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Abstract

Measurement errors are often correlated, as in surveys where respondent’s biases or tenden-

cies to err affect multiple reported variables. We extend Schennach (2007) to identify moments of

the conditional distribution of a true Y given a true X when both are measured with error, the

measurement errors in Y and X are correlated, and the true unknown model of Y given X has non-

separable model errors. We also provide a nonparametric sieve estimator of the model, and apply

it to nonparametric Engel curve estimation. In our application measurement errors on the expen-

ditures of a good Y are by construction correlated with measurement errors in total expenditures

X. This feature of most consumption data sets has been ignored in almost all previous demand

applications. We find accounting for this feature casts doubt on Hildenbrand’s (1994) “increasing

dispersion” assumption.
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1 Introduction

We consider identification and estimation of conditional moments of Y given X in nonparametric

regression models where both the dependent variable Y and a regressor X are mismeasured, and

the measurement errors in Y and X are correlated. An example application where this occurs is

consumer demand estimation, where Y is the quantity or expenditures demanded of some good

or service, and X is total consumption expenditures on all goods. In most consumption data

sets (e.g., the US Consumer Expenditure Survey or the UK Family Expenditure Survey), total

consumption X is constructed as the sum of expenditures on individual goods, so by construction

any measurement error in Y will also appear as a component of, and hence be correlated with,

the measurement error in X. Similar problems arise in profit, cost, or factor demand equations

in production, and in autoregressive or other dynamic models where sources of measurement error

are not independent over time. Correlated measurement errors are also likely in survey data where

each respondent’s biases or tendencies to err affect multiple variables that he or she self reports.

Our identification procedure allows us to distinguish measurement errors from other sources

of error that are due to unobserved structural or behavioural heterogeneity. This is important

in applications because many policies may depend on the distribution of structural unobserved

heterogeneity, but not on measurement error. For example, the effects of an income tax on aggregate

demand or savings depend on the distribution of income elasticities in the population. In contrast to

our results, most empirical analyses implicitly or explicitly attribute either none or all of estimated

model errors to unobserved heterogeneity.

It has long been known that for most goods, empirical estimates of V ar(Y |X) are increasing in

X. For example, Hildenbrand (1994, figures 3.6 and 3.7) documents this phenomenon for a variety

of goods in two different countries, calls it the ”increasing dispersion” assumption, and exploits

it as a behavioral feature that helps give rise to the aggregate law of demand. This property is

also often used to justify estimating Engel curves in budget share form, to reduce the resultin

error heteroskedasticity. However, we find empirically that while this phenomenon clearly holds

in estimates of V ar(Y |X) on raw data, after nonparametrically accounting for joint measurement

error in Y and X, the evidence becomes considerably weaker, suggesting that this well documented

feature of Engel curve estimates may be at least in part an artifact of measurement errors rather
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than a feature of behavior.

Our identification strategy is an extension of Schennach (2007), who provides nonparametric

identification of the conditional mean of Y given X (using instruments Q) when X is a classically

mismeasured regressor. We extend Schennach (2007) primarily by allowing for a measurement error

term in Y , but an additional extension is to identify higher moments of the true Y given the true

X instead of just the conditional mean. A further extension allows the measurement error in X to

be multiplicative instead of additive.

Building on estimators like Newey (2001), Schennach (2007) bases identification on taking

Fourier transforms of the conditional means of Y and of XY given instruments. These Fourier

transforms have both an ordinary and a singular component, and identification is based just on the

ordinary components. Our main insight is that, if the additive measurement errors in X and Y

are correlated with each other but otherwise have some of the properties of classical measurement

errors, then their presence will only affect the singular component of the Fourier transform, so

identification based on the ordinary components can proceed as before. Our further extensions ex-

ploit similar properties in different measurement error specifications, and our empirical application

makes use of some special features of Engel curves to fully identify higher moments.

There is a large literature on the estimation of measurement error models. In addition to

Schennach (2007), more recent work on measurement errors in nonparametric regression models

includes Delaigle, Fan, and Carroll (2009), Rummel, Augustin, and Küchenhof (2010), Carroll,

Chen, and Hu (2010), Meister (2011), and Carroll, Delaigle, and Hall (2011). Recent surveys

containing many earlier references include Carroll, Ruppert, Stefanski, and Crainiceanu (2006) and

Chen, Hong, and Nekipelov (2011).1

Examples of Engel curve estimation with measurement errors include the following. Hausman,

Newey, Ichimura, and Powell (1991) and Hausman, Newey, and Powell (1995) provide estimators for

polynomial Engel curves with classically mismeasured X, Newey (2001) estimates a nonpolynomial

parametric Engel curve with mismeasured X, Blundell, Chen, and Kristensen (2007) estimate a

semi-parametric model of Engel curves that allows X to be endogenous and hence mismeasured,

and Lewbel (1996) identifies and estimates Engel curves allowing for correlated measurement errors

1Earlier econometric papers closely related to Schennach (2007), but exploiting repeated measurements, are Haus-
man, Newey, Ichimura, and Powell (1991), Schennach (2004) and Li (2002). Most of these assume two mismeasures
of the true X are available, one of which could have errors correlated with the measurement error Y .
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in X and Y as we do, but does so in the context of a parametric model of Y given X.2

The conditional distribution of the true Y given the true X in Engel curves corresponds to the

distribution of preference heterogeneity parameters in the population, which can be of particular

interest for policy analysis. For example, consider the effect on demand of introducing a tax cut or

tax increase that shifts households’ total expenditure levels. This will in general affect the entire

distribution of demand, not just its mean, both because Engel curves are generally nonlinear and

because preferences are heterogeneous. Recovering moments of the distribution of demand is useful

because many policy indicators, such as the welfare implication of a tax change, will in turn depend

on more features of the distribution of demand than just its mean.

The next two sections show identification of the model with standard additive measurement

error and of the specification more specifically appropriate for Engel curve data respectively. We

then describe our sieve based estimator, and provide a simulation study. After that is an empirical

application to estimating food and clothing expenditures in US Consumer Expenditure Survey data,

followed by conclusions and an appendix providing proofs.

2 Overview

With i indexing observations, suppose that scalar random variables Y ∗

i and X∗

i are measured with

error, so we only observe Yi and Xi where:

Yi = Y ∗

i + Si,

Xi = X∗

i +Wi,

with Si andWi being unobserved measurement errors that may be correlated with each other (more

general models of measurement errors are considered below). Without loss of generality we can

2More generally, within econometrics there is a large recent literature on nonparametric identification of models
having nonseparable errors (e.g., Chesher 2003, Matzkin 2007, Hoderlein and Mammen 2007, and Imbens and Newey
2009), multiple errors (e.g. random coefficient models like Beran, Feuerverger, and Hall 1996 and generalizations
like Hoderlein, Nesheim, and Simoni 2011 and Lewbel and Pendakur 2011) or both (e.g., Matzkin 2003). This
paper contributes to that literature by identifying models that have both additive measurement error and structural
nonseparable unobserved heterogeneity.
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write

Y ∗

i = H(X∗

i , Ui),

where Y ∗

i equals an unknown function H(·, ·) of a scalar random regressor X∗

i , and a random scalar

or vector of nonseparable unobservables Ui, which can be interpreted as regression model errors

or unobserved heterogeneity in the population. The extension to inclusion of other (observed)

covariates will be straightforward, so we drop them for now. Our primary goal is identification

(and later estimation) of the nonparametric regression function E [H(X∗

i , Ui) | X∗

i ], but we more

generally consider identification of conditional moments E
[

H(X∗

i , Ui)
k | X∗

i

]

for integers k. Thus

our results can be interpreted as separating the impact of unobserved heterogeneity U from the

effects of measurement errors on the relationship of Y to X. We do not deal directly with estimation

of H and of U , but these could be recovered with some additional assumptions given our results.3

In the statistics literature, a measurement error Wi in Xi is called “differential” if it affects the

observed outcome Yi, after conditioning on the true X∗

i , that is, if Yi | X∗

i ,W does not equal

Yi | X∗

i (see, e.g., Carroll, Ruppert, Stefanski, and Crainiceanu (2006)). In our setup Wi is in

general differential since W is correlated with the measurement error Si in Yi, while it would be

nondifferential if the true Y ∗

i were observed. An alternative application of our identification results

would be for a model in which Yi is not mismeasured, and the additive error Si instead represents

the effect of differential measurement error Wi on the true outcome Yi. To ease exposition this case

will no longer be considered, and we will focus on the interpretation in which both Xi and Yi are

mismeasured.

