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Abstract

This paper studies measuring the average e¤ects �� of X on Y in a structural
system with random coe¢ cients and confounding. We do not require (conditionally)
exogenous regressors or instruments. Using proxies W for the confounders U , we
ask how do the average direct e¤ects of U on Y compare in magnitude and sign to
those of U on W . Exogeneity and equi- or proportional confounding are limit cases
yielding full identi�cation. Alternatively, the elements of �� are partially identi�ed in
a sharp bounded interval if W is su¢ ciently sensitive to U , and sharp upper or lower
bounds may obtain otherwise. We extend this analysis to accommodate conditioning
on covariates and a semiparametric separable speci�cation as well as a panel structure
and proxies included in the Y equation. After studying estimation and inference, we
apply this method to study the �nancial return to education and the black-white
wage gap.

Keywords: causality, confounding, endogeneity, omitted variable, partial identi�ca-
tion, proxy.

1 Introduction

This paper studies identifying and estimating average causal e¤ects in a structural system

with random coe¢ cients under restrictions on the magnitude and sign of confounding. To
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illustrate the paper�s main ideas, consider a Mincer (1974) earning structural equation,

frequently employed in empirical work (see e.g. discussion in Card, 1999), given by

Y = �y +X
0 �� + U ��y;

where Y denotes the logarithm of hourly wage, X denotes observed determinants of wage

including years of education, and the scalar U , commonly referred to as �ability,�denotes

unobserved skill. To introduce the main ideas in their simplest form, we let U be scalar

and consider constant slope coe¢ cients �� and ��y here but allow for a random intercept �y

which may be correlated with X. Because U is freely associated with X and may cause Y ,

we say that U is a �confounder�and X is �endogenous.�Our object of interest here is ��,

the vector of (average) direct e¤ects of the elements of X on Y . Let W be a proxy for U

that is possibly error-laden and given by

W = �w + U ��w;

where, for now, we consider a constant slope coe¢ cient ��w and random intercept �w which

may be correlated with U . For example, W may denote the logarithm of a test score com-

monly used as a proxy for �ability,�such IQ (Intelligence Quotient) or KWW (Knowledge

of the World of Work). This parsimonious speci�cation facilitates comparing the slope

coe¢ cients on U in the Y andW equations while maintaining the commonly used log-level

speci�cation for the wage equation. In particular, 100��y and 100��w denote respectively the

(average) approximate percentage changes in wage and test score due directly to a one unit

increase in U . Alternatively, one could consider standardized variables. Last, let Z be a

vector of potential instruments that are uncorrelated with �y and �w but freely correlated

with U and therefore invalid. Let Z and X have the same dimension; for example, Z may

equal X. Also, let ~Z = Z � E(Z). We then have

E( ~ZY ) = E( ~ZX 0) �� + E( ~ZU)��y and E( ~ZW ) = E( ~ZU)��w:

Provided E( ~ZX 0) is nonsingular, we obtain

�� = E( ~ZX 0)�1E( ~ZY )� E( ~ZX 0)�1E( ~ZW )
��y
��w
:
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This expression for �� involves two instrumental variables (IV) regression estimandsE( ~ZX 0)�1

E( ~ZY ) and E( ~ZX 0)�1E( ~ZW ). It also involves the unknown
��y
��w
denoting the ratio of the

(average) direct e¤ect of U on Y to that of U onW . Importantly, the IV regression omitted

variable bias (or inconsistency) E( ~ZX 0)�1E( ~ZW )
��y
��w
in measuring �� is known up to this

ratio. As we show, a similar expression for the average e¤ects �� of X on Y obtains in the

case of random slope coe¢ cients under suitable assumptions discussed below.

We ask the following questions:

1. How does the average direct e¤ect of U on Y compare in magnitude to that of U on

W?

2. How does the average direct e¤ect of U on Y compare in sign to that of U on W?

Sometimes, economic theory and evidence can provide guidance to answering these

questions. For example, Cawley, Heckman, and Vytlacil (2001) �nd that the fraction of

wage variance explained by measures of cognitive ability is modest and that personality

traits are correlated with earnings primarily through schooling attainment. Also, when

ability is not revealed to employers, they may statistically discriminate based on observables

such as education (see e.g. Altonji and Pierret (2001) and Arcidiacono, Bayer, and Hizmo

(2010)). As such, in the context of the earning equation illustrative example, it may be

reasonable to assume at least for certain subpopulations that, given the observables, wage is

on average less sensitive or elastic to unobserved ability than the test score is. In particular,

a one unit change in U may, on average, directly cause a higher percentage change in the

test score than in wage. Second, ability may, on average, directly a¤ect wage and the test

score in the same direction.

The answers to these questions impose restrictions on the magnitude and sign of con-

founding which fully or partially identify the average e¤ects �� of X on Y . In particular,

exogeneity is a limiting case, which obtains if the average direct e¤ect ��y of U on Y is

zero, yielding full (point) identi�cation. Equiconfounding (or proportional confounding) is

another limiting case, in which the average direct e¤ect of U on Y equals (a known propor-

tion of) that of U on W , also yielding full identi�cation (see Chalak, 2012). Alternatively,

restrictions on how the average direct e¤ect of U on Y compares in magnitude and/or sign
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to that of U on W partially identify elements of ��, yielding sharp bounded intervals when

the proxyW is su¢ ciently sensitive to the confounder U , and sharp lower or upper bounds

otherwise.

This paper develops the analysis illustrated in this example and extends it to allow for

random slope coe¢ cients, multiple confounders, and a semiparametric separable speci�ca-

tion as well as a panel structure and proxies included in the Y equation. It derives the

sharp identi�cation regions for the direct e¤ects of X on Y in these cases under magnitude

and sign restrictions on confounding. After discussing estimation and inference, the paper

applies its results to study the return to education and the black-white wage gap. Using

the data in Card (1995), we employ restrictions on confounding to partially identify in a

sharp bounded interval the average �nancial return to education as well as the average

black-white wage gap for given levels of unobserved ability and observables including edu-

cation. We �nd that regression estimates provide an upper bound on the average return to

education and black-white wage gap. We also �nd nonlinearity in the return to education,

with the 12th, 16th, and 18th years, corresponding to obtaining a high school, college, and

possibly a graduate degree, yielding a high average return.

This paper�s method provides a simple alternative to the common practice which infor-

mally assumes that conditioning on proxies ensures conditional exogeneity. In particular,

even when �w is independent of U , conditioning on W does not ensure that the coe¢ cient

on X from a regression of Y on (1; X 0;W 0)0 identi�es ��. Conditioning on W may neverthe-

less attenuate the regression bias (see e.g. Ogburna and VanderWeele, 2012). This paper�s

method also provides a practical alternative to IV methods when there are fewer (condi-

tionally) exogenous instruments than elements of X, as may be the case when allowing for

year-speci�c incremental return to education.

The assumption that Y is, on average, less directly responsive to U thanW is, underly-

ing partial identi�cation in a bounded interval, is a weakening of exogeneity1. Several recent

papers employ alternative assumptions to partially identify constant coe¢ cients associated

with endogenous variables in a linear equation. For example, Altonji, Conley, Elder, and

1We let U denote the unobservables thought to be freely correlated with Z (conditional on the covariates)
with the unobserved drivers of Y that are (conditionally) uncorrelated with Z absorbed into �y. Recall
that Z may equal X.
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Taber (2011) obtain partial identi�cation by assuming that the selection on unobservables

occurs similarly to that on observables. Also, Reinhold and Woutersen (2009) and Nevo

and Rosen (2012) partially identify constant coe¢ cients in a linear equation under the as-

sumptions that the instruments are less correlated with U than the endogenous variables

are, and that these correlations are in the same direction. Bontemps, Magnac, and Maurin

(2012) provide additional examples and a general treatment of set identi�ed linear models.

In a nonparametric setting, Manski and Pepper (2000) bound the average treatment ef-

fect under the assumption that the mean potential outcome varies monotonically with the

instrument. This paper employs proxies to (partially) identify average e¤ects under mag-

nitude and sign restrictions on confounding. In particular, it does not impose assumptions

on selection on observables or on how instruments and endogenous variables relate to the

confounders. Which identifying assumption is more appropriate depends on the context.

This paper is organized as follows. Section 2 de�nes the notation and data generation

assumption. Section 3 studies identi�cation of average random coe¢ cients under magni-

tude and sign restrictions on confounding. Section 4 extends the analysis to condition

on covariates and Section 5 relaxes the Y equation to admit a semiparametric separable

speci�cation. Section 6 studies estimation and constructing con�dence intervals. Section 7

applies the methods to study the return to education and the black-white wage gap. Sec-

tion 8 concludes. Appendix A contains extensions to a panel structure and to cases where

proxies are included in the Y equation. Mathematical proofs are gathered in Appendix B.

2 Data Generation and Notation

The next assumption de�nes the data generating process.

Assumption 1 (S.1) (i) Let V � ( S
q�1

0; Z
`�1

0; X
k�1

0; W
m�1

0; Y
1�1
)0 be a random vector with un-

known distribution P 2 P. (ii) Let a structural system S1 generate the random coe¢ cients

� � (�y
1�1
; �w
m�1

0; �y
p�1

0; vec( �w
p�m

)0; �
k�1

0)0, confounders U
p�1
, covariates S, potential instruments Z,

proxies W , causes X, and response Y such that

Y = �y +X
0� + U 0�y and W 0 = �0w + U

0�w,

with Cov[Z; (Y;W 0)0] <1. Realizations of V are observed; those of � and U are not.
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S.1(i) de�nes the notation for the observables. S.1(ii) imposes structure on the data

generating process. In particular, S.1(ii) allows for random intercept and slope coe¢ cients.

Thus, for each individual i in a sample, we have

Yi = �y;i +X
0
i�i + U

0
i�y;i and W 0

i = �
0
w;i + U

0
i�w;i.

We suppress the index i when referring to population variables. The vector U = (U1; :::; Up)0

denotes unobserved confounders of X and Y . We observe realizations of a vector W of

proxies for U . We generally allow for W and X to have common elements. We may also

observe realizations of a vector of covariates S; otherwise we set S = 1. Last, we also

observe realizations of a vector of potential instruments Z possibly equal to, or containing

elements of, X. Importantly, we do not restrict the statistical dependence between Z or X

and U , either unconditionally or conditional on S. Thus, elements of Z need not be valid

instruments since these may be included in the Y equation and are freely (conditionally)

correlated with U . Implicit in S.1(ii) is that X does not cause (structurally drive) the

corresponding random slope coe¢ cients �. Similarly, U does not cause �y and �w. As

such, � is the vector of random direct e¤ects of the elements of X on Y (i.e. holding �xed

all random coe¢ cients and variables other than � and the element of X intervened on).

