent who wants

the consumer to make a quick choice) can control the order at which the de-

1For a recent discussion of how the random ordering procedure can explain data which

exhibits intransitivity, see Regenwetter, Dana, and Davis-Stober (2011).
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cision maker compares the alternatives. We show that the upper bound on

the probability of a cycle is reduced to 1/16(= 0.0625) for the case of binary

lotteries (Claim 3) and to 0.091 for lotteries with at most three outcomes.

Moreover, if the external agent’s choice of order could depend on the real-

izations in the first comparison, then he can eliminate cycles altogether for

binary lotteries (Claim 4) and he can reduce the bound on the probability of

a cycle for lotteries with three outcomes to 1/32.2

Thus, we show that nondeterministic procedures of choice, applied to

three alternatives, yield transitivity with a fairly high probability. Therefore,

the mere fact that choice is “almost” well behaved and only a small number

of cycles is observed does not necessarily prove that decision makers are

using deterministic transitive preferences (while making occasional mistakes).

Such behavior can also emerge when choice is based on some variants of

random sampling where decision makers do not employ preference relations

and certainly do not change them to avoid indecisiveness.

2 Random Sampling

The main procedure we discuss in this paper is random sampling : To compare

two random variables the decision maker draws a fresh sample from each and

ranks them according to the sampled values.

Throughout the paper, all triples of random variables have finite and

disjoint supports. Denote by s(A) the support of the lottery A and by Pr(A >

B) the probability that the realization of A is higher than the realization of

2This manipulator is helping the decision maker avoiding cycles, unlike the Dutch

bookie (discussed in Yaari (1998)) who is using the cycle to pump out the decision maker’s

resources.
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B. By the disjoint supports assumption, Pr(A > B) + Pr(B > A) = 1.

Let Π(A, B, C) be the probability of a cycle being created by the decision

maker’s procedure. Applied to the random sampling procedure we have:

Π(A, B, C) = Pr(A > B) Pr(B > C) Pr(C > A) +

Pr(A > C) Pr(C > B) Pr(B > A)

Claim 1 The maximal probability that the procedure of random sampling

yields a cycle is 8
27

.

Proof: Consider the three random variables presented in the following table:

Value A B C

4 1/3

3 2/3

2 1

1 2/3

0 1/3

In this case, Pr(A > B) = 5
9
, Pr(B > C) = 2

3
, Pr(C > A) = 2

3
and the

probability of a cycle Π(A, B, C) is 20
81

+ 4
81

= 8
27

.

In order to prove that this is the upper bound, let x1 > x2 > . . . > xn be

the values in the supports of the three random variables A, B and C. Denote

by Xi ∈ {A, B, C} the random variable that contains xi in its support. Let

πi = Pr(Xi = xi) > 0.

First, we assume without loss of generality that for all i, Xi 6= Xi+1;

otherwise, if Xi = Xi+1 = A, let A′ be the random variable which differs from

A by Pr(A′ = xi) = πi + πi+1 and Pr(A′ = xi+1) = 0. Then, Π(A′, B, C) =

Π(A, B, C).
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Next, assume that for some i, Xi = Xi+2 6= Xi+1 (without loss of gener-

ality Xi = A and Xi+1 = B). Then we can (weakly) increase the probability

of a cycle by replacing A with Aε, a random variable which differs from A

by either moving a probability mass ε > 0 from xi to xi+2 or from xi+2 to xi.

Clearly, Pr(C > Aε) = Pr(C > A) and Pr(Aε > B) is linear in ε. Since

Π(Aε, B, C) = Pr(Aε > B)[Pr(B > C) Pr(C > A)] +

(1− Pr(Aε > B)) Pr(A > C) Pr(C > B)

shifting probability mass from xi+2 to xi or the other way around (according

to the sign of Pr(B > C) Pr(C > A)− Pr(A > C) Pr(C > B)) will (weakly)

increase the probability of a cycle.

Thus, without loss of generality we can assume that the sequence {Xi}
is of the form . . . A, B, C,A, B, C, . . . ending with Xn−2 = A, Xn−1 = B and

Xn = C.

Next we show that if the three random variables (A, B, C) maximize Π

and if n > 6, then there is a triple of random variables that maximizes Π

with less than n values in their joint supports. First note that:

Π(A, B, C) = Pr(C > A)[Pr(B > C) Pr(A > B)−

Pr(B > A) Pr(C > B)] + Pr(B > A) Pr(C > B)

Changing C does not affect Pr(B > A). Consider the set of all C ′ with a

support that is a subset of C such that Pr(B > C ′) = Pr(B > C). For all

such C ′, denote by γi the probability that C ′ yields the outcome xi. This is

the set of all vectors (γi)xi∈s(C) such that γi > 0 for all i and the following

two linear equations hold:
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∑
xi∈s(C)

γi = 1

∑
xi∈s(C)

γi ×
∑

j<i and xj∈s(B)

πj = Pr(B > C)

Since n > 6 and Xn = C, there are at least m > 3 points in the support

of C. The set C ′ is therefore non empty and is given by the intersection of

Rm
++ and the above two m−1 dimensional hyperplanes. The two hyperplanes

intersect at C, thus the set is the intersection of Rm
++ and a linear space of

dimension m− 2 > 0.