To aid identification, assume we observe instruments Qi satisfying

X∗

i = m(Qi) + Vi, (1)

where the function m is unknown and defined by m(Qi) = E (X∗

i | Qi), and Vi ⊥ Qi. This

independence assumption, which is also made by Schennach (2007), is common in the control

3If the moment generating function of Y ∗

i given X∗

i exists in an open interval around zero, then E
[

Y ∗

i
k | X∗

i

]

is
finite for all integers k and our results can be used to identify these moments, which in turn can be used to identify the
conditional distribution of Y ∗

i given X∗

i via the moment generating function. Then results such as those in Matzkin
(2007) can be applied to identify H(X∗

i , Ui). If the conditional distribution of Y ∗

i given X∗

i is continuous, then one
such result defines Ui to equal the conditional distribution function of Y ∗

i given X∗

i , and constructs H as the inverse
function of this distribution. Alternative identifying assumptions would similarly follow from full knowledge of the
conditional distribution function.
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function literature when dealing with nonlinear models and will be maintained throughout the

paper.

Assume for now that the measurement errors have the classical properties that they are mean

zero with Si,Wi ⊥ Y ∗

i ,X
∗

i , Qi. This can be equivalently stated as Si,Wi ⊥ Ui, Vi, Qi. Our formal

results will substantially relax these independence assumptions (specifically, they are replaced by

Assumption 1 below). This independence is just made here now to ease exposition.

The two main complications in our set up compared to a classical measurement error problem

are that the true regression model H is an unknown function containing nonseparable model errors

U , and that measurement errors in Y ∗

i and X∗

i may be correlated.

Assuming Si is identically zero so Y ∗

i ≡ Yi, Schennach (2007) shows identification of the condi-

tional mean function E (Y ∗

i | X∗

i ), based on features of the Fourier transforms of E [Yi | m (Qi)] and

of E [YiXi | m (Qi)]. These transforms are in general not proper functions, but generalized func-

tions, being the Fourier transforms of not-absolutely integrable functions. We follow Schennach

(2007) in assuming that the generalized functions that arise in our context may be decomposed

into the sum of an ordinary component that is a well behaved function, and a purely singular

component, which may be seen as a linear combination of generalized derivatives of the Dirac delta

function (see Lighthill 1962 and the supplementary material in Schennach 2007). The conditional

mean E (Y ∗

i | X∗

i ) is then shown by Schennach (2007) to be identified by knowledge of just the

ordinary components of these Fourier transforms.

The intuition behind our extension builds on the fact that measurement errors Si andWi do not

affect E [Yi | m (Qi)], and they affect E [YiXi | m (Qi)] only by adding the term E [SiWi | m (Qi)].

Under the identifying assumption that the covariance between Si and Wi does not depend on

the instruments Qi (which is an implication of classical measurement error), this additional term

E (SiWi) is a constant.

Since the Fourier Transform of a constant is a purely singular generalized function, the ordinary

component of the Fourier Transform of E [YiXi | m (Qi)] is unaffected by this additional term, and

so the conditional mean function of interest E (Y ∗

i | X∗

i ) remains identified as before. We generalize

this argument to also identify higher order conditional moments.

The same intuition can be applied to different specifications of the measurement error. An

alternative specification we consider which we show is particularly appropriate for Engel curves
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(see also Lewbel 1996) is:

Yi = Y ∗

i +X∗

i Si,

Xi = X∗

iWi.

This model is consistent with empirical evidence that measurement errors in expenditures increase

with total expenditure X∗

i , and is consistent with the standard survey data generating process in

which total reported expenditures Xi are constructed by summing the reported expenditures on

individual goods like Yi.

In this Engel curve model we identify E
(

Y ∗

i
k|X∗

i

)

= E[H(X∗

i , Ui)
k|X∗

i ] for an arbitrary integer

k, thereby separating the effects on Yi of observed and unobserved heterogeneity (Xi and Ui)

from the measurement errors Si and Wi. For the Engel curve model we provide two different

identification strategies, depending on different assumptions regarding the measurement errors.

The first approach builds on the fact that for utility derived Engel curves H(0, Ui) ≡ 0, while the

second approach makes use of the specific dependence structure between Wi and Si implied by

the definition of Yi and the construction of Xi in the Engel curve framework. We show that this

second approach has some features that make it more appropriate for our data, and we use it in

our empirical application.

3 Identification

As discussed in the previous section, we begin by writing Y ∗

i and X∗

i as Y ∗

i = H(X∗

i , Ui) and

X∗

i = m(Qi) + Vi, where Qi is a vector of instruments, Vi is a scalar unobserved random variable

independent of Qi, Ui is a vector of unobserved disturbances, and the function H(·, ·) is unknown.

The scalar random variable Y ∗

i is unobserved, but, encompassing and generalizing the examples

given in the previous section, assume that the observed Yi is given by:

Yi = Y ∗

i +X∗

i
lSi (2)

for some non-negative integer l, where E[Si|X∗

i ] = 0, so that the measurement error X∗

i
lSi is mean

zero, but has higher moments that can depend on X∗

i . Note that l = 0 corresponds to the case of
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classical measurement error in Y ∗ while the generalization to l > 0 is useful for dealing with models

such as Engel curves, where the variance in measurement errors increases with X∗

i .

The regressor X∗

i is also measured with error, with Xi satisfying either :

Xi = X∗

i +Wi with E[Wi] = 0 (3)

or

Xi = X∗

iWi with E[Wi] = 1. (4)

thereby allowing for either additive or multiplicative measurement errors while retaining the prop-

erty that E[Xi] = E[X∗

i ]. Let µ
k(x∗i ) = E[Y k

i |X∗

i ] be the k-th conditional moment of the observed

random variable Yi given X∗

i . The goal of this Section is first to provide identification of µk(x∗i )

for k = 1, . . . ,K, given only knowledge of (Yi,Xi, Qi) where Xi is defined by either (3) or (4). We

then consider identification of moments E[Y ∗k
i |X∗

i ]

We assume the following, which will be maintained throughout:

Assumption 1. The random variables Qi, Ui, Vi, Wi and Si are jointly i.i.d. and

1.

(i) E[W k
i |Qi, Vi, Ui] = E[W k

i ] for k = 1, . . . ,K,

(ii) E[Sk
i |Qi, Vi, Ui] = E[Sk

i ] for k = 1, . . . ,K,

(iii) Vi is independent of Qi,

(iv) E[WiSi|Qi] = E[WiSi].