Similarly, �y is the vector of random direct e¤ects of the elements of U on Y and �w are the

random (direct) e¤ects of U on W . Here, we�re interested in measuring the average e¤ects

�� � E(�) of X on Y .

2.1 IV Regression Notation

For a generic d� 1 random vector A we write:

�A � E(A) and ~A � A� �A:

For example, we write �� � E(�) and ��y � E(�y). Further, for generic random vectors B

and C of equal dimension, we let

Ra:bjc � E(CB0)�1E(CA0) and �0a:bjc � A0 �B0Ra:bjc

denote the IV regression estimand and residual respectively, so that by constructionE(C�0a:bjc) =

0. For example, for k = `, we write R~y:~xj~z = E( ~Z ~X 0)�1E( ~Z ~Y ). Thus, R~y:~xj~z is the slope
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coe¢ cient associated with X in an IV regression of Y on (1; X 0)0 using instruments (1; Z 0)0.

In the special case where B = C, we obtain the regression coe¢ cients and residuals:

Ra:b � Ra:bjb = E(BB0)�1E(BA0) and �0a:b � �0a:bjb = A0 �B0Ra:b:

3 Identi�cation Using Proxies for Confounders

We begin by characterizing �� and studying conditions for full identi�cation. Section 3.2

studies partial identi�cation of elements of �� under sign and magnitude restrictions on

confounding.

3.1 Characterization and Full Identi�cation

For illustration, consider the example from the Introduction with scalar proxy W and

confounder U and constant slope coe¢ cients:

Y = �y +X
0 �� + U ��y and W = �w + U ��w:

Using the IV regression succinct notation, recall from the Introduction that, provided

Cov(Z; (�y; �w)
0) = 0 and E( ~Z ~X 0) is nonsingular, we obtain:

�� = R~y:~xj~z �R ~w:~xj~z
��y
��w
:

In particular, the IV regression (omitted variable) bias R ~w:~xj~z
��y
��w
depends on the ratio

��y
��w
of

the direct e¤ect of U on the response Y to that of U on the proxy W . The next Theorem

extends this result to allow for vectors U and W and for random slope coe¢ cients. We

set S = 1 in this Section to simplify the exposition; Section 4 explicitly conditions on

covariates.

Theorem 3.1 Assume S.1 with S = 1, ` = k, m = p, and that

(i) E( ~Z ~X 0) and ��w are nonsingular,

(ii) Cov(�y; Z) = 0, E( ~�jX;Z) = 0, and E(~�yjU;Z) = 0,
(iii) Cov(�w; Z) = 0 and E(~�wjU;Z) = 0.
Let �� � ���1w ��y then

�� = R~y:~xj~z �R ~w:~xj~z��:
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B � R~y:~xj~z � �� = R ~w:~xj~z�� denotes the IV regression bias (or inconsistency) in measuring

��. When Z = X, Theorem 3.1 gives

�� = R~y:~x �R ~w:~x
��:

Next, we discuss the conditions in Theorem 3.1. Condition (i) requires ` = k andm = p,

withE( ~Z ~X 0) and ��w nonsingular. More generally, if ` � k andm � p, and providedE( ~Z ~X 0)

and ��w are full rank, we can use Q~z;~x � E( ~X 0 ~Z)PzE( ~Z ~X
0), Q~z;~y � E( ~X 0 ~Z)PzE( ~Z ~Y

0), and

Q~z; ~w � E( ~X 0 ~Z)PzE( ~Z ~W
0) as well as ��wPw��0w for some positive de�nite weighting matrices

Pz
`�`
and Pw

m�m
to obtain

�� = Q�1~z;~xQ~z;~y �Q�1~z;~xQ~z; ~w(Pw��
0
w(
��wPw��

0
w)
�1��y):

We forgo this added generality in what follows to focus on restrictions on confounding with

straightforward economic interpretation.

Conditions (ii) and (iii) are implied by the respectively stronger assumptions that the

coe¢ cients � are mean independent of (U;Z 0; X 0)0 or constant. In particular, condition (ii)

imposes assumptions on the random coe¢ cients in the Y equation. It requires that Z is

uncorrelated with �y, � is mean independent2 of (X;Z), and �y is mean independent of

(U;Z). Roughly speaking, (ii) isolates U as the source of the di¢ culty in identifying ��. Had

U been observed with ` = k+p and E( ~Z( ~X 0; ~U 0)) nonsingular, (ii) would permit identifying

the average slope coe¢ cients via IV regression. While condition (ii) does not directly

restrict the joint distribution of (�; U), S.1(ii) and the requirement that E( ~�jX;Z) = 0

in (ii) can restrict how � relates to U , e.g. in models where the return to education can

depend on ability3 (see e.g. Card 1999). In these cases, one can consider IV methods

for the correlated random coe¢ cient model, e.g. Wooldridge (1997, 2003) and Heckman

and Vytlacil (1998). Similarly, condition (ii) can restrict how ~�y relates to Z (and X),

e.g. in learning models where the return to ability can vary with experience and depend on

2We employ the unnecessary mean independence assumptions in conditions (ii) and (iii) of Theorem
3.1 because of their simple interpretation. However, zero covariances E[ ~ZX 0 ~�] = 0, E[ ~ZU 0~�y] = 0, and
E[ ~ZU 0~�w] = 0 su¢ ce.

3One can consider extending this analysis to study speci�cations which allow for interaction terms
involving observables and unobserved confounders. To keep a manageable scope of the paper, we leave
studying (sign and magnitude) restrictions on confounding in nonseparable structural equations to other
work.
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educational attainment (e.g. Altonji and Pierret (2001) and Arcidiacono, Bayer, and Hizmo

(2010)). Importantly, however, the conditions in Theorem 3.1 do not restrict the joint

distribution of (U;Z 0; X 0)0 other than requiring that E( ~Z ~X 0) is nonsingular. In particular,

Z and X can be freely correlated with U and thus endogenous.

Condition (iii) restricts the random coe¢ cients in the W equation. It requires Z to

be uncorrelated with �w, and the elements of �w to be mean independent of (U;Z). Thus,

condition (iii) relates Cov(Z;W ) to Cov(Z;U) without restricting the dependence between

�w and U , allowingW to be an error-laden proxy for U . Note that, even when �w is constant

and �w is independent of U , conditioning on W does not ensure that the coe¢ cient on X

from a regression of Y on (1; X 0;W 0)0 identi�es ��.

To illustrate the consequences of Theorem 3.1, consider the example from the Introduc-

tion with scalar U and W . Observe that R~y:~xj~z fully (point) identi�es �� under exogeneity.

In this case, the IV regression bias disappears either because U does not determine Y ,

and in particular ��y = 0, or because Z and U are uncorrelated, and thus R ~w:~xj~z = 0. Al-

ternatively, shape restrictions on the e¤ects of U on Y and W can fully identify ��. This

occurs for instance under signed proportional confounding where the sign of the ratio
��y
��w

of the average direct e¤ect of U on Y to that of U on W is known and its magnitude

equals a known constant c. Under equiconfounding, c = 1, and U directly a¤ects Y and W

equally on average. In particular, �� is fully identi�ed under positive (��y = ��w) or negative

(��y = ���w) equiconfounding by R~y� ~w:~xj~z = �� or R~y+ ~w:~xj~z = �� respectively.

More generally, U may be a vector of potential confounders. Often, to each Uh corre-

sponds one proxy Wh = �wh +Uh�wh so that W
0 = �0w +U

0�w with �w = diag(�w1 ; :::; �wm).

In this case,

�� = R~y:~xj~z �R ~w:~xj~z�� = R~y:~xj~z �
Pm

h=1

��yh
��wh
R ~wh:~xj~z:

As before, under exogeneity �� = R~y:~xj~z and, for example, under positive equiconfounding
��yh
��wh

= 1 for h = 1; :::;m and �� = R~y:~xj~z �
Pm

h=1R ~wh:~xj~z.

The next corollary extends these full identi�cation results to the general case, with

�w unrestricted and
������ equal to a known vector c of constants. However, it is useful

throughout to keep in mind the leading one-to-one case where �w is a diagonal matrix with

straightforward interpretation. We use subscripts to denote vector elements. For example,
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��j and R~y:~xj~z;j denote the jth element of �� and R~y:~xj~z respectively, and ��h and ch the hth

elements of �� and c respectively.

Corollary 3.2 Assume the conditions of Theorem 3.1 and let j = 1; :::; k. (i) If Bj = 0

(exogeneity) then ��j = R~y:~xj~z;j. (ii) If
������ = c (proportional confounding) then ��j = R~y:~xj~z;j�Pm

h=1sign(
��h)chR ~wh:~xj~z;j.

Thus, it su¢ ces for exogeneity that ��y = 0 or R ~w:~xj~z = 0. Further, signed proportional

confounding with known ch and sign(��h); h = 1; :::;m, point identi�es ��.

3.2 Partial Identi�cation

In the absence of conditions leading to full identi�cation, magnitude and sign restrictions on

the average direct e¤ects of U on Y andW partially identify the elements of ��. To illustrate,

consider the example from the Introduction with scalar U and W . We ask how does the

average direct e¤ect ��y of U on Y compares in magnitude and sign to the average e¤ect

��w of U on W . As discussed above, exogeneity (��y = 0) and signed equi- or proportional

confounding (��y = c��w or ��y = �c��w) are limit cases securing full identi�cation. Next, we
derive sharp identi�cation regions for the elements of �� under weaker sign and magnitude

restrictions.