Replacing C with C ′ will increase the probability of a cycle if Pr(B >

C) Pr(A > B) − Pr(B > A) Pr(C > B) and Pr(C ′ > A) − Pr(C > A) have

the same sign. The expression

Pr(C ′ > A) =
∑

xi∈s(C)γi×
P

j>i and xj∈s(A) πj

is a linear function in (γi)xi∈s(C). Therefore, we can (weakly) increase Pr(C ′ >

A) by moving in some direction until we reach the boundary where γi = 0

for some xi in the support of C.

We can therefore narrow down our attention to the sequence of variables

(Xi)i=1...6 which is of the form A, B, C,A, B, C. Denote by α, β, γ the prob-

abilities that the variables A, B and C obtain the highest prize in their

supports. Then,

Π(A, B, C) = (1− β + αβ)(1− γ + βγ)(γ − αγ) +

(β − αβ)(γ − βγ)(1− γ + αγ) =

= γ2(1− α)(β − 1) + γ(1− α)(αβ − β2 + 1)
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Assuming that both 1 > α and β > 0, the last expression is strictly in-

creasing in γ within the interval [0, 1]. Thus, it attains its maximum at γ = 1.

We conclude that in the optimum, one of the three variables must be degen-

erate and without loss of generality the sequence (Xi)i=1...5 = (B, C, A,B, C).

Then,

Π = γ2(β − 1) + γ(−β2 + 1) = γ2β − γ2 − γβ2 + γ

This expression has a unique maximum point at β = 1
3

and γ = 2
3

and a

maximization value of Π = 8
27

. �

Comments:

(a) In Claim 1 we obtained the upper bound on the probability that the

procedure of random realizations yields one of the two possible cycles A �
C � B � A or A � B � C � A. In comparison, the highest probability that

the procedure yields a particular cycle is 1
4

(see Tenney and Foster (1976)).

(b) The problem we dealt with in this section is related to the so-called “para-

dox of nontransitive dice” (see Gardner (1970) who credits it to the statis-

tician Bradley Efrom). This “paradox” involves three independent random

variables: A, B, and C, where Pr(A > B), Pr(B > C), and Pr(C > A)

all exceed 0.5.3 Savage (1994) further proved that maxA,B,C min{Pr(A >

B), Pr(B > C), Pr(C > A)} = (
√

5− 1)/2.

(c) It follows from Claim 1 and comment (a) above that for every three

distributions F ,G, and H with a bounded domain and which do not have an

atom in the same point:∫
FdG

∫
GdH

∫
HdF +

∫
FdH

∫
HdG

∫
GdF 6

8

27

3See http://singingbanana.com/dice/article.htm for an entertaining demonstration of

this setup.
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and ∫
FdG

∫
GdH

∫
HdF 6

1

4

(d) When a decision maker applies the ordering sample procedure to a set of

size n, the maximum probability that his ranking is acyclic goes to zero as

the number of alternatives increases to infinity. To see it consider n random

variables which are uniform on the interval [0, 1] (and obviously could be

approximated by random variables with finite and disjoint supports). For

any two of these random variables, the probability that the realization of one

is higher than of the other is 1
2
. By Moon and Moser (1962), the probability

that the realized tournament is irreducible (i.e., there are no two non-empty

disjoint sets such that every node in one set “beats” every node in the other)

goes to 1 as n → ∞. By Moon (1966), a tournament with n nodes has a

cycle of length n (and therefore is not acyclic) if and only if it is irreducible.

Thus, the probability that the decision maker’s comparisons of n uniform

random variables yields a cycle of size n goes to 1 as n →∞.

3 The Random Ordering Procedure

In the random ordering procedure (Block and Marschak (1960)) the decision

maker is characterized by π, a probability measure over the six orderings of

the three alternatives A, B, and C. When comparing any pair of alternatives,

the decision maker draws an ordering that will determine his ranking of these

alternatives. Thus, he might apply different orderings in ranking two different

pairs of alternatives. In this section we show that the bounds we obtained in

the previous section are lower than the bounds on the probability of a cycle

in the random ordering procedure.
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Claim 2 The maximal probability that the random ordering procedure yields

a cycle is 1
3
.