The mean independence Assumptions (i) and (ii) with K = 1 are standard for errors in variables

models and are basically stating that measurement errors are classical. We assume these for higher

K because we consider identification of these higher moments, not just the k = 1 conditional

moment as in standard models. Assumption (iii), which is also made by Schennach (2007), is a

standard control function assumption commonly used for identification and estimation of nonlinear

models using instruments.4

4As pointed out by Schennach (2008), this assumption is testable, by looking at the dependence between the
estimated residuals of the feasible first stage and the instruments, given the maintained assumptions (i) and (ii).
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Assumption (iv) is in fact less restrictive than standard measurement error assumptions. In

particular, standard models that do not allow for correlations between measurement errors will

trivially satisfy this assumption with E[WiSi|Qi] = E[WiSi] = 0. Assumption (iv) would also

follow from, and is strictly weaker than, the standard classical assumption that measurement errors

be independent of correctly measured covariates.

Without loss of generality, assume that Vi has mean zero, so m(Qi) ≡ E[Xi|Qi] is nonparamet-

rically identified. Defining Zi = m(Qi) and Ṽi = −Vi, we may conveniently rewrite equation (1)

as:

X∗

i = Zi − Ṽi, (5)

which we will do hereafter. Following Newey (2001) and Schennach (2007) we will show that, under

Assumption 1, knowledge of the conditional moments E[Y k
i |Zi], for k = 1, . . . ,K, and E[XiYi|Zi]

is enough to identify µk(x∗i ) for k = 1, . . . ,K. In the remainder of the paper, for ease of notation,

we will drop the subscript i when not needed.

It follows from Assumption 1 that

E[Y k|Z] = E
[

E
[

Y k|X∗, Z
]

|Z
]

,

= E[µk(x∗)|Z], (6)

and, if measurement error in X∗ is additive (i.e. if (3) holds), then

E[XY |Z] = E
[

(X∗ +W )
[

H(X∗, U) +X∗lS
]

|Z
]

,

= E[X∗H(X∗, U)|Z] + E[X∗l|Z]E[WS|Z],

= E[x∗µ1(x∗)|Z] + E[X∗l|Z]E[WS]. (7)

With a similar argument it may be shown that, if measurement error in X∗ is multiplicative (i.e.

if (4) holds), then

E[XY |Z] = E[x∗µ1(x∗)|Z] + E[X∗l+1|Z]E[WS]. (8)

The proof of identification of µk(x∗) is obtained by exploiting properties of the Fourier transform

of these conditional expectations. The following assumption guarantees that these transforms and
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related objects are well defined.

Assumption 2. |µk(x∗)|, |E[Y k|Z]| and |E[XY |Z]| are defined and bounded by polynomials for x∗

and z ∈ R and for any k = 1, . . . ,K.

Assumption 2 essentially excludes specifications for µk(x∗) which rapidly approach infinity like

the exponential function and suffices for the following Lemma to hold:

Lemma 1. Under Assumption 2, equations (6), (7) and (8) are equivalent to

εyk(ζ) = γk(ζ)φ(ζ) (9)

iεxy(ζ) = γ̇1(ζ)φ(ζ) + λiψ(ζ)φ(ζ) (10)

with i =
√
−1, overdots denote derivatives with respect to z and

εyk(ζ) =

∫

E[Y k|Z = z]eiζzdz, γk(ζ) =

∫

µk(x∗)eiζx
∗

dx∗

εxy(ζ) =

∫

E[XY |Z = z]eiζzdz, φ(ζ) =

∫

eiζvdF (v)

where F (v) is the cdf of Ṽ , λ = E[WS] and ψ(ζ) =
∫

x∗leiζx
∗

dx∗ if (3) holds or ψ(ζ) =
∫

x∗l+1eiζx
∗

dx∗ if (4) holds.

Lemma 1, whose proof is given in the Appendix, is a generalization of Lemma 1 in Schennach

(2007), who considers the special case where l = 0 and k = 1. It is important to note that while

φ(ζ), being the characteristic function of Ṽi, is a proper function, εxy(ζ), εyk(ζ), γk(ζ) and ψ(ζ)

are more abstract generalized functions. Products of generalized functions are not necessarily well

defined, so that equations (9) and (10) cannot be manipulated as usual functions to get rid of

the characteristic function φ(ζ). Also note that the unknown quantities here are γk(ζ) and φ(ζ),

while ψ(ζ) is the Fourier transform of a power function, and hence is known and equal the suitable

generalized derivative of a Dirac delta function. For a more detailed treatment of generalized

functions see Lighthill (1962) or the supplementary material in Schennach (2007).

Assumption 3. E[|Ṽ |] <∞ and φ(ζ) 6= 0 for all ζ ∈ R.

Assumption 4. For each k = 1, . . . ,K there exists a finite or infinite constant ζ̄k such that

γk(ζ) 6= 0 almost everywhere in [−ζ̄k, ζ̄k] and γk(ζ) = 0 for all |ζ| > ζ̄k,
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Assumption 5. The functions γk(ζ) are such that the following decomposition holds:

γk(ζ) = γk;o(ζ) + γk;s(ζ),

where γk;o is an ordinary function, while γk;s is a purely singular component, which may be seen as

a linear combination of generalized derivatives of the Dirac delta function.

Assumptions 3 and 4 are the equivalent of Assumptions 2 and 3 in Schennach (2007) and are

standard in the deconvolution literature. Since we are seeking nonparametric identification of γk(ζ),

the characteristic function of Ṽi needs to be non-vanishing, thus excluding uniform or triangular like

distributions, while γk(ζ) needs to be either non-vanishing or must vanish on an infinite interval.

This is required for γk(ζ) to be fully nonparametrically identified. Assumption 4 essentially rules

out only specifications for γk(ζ) which exhibit sinusoidal behaviours, which is very unlikely in

most economic applications.5 Assumption 5 only excludes pathological (and generally empirically

irrelevant) cases in which such decomposition may not hold on a set of measure zero.

The following theorem states the main identification result.

Theorem 1. Under Assumptions 1-5, µk(x∗) for k = 1, . . . ,K are nonparametrically identified.

Also, if ζ̄1 > 0 in Assumption 4 then

µk(x∗) = (2π)−1

∫

γk(ζ)e
−iζx∗

dζ

where

γk(ζ) =











0 if εyk(ζ) = 0

εyk(ζ)/φ(ζ) otherwise,
(11)

φ(ζ) is the characteristic function of Ṽ ≡ −V given, for |ζ| < ζ̄1, by

φ(ζ) = exp

(
∫ ζ

0

iε(z−x)y,o(ζ)

εy,o(ζ)
dζ

)

(12)

and where εy,o(ζ) and ε(z−x)y,o(ζ) denote the ordinary function components of

εy(ζ) =
∫

E[Y |Z = z]eiζzdz and ε(z−x)y(ζ) =
∫

E[(Z −X)Y |Z = z]eiζzdz respectively.

5If H(X∗, U) were parametrically specified, then Assumption 4 could be relaxed, because in that case information
obtained from a finite number of points of γk(ζ) would generally suffice for identification.
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Our Theorem 1 is a generalization of Theorem 1 in Schennach (2007). The proof is in the

appendix, but essentially works as follows. By Assumption 5, γk(ζ) can be written as the sum of an

ordinary function and a linear combination of generalized derivatives of the Dirac delta function,

which correspond to the purely singular component. Hence by Lemma 1 a similar decomposition

also holds for εyk(ζ) and εxy(ζ). The last term in (10) is a purely singular generalized function

and so only affects the singular component of εxy(ζ). Since Schennach (2007) proved that φ(ζ) is

identified by knowledge of just the ordinary components of εy(ζ) and εxy(ζ), allowing for W and

S to be correlated does not alter the identification of φ(ζ). The function of interest γk(ζ) is then

obtained from equation (9) as in (11), and its inverse Fourier transform gives µk(x∗).