In particular, suppose that R ~w:~xj~z;j 6= 0 and
������ = ��� ��y��w ��� � 1 so that the magnitude of the

average direct e¤ect of U on Y is not larger than that of U on W . Here, W is, on average,

at least as directly responsive to U than Y is. Then, using the expression for ��, we obtain

the following identi�cation regions for ��j for j = 1; :::; k, depending on the sign of ��R ~w:~xj~z;j :

��j 2 Bj(
������ � 1; ��R ~w:~xj~z;j � 0) = [R~y:~xj~z;j; R~y:~xj~z;j +

��R ~w:~xj~z;j
��];

��j 2 Bj(
������ � 1; 0 � ��R ~w:~xj~z;j) = [R~y:~xj~z;j �

��R ~w:~xj~z;j
�� ; R~y:~xj~z;j]:

For instance, if we assume �� � 0 so that, on average, U directly a¤ects Y and W in the

same direction, we obtain:

��j 2 Bj(
������ � 1; 0 � ��; R ~w:~xj~z;j < 0) = [R~y:~xj~z;j; R~y� ~w:~xj~z;j];

��j 2 Bj(
������ � 1; 0 � ��; 0 < R ~w:~xj~z;j) = [R~y� ~w:~xj~z;j; R~y:~xj~z;j]:
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Similar bounds involving R~y+ ~w:~xj~z;j instead of R~y� ~w:~xj~z;j obtain if �� � 0.
Instead, if

������ = ��� ��y��w ��� > 1 so that W is, on average less directly responsive to U than Y

is, then we obtain the following identi�cation regions for ��j for j = 1; :::; k, depending on

the sign of ��R ~w:~xj~z;j:

��j 2 Bj(1 <
������ ; ��R ~w:~xj~z;j < 0) = (R~y:~xj~z;j +

��R ~w:~xj~z;j
�� ;+1);

��j 2 Bj(1 <
������ ; 0 < ��R ~w:~xj~z;j) = (�1; R~y:~xj~z;j �

��R ~w:~xj~z;j
��):

Note that these identi�cation regions exclude the IV estimand R~y:~xj~z;j.

Wider intervals obtain under either magnitude or sign (but not both) restrictions on

the average direct e¤ects ��y and ��w. In particular, if
����y�� � ����w�� ; the proxyW is on average

at least as directly responsive as Y is to U , and ��j is partially identi�ed as follows:

��j 2 Bj(
������ � 1) = [R~y:~xj~z;j � ��R ~w:~xj~z;j

�� ; R~y:~xj~z;j + ��R ~w:~xj~z;j
��]:

Note that Bj(
������ � 1) is twice as large as Bj(������ � 1; sign(��R ~w:~xj~z;j)). Also, the �closer�

Z is to exogeneity, the smaller
��R ~w:~xj~z;j

�� is, and the tighter Bj(������ � 1; sign(��R ~w:~xj~z;j)) and

Bj(
������ � 1) are. Alternatively, if ����w�� < ����y��, W is, on average, less directly responsive to

U than Y is, and

��j 2 Bj(1 <
������) = (�1; R~y:~xj~z;j � ��R ~w:~xj~z;j

��) S (R~y:~xj~z;j +
��R ~w:~xj~z;j

�� ; +1).
In this case, the �farther� Z is from exogeneity, the larger

��R ~w:~xj~z;j
�� is, and the more

informative Bj(1 <
������ ; sign(��R ~w:~xj~z;j)) and Bj(1 <

������) are.
Alone, sign restrictions determine the direction of the IV regression omitted variable

bias. In particular, if ��R ~w:~xj~z;j � 0 we have:

��j 2 Bj(��R ~w:~xj~z;j � 0) = [R~y:~xj~z;j; +1).

If instead, ��R ~w:~xj~z;j � 0 then we have:

��j 2 Bj(0 � ��R ~w:~xj~z;j) = (�1; R~y:~xj~z;j].

The identi�cation regions derived above under magnitude and/or sign restrictions for

scalars U andW are sharp. Thus, any point in these regions is feasible under the maintained
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assumptions. In particular, for each element b of Bj there exists �y(b) and �w(b) such that,
when �y = �y(b) and �w = �w(b), the joint distribution (�; U; V ) satis�es the conditions of

Theorem 3.1 and the restrictions on sign(
�������1) and/or sign( ��y��wR ~w:~xj~z;j) underlying Bj hold.

For this, it su¢ ces to let �y(b) and �w(b) be degenerate and to set
��y(b)
��w(b)

= 1
R ~w:~xj~z;j

(R~y:~xj~z;j�b)
according to S1.
These identi�cation regions obtain in part by asking how the average direct e¤ects

��y and ��w compare in magnitude. If this comparison is ambiguous, a researcher may be

more con�dent imposing an upper or lower bound c on
��� ��y��w ��� and similar sharp identi�-

cation regions derive with c
��R ~w:~xj~z;j

�� replacing ��R ~w:~xj~z;j
��, and with exogeneity and signed

proportional confounding as limit cases.

More generally, suppose that U is a vector and that there is a proxy Wh = �wh +

Uh�wh for each confounder Uh, h = 1; :::;m, so that �w = diag(�w1 ; :::; �wm). Then �� =

R~y:~xj~z�
Pm

h=1

��yh
��wh
R ~wh:~xj~z and magnitude and/or sign restrictions on ��h =

��yh
��wh

yield the sharp

identi�cation regions Bj( sign
h=1;:::;m

(
����h���1); sign

h=1;:::;m
(��hR ~wh:~xj~z;j)) for ��j, j = 1; :::; k. The next

Corollary derives sharp identi�cation regions for a general matrix �w and vector c of known

constants. For simplicity, we assume that R ~wh:~xj~z;j 6= 0 for h = 1; :::;m; if R ~wh:~xj~z;j = 0

it can be dropped from the expression ��j = R~y:~xj~z;j �
Pm

h=1R ~wh:~xj~z;j
��h for ��j and it won�t

impact the bounds. To facilitate the exposition in subsequent sections, we let A � R ~w:~xj~z

so that Ajh � R ~wh:~xj~z;j. In what follows, when g = 0, we omit the inequalities and sums

indexed by h = 1; :::; g. When
����h�� � ch, sign(��hAjh) denotes either ��hAjh � 0 or ��hAjh � 0

for h = 1; :::;m.

Corollary 3.3 Let Ajh � R ~wh:~xj~z;j 6= 0 and ch > 0 for j = 1; :::; k and h = 1; :::;m. Under
the conditions of Theorem 3.1, ��j 2 Bj( sign

h=1;:::;m
(
����h�� � ch); sign

h=1;:::;m
(��hAjh)), for j = 1; :::; k,

de�ned as follows, and these bounds are sharp:

(a) Bj(
����h�� �

h=1;:::;m
ch; sign

h=1;:::;m
(��hAjh)) =

[R~y:~xj~z;j +
Pm

h=1minfsign(���hAjh)ch jAjhj ; 0g;

R~y:~xj~z;j +
Pm

h=1maxf0; sign(���hAjh)ch jAjhjg]:

12



(b) For g 2 f0; :::;m� 1g:

(b.i) Bj(
����h�� �

h=1;:::;g
ch; ch <

h=g+1;:::;m

����h�� ; sign
h=1;:::;g

(��hAjh); ��hAjh <
h=g+1;:::;m

0) =

(R~y:~xj~z;j +
Pg

h=1minfsign(���hAjh)ch jAjhj ; 0g+
Pm

h=g+1ch jAjhj ; +1):

(b.ii) Bj(
����h�� �

h=1;:::;g
ch; ch <

h=g+1;:::;m

����h�� ; sign
h=1;:::;g

(��hAjh); 0 <
h=g+1;:::;m

��hAjh) =

(�1; R~y:~xj~z;j +
Pg

h=1maxf0; sign(���hAjh)ch jAjhjg �
Pm

h=g+1ch jAjhj):

(c) For g 2 f0; :::;m� 2g and g0 2 fg + 1; :::;m� 1g:

Bj(
����h�� �

h=1;:::;g
ch; ch <

h=g+1;:::;m

����h�� ; sign
h=1;:::;g

(��hAjh);

��hAjh <
h=g+1;:::;g0

0; 0 <
h=g0+1;:::;m

��hAjh) = (�1; +1):

Note that these sharp identi�cation regions contain R~y:~xj~z;j in (a), may but need not

contain R~y:~xj~z;j in (b) when g > 0, and do not contain R~y:~xj~z;j in (b) when g = 0. Sharp

identi�cation regions under either magnitude or sign restrictions (but not both) (e.g.

Bj( sign
h=1;:::;m

(
����h�� � ch))) can be derived by taking the appropriate unions of the identi�-

cation regions under both types of restrictions. Further, note that di¤erent instruments or

proxies may lead to di¤erent identi�cation regions for ��j, in which case ��j is identi�ed in

the intersection of these regions, provided it�s nonempty.

Appendix A contains extensions building on this section�s results obtaining sharp bounds

on average coe¢ cients under magnitude and sign restrictions on confounding. In particular,

Section A.1 studies a panel structure with individual and time varying random coe¢ cients

without requiring ��xed e¤ects.�Section A.2 studies cases where the proxies W are a com-

ponent of X, included in the Y equation. While the conditions in Theorem 3.1 do not rule

out that W and X have common elements, they entail restrictions on Z in this case. Sec-

tion A.2.1 studies the �under-�identi�cation case where there are fewer (possibly one) valid

instruments than the dimension of X. Section A.2.2 studies the case of multiple proxies

for U that are included in the Y equation and allowed to be elements of Z.

13



4 Conditioning on Covariates

We extend the results in Section 3 to weaken the mean independence assumptions on the

random coe¢ cients in Theorem 3.1 to their conditional counterparts given a vector of

covariates S. For this, for a generic d� 1 random vector A we write:

�A(S) � E(AjS) and ~A(S) � A� �A(S):

For example, ��(S) � E(�jS) denotes the average direct e¤ects of X on Y for the subpopu-

lation with covariates S. Further, for generic random vectors B and C of equal dimension,

we write

Ra:bjc(S) � E(CB0jS)�1 E(CA0jS) and �0a:bjc(S) � A0 �B0Ra:bjc(S);

so that by construction E(C�0a:bjcjS) = 0. For example, for k = ` we write R~y(s):~x(s)j~z(s)(S) �
E( ~Z(S) ~X 0(S)jS)�1E( ~Z(S) ~Y (S)jS). When B = C, we obtain Ra:b(S) � Ra:bjb(S) and

�0a:b(S) � �0a:bjb(S): This notation reduces to that de�ned in Section 2 when S is degenerate,
S = 1; we leave S implicit in this case.