Proof: Consider π to be a probability measure on the orderings that assigns

equal probabilities to the three orderings A �1 B �1 C, B �2 C �2 A and

C �3 A �3 B. Then, Pr(A � B) = Pr(B � C) = Pr(C � A) = 2
3

and the

probability of a cycle is 8
27

+ 1
27

= 1
3
.

To see that 1
3

is indeed the bound, note that by the inequality of arithmetic

and geometric means:

Π(A, B, C) = Pr(A � B) Pr(B � C) Pr(C � A) +

Pr(A � C) Pr(C � B) Pr(B � A) 6

Pr(A � B) + Pr(B � C) + Pr(C � A)]3/27 +

[Pr(A � C) + Pr(C � B) + Pr(B � A)]3/27

Since every ordering must satisfy at least one and at most two of A � B,

B � C and C � A, we obtain: 1 6 [Pr(A � B) + Pr(B � C) + Pr(C �
A)] 6 2. The function x3 +(3−x)3 is convex in the interval [1, 2] and obtains

its maximum at x = 1 and x = 2. Thus Π(A, B, C) 6 1
27

+ 8
27

= 1
3
. �

Comments:

(a) Note that the above example is the only one in which the probability of a

cycle is 8
27

. To see this, count the six orderings: A �1 B �1 C, B �2 C �2 A,

C �3 A �3 B, A �4 C �4 B, and B �5 A �5 C, C �6 B �6 A. Denote

by πi the probability of �i. Then, Pr(A � B) Pr(B � C) Pr(C � A) =

(π1 + π3 + π4)(π1 + π2 + π5)(π2 + π3 + π6). The maximum is attained only

when π4 = π5 = π6 = 0 and π1 = π2 = π3 = 1
3
.

(b) Similarly to comment (a) to Claim 1, the maximal probability that the

procedure of random ordering yields a particular cycle is 8
27

. The example in
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the above proof attains the bound. To prove that the bound is 8
27

, note that

Pr(A � B) Pr(B � C) Pr(C � A) 6 Pr(A � B) + Pr(B � C) + Pr(C �
A)]3/27 and that the function x3 in the interval [1, 2] attains the maximum

at 2.

4 The Random Sampling Procedure with Par-

tial Recall

In the procedure discussed in Section 2 each comparison is done indepen-

dently of the other two comparisons. A decision maker who compares first A

and B and moves to compare B and C does not recall the previous value of

B. Thus the existence of a cycle did not depend on the order by which the

comparisons were done. In contrast, in this section we assume that the de-

cision maker carries out the comparisons sequentially in three stages and at

each stage he remembers the realizations of the previous stage, but not those

of two stages earlier. In other words, he applies the procedure of Random

sampling with partial recall. It is applied to the sequence of three lotteries

(A, B, C) in the following way:

(i) Compare A and B by sampling each once.

(ii) Compare B and C by sampling C once and compare the outcome with

that of the previous-stage sampling of B.

(iii) Compare C and A by sampling A again and compare the outcome with

that of the previous-stage sampling of C.

The probability that the procedure yields a cycle is

Π(A, B, C) = Pr(A1 > B > C > A2) + Pr(A2 > C > B > A1)
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where A1 and A2 are copies of A, i.e., they are i.i.d and distributed like A.

Note that Π(A, B, C) might differ from Π(B, A, C) but that Π(A, B, C) =

Π(A, C,B). For example, let A be the random variable that receives the

values of 3 or 0 with equal probabilities. Let B ≡ 2 and let C ≡ 1. Then

Π(A, B, C) = 1
4
. In fact, the maximal probability that the random sampling

procedure with partial recall yields a cycle is 1
4
. To see why, denote by Πb

the probability of a cycle given that the value of B is b:

Πb = Pr(A1 > b > C > A2) + Pr(A2 > C > b > A1) 6

Pr(A1 > b > C) Pr(b > A2) + Pr(A2 > b) Pr(C > b > A1) =

Pr(A > b) Pr(b > C) Pr(b > A) + Pr(A > b) Pr(C > b) Pr(b > A) =

Pr(b > A) Pr(A > b)[Pr(b > C) + Pr(C > b)] 6
1

4

Since Πb 6 1
4

for every possible realization of B, Π(A, B, C) 6 1
4

as well.

Imagine now that the order in which the alternatives are presented to

the decision maker is determined by a “master of ceremonies” (MC) who

wants the decision maker having a clear ordering of the alternatives. Let

V (A, B, C) = min{Π(A, B, C), Π(B, C, A), Π(C, A,B)} be the probability of

a cycle given that the MC chooses the order of the comparisons of the three

variables A, B and C in order to minimize the probability of the cycle.