Theorem 1 provides nonparametric identification of the first K conditional moments of Y given

X∗. If Y given X∗ has a well-defined moment generating function, then applying Theorem 1 with

K infinite provides nonparametric identification of the entire conditional distribution of Y given

X∗, as follows:

Corollary 1. Under the Assumptions of Theorem 1 if ζ̄1 = ∞ then the characteristic function of

the unobserved X∗, φX∗(ζ), is identified and is given by:

φX∗(ζ) =
φZ(ζ)

φ(ζ)
, (13)

where φZ(ζ) is the characteristic function of the observed random variable Z.

This result immediately follows from equation (5) and by noting that equation (12) gives the

expression of the characteristic function of Ṽ . The assumption of ζ̄1 = ∞ encompasses most of the

empirically relevant specifications for the conditional mean, and so is not unduly restrictive. Note

that in the proof of Theorem 1 we only considered ζ̄k > 0 since the case where ζ̄k = 0 only occurs

if µk(x∗) is a polynomial in X∗, and that specification has already been shown to be identified by

Hausman, Newey, Ichimura, and Powell (1991).

Theorem 1 establishes a set of assumptions under which µk(x∗) = E[Y k|X∗] is identified for

integers k. However, the objects of policy relevance are usually the conditional moments of the true,

unobserved Y ∗, that is ωk(x∗) = E[Y ∗k|X∗], or more generally the conditional distribution of Y ∗

given X∗. For k = 1 we have E[Y |X∗] = E[Y ∗|X∗], so ω1(x∗) = µ1(x∗) and the primary moment

of interest is already identified by Theorem 1. Now consider identification of higher moments, that
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is ωk(x∗) for k > 1.

Corollary 2. Let Assumptions of Theorem 1 hold, then:

ωk(x∗) = µk(x∗)−
k−1
∑

j=0

(

k

j

)

ωj(x∗)x∗l(k−j)E[Sk−j ], (14)

hence ωk(x∗) is identified up to knowledge of E[Sj ] for j = 2, . . . , k.

Corollary 2 shows that what is needed to identify ωk(x∗) for k > 1 is knowledge of correspond-

ing moments of the unconditional distribution of S. Identifying moments of the distribution of S

requires additional information which may be provided by a combination of additional data, restric-

tions imposed on the dependence structure between W and S, or additional information regarding

features of H(X∗, U). Such information needs to be considered on a case by case basis.

In the next section we consider the Engel curve setting where the nature of the variables involved

implies the existence of a specific dependence structure betweenW and S, or a boundary restriction

on H(X∗, U), either of which will provide sufficient additional information to identify moments of

S and hence ωk(x∗) using Corollary 2.

4 Identification of Engel curves

Let Y ∗

ℓ be unobserved expenditures on a particular good (or group of goods) ℓ, for ℓ = 1, ..., L and

let X∗ =
∑L

ℓ=1 Y
∗

ℓ be total expenditures on all goods. Let Y ∗ = Y ∗

1 denote the particular good of

interest. Then Y ∗ = H(X∗, U) is the Engel curve for the good of interest, where U is a vector of

individual consumer specific utility (preference) related parameters. The goal is then identification

of the conditional distribution of Y ∗ given X∗.

We now describe two different possible models of measurement errors, each of which yields

information that may be used to identify the conditional distribution of demands Y ∗ given total

expenditure X∗ using Theorem 1 and Corollary 2. In each case it is assumed, as is generally true

empirically, that observed total expendituresX are obtained by summing the observed expenditures

Yℓ on each good ℓ, so X =
∑L

ℓ=1 Yℓ.

For the first of these two models, assume Yℓ = Y ∗

ℓ + Sℓ for each good ℓ, corresponding to

measurement error in the form of equation (2) with l = 0. It then follows that the observed
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X = X∗ +W where the measurement error W =
∑L

ℓ=1 Sℓ is of the form given in equation (3).

We may then apply Theorem 1 to identify µk(x∗). To next apply Corollary 2 assume first that

one cannot purchase negative amounts of any good, so Y ∗

ℓ ≥ 0 since each Y ∗

ℓ is defined as a level

of expenditures. It then follows that the boundary condition H(0, U) ≡ 0 holds for all values of

U , because if X∗ =
∑L

ℓ=1 Y
∗

ℓ = 0 and every Y ∗

ℓ ≥ 0, then every Y ∗

ℓ = 0. The restriction that

H(0, U) ≡ 0 in turn implies that ωk(0) = 0 for all k ≥ 1, and by equation (14) we obtain

E[Sk] = µk(0) −
k

∑

j=1

ωj(0)E[Sk−j ] = µk(0) (15)

which, with µk(x∗) identified by Theorem 1, identifies E[Sk], and this in turn permits application

of Corollary 2 to identify the moments of interest ωk(x∗) for all k, and by extension provides

identification of the entire conditional distribution of Y ∗ given X∗, assuming the existence of a well

defined moment generating function for this distribution.

This first model of measurement error illustrates our identification methodology, but it imposes

the restrictive (for Engel curves) assumption that the independent measurement error is additive

even though consumption must be non-negative. Moreover, it’s likely that measurement errors in

expenditures increase with the level of expenditures.

Therefore, for estimation later we will focus on a nonparametric generalization of an alternative

specification proposed by Lewbel (1996) in the context of a parametric Engel curve model. This

model assumes Yℓ = Y ∗

ℓ +X∗Sℓ for each good ℓ, corresponding to measurement error in the form

of equation (2) with l = 1 for S = S1. Let S̃ =
∑L

ℓ=2 Sℓ. Assume that S and S̃ (corresponding to

measurement errors for different goods) have mean zero and are independent of each other. Then

X =
∑L

ℓ=1 Yℓ = X∗

(

1 + S + S̃
)

, corresponding to multiplicative measurement error in X given by

equation (4) with

W = 1 + S + S̃ (16)

and E (W ) = 1 as required by Theorem 1. Given this structure, moments of S are identified given

14



knowledge of E[W k] and E[W kS] for k = 1, . . ., as follows. Using equation (16) we obtain:

E[W kS] = E[[S + (1 + S̃)]kS]

= E



S

k
∑

j=0

(

k

j

)

Sj(1 + S̃)k−j





=

k
∑

j=0

(

k

j

)

E[Sj+1]E[(1 + S̃)k−j],

which implies:

E[Sk+1] = E[W kS]−
k−1
∑

j=0

(

k

j

)

E[Sj+1]E[(1 + S̃)k−j],

where E[(1 + S̃)k] is given by:

E[(1 + S̃)k] = E[W k]−
k

∑

j=1

(

k

j

)

E[Sj ]E[(1 + S̃)k−j].

The following Theorem establishes formal identification for these quantities.