Theorem 4.1 Assume S.1 with ` = k and m = p, and that

(i) E( ~Z(S) ~X 0(S)jS) and ��w(S) are nonsingular,
(ii) Cov(�y; ZjS) = 0, E( ~�(S)jX;Z; S) = 0, and E(~�y(S)jU;Z; S) = 0,
(iii) Cov(�w; ZjS) = 0 and E(~�w(S)jU;Z; S) = 0.
Let ��(S) � ���1w (S)��y(S) then

��(S) = R~y(s):~x(s)j~z(s)(S)�R ~w(s):~x(s)j~z(s)(S)��(S):

Here, B(S) � R~y(s):~x(s)j~z(s)(S)� ��(S) = R ~w(s):~x(s)j~z(s)(S)��(S) denotes the conditional IV

regression bias in measuring ��(S). When Z = X, Theorem 4.1 gives ��(S) = R~y(s):~x(s)(S)�
R ~w(s):~x(s)(S)��(S):

The conditional on covariates S conditions (ii) and (iii) in Theorem 4.1 weaken their

unconditional uncorrelation and mean independence analogs in Theorem 3.1. Further,

conditioning on S may render Z �closer�to exogeneity and the conditional IV regression

bias B(S) smaller. Theorem 4.1 reduces to Theorem 3.1 when S is degenerate, S = 1:

14



If the conditional average e¤ects ��(S), ��y(S), and ��w(S) are constant, so that the mean

independence assumptions for the slope coe¢ cients hold unconditionally, the law of iterated

expectations gives

�� = E( ~Z(S) ~X 0(S))�1E( ~Z(S) ~Y (S))� E( ~Z(S) ~X 0(S))�1E( ~Z(S) ~W (S))��:

This expression involves two estimands from IV regressions of ~Y (S) and ~W (S) respectively

on ~X(S) using instrument ~Z(S). Further, if the conditional expectations �Z(S), �X(S),

�W (S), and �Y (S) are a¢ ne functions of S, we obtain

�� = E(�z:(1;s0)0�
0
x:(1;s0)0)

�1E(�z:(1;s0)0�
0
y:(1;s0)0)� E(�z:(1;s0)0�0x:(1;s0)0)�1E(�z:(1;s0)0�0w:(1;s0)0)��:

Using partitioned regressions (Frisch and Waugh, 1933), the two residual-based IV esti-

mands in the �� expression can be recovered from R~y:(~x0;~s0)0j(~z0;~s0)0 and R ~w:(~x0;~s0)0j(~z0;~s0)0 as the

coe¢ cients associated with ~X (or as the coe¢ cients on X in IV regressions of Y and W

respectively on (1; X 0; S 0)0 using instruments (1; Z 0; S 0)0). Aside from these special cases,

an expression for �� derives by integrating the expression for ��(S) in Theorem 4.1 over the

distribution of S.

Thus, an element ��j(S) of ��(S) is fully identi�ed under conditional exogeneity (Bj(S) =

0) or conditional signed equi- or proportional confounding (
����(S)�� = c(S), a vector of func-

tions of S, with sign(��h(S)) and ch(S), h = 1; :::;m, known or estimable). Otherwise,

the expression for ��(S) can be used, along with sign and magnitude restrictions on el-

ements of ��(S) � ���1w (S)
��y(S) involving the conditional average direct e¤ects of U on

Y and W given S, to partially identify ��j(S). This yields the sharp identi�cation regions

Bj( sign
h=1;:::;m

(
����h(S)���ch(S)); sign

h=1;:::;m
(��h(S)Ajh(S))) for ��j(S) de�ned as in Corollary 3.3 with

R~y(s):~x(s)j~z(s)(S) and A(S) � R ~w(s):~x(s)j~z(s)(S) replacing R~y:~xj~z and A respectively.

5 Semiparametric Separable Speci�cation

The next assumption extends S.1 to allow for a semiparametric separable speci�cation of

the Y equation.

Assumption 2 (S.2) (i) Let V � ( S
q�1

0; X
k�1

0; W
m�1

0; Y
1�1
)0 be a random vector with unknown

distribution P 2 P. (ii) Let a structural system S2 generate the random coe¢ cients � �
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(�y
1�1
; �w
m�1

0; vec( �w
p�m

)0)0, vector Uy of countable dimension, confounders U
p�1
, covariates S,

proxies W , causes X, and response Y such that

Y = r(X;Uy) + U
0�y and W 0 = �0w + U

0�w,

with r an unknown real-valued measurable function and E(Y;W 0)0 < 1. Realizations of
V are observed whereas those of �, Uy, and U are not.

Similar to S.1(ii), S.2(ii) implicitly assumes that X does not cause Uy and that U does

not cause �y and �w. Thus, for x; x� 2 SX , the support of X, the conditional average

direct e¤ect of X on Y at (x; x�) given S is ��(x; x�jS) � E[r(x�; Uy) � r(x; Uy)jS]. The
next Theorem gives conditions under which ��(x; x�jS) depends on the unknown ��(S) �
���1w (S)

��y(S) involving the conditional average direct e¤ects of U on Y and W . We use ?
to denote independence as in Dawid (1979).

Theorem 5.1 Assume S.2 with m = p and that

(i) ��w(S) is nonsingular,

(ii) Uy ? XjS and E(~�y(S)jU;X; S) = 0,
(iii) E(~�w(S)jX;S) = 0 and E(~�w(S)jU;X; S) = 0.
Let ��(S) � ���1w (S)��y(S). Then for x; x� 2 SX , the support of X,

��(x; x�jS) = E(Y jX = x�; S)�E(Y jX = x; S)�[E(W 0jX = x�; S)�E(W 0jX = x; S)]��(S):

Letting A(x; x�jS) � E(W 0jX = x�; S) � E(W 0jX = x; S), the conditional nonpara-

metric regression bias for ��(x; x�jS) is given by

B(x; x�jS) = A(x; x�jS)��(S):

As in the linear case, ��(x; x�jS) is fully identi�ed under conditional exogeneity or signed
proportional confounding. In particular, if B(x; x�jS) = 0 (conditional exogeneity) then

��(x; x�jS) = E(Y jX = x�; S) � E(Y jX = x; S). Alternatively, if
����(S)�� = c(S) with

ch(S) and sign(��h(S)), h = 1; :::;m, known or estimable (conditional signed proportional

confounding) then

��(x; x�jS) = E(Y jX = x�; S)� E(Y jX = x; S)�
Pm

h=1sign(
��h(S))ch(S)Ah(x; x

�jS):
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Otherwise, restrictions on the magnitude and sign of confounding partially identify

��(x; x�jS). In particular, ��(x; x�jS) 2 B( sign
h=1;:::;m

(
����h(S)�� � ch(S)); sign

h=1;:::;m
(��h(S)Ah(S))),

where these sharp identi�cation regions are de�ned analogously to Corollary 3.3 with

E(Y jX = x�; S)� E(Y jX = x; S) and A(x; x�jS) replacing R~y:~xj~z and A respectively.

6 Estimation and Inference

6.1 Asymptotic Normality

We obtain a consistent set estimator B̂j for an identi�cation region Bj by using consistent
estimators for the bounds. We focus on the results in Section 3 with scalar U and W ,

m = p = 1, as considered in the empirical application. The case of a vector of proxies

can be derived analogously. In the scalar confounder case with S = 1, the bounds in

Bj(sign(
������ � 1); sign(��R ~w:~xj~z;j)) and Bj(sign(

������ � 1)) are R~y:~xj~z, R~y� ~w:~xj~z, or R~y+ ~w:~xj~z.
Since these are linear transformations of (R0~y:~xj~z; R

0
~w:~xj~z)

0 we derive the joint distribution

of plug-in estimators (R̂0~y:~xj~z; R̂
0
~w:~xj~z)

0 for (R0~y:~xj~z; R
0
~w:~xj~z)

0: We note that these results also

encompass conditioning on S under the conditions in Theorem 4.1 when ��(S), ��y(S), and

��w(S) are constant and �Z(S), �X(S), �Y (S), and �W (S) are a¢ ne functions of S since the

bounds in this case are linear transformations of the coe¢ cients associated with ~X in

R~y:(~x0;~s0)0j(~z0;~s0)0 and R ~w:(~x0;~s0)0j(~z0;~s0)0 as discussed in Section 4.1. For notational simplicity, we

leave S implicit in what follows.

We stack the observations fAigni=1 of a generic d � 1 vector A into the n � d matrix
A. Also, we let ~Ai � Ai � 1

n

Pn
i=1Ai. Further, for generic observations fAi; Bi; Cigni=1

corresponding to A and the random vectors B and C of equal dimension, we let

R̂a:bjc � (C0B)�1(C0A) = (
1

n

nX
i=1

CiB
0
i)
�1(
1

n

nX
i=1

CiA
0
i)

denote the IV regression estimator. We continue to denote the IV residuals by �a:bjc and

we denote the sample residuals by �̂0a:bjc;i � A0i �B0iR̂a:bjc.
The next theorem derives the asymptotic distribution of

p
n((R̂0~y:~xj~z; R̂

0
~w:~xj~z)

0�(R0~y:~xj~z; R0~w:~xj~z)0),
using standard arguments. For this, we let Q � diag(E( ~Z ~X 0); E( ~Z ~X 0)):
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Theorem 6.1 Assume S.1(i) with m = 1, ` = k, E[ ~Z( ~W 0; ~X 0; ~Y )] �nite and E( ~Z ~X 0)

non-singular uniformly in P 2 P. Suppose further that
(i) 1

n

Pn
i=1

~Zi ~X
0
i

p!E( ~Z ~X 0) uniformly in P 2 P; and
(ii) n�1=2

Pn
i=1(

~Z 0i�~y:~xj~z;i; ~Z
0
i� ~w:~xj~z;i)

0 d! N(0;�) uniformly in P 2 P ; where

� =

"
E( ~Z�2~y:~xj~z

~Z 0) E( ~Z�~y:~xj~z� ~w:~xj~z ~Z
0)

E( ~Z� ~w:~xj~z�~y:~xj~z ~Z
0) E( ~Z�2~w:~xj~z

~Z 0)

#
is �nite and positive de�nite uniformly in P 2 P :
Then, uniformly in P 2 P,

p
n((R̂0~y:~xj~z; R̂

0
~w:~xj~z)

0 � (R0~y:~xj~z; R0~w:~xj~z)0)
d!N(0; Q�1�Q0�1).