In the example used above Π(A, B, C) = 1
4

but Π(B, C, A) = 0 and thus

V (A, B, C) = 0. On the other hand, if A, B, C are uniformly distributed

over [0, 1] then V (A, B, C) = Π(A, B, C) = 1
12

(each ordering of four identical

random variables has the same probability of 1
24

and therefore Pr(A1 > B >

C > A2) + Pr(A2 > C > B > A1) = 1
12

). We succeeded to find the bound

on V for only a limited family of random variables.

Claim 3 The maximal V (A, B, C) for three binary random variables is 1
16

.
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Proof: First note that for the following three variables V (A, B, C) = 1
16

.

Value A B C

5 1/2

4 1/2

3 1/2

2 1/2

1 1/2

0 1/2

If the three variables are such that between the two values of one of

the lotteries, say A, there are no values of another lottery, say C, then

Π(A, B, C) = 0. Thus, we need to consider only the case in which the values

of the three lotteries can be ordered as A,B,C,A,B,C. Denote by α,β,γ the

probabilities of the highest value of each of the three lotteries A,B,C respec-

tively. Then, Π(A, B, C) = αβγ(1− α), Π(B, A, C) = βγ(1− α)(1− β) and

Π(C, A,B) = γ(1− α)(1− β)(1− γ).

Note that by the continuity of Π, at a maximum point of V (A, B, C)

it must be that two of the terms Π(A, B, C), Π(B, C, A), and Π(C, A,B)

are equal and are weakly less than the third. If Π(B, A, C) is minimal then

Π(B, C, A) = βγ(1− α)(1− β) = min{αβγ(1− α), γ(1− α)(1− β)(1− γ)}.
It follows that 1−β 6 α and β 6 1−γ and thus, Π(B, C, A) 6 β(1−β)(1−
α)α 6 1

16
. If Π(B, C, A) is not minimal then at the maximum point of V ,

βγ(1− α)(1− β) > αβγ(1− α) = γ(1− α)(1− β)(1− γ), hence 1− α > β

and β > 1− γ. The maximum with respect to β of the function αβγ(1− α)

(which is linear in β) given the linear constraints αβ = (1 − β)(1 − γ) and

(1−α) > β > (1−γ) must be obtained where either β = 1−α or β = 1−γ.

In the former case αβγ(1 − α) = (1 − β)(1 − γ)γβ 6 1
16

while in the latter

αβγ(1− α) = α(1− γ)γ(1− α) 6 1
16

. �
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When the support of each of the random variables has at most three

points, numerical methods prove that the maximum of V (A, B, C) is roughly

0.0910 and is attained near the triple of random variables:

Value A B C

6 0.19

5 0.37

4 0.63

3 0.63

2 0.62

1 0.37

0 0.19

We do not know what are the upper bounds for the cases of at most n

outcomes in each lottery for n > 3. It is worthwhile mentioning, though, that

almost all experiments in the literature utilize lotteries with no more than

three different outcomes each as lotteries with more prizes are often difficult

to absorb. (For a survey of this literature see Starmer (2000)).

The probability of a cycle can be reduced even further if the MC can

choose the first couple of alternatives and only after he observes their real-

izations he determines which of the two alternatives will be compared with

the third one at the second stage. Using numerical methods we conclude

that for any triple of lotteries with no more than three outcomes the MC can

present the comparisons such that the probability of a cycle is not greater

than 1
32

. Moreover, if each lottery has at most two outcomes cycles can be

eliminated:

Claim 4 Let A, B, and C be three binary random variables. If the decision

maker follows the Random Sampling procedure with partial recall then the
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MC who observes the realizations can arrange the order of comparisons so

that no cycles emerge.

Proof: Suppose that between the outcomes of one lottery, say A, there are

no outcomes of another lottery, say B. Then the MC will ask the decision

maker to compare A and B and then B and C. Assume B � A. If B � C

then there is no cycle. If C � B then the fresh realization of C is higher

than both values of A and at the third stage C � A. The case that A � B

is similar.

Suppose that the outcomes are ordered a1 > b1 > c1 > a2 > b2 > c2.

The MC’s instructions could be the following: Start by comparing A and B.

Then,

1. If the realization of A is a1 continue with comparing A and C. Whatever

is the realization of C, A � C and hence no cycle.

2. If the realizations are a2 and b1 (B � A) then continue by comparing

B and C. Whatever is the realization of C, B � C, hence no cycle.

3. If the realizations are a2 and b2 then A � B. Proceed to compare B

and C. If the realization is c1 then C � B, hence no cycle. If the

realization is c2 then B � C and when A and C are compared (using

c2) then A � C and there is no cycle. �
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