Theorem 2. Let Assumptions 1-4 and equations (1) and (4) hold. Let the first K moments of X

exist finite with E[X∗k] 6= 0 and E[X∗k|Z] 6= 0 for every k = 1, . . . ,K, then the first K moments

of W are identified and

E[W k] =
E[Xk]

∑k
j=0

(k
j

)

(−i)k−jE[Zj ]φ(k−j)(0)
. (17)

Furthermore if ζ̄1 = ∞ in Assumption 4 then the moments E[W kS] for k = 1, . . . ,K − l are also

identified and

E[W kS] =
E[XkY |Z = z]− (2π)−1E[W k]

∫

(−i)kγ
(k)
1 (ζ)φ(ζ)e−iζzdζ

∑k+l
j=0

(

k+l
j

)

zj(−i)k+l−jφ(k+l−j)(0)
. (18)

where γ
(k)
1 (ζ) is the k-th derivative of γ1(ζ) as defined in equation (11), while φ(ζ) is as in (12).

The proof of Theorem 2 is given in the Appendix. Intuitively identification of E[W k] for k =

1, . . . ,K follows by noting that, from equation (4) and by Assumption 1, E[Xk] = E[X∗k]E[W k],

and since the unobserved distribution X∗ is identified by Corollary 1 every moment of W is also
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identified. Furthermore from equation (4) we have

E[XkY |Z] = E[X∗µ1(x∗)|Z]E[W k] + E[X∗k+l|Z]E[W kS],

which only involves identified moments apart from E[W kS], hence proving identification of E[W kS].

Both Y ∗ andX∗ are non-negative random variables, so the requirement that the firstK marginal

and conditional moments of X∗ be non-zero is satisfied as long as X∗ is non-degenerate. This is

because we are considering raw moments and not central ones, hence we are not for instance ruling

out symmetric distributions, for which the third central moment would be zero. Furthermore, the

assumption of ζ̄1 = ∞, generally covers empirically relevant frameworks as was discussed in Section

3.

Under the assumptions of Theorems 1 and 2 any conditional moment of the distribution of

the unobserved Y ∗ on X∗ is identified. It then follows that the entire conditional distribution of

Y ∗ given X∗ is identified, assuming that this conditional distribution has a well defined moment

generating function.

5 Estimation

In this Section we propose a sieve based nonparametric estimator for the conditional moments of the

distribution of Y ∗ given X∗ in the case of Engel curves. Many studies have documented a variety

of nonlinearities and substantial unobserved heterogeneity in shapes, see Blundell, Browning, and

Crawford (2003) and Lewbel and Pendakur (2009) for instance, or Lewbel (2010) for a survey. It

is therefore useful to provide an estimator that allows for the presence of measurement error of the

specific kind implied by expenditure data, while not imposing functional form restrictions. Also as

noted above, unlike previous studies, we are able to disentangle the variance components due to

measurement error from those due to preference heterogeneity.

The estimator we propose is based on applying the sieve GMM estimator of Ai and Chen

(2003) to the conditional moments used for Theorem 2. For ease of exposition we will just consider

estimation of the first two conditional moments, but given our identification results the extension
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to higher moments is purely mechanical. The model is

Y = Y ∗ +X∗S, X = X∗W , and X∗ = m(Q) + V .

The goal is consistent estimation of the functions ω1(·) and ω2(·), where by construction:

Y ∗ = ω1(X∗) + ǫ1 and Y ∗2 = ω2(X∗) + ǫ2

with E[ǫ1|X∗] = E[ǫ2|X∗] = 0 by definition of ω1(·) and ω2(·). The data consist of an i.i.d. sample

of size N from the triple (Y,X,Q).

Based on Theorems 1 and 2 we exploit the moment restrictions implied by equations (6) and

(8) and define:

ρ0(qi;θ) = yi −
∫

ω1(ẑi − σv)f(v)dv, (19)

ρ1(qi;θ) = y2i −
∫

[

ω2(ẑi − σv) + λ(ẑi − σv)2
]

f(v)dv, (20)

ρ2(qi;θ) = xiyi −
∫

[

(ẑi − σv)ω1(ẑi − σv) + λ(ẑi − σv)2
]

f(v)dv, (21)

where qi = (yi, xi, ẑi), i = 1, . . . , N , denotes observations and θ = (λ, σ, ω1(·), ω2(·), f(·)), with f(·)

being the probability density function of the first stage error term V . According to equation (5)

ẑi are the first stage fitted values of a nonparametric regression of the observed X on Q. Defining

ρ(qi;θ) = (ρ0(qi;θ), ρ1(qi;θ), ρ2(qi;θ))
′, a consistent estimator is then obtained from:

E[c(ẑi)
′ρ(qi;θ)] = 0 (22)

for a suitable vector of instruments c(ẑi).

The computation of (22) is complicated by several factors. First, the parameter vector θ is

infinite-dimensional due to the presence of the unknown functions ω1(·), ω2(·) and f(·). Second, even

if these functions were finitely parametrized, the computation of ρi(qi;θ) would involve integrals

(19)-(21) which do not have a closed form solution.

We address both of these issues by adopting a minimum distance sieve estimator along the lines

of Ai and Chen (2003), replacing the space H = H1 × H2 × Hf . with a finite-dimensional sieve
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space Hn = H1n × H2n × Hfn which becomes dense in the original space H as n increases as in

Grenander (1981). Computations involving integrals are simplified by a convenient choice of the

sieve space Hfn.

We consider cosine polynomial and Hermite polynomial sieve spaces to approximate conditional

moments (ω1(x∗) and ω2(x∗)) and the density function f(v) respectively, that is:

ωj(x∗) ≈
Nj
∑

i=0

βijbij(x
∗), j = 1, 2, (23)

f(v) ≈
Nf
∑

i=0

αihi(x
∗), (24)

for some N1, N2, Nf , and where the basis functions {bij(x∗), i = 0, 1, . . .} and {hi(x∗), i = 0, 1, . . .}

are given by:

bij(x
∗) = cos

(

iπ(x∗ − aj)

bj − aj

)

, hi(x
∗) = Hi(v)φ(v)

for some aj , bj , j = 1, 2. The function φ(·) is the standard normal density function, while Hi(·) is

the i-th order Hermite polynomial.

Cosine polynomial sieves are chosen to approximate conditional moments since they are known

for well approximating aperiodic functions on an interval (see Chen 2007 and Newey and Powell

2003). Hermite polynomial sieves, on the other hand, are well suited for approximating the density

function f(v) for two reasons. First, standard restrictions for the approximating density to integrate

to one and to be mean zero with unit variance are trivially imposed by setting α0 = 1 and α1 =

α2 = 0. Second, the fact that a Hermite polynomial is multiplied by the standard normal density

allows us to easily compute the integrals in equations (19)-(21) along the lines of Newey (2001) and

Wang and Hsiao (2011). Indeed, by substituting (23) and (24) in (19), (20) and (21) we obtain:

ρ̂0(qi;η) = yi −
N1
∑

i=0

Nf
∑

l=0

βi1αl

∫

bi1(ẑi − σv)Hl(v)φ(v)dv,

ρ̂1(qi;η) = y2i −
N2
∑

i=0

Nf
∑

l=0

βi2αl

∫

[

bi2(ẑi − σv) + λ(ẑi − σv)2
]

Hl(v)φ(v)dv,

ρ̂2(qi;η) = xiyi −
N1
∑

i=0

Nf
∑

l=0

βi1αl

∫

[

(ẑi − σv)bi1(ẑi − σv) + λ(ẑi − σv)2
]

Hl(v)φ(v)dv,
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where η = (λ, σ, α0, . . . , αNf
, β10, . . . , β1N1

, β20, . . . , β2N2
). Thus the integrals involved in ρ̂(qi;η)

can be computed with an arbitrary degree of precision by averaging the value of the integrand

function over randomly drawn observations from a standard normal density. Letting vj for j =

1, . . . , J be J random draws from a standard normal distribution, ρ̂0(qi;η) is in this way computed

as

ρ̂0(qi;η) = yi − J−1
N1
∑

i=0

Nf
∑

l=0

βi1αl

J
∑

j=1

bi1(ẑi − σvj)Hl(vj).