We refer the reader to e.g. Shorack (2000) and Imbens and Manski (2004, lemma 5) for

primitive conditions ensuring the uniform law of large numbers and central limit theorem in

assumptions (i; ii) of Theorem 6.1. Collect the IV estimands in R � (R0~y:~xj~z; R0~w:~xj~z; R0~y� ~w:~xj~z;
R0~y+ ~w:~xj~z)

0 and their corresponding plug-in estimators in R̂. Last, it is convenient to

let (�1; �2; �3; �4) � (�~y:~xj~z; � ~w:~xj~z; �~y� ~w:~xj~z; �~y+ ~w:~xj~z). Since R̂ is a linear transformation of

(R̂0~y:~xj~z; R̂
0
~w:~xj~z)

0, it follows from Theorem 6.1 that, uniformly in P 2 P,

p
n(R̂�R) d!N(0;�),

where �
4k�4k

is �nite and positive de�nite uniformly in P 2 P, with 16 k � k blocks,

�2gh � E( ~Z ~X 0)�1E( ~Z�g�h ~Z
0)E( ~X ~Z 0)�1 for g; h = 1; 2; 3; 4:

We obtain uniformly in P 2 P consistent estimators B̂j(sign(
������ � 1); sign(��R̂ ~w:~xj~z))

and B̂j(sign(
������ � 1)) for Bj(sign(������ � 1); sign(��R ~w:~xj~z;j)) and Bj(sign(

������ � 1)) using
the appropriate estimators R̂~y:~xj~z, R̂~y� ~w:~xj~z, or R̂~y+ ~w:~xj~z for the bounds. Under regularity

conditions (e.g. White, 1980, 2001), a uniformly in P 2 P consistent heteroskedasticity

robust estimator for the block �2gh of the asymptotic covariance is given by

�̂2gh � (
1

n
~Z0 ~X)�1(

1

n

nX
i=1

~Zi�̂g;i�̂h;i ~Z
0
i)(
1

n
~X0~Z)�1:

For example, we estimate �2~y:~xj~z � Avar(
p
n(R̂~y:~xj~z � R~y:~xj~z)) using �̂2~y:~xj~z � ( 1

n
~Z0 ~X)�1

( 1
n

Pn
i=1

~Zi�̂
2
~y:~xj~z;i

~Z 0i)(
1
n
~X0~Z)�1.
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6.2 Con�dence Intervals

This subsection discusses constructing a 1�� con�dence interval (CI) for ��j that is partially
identi�ed in Bj(

������ � 1) or Bj(
������ � 1; 0 � ��; sign(R ~w:~xj~z;j)) with scalar confounder

and proxy as considered in the empirical application. These sharp regions are of the form

[�l;j; �u;j], a bounded interval of �nite width. Let �̂l;j and �̂u;j denote estimators for �l;j and

�u;j. By Theorem 6.1, (�̂l;j; �̂u;j)0 is asymptotically normally distributed uniformly in P 2
P. Denote by �̂2l;j the uniformly in P 2 P consistent estimator for �2l;j � Avar(

p
n(�̂l;j �

�l;j)) and de�ne �̂2u;j similarly. We construct
4 a 1� � con�dence interval for ��j as:

[�̂l;j � c�
�̂l;jp
n
; �̂u;j + c�

�̂u;jp
n
];

with the critical value c� appropriately chosen as we discuss next.

Consider a 1� � CI for ��j 2 Bj(
������ � 1). Picking c� = c1;� with �(c1;�)� �(�c1;�) =

1��, where � denotes the standard normal cumulative density function, (e.g. c1;0:05 = 1:96)
yields a 1�� con�dence interval CIBj ;1�� for the identi�cation region Bj(

������ � 1). However,
CIBj ;1�� is a conservative con�dence interval for ��j 2 Bj since when Bj has positive width,
��j can be close to at most �l;j or �u;j. Further, as discussed in Imbens and Manski (2004),

picking c� = c2;� with �(c2;�)��(�c2;�) = 1� 2� (e.g. c2;0:05 = 1:645) yields a con�dence
interval whose coverage probabilities do not converge to 1 � � uniformly across di¤erent
widths of Bj(

������ � 1), e.g. for R ~w:~xj~z;j = 0 with point identi�cation. Instead, we construct

the uniformly valid con�dence interval CI��j ;1�� for
��j 2 Bj by setting c� = c3;� with

�(c3;� +

p
n(�̂u;j � �̂l;j)

maxf�̂l;j; �̂u;jg
)� �(�c3;�) = 1� �:

Here, by construction, �̂u;j � �̂l;j = 2
���R̂ ~w:~xj~z;j

��� � 0 and it follows from lemma 4 in Imbens

and Manski (2004) and lemma 3 and proposition 1 in Stoye (2009) that the con�dence

interval CI��j ;1�� is uniformly valid for
��j in Bj(

������ � 1).
In the empirical application, in addition to B̂j(

������ � 1), we also report estimates

for the half as large sharp identi�cation region Bj(
������ � 1; 0 � ��; sign(R ~w:~xj~z;j)) and

con�dence intervals for ��j that is partially identi�ed in this set. Note that, unlike for

4An alternative method considers the union over con�dence intervals for ��j(��) generated for each �� 2
[�1; 1] or �� 2 [0; 1] as in Chernozhukov, Rigobon, and Stoker (2010).
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Bj(
������ � 1), this identi�cation region depends on the sign of R ~w:~xj~z;j which can be es-

timated. We leave studying the consequences of estimating R ~w:~xj~z;j to other work to

keep a manageable and sharp scope of this paper. Here, we follow the literature (e.g.

Reinhold and Woutersen, 2009; Nevo and Rosen, 2012) and report the estimated iden-

ti�cation interval B̂j(
������ � 1; 0 � �� j sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j)) for ��j and the

con�dence interval CI��j ;1��(sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j)) under the assumption that

sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j). In addition, we report on the p-value for a t-test for the null

hypothesis R ~w:~xj~z;j = 0 against the alternative hypothesis sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j).

When the p-value for this one-sided test is larger than 1
2
�, one can not reject the null

R ~w:~xj~z;j = 0 against the alternative R ~w:~xj~z;j 6= 0 at the � signi�cance level, or that R̂~y:~xj~z;j
consistently estimates ��j.

7 Return to Education and the Black-White Wage
Gap

We apply this paper�s method to study the �nancial return to education and the black-white

wage gap. Card (1999) surveys several studies measuring the causal e¤ect of education on

earning. Among these, studies using institutional features as instruments for education

report estimates for the return to a year of education ranging from 6% to 15:3%. Although

these IV estimates are higher than the surveyed regression estimates (which range from 5:2%

to 8:5%), they are less precise with standard errors sometimes as large as nearly half the IV

point estimates. On the other hand, within-family di¤erenced regression estimates in the

surveyed twins studies report smaller estimates for the return to education, ranging from

2:2% to 7:8%. See Card (1999, section 4) for a detailed account. Many studies document

a black-white wage gap and try to understand its causes. For example, Neal and Johnson

(1996) employ a test score to control for unobserved skill and argue that the black-white

wage gap primarily re�ects a skill gap rather than labor market discrimination. Lang and

Manove (2011) provide a model which suggests that one should control for the test score

as well as education when comparing the earnings of blacks and whites and document a

substantial black-white wage gap in this case. See also Carneiro, Heckman, and Masterov

(2005) and Fryer (2011) for studies of the black-white wage gap and its causes.
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We consider the wage equation speci�ed in Card (1995, table 2, column 1), and allow

for random intercept and slope coe¢ cients as well as a proxy W for U . In particular, the

wage and proxy equations are

Y = �y +X
0� + U�y and W = �w + U�w;

where Y denotes the logarithm of hourly wage and the vector X contains completed years

of education, years of experience as well as its squared value, and three binary variables

taking value 1 if a person is black, lives in the South, and lives in a metropolitan area

(SMSA) respectively. The confounder U denotes unobserved skill or �ability�and is po-

tentially correlated with elements of X. The proxy W for U denotes the logarithm of the

Knowledge of the World of Work (KWW) test score, a test of occupational information.

This parsimonious speci�cation facilitates comparing the slope coe¢ cients on U in the Y

and W equations while maintaining the commonly used (e.g. Card, 1995) log-level speci-

�cation of the wage equation. Thus, 100�y and 100�w denote respectively the approximate

percentage changes in wage and KWW directly due to a one unit change in U . Alterna-

tively, one could consider standardized variables. We are interested in �� and especially

the components ��1 and ��4 corresponding to education and the black indicator. Here, the

average �nancial return to education is 100��1% and the average black-white wage gap for

given levels of unobserved ability U and observables X including education is 100��4%.

We use data drawn from the 1976 subset of the National Longitudinal Survey of Young

Men (NLSYM), described in Card (1995). The sample5 used in Card (1995) contains 3010

observations on individuals who reported valid wage and education. In addition to Y , W ,

and X, the sample contains data on covariates S and potential instruments Z discussed

below. We drop 47 observations (1:56% of the total observations) with missing KWW

score6, as in some results in Card (1995), leading to a sample size of 2963.

We assume Theorem 4.1�s conditions on the random coe¢ cients, that ��(S), ��y(S), and

5This sample is reported at http://davidcard.berkeley.edu/data_sets.html as well as in Wooldridge
(2008).

6The sample also contains IQ score. However, we do not employ IQ as a proxy here since 949 obser-
vations (31:5% of the total observations) report missing IQ score. Using the available observations, the
sample correlation between IQ and KWW is 0:43 and is strongly signi�cant. Further, using the avail-
able observations, employing log(IQ) instead of log(KWW ) as proxy often leads to tighter bounds and
con�dence intervals. This, however, could be partly due to sample selection.

21



��w(S) are constants, and that �Z(S), �X(S), �W (S), and �Y (S) are a¢ ne functions of S. In

addition, we maintain two assumptions. First, we assume that KWW is, on average, at

least as directly sensitive or elastic to ability as wage is,
����y�� � ����w��. Thus, a unit change in

U leads, on average, to a direct percentage change in KWW that is at least as large as that

in wage. This is a weakening of exogeneity which would require ��y = 0 when X (or Z) and

U are freely correlated given S. This assumption may hold if wage is primarily determined

by observables, such as education. For example, Cawley, Heckman, and Vytlacil (2001) �nd

that the fraction of wage variance explained by measures of cognitive ability is modest and

that personality traits are correlated with earnings primarily through schooling attainment.

Also, when ability is not revealed to employers, they may statistically discriminate based on

observables such as education (see e.g. Altonji and Pierret (2001) and Arcidiacono, Bayer,

and Hizmo (2010)). One may further weaken this assumption by assuming
����y�� � c

����w��
for known c > 1, leading to qualitatively similar but larger identi�cation regions. Second,

we assume that, on average, ability directly a¤ects KWW and wage in the same direction,
��y
��w
� 0. Alone, this sign restriction determines the direction of the (IV) regression bias.

For example, it implies that a regression estimand gives an upper bound on the average

return to education when the conditional correlation between log(KWW ) and education

is positive.

Table 1 reports results applying the methods discussed in Section 3, using Z = X

and S = 1. In particular, as in Card (1995, table 2, column 1), column 1 reports regres-

sion estimates using R̂~y:~x;j (which consistently estimates ��j under exogeneity) along with

heteroskedasticity-robust standard errors (s.e.) and 95% con�dence intervals (denoted by

CI0:95). The regression estimates for the return to education and the black-white wage

gap, with robust s.e. in parentheses, are 7:3%, (0:4%), and �18:8% , (1:7%), respectively.

Column 2 reports estimates B̂j(
������ � 1; 0 � �� j sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j)) of the sharp

identi�cation region obtained under sign and magnitude restrictions on confounding, along

with the uniformly valid 95% con�dence interval CI��j ;0:95(sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j))

for ��j. Here, we maintain that sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j). The estimated identi�cation

region for the return to education is [�0:02%; 7:3%] with CI��j ;0:95 [�0:7%; 8%] and that for
the black-white wage gap is [�18:8%; 3:7%] with CI��j ;0:95 [�21:6%; 6:9%]. We also report
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R̂ ~w:~x;j, whose magnitude is the estimated width of the identi�cation region, along with its

robust standard error and indicate whether a t-test rejects the null hypothesis R ~w:~xj~z;j = 0

against the alternative hypothesis sign(R ~w:~xj~z;j) = sign(R̂ ~w:~xj~z;j) at the 10%, 5%, or 1%

level. Last, column 4 reports estimates B̂j(
������ � 1) of the twice as large identi�cation

region obtained under magnitude restrictions only, along with the uniformly valid 95%

con�dence intervals CI��j ;0:95. In sum, we �nd that regression estimates provide an upper

bound for the average (here assumed linear) return to education as well as for the aver-

age black-white wage gap for given levels of unobserved ability and observables including

education.

As in Card (1995, table 2, column 5), we condition on covariates S composed of 8

indicators for region of residence in 1966 and 1 for residence in SMSA in 1966, imputed7

father and mother education plus 2 indicators for missing father or mother education, 8

binary indicators for interacted mother and father high school, college, or post graduate

education, 1 indicator for the presence of the father and mother at age 14 and another

indicator for having a single mother at age 14. Table 2 reports sharp bounds estimates,

using the estimators R̂~y:(~x0;~s0)0 and R̂ ~w:(~x0;~s0)0 which condition linearly on covariates S. The

results in Table 2 for the average return to education are similar to those in Table 1 with

slightly tighter bounds for the average black-white wage gap under sign and magnitude

restrictions, given by [�18:7%; 1:5%] with CI��j ;0:95 [�21:9%; 5%].
As discussed above, conditioning on the proxy W , as is commonly done, does not

generally ensure recovering �� from a regression of Y on (1; X 0;W 0; S 0)0 (except in spe-

cial cases such as when �w and �w are constants). Nevertheless, this may attenuate the

regression bias (see e.g. Ogburna and VanderWeele, 2012). Table 3 reports estimates

from a regression of Y on (1; X 0; S�0)0 with covariates S� = (S 0; KWW )0. Conditioning on

W = log(KWW ) instead of KWW yields very similar estimates. These estimates and their

con�dence intervals lie respectively within the identi�cation regions and CI��j ;0:95 reported

in Table 2. In particular, this regression�s estimates of the average return to education

and black-white wage gap, with robust s.e. in parentheses, are 5:5%, (0:5%), and �14:3%,
7From the 2963 observations, 12% report missing mother�s education and 23% report missing father�s

education. We follow Card (1995) and impute these missing values using the averages of the reported
observations.
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(2:1%), respectively. The estimate of the coe¢ cient on KWW is small and signi�cant, 0:8%

with robust s.e. 0:1%.

We also augment X to include an interaction term (Education � 12) � Black, multi-
plying the black binary indicator with years of education minus 12. Table 4 reports8 the

conditional on S results. Under sign and magnitude restrictions, the estimates for the sharp

identi�cation region for the average return to education for non-blacks is [0:4%; 6:8%] with

CI��j ;0:95 [�0:4%; 7:5%], that for the average black-white return to education di¤erential is
[�1:2%; 1:7%] with CI��j ;0:95 [�2:4%; 2:8%], and that for the average black-white wage gap,
corresponding to individuals with 12 years of education, is [�19:3%; 1:8%] with CI��j ;0:95
[�22:5%; 5:5%]. Thus, the average return to education for the black subpopulation may dif-
fer slightly from the nonblack subpopulation, if at all. We follow Card (1995) and maintain

that these average returns are equal.

Further, as in Card (1995), we employ an indicator for the presence of a four year college

in the local labor market, age, and age squared as instruments for education, experience,

and experience squared in the speci�cation from Table 2 with covariates S. Note that this

paper�s method does not require Z to be exogenous (for example, Carneiro and Heckman

(2002) provide evidence suggesting that distance to school may be endogenous). As re-

ported in Table 5, the IV results yield wider identi�cation regions for the average return

to education with larger con�dence intervals9. In particular, under sign and magnitude

restrictions, the conditional on S IV-based identi�cation region for the average return to

education is estimated to be [2:9%; 13:4%] with CI��j ;0:95 [�6%; 22%] and that for the
for the average black-white wage gap is [�16:2%; 2:6%], which is slightly tighter than the
regression-based estimate albeit with comparable CI��j ;0:95 [�20:9%; 7:5%].
Last, the results in Table 6 relax the linear return to education assumption in the spec-

i�cation in Table 2 by including in X binary indicators for exceeding t years of education,

where t = 2; :::; 18 as in the sample, instead of total years of education. Because we do not

require exogenous instruments, our method can accommodate this less restrictive speci�ca-

8Similar results obtain when we do not condition on S.
9We also consider not conditioning on S and employing di¤erent instruments, such as an interaction of

low parental education with college proximity as in Card (1995). However, the regression-based estimates
of the identi�cation regions are often narrower and have especially tighter con�dence intervals.
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tion. As before, regression estimates generally give an upper bound on the average return

to education and the average black-white wage gap10. We �nd nonlinearity in the return

to education, with the 12th, 16th, and 18th year, corresponding to obtaining a high school,

college, and possibly a graduate degree, yielding a high average return. For example, under

sign and magnitude restrictions on confounding, the estimate of the identi�cation region

for the average return to the 12th year is [1:6%; 14:6%] with CI��j ;0:95 [�4:2%; 20%] and
that for the 16th year is [13:33%; 19:5%] with CI��j ;0:95 [7:5%; 25:1%]. Under a magnitude

restriction on confounding only, the estimate of the identi�cation region for the average

return to the 18th year is [13:9%; 15:9%] with CI��j ;0:95 [6:5%; 24:1%] and we cannot reject

at comfortable signi�cance levels the null that the width of this region is zero or that regres-

sion consistently estimates this return (the regression estimates are 14:9% with robust s.e.

4:5%). Graph 1 plots the estimates of the sharp identi�cation regions and CI��j ;0:95 for the

incremental average returns to the 8th up to the 18th year of education under sign and mag-

nitude restrictions as well as magnitude restrictions only. Further, the estimate of the sharp

identi�cation region for the black-white wage gap under sign and magnitude restrictions is

similar to that in Table 2 and given by [�17:8%; 1:9%] with CI��j ;0:95 [�21%; 5:4%].
This empirical analysis imposes assumptions including linearity or separability among

observables and the confounder, restrictions on the random coe¢ cients, the presence of one

confounder U denoting �ability�which we proxy using log(KWW ), and the assumptions����y�� � ����w�� and ��y
��w
� 0. Of course, one should interpret the results carefully if these

assumptions are suspected to fail. For example, this analysis does not generally allow

the return to education to depend on ability or explicitly study employers� learning of

workers�abilities (see e.g. Altonji and Pierret (2001) and Arcidiacono, Bayer, and Hizmo

(2010)). Also, if other confounders are present and valid instruments or proxies for these

are not available then additional assumptions are needed to (partially) identify elements of

��. Nevertheless, this analysis does not require several commonly employed assumptions. In

particular, it does not require regressor or instrument exogeneity or restrict the dependence

between X or Z and U (given S). Also, it does not require a linear return to education.

Further, it permits test scores to be error-laden proxies for unobserved ability.

10Similar results obtain when we do not condition on S.
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8 Conclusion

This paper studies the identi�cation of the average e¤ects �� of X on Y under magnitude

and sign restrictions on confounding. We do not require (conditional) exogeneity of in-

struments or regressors. Using proxies W for the confounders U in a random coe¢ cient

structure, we ask how do the average direct e¤ects of U on Y compare in magnitude and

sign to those of U on W . Exogeneity (zero average direct e¤ect) and equi- or proportional

confounding (equal or equal to a known proportion direct e¤ects) are limiting cases yielding

full identi�cation of ��. Alternatively, we partially identify elements of �� in a sharp bounded

interval whenW is su¢ ciently sensitive to U , and may obtain sharp upper or lower bounds

otherwise. The paper extends this analysis to accommodate conditioning on covariates

and a semiparametric speci�cation for the Y equation. Appendix A contains extensions to

a panel structure with individual and time varying random coe¢ cients and to cases with

proxies included in the Y equation. After studying estimation and con�dence intervals, the

paper applies its methods to study the return to education and the black-white wage gap

using data from the 1976 subset of NLSYM used in Card (1995). Under restrictions on

confounding, we partially identify in a sharp bounded interval the average �nancial return

to education as well as the average black-white wage gap for given levels of unobserved

ability and observables including education. We �nd that regression estimates provide an

upper bound on the average return to education and the black-white wage gap. We also

�nd nonlinearity in the return to education with the 12th, 16th, and 18th years, correspond-

ing to obtaining a high school, college, and possibly a graduate degree, yielding a high

average return. Important extensions for future work include identifying (other aspects of)

the distribution of the e¤ects � as well as measuring causal e¤ects in nonseparable systems

under restrictions on confounding.
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A Appendix A: Extensions

Appendix A contains extensions to a panel structure and to cases with proxies included in

the Y equation. Throughout, we do not explicitly condition on covariates to simplify the

exposition.

A.1 Panel with Individual and Time Varying Random Coe¢ -
cients

We consider a panel structure whereby we index the variables and coe¢ cients (�0t; V
0
t )
0 in

S.1 by t = 1; 2. Here, U may denote time-invariant unobserved individual characteristics.

We allow the proxy Wt for U to be an element X1;t
k1�1

of Xt. Thus, for t = 1; 2:

Yt = �y;t +X
0
t�t + U

0�y;t and X 0
1;t = �

0
x1;t
+ U 0�x1;t.