Similar expressions hold for ρ̂1(qi;η) and ρ̂2(qi;η).
6

It then follows from Theorems 1 and 2 and from Lemma 3.1 in Ai and Chen (2003) that a

consistent estimator for η is given by

argmin
η

1

N

N
∑

i=1

ρ̂(qi, η)
′c(zi) [Σ(qi)]

−1
c(zi)

′ρ̂(qi, η)

with a positive definite matrix Σ(qi). We apply the two-step GMM procedure:

(1) Obtain an initial estimate η̂ from the consistent estimator:

argmin
η

1

N

N
∑

i=1

ρ̂(qi, η)
′c(zi)c(zi)

′ρ̂(qi, η).

(2) Improve the efficiency of the estimator η̃ by applying the minimization:

argmin
η

1

N

N
∑

i=1

ρ̂(qi, η)
′c(zi)

[

Σ̂(qi)
]

−1
c(zi)

′ρ̂(qi, η).

where Σ̂(qi) = {σ̂jl(qi)} is obtained from η̂ as:

σ̂jl(qi) =
1

N

N
∑

i=1

cj(zi)cj(zi)ρ̂j(qi, η̂)ρ̂l(qi, η̂).

Ai and Chen (2003) and Newey and Powell (2003) show that this is a consistent estimator for

η̂, and derive the asymptotically normal limiting distribution for the parametric components of θ.

6While N1, N2 and Nf need to increase with sample size and play the role of smoothing parameters, J only
affects the degree of precision with which the integrals are evaluated and should be set as large as is computationally
practical, analogous to the choice of the fineness of the grid in ordinary numerical integration.
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Our primary interest is estimation of the functions ω1(·) and ω2(·). Ai and Chen (2003) show that,

under suitable assumptions, the rate of convergence of infinite dimensional components of θ like

these is faster than n1/4.

6 Simulation Study

A simulation study is employed to assess the finite sample performance of the estimator derived in

Section 5. For simplicity we focus on the estimation of the conditional mean of Y ∗. The simulation

design is:

Y ∗ = g(X∗) + U, U ∼ N(0, σ2U ),

X∗ = 1 + 0.4Z − V, Z ∼ N(5, 1.5), V ∼ N(0, 0.32)

where σ2U is set so that the R2 of the regression of Y ∗ on X∗ is roughly 0.75. Three different

specifications for the conditional mean function g(·) are considered. The first is the standard

Working (1943) and Leser (1963) specification of Engel curves, corresponding to budget shares

linear in the logarithm of X∗. The others are a third order polynomial Engel curve and a Fourier

function Engel curve. The choice of the parameters for each of the three specifications is:

g1(X
∗) = X∗ − 0.5X∗ log(X∗)

g2(X
∗) = 0.8X∗ + 0.02X∗2 − 0.03X∗3

g3(X
∗) = 4− 2 sin(2π(X∗ − 0)/4) + 0.5 cos(2π(X∗ − 0)/4)

Data (Y ∗,X∗) are assumed to be contaminated by measurement errors, so what is observed is the

couple (Y,X) given by

Y = Y ∗ +X∗S,

X = X∗W,

with W = S + S̃ + 1, E[S] = E[S̃] = 0. The variances of measurement errors S and S̃ are chosen

such that V ar[logX∗] ≈ V ar[logW ], so half of the variation in the observed logX∗ is measurement
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error. This is a substantial amount of measurement error, though it is roughly comparable to what

we later find empirically.

We draw 1000 samples of 500, 1000 and 2000 observations from these three data generating

processes corresponding to g1(·), g2(·) and g3(·). For each of these samples the conditional mean

function of Y ∗ given X∗ is estimated by the sieve estimator proposed in Section 5. Results are

compared with three other estimators: the one proposed by Lewbel (1996), which assumes the

parametric Working (1943) and Leser (1963) linear in logarithms budget share functional form for

g1(X
∗); a nonparametric sieve estimator, which ignores the presence of measurement error; and

the infeasible nonparametric sieve estimator computed on the unobserved data Y ∗ and X∗. The

latter is considered in order to compare our results with the ideal alternative scenario in which

measurement errors is not an issue.

Table 1: Integrated Mean Squared Error – Working-Leser Specification
N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed Nonparametric 0.0278 0.0250 0.0374
Lewbel Working-Leser 0.0050 0.0044 0.0043

Sieve OLS 0.1264 0.1157 0.1367
infeasible Sieve OLS 0.0029 0.0016 0.0002

N = 1000

Proposed Nonparametric 0.0194 0.0145 0.0077
Lewbel Working-Leser 0.0029 0.0020 0.0017

Sieve OLS 0.1338 0.1216 0.1272
infeasible Sieve OLS 0.0025 0.0013 0.0001

N = 2000

Proposed Nonparametric 0.0075 0.0061 0.0044
Lewbel Working-Leser 0.0013 0.0014 0.0012

Sieve OLS 0.1249 0.1249 0.1238
infeasible Sieve OLS 0.0023 0.0015 0.0001

Table 2: Integrated Mean Squared Error – Polynomial Specification
N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed Nonparametric 0.0412 0.0316 0.0419
Lewbel Working-Leser 0.4450 0.3887 0.4236

Sieve OLS 0.4352 0.3664 0.4120
infeasible Sieve OLS 0.0164 0.0070 0.0008

N = 1000

Proposed Nonparametric 0.0317 0.0252 0.0201
Lewbel Working-Leser 0.4439 0.4409 0.4397

Sieve OLS 0.4186 0.4027 0.4061
infeasible Sieve OLS 0.0146 0.0078 0.0007

N = 2000

Proposed Nonparametric 0.0222 0.0134 0.0086
Lewbel Working-Leser 0.4449 0.4411 0.4472

Sieve OLS 0.4204 0.3927 0.4154
infeasible Sieve OLS 0.0158 0.0075 0.0006

We set Nf = 3, with α0 = 1 and α1 = α2 = 0 so that the resulting density is suitably normalized

to have zero mean and unit variance. We select J = 100 in order to lower the computational burden

of the algorithm, while the constants a1 and b1 are chosen so that the corresponding interval contains

all of the observations for X, resulting in a1 = 0 and b1 = 6. The values of N1 considered are 2, 3
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Table 3: Integrated Mean Squared Error – Fourier Specification
N1 = 2 N1 = 3 N1 = 4

N = 500

Proposed Nonparametric 1.2341 0.7136 0.2643
Lewbel Working-Leser 17.4530 17.2250 17.4841

Sieve OLS 6.9265 6.6896 7.2122
infeasible Sieve OLS 0.9254 0.5535 0.0321

N = 1000

Proposed Nonparametric 0.6948 0.5832 0.1526
Lewbel Working-Leser 17.6906 18.1249 17.5878

Sieve OLS 7.0111 6.7868 7.0255
infeasible Sieve OLS 0.8377 0.5154 0.0173

N = 2000

Proposed Nonparametric 0.6220 0.4513 0.0600
Lewbel Working-Leser 17.8650 18.0427 17.8537

Sieve OLS 7.1276 6.7988 6.9826
infeasible Sieve OLS 0.8377 0.4767 0.0113

and 4, while the set of instruments is given by a constant, Z and log(Z).

To compare estimators we calculate a measure of the distance between each median estimated

curve with the true one. The measure considered is the Integrated Mean Squared Error (IMSE)

also considered by Ai and Chen (2003), defined as:

IMSE =
(vI − v0)

I

I
∑

i=1

(ω̂(vi)− g(vi))
2,

where (v0, . . . , vI) is a sufficiently fine equally spaced grid of points over which the comparison is

made and ω̂(x) is the median over all the estimated curves in x.

Results are summarized in Tables 1-3, where the IMSE is calculated for all the combinations of

N and N1 for each of the specifications considered above.

The infeasible estimator based on data that is not mismeasured far outperforms the feasible

estimators, showing that the cost of measurement error on estimation accuracy is substantial. Not

knowing the correct functional form of the Engel curve is also quite costly, as can be seen by

comparing our proposed estimator to the parametric estimator proposed by Lewbel (1996) in Table

1. Our proposed estimator performs significantly better than the feasible estimators that ignore

measurement error, and significantly better than the parametric estimator when that estimator

misspecifies the Engel curve.

7 Empirical Application

We provide an application of the estimator derived in Section 5 using data from the US Consumer

Expenditure Survey. The sample considered is the same as in Battistin, Blundell, and Lewbel (2009),
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using data for the range of years 2001 to 2003. We restrict our attention to couples, composed of

husband and wife, in which the male is aged between 35 and 65.7 The final sample is composed of

1149 households.

We focus on the estimation of Engel curves for food and clothing, using real income as an

instrument. We implement the estimator derived in Section 5 to estimate the conditional mean

and variance of food and clothing expenditures given true total expenditures X∗, where N1 and N2

are set equal to 2.8 To limit the dependency of the result from the standard normal random draws

used for approximating the integrals we select J = 1000. 9

The estimated conditional mean functions along with analogous curves obtained by several

alternative estimators are reported in Figures 1 and 2. Parametric estimates are obtained from the

linear in logarithms Working-Leser budget share specification, with and without allowing for the

presence of measurement errors (the former being obtained by applying the estimator discussed

in Lewbel 1996). Nonparametric estimates are based on sieves which either completely ignore

the presence of measurement errors, or allow for the presence of measurement errors only in total

expenditures X (hence relying on the moment conditions discussed in Schennach (2007) which is

equal to imposing λ = 0 in our model), and our full model which allows for correlated measurement

errors in both X and Y .

A check on the adequacy of our model is to compare the estimates of the variance of W , i.e.,

the measurement error in X, which should be asymptotically the same in the two models. The

estimated variances are quite similar, equalling 0.098 in the food equation and 0.086 in the clothing

equation. This corresponds to a noise to signal ratio for observed levels of total expenditures of

0.353 and 0.315 respectively 10, meaning that roughly one third of the variance of total expenditures

X may be attributed to measurement error, which is a rather large estimate.

It is well documented that the Working-Leser log linear budget share Engel curve model fits

food demand reasonably well, but not clothing (see, e.g., the survey Lewbel (2010) and refer-

7Reported expenditures are deflated by the annual US Consumer Price Index, and are deflated by the number of
household members.

8We also considered the case of N1 = N2 = 3, but that appeared to overfit the data, resulting in highly variable
estimates of the coefficients of interest, thus suggesting the choice for the degree of smoothing of N1 = N2 = 2.

9We further trim data by 0.5% on both Y and X in an attempt to avoid the well known sensitivity of sieve
estimators on outliers.

10Following equation (4) it is: X = X∗ + X∗(W − 1), hence the estimated noise to signal ratio is given by
V ar(X∗(W − 1))/V ar(X∗)
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Figure 1: Food expenditure Engel curves
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ences therein). We similarly find evidence that food but not clothing is close to Working-Leser.

The estimated variance of W in the Working-Leser food equation is 0.138, not too far from our

nonparametric estimate. In contrast, the estimated variance of W in the Working-Leser clothing

equation is negative ( −0.588), providing strong evidence that clothing is not Working-Leser.

The estimated correlation coefficients between W and measurement errors in food and clothing

are 0.068 and 0.024 respectively. This implies roughly that seven and three percent of the standard

deviation of measurement errors in total expenditures X are accounted for by measurement errors

in food and clothing respectively. As can be seen from figures, accounting for these measurement

errors does visibly alter the estimated Engel curves.

Figures 3 and 4 show the estimated conditional variance functions, defined as V ar(Y ∗|X∗).

Reported are non-parametric estimates obtained by ignoring measurement errors in both Y and

X, acounting for measurement error in X alone (hence applying Schennach 2007 estimator to the

second conditional moment) and accounting for measurement error in both Y and X as a result of

the implementation of the estimator proposed in section 5. These suggest that measurement error
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Figure 2: Clothing expenditure Engel curves
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is responsible for a large part of the observed conditional variance of the observed Y .

It has long been known that for most goods, V ar(Y |X) increases with X. For example, this

features prominently in Hildenbrand (1994) (see chapter 3 on increasing dispersion), and is the

reason why Engel curves are often estimated in budget share form (since regressing Y/X on X

reduces the heteroskedasticity of the error term relative to regressing Y on X). Figures 3 and 4

clearly show this feature in the uncorrected estimates. However, the estimates of variance after

correcting for measurement error are not increasing, which suggests that this well documented

feature of Engel curve estimates may be at least in part an artifact of measurement errors rather

than a feature of behavior.

8 Conclusions

We have considered identification and estimation of conditional moments of Y given X when both

are mismeasured and measurement errors are correlated with each other. We showed nonparametric
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Figure 3: Conditional variance function for food
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identification of conditional moments for a general class of measurement error models. Identification

of higher moments requires some structural assumptions that, in the case of Engel curves, follow

from the definitions and construction of Y and X.

Given identification, we proposed a nonparametric estimator based on a sieve approximation

of the conditional moments which takes the form of a conditional GMM estimator. The identifica-

tion and estimation do not require strong a priori functional form restrictions. We verified with a

simulation study that in finite samples our estimator greatly reduces mean squared error relative

to alternative available estimators. An empirical application was also provided to the estimation

of food and clothing Engel curves. The results indicate the presence of relatively substantial mea-

surement error in recorded total expenditures, and the presence of measurement errors in both

food and clothing expenditures that correlate with the measurement error in total expenditures.

Accounting for these measurement errors produces moderate changes in the shape and location of

these Engel curves, and generates more pronounced changes in the estimates of V ar(Y |X). These

latter estimates suggest that the well documented increasing dispersion property of Engel curves is
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Figure 4: Conditional variance function for clothing
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likely to be due at least in part to measurement errors rather than consumer behavior.
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Appendix

Proof of Lemma 1

Under Assumption 1, if equation (3) holds, we may write:

E[Y k|Z] =

∫

µk(z − v)dF (v)

E[XY |Z] =

∫

(z − v)µ1(z − v)dF (v) + λ

∫

(z − v)ldF (v),

where λ = E[WS]. Now taking the Fourier transform on both sides of the equation we obtain:

εyk(ζ) =

∫ ∫

µk(z − v)dF (v)eiζzdz,

=

∫ ∫

µk(x∗)eiζ(x
∗+v)dx∗dF (v),

=

∫ ∫

µk(x∗)eiζx
∗

dx∗eiζvdF (v),

=

∫

µk(x∗)eiζx
∗

dx∗
∫

eiζvdF (v),

= γk(ζ)φ(ζ),

and

εxy(ζ) =

∫ ∫

(z − v)µ1(z − v)dF (v)eiζzdz +

∫ ∫

λ(z − v)ldF (v)eiζzdz,

=

∫ ∫

x∗µ1(x∗)eiζ(x
∗+v)dx∗dF (v) + λ

∫ ∫

x∗leiζ(x
∗+v)dx∗dF (v),

=

∫

x∗µ1(x∗)eiζx
∗

dx∗
∫

eiζvdF (v) + λ

∫

x∗leiζx
∗

dx∗
∫

eiζvdF (v),

=

(

−i
∂

∂ζ

∫

µ1(x∗)eiζx
∗

dx∗
)

φ(ζ) + λψ(ζ)φ(ζ),

= −iγ̇1(ζ)φ(ζ) + λψ(ζ),

hence iεxy(ζ) = γ̇1(ζ)φ(ζ) + iλψ(ζ)φ(ζ). A similar expression holds true under multiplicative

measurement error as in equation (4).