This is a panel structure with individual and time varying random coe¢ cients where we

do not require a ��xed e¤ect�and thus �y;t need not equal �y;t0.

For t; t0 = 1; 2, t 6= t0, we apply Theorem 3.1 using X1;t0 as the proxy to derive an

expression for ��t. In particular, the conditions in Theorem 3.1 require that (i) E( ~Zt ~X 0
t)

and ��x1;t are nonsingular, (ii) Cov(�y;t; Zt) = 0, E( ~�tjXt; Zt) = 0, E(~�y;tjU;Zt) = 0, and

(iii) Cov(~�x1;t0 ; Zt) = 0; E(
~�x1;t0jU;Zt) = 0. Condition (iii) restricts the dependence of the

random coe¢ cient in the X1;t0 equation with U and non-contemporaneous Zt. Then, with

��t � ���1x1;t0��y;t, Theorem 3.1 gives for t; t0 = 1; 2, t 6= t0:

��t = R~yt:~xtj~zt � ��tR~x1;t0 :~xtj~zt :

The IV regression bias is Bt � R~yt:~xtj~zt � ��t = ��tR~x1;t0 :~xtj~zt. Thus,
��t is fully identi�ed

under exogeneity (Bt = 0) or signed proportional confounding (sign(��h;t) and
����h;t�� =

ch;t, h = 1; :::; k1, known). Applying Corollary 3.3 in this setup with At � R~x1;t0 :~xtj~zt

sharply partially identi�es the elements of ��t for t = 1; 2 so that ��j;t 2 Bj;t( sign
h=1;:::;k1

(
����h;t���

ch;t); sign
h=1;:::;k1

(��h;tAjh;t)). The restrictions on the magnitude and sign of the average direct

e¤ects of U on Yt and X1;t0 may be plausible, for example, if one suspects that Y at time t

is less directly responsive to U than X1 is in both times t and t0.
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A.2 Included Proxies

Sometimes, a researcher may want to allow proxies W to directly impact the response

Y . In this case, W is a component X1 of X. While Theorem 3.1 does not rule out

that W = X1, the conditions of Theorem 3.1 entail restrictions on Z in this case. First,

when W = X1, conditions (i) and (iii) of Theorem 3.1 imply that all elements of Z must

be correlated with U since E( ~Z ~X 0) is singular otherwise. Second, when W = X1, the

requirement that Cov(�w; Z) = 0 in condition (iii) generally rules out that Z contains

elements of X1. The following two subsections accommodate these two cases respectively

by providing alternative conditions enabling (partial) identi�cation of elements of ��, under

sign and magnitude restrictions on confounding.

A.2.1 �Under�-Identi�cation Using Valid Instruments

When W = X1, Theorem 3.1 requires that all the elements of Z are correlated with U .

Sometimes a vector Z1 of one or a few valid (e.g. randomized) instruments may be available,

albeit the dimension of X may exceed that of Z1. Nevertheless, a researcher may wish to

employ the exogenous instrument Z1. The next Theorem allows for this possibility and

provides an expression for �� which depends on the average direct e¤ects of U on Y and X1.

Theorem A.1 Assume S.1 with Z
`�1

� ( Z1
`1�1

0; Z2
`2�1

0)0; X
k�1

� (X1
k1�1

0; X2
k2�1

0)0, W = X1, with

`1; `2 � 0, ` = k, k1 = p, and
(i) E( ~Z ~X 0) and ��x1 are nonsingular,

(ii) Cov(U;Z1) = 0,

(iii) Cov(�y; Z) = 0, E( ~�jX;Z) = 0, and E(~�yjU;Z) = 0,
(iv) Cov(�x1 ; Z2) = 0 and E(~�x1 jU;Z2) = 0.
Let A � E( ~Z ~X 0)�1

�
00; E( ~Z2 ~X

0
1)
0
�0
and �� � ���1x1 ��y then

�� = R~y:~xj~z � A��:

The IV regression bias is B � R~y:~xj~z � �� = A��. The conditions in Theorem A.1 are

analogous to those in Theorem 3.1, except that they assume that Z1 is uncorrelated with

U and let Z1 freely depend on the coe¢ cients in the proxy X1 equation. Thus, if Z = Z2
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Theorem A.1 reduces to Theorem 3.1 with W = X1, and if Z = Z1 exogeneity holds.

Here, ��j is fully identi�ed under exogeneity (Bj = 0) or signed proportional confounding

(sign(��h) and
����h�� = ch, h = 1; :::; k1, known). Otherwise, ��j is sharply partially identi�ed

in Bj( sign
h=1;:::;k1

(
����h���ch); sign

h=1;:::;k1

(��hAjh)) under assumptions on how the average direct e¤ects

of U on X1 compare in magnitude and sign to those of U on Y .

A.2.2 Multiple Included Proxies

WhenW = X1, the assumption Cov(�w; Z) = 0 in condition (iii) of Theorem 3.1 generally

rules out that X1 is a component of Z and therefore that Z = X. We relax this requirement

and let W = (X 0
1; X

0
2)
0 with X1 and X2 two vectors of proxies included in the equation for

Y and where X1, and possibly X2, is a component of Z.

The next Theorem derives an expression for �� which depends on the unknowns ���1x1
��y

and ���1x2
��y involving the average direct e¤ects of U on Y and those of U on X1 and X2.

Here, we let Z1 = X1, with Z potentially equal to X.

Theorem A.2 Assume S.1 and let W = (X1
k1�1

0; X2
k2�1

0)0 with X 0
g = �

0
xg +U

0�xg , for g = 1; 2,

X
k�1

= (W 0; X3
k3�1

0)0, Z1 = X1, Z
`�1
� ( Z1

`1�1

0; Z2
`2�1

0)0; k1 = k2 = p, k3 � 0, ` = k, and that

(i) E( ~Z ~X 0), ��x1, ��x2 are nonsingular,

(ii) Cov(�y; Z) = 0; E( ~�jX;Z) = 0; and E(~�yjU;Z) = 0,
(iii) Cov(�x1 ; (U

0; X 0
2; Z

0
2)
0) = 0 and E(~�x1jU;X2; Z2) = 0,

(iv) Cov(�x2 ; U) = 0 and E(~�x2jU) = 0.
Let ��1 � ���1x1 ��y and ��2 � ���1x2 ��y then

�� = R~y:~xj~z � E( ~Z ~X 0)�1
�
E( ~Z1 ~X

0
2)
��2

E( ~Z2 ~X
0
1)
��1

�
:

The IV regression bias is

B � R~y:~xj~z � �� = E( ~Z ~X 0)�1
�
E( ~Z1 ~X

0
2)
��2

E( ~Z2 ~X
0
1)
��1

�
:

The conditions in Theorem A.2 extend those in Theorem 3.1 to allow the proxy X1 to equal

Z1 except that they also restrict the dependence between the proxy X2 and the coe¢ cients

�x1 and �x1 in the equation for the proxy X1 as well as the dependence between U and

(�0x1 ; �
0
x2
; �0x2)

0.
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The expression for �� in Theorem A.2 can be used to fully or sharply partially identify

elements of ��.

Corollary A.3 Assume the conditions of Theorem A.2 and let X2;3 � (X 0
2; X

0
3)
0 and

j = 1; :::; k. (i) If Bj = 0 (exogeneity) then ��j = R~y:~xj~z;j. (ii) If
����1�� = �1 and

����2�� =
�2 (proportional confounding) then

�� = R~y:~xj~z � E( ~Z ~X 0)�1
� Pp

h=1sign(
��2h)E( ~Z1 ~X

0
2h)�2hPp

h=1sign(
��1h)E( ~Z2 ~X

0
1h)�1h

�
:

In particular, let c = (�01; �
0
2)
0, �� = (��01;

��02)
0, P1

k1�k1
� E(�~z1:~z2j~x2;3

~X 0
1), P2

(k2+k3)�(k2+k3)
�

E(�~z2:~z1j~x1
~X 0
2;3), and

A
k�(k1+k2)

�
�
�R~x2;3:~x1j~z1P�12 E( ~Z2 ~X

0
1); P�11 E( ~Z1 ~X

0
2)

P�12 E( ~Z2 ~X
0
1); �R~x1:~x2;3j~z2P�11 E( ~Z1 ~X

0
2)

�
:

Then

�� = R~y:~xj~z �B = R~y:~xj~z � A��;

and

��j = R~y:~xj~z;j �
P2p

h=1sign(
��h)Ajhch for j = 1; :::; k.

Thus, ��j is fully identi�ed under exogeneity (Bj = 0) or signed proportional confounding

(
����h�� = ch and sign(��h), h = 1; :::; 2p, known). Otherwise, ��j is sharply partially identi-

�ed in Bj( sign
h=1;:::;2p

(
����h�� � ch); sign

h=1;:::;2p
(��hAjh)), de�ned analogously to Corollary 3.3, under

assumptions on how the average direct e¤ects of U on X1 and X2 compare in magnitude

and sign to those of U on Y .

B Appendix B: Mathematical Proofs

Proof of Theorem 3.1 Apply Theorem 4.1 with S = 1.

Proof of Corollary 3.2 The proof is immediate.

Proof of Corollary 3.3 We have the following bounds for h = 1; :::;m :

Given sign(���hR ~wh:~xj~z;j), if
����h�� � ch then

minfsign(���hR ~wh:~xj~z;j)ch
��R ~wh:~xj~z;j

�� ; 0g � ���hR ~wh:~xj~z;j � maxf0; sign(���hR ~wh:~xj~z;j)ch
��R ~wh:~xj~z;j

��g;
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if ch <
����h�� then

�1 < ���hR ~wh:~xj~z;j < �ch
��R ~wh:~xj~z;j

�� if � ��hR ~wh:~xj~z;j < 0;

ch
��R ~wh:~xj~z;j

�� < ���hR ~wh:~xj~z;j < +1 if 0 < ���hR ~wh:~xj~z;j:

The identi�cation regions then follow from ��j = R~y:~xj~z;j �
Pm

h=1R ~wh:~xj~z;j
��h.

To prove sharpness, we show that for each element b of Bj there exists �y(b) and �w(b)
such that, when �y = �y(b) and �w = �w(b), the joint distribution (�; U; V ) satis�es the

conditions of Theorem 3.1 and the restrictions on sign
h=1;:::;m

(
����h�� � ch) and sign

h=1;:::;m
(��hAjh)

underlying Bj hold. For each b, let �y(b) = ��y(b) and �w(b) = ��y(b), so thatE(~�y(b)jU;Z) = 0
and E(~�w(b)jU;Z) = 0, and set e.g. ��w(b) = I so that ��(b) � ���1w (b)��y(b) = ��y(b). We now
construct ��(b) such that b = R~y:~xj~z;j �

Pm
h=1Ahj

��h(b). First, we partition h = 1; ::::;m in

the restrictions underlying Bj such that����h�� � ch and ��hAjh � 0 for h = 1; :::; g00;
����h�� � ch and ��hAjh � 0 for h = g00 + 1; :::; g;

ch <
����h�� and ��hAjh < 0 for h = g; :::; g0; ch <

����h�� and ��hAjh > 0 for h = g0 + 1; :::;m;

with some of these categories possibly empty. Then any element of the identi�cation regions

in (a), (b), or (c) can be expressed as

b = R~y:~xj~z;j+a1(b)
Pg00

h=1ch jAjhj�a2(b)
Pg

h=g00+1ch jAjhj+a3(b)
Pg0

h=g+1ch jAjhj�a4(b)
Pm

h=g0+1ch jAjhj ,

for 0 � a1(b); a2(b) � 1 and 1 < a3(b); a4(b); where we omit the sums that correspond to

empty groups. It su¢ ces then to put

��h(b) = �sign(Ajh)a1(b)ch for h = 1; :::; g00; ��h(b) = sign(Ajh)a2(b)ch for h = g00 + 1; :::; g;

��h(b) = �sign(Ajh)a3(b)ch for h = g + 1; :::; g0; ��h(b) = sign(Ajh)a4(b)ch for h = g0 + 1; :::;m:

Proof of Theorem 4.1 S.1 ensures �niteness of moments. By (ii) we have

E( ~Z(S) ~Y (S)jS) = E( ~Z(S)Y jS) = E( ~Z(S)(�y +X 0� + U 0�y)jS)

= E( ~Z(S) ~X 0(S)jS) ��(S) + E( ~Z(S)U 0jS)��y(S)

and by (iii) we have

E( ~Z(S) ~W 0(S)jS) = E( ~Z(S)W jS) = E( ~Z(S)(�0w + U 0�w)jS) = E( ~Z(S)U 0jS)��w(S):
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Since E( ~Z(S) ~X 0(S)jS) and ��w(S) are nonsingular, we have

R~y(s):~x(s)j~z(s)(S) = ��(S) +R ~w(s):~x(s)j~z(s)(S)��(S):

Proof of Theorem 5.1 S.2 ensures �niteness of moments. For x 2 SX , (ii) gives

E(Y jX = x; S) = E[r(x; Uy)jX = x; S]+E(U 0�yjX = x; S) = E[r(x; Uy)jS]+E(U 0jX = x; S)��y(S)

and by (iii) we have

E(W 0jX = x; S) = E(�0wjS) + E(U 0jX = x; S)��w(S):

Since ��w(S) is nonsingular, we have

E(Y jX = x; S) = E[r(x; Uy)jS] + [E(W 0jX = x; S)� E(�0wjS)]��(S):

It follows that

��(x; x�jS) = E(Y jX = x�; S)�E(Y jX = x; S)�[E(W 0jX = x�; S)�E(W 0jX = x; S)]��(S):

Proof of Theorem6.1 Let Q̂ � 1
n

Pn
i=1 diag(

~Zi ~X
0
i; ~Zi ~X

0
i) and M̂ = 1

n

Pn
i=1(

~Z 0i�~y:~xj~z;i; ~Z
0
i� ~w:~xj~z;i)

0.

We have that

p
n((R̂0~y:~xj~z; R̂

0
~w:~xj~z)

0 � (R0~y:~xj~z; R0~w:~xj~z)0) = Q̂�1
p
nM̂ = (Q̂�1 �Q�1)

p
nM̂ +Q�1

p
nM̂;

exists in probability for all n su¢ ciently large uniformly in P 2 P by (i) and since E( ~Z ~X 0),

and thus Q, is nonsingular uniformly in P 2 P. The result obtains since Q̂�1�Q�1 = op(1)
uniformly in P 2 P by (i), and

p
nM̂

d! N(0;�) uniformly in P 2 P by (ii).

Proof of Theorem A.1 S.1 ensures �niteness of moments. By (iii), we have

E( ~Z ~Y 0) = E[ ~Z(�y +X
0� + U 0�y)] = E( ~Z ~X

0) �� + E( ~ZU 0)��y:

By (ii) and since E( ~Z ~X 0) is nonsingular, we have

�� = R~y:~xj~z � E( ~Z ~X 0)�1E( ~ZU 0)��y = R~y:~xj~z � E( ~Z ~X 0)�1
�
00; E( ~Z2U

0)0
�0 ��y:
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By (iv) we have

E( ~Z2 ~X
0
1) = E(

~Z2X
0
1) = E[

~Z2(�
0
x1
+ U 0�x1)] = E( ~Z2U

0)��x1 ;

so that by (i)

E( ~Z2U
0) = E( ~Z2 ~X

0
1)
���1x1 :

It follows that

�� = R~y:~xj~z � E( ~Z ~X 0)�1
�
00; E( ~Z2 ~X

0
1)
0
�0 ���1x1 ��y:

Proof of Theorem A.2 S.1 ensures �niteness of moments. By (ii), we have

E( ~Z ~Y ) = E( ~ZY ) = E( ~Z ~X 0) �� + E( ~ZU 0)��y

Further, (iii) gives

E( ~Z2 ~X
0
1) = E[ ~Z2(�

0
x1
+ U 0�x1)] = E( ~Z2U

0)��x1 ;

and Z1 = X1; (iii), and (iv) give

E( ~Z1 ~X
0
2) =

��0x1E(U
~X 0
2) =

��0x1E[
~U(�0x2 + U

0�x2)] =
��0x1E(

~U ~U 0)��x2 ; and

E( ~Z1U
0) = E[(�x1 + �

0
x1
U) ~U 0] = ��0x1E(

~U ~U 0):

Since E( ~Z ~X 0), ��x1, and ��x2 are nonsingular, we have

�� = R~y:~xj~z � E( ~Z ~X 0)�1
�
E( ~Z1 ~X

0
2)
���1x2
��y

E( ~Z2 ~X
0
1)
���1x1
��y

�
:

Proof of Corollary A.3 The result follows from the expression for �� in Theorem A.2.

For the expression for ��j, recall that E( ~Z ~X 0)�1 is given by (e.g. Baltagi, 1999, p. 185):

E( ~Z ~X 0)�1 =

�
E( ~Z1 ~X

0
1); E(

~Z1 ~X
0
2;3)

E( ~Z2 ~X
0
1); E( ~Z2 ~X

0
2;3)

��1
=

�
P�11 ; �R~x2;3:~x1j~z1P�12

�R~x1:~x2;3j~z2P�11 ; P�12

�
;

where

P1 � E( ~Z1 ~X 0
1)� E( ~Z1 ~X 0

2;3)E( ~Z2 ~X
0
2;3)

�1E( ~Z2 ~X
0
1) = E(�~z1:~z2j~x2;3

~X 0
1)

P2 � E( ~Z2 ~X 0
2;3)� E( ~Z2 ~X 0

1)E(
~Z1 ~X

0
1)
�1E( ~Z1 ~X

0
2;3) = E(�~z2:~z1j~x1

~X 0
2;3):

The result then follows from

�� = R~y:~xj~z �
�
P�11 E( ~Z1 ~X

0
2)
��2 �R~x2;3:~x1j~z1P�12 E( ~Z2 ~X

0
1)
��1

�R~x1:~x2;3j~z2P�11 E( ~Z1 ~X
0
2)
��2 + P

�1
2 E( ~Z2 ~X

0
1)
��1

�
:
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Table 1: Regression-Based Estimates of Log Wage Equation under Restrictions on Con-
founding

R̂~y:~x;j B̂j(
������ � 1; 0 � ��) R̂ ~w:~x;j B̂j(

������ � 1)
1 Education 0.073 [-0.0002,0.073] 0.074��� [-0.0002,0.147]
Robust s.e. (0.004) - (0.002) -
CI:95 and CI��j ;:95 [0.066,0.081] [-0.007,0.080] - [-0.007,0.155]

2 Experience 0.082 [0.033,0.082] 0.049��� [0.033,0.130]
Robust s.e. (0.007) - (0.004) -
CI:95 and CI��j ;:95 [0.068,0.095] [0.020,0.093] - [0.020,0.144]

3 1
100
Experience2 -0.213 [-0.213,-0.121] -0.093��� [-0.306,-0.121]

Robust s.e. (0.032) - (0.023) -
CI:95 and CI��j ;:95 [-0.276, -0.151] [-0.266,-0.058] - [-0.373,-0.058]

4 Black indicator -0.188 [-0.188,0.037] -0.224��� [-0.412,0.037]
Robust s.e. (0.017) - (0.012) -
CI:95 and CI��j ;:95 [-0.222,-0.154] [-0.216,0.069] - [-0.449,0.069]

Notes: Y denotes the logarithm of hourly wage and X is composed of education, experience, experience
squared, and binary indicators taking value 1 if a person is black, lives in the South, and lives in a
metropolitan area (SMSA) respectively. Log(KWW) is used as predictive proxy W . The sample size
is 2963. It�s a subset of the 3010 observations used in Card (1995) and drawn from the 1976 subset of
NLSYM. The estimates B̂j(

������ � 1; 0 � ��) and the corresponding CI��j ;:95 obtain under the assumption

sign(R ~w:~x;j) = sign(R̂ ~w:~x;j). The �, ��, or ��� next to R̂ ~w:~x;j indicate that the p-value associated with a
t-test for the null R ~w:~x;j = 0 against the alternative hypothesis sign(R ~w:~x;j) = sign(R̂ ~w:~x;j) is less than
0.1, 0.05, or 0.01 respectively.

34



Table 2: Regression-Based Estimates of Log Wage Equation Conditioning on Covariates
under Restrictions on Confounding

R̂~y:(~x0;~s0)0;j B̂j(
������ � 1; 0 � ��) R̂ ~w:(~x0;~s0)0;j B̂j(

������ � 1)
1 Education 0.072 [0.001,0.072] 0.070��� [0.001,0.142]
Robust s.e. (0.004) - (0.002) -
CI:95 and CI��j ;:95 [0.064,0.079] [-0.006,0.078] - [-0.006,0.150]

2 Experience 0.083 [0.035,0.083] 0.048��� [0.035,0.131]
Robust s.e. (0