Q.E.D.
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Proof of Theorem 1

By manipulating (9) and (10) we obtain

εyk(ζ) = γk(ζ)φ(ζ), (25)

iε(z−x)y(ζ) = γ1(ζ)φ̇(ζ)− λiψ(ζ)φ(ζ),

where iε(z−x)y(ζ) = iεzy(ζ)− iεxy(ζ) and iεzy(ζ) ≡ ε̇y(ζ) = γ̇1(ζ)φ(ζ) + γ1(ζ)φ̇(ζ). The main point

to keep in mind is that εy(ζ), ε(z−x)y(ζ), γk(ζ) and ψ(ζ) are generalized functions Lighthill 1962,

so that the product operation between two of them is not defined. However by Assumption 5 γk(ζ)

may be decomposed into the sum of an ordinary function (denoted with subscript o) and a purely

singular function (denoted with subscript s), so that

εy,o(ζ) + εy,s(ζ) = [γ1;o(ζ) + γ1;s(ζ)]φ(ζ),

iε(z−x)y,o(ζ) + iε(z−x)y,s(ζ) = [γ1;o(ζ) + γ1;s(ζ)] φ̇(ζ)− λiψ(ζ)φ(ζ).

Note that we do not put subscripts on φ(ζ) or ψ(ζ), since the former is an ordinary function,

being the Fourier transform of an absolutely integrable function, and the latter is a purely singular

function as ψ(ζ) = 2πδ(ζ). Now applying Lemma 2 in Schennach (2007), which states that the

product of an ordinary function with an ordinary function is an ordinary function, whereas the

product of a purely singular component with an ordinary function is purely singular, and equating

the ordinary components in the above equations we obtain equations (50) and (51) in Schennach

(2007), namely

εy,o(ζ) = γ1;o(ζ)φ(ζ),

iε(z−x)y,o(ζ) = γ1;o(ζ)φ̇(ζ).

These are now all ordinary functions and they may be manipulated as in Schennach (2007) to

obtain identification of φ(ζ) for ζ ∈ [−ζ̄1, ζ̄1] with

φ(ζ) = exp

(
∫ ζ

0

iε(z−x)y,o(ζ)

εy,o(ζ)
dζ

)

. (26)
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We restrict our attention to the case in which ζ̄1 > 0, however ζ̄1 = 0 only when the conditional

mean E[Y ∗|X∗] is a polynomial in X∗, a case which has already been shown to be identified by

Hausman, Newey, Ichimura, and Powell (1991). Substitution of (26) in (25) leads to

γk(ζ) =











0 if εyk(ζ) = 0

εyk(ζ)/φ(ζ) otherwise,

and hence by taking the inverse Fourier transform of γk(ζ):

µk(X∗) = (2π)−1

∫

γk(ζ)e
−iζX∗

dζ,

proving the identification of µk(X∗).

Q.E.D.

Proof of Corollary 2

Exploiting the additive nature of measurement error in Y ∗, let us rewrite the k-th conditional

moment of the observed Y as:

µk(x
∗) = E

[

(

H(X∗, U) +X∗lS
)k

]

=

k
∑

j=0

(

k

j

)

E[Hj(X∗, U)X∗l(k−j)Sk−j|X∗

i ]

=

k
∑

j=0

(

k

j

)

ωj(x∗)x∗l(k−j)E[Sk−j],

where the second equality holds because of (ii) in Assumption 1. Noting that µ0(x∗) = ω0(x∗) = 1

and solving for ωk(x∗) we obtain equation (14). Since by Theorem 1 µk(x
∗) is identified, if E[Sj ]

for j = 2, . . . , k is known then ωk(x
∗) is identified.

Proof of Theorem 2

Since the first K moments of X exist by assumption then E[Zk] also exists. Under Assumptions 1

to 4, by Theorem 1, φ(ζ) is shown to be identified in a neighborhood of the origin, hence φ(k)(0) is

33



also identified for k = 1, . . . ,K and, exploiting equation (5), we may write:

E[X∗k] =

k
∑

j=0

(

k

j

)

E[Zj ]E[(−Ṽ )k−j],

=

k
∑

j=0

(

k

j

)

E[Zj ](−1)k−j(−ik−j)φ(k−j)(0),

=
k

∑

j=0

(

k

j

)

(−i)k−jE[Zj ]φ(k−j)(0). (27)

The k-th moment of the observed X, because of equation (4), may be written as E[Xk] =

E[X∗k]E[W k], which implies:

E[W k] =
E[Xk]

E[X∗k]
, (28)

which is well defined since by assumption E[X∗k] 6= 0. Substitution of equation (27) into (28) yields

equation (17).

Equation (18) follows by noting that from equation (4) and by Assumptions 1 we have that:

E[XkY |Z] = E[X∗kW kH(X∗, U)|Z] + E[X∗kW kX∗lS|Z],

= E[X∗kµ1(x∗)|Z]E[W k] + E[X∗k+l|Z]E[W kS],

which gives

E[W kS] =
E[XkY |Z = z]− E[X∗kµ1(x∗)|Z]E[W k]

E[X∗k+l|Z = z]
. (29)

The right hand side of equation (29) involves functions that are either observable, like E[XkY |Z],

or already shown to be identified. In particular E[X∗k+l|Z] is obtained from knowledge of φ(ζ) as

E[X∗k+l|Z = z] =

∫

(z − v)k+ldF (v) =

∫ k+l
∑

j=0

(

k + l

j

)

zjvk+l−jdF (v),

=

k+l
∑

j=0

(

k + l

j

)

zj
∫

vk+l−jdF (v),

=

k+l
∑

j=0

(

k + l

j

)

zj(−i)k+l−jφ(k+l−j)(0). (30)
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On the other hand, if ζ̄1 = ∞ in Assumption 4, it is:

∫

E[X∗kµ1(x∗)|Z = z]eiζzdz =

∫ ∫

(z − v)kµ1(z − v)dF (v)eiζzdz,

= (−i)kγ
(k)
1 (ζ)φ(ζ),

where γ1(ζ) is defined as in equation (11) and by taking the inverse Fourier transform we get:

E[X∗kµ1(x∗)|Z = z] = (2π)−1

∫

(−i)kγ
(k)
1 (ζ)φ(ζ)e−iζzdζ. (31)

Substitution of equations (30) and (31) into (29) gives:

E[W kS] =
E[XkY |Z = z]− (2π)−1E[W k]

∫

(−i)kγ
(k)
1 (ζ)φ(ζ)e−iζzdζ

∑k+l
j=0

(k+l
j

)

zj(−i)k+l−jφ(k+l−j)(0)
.

Q.E.D.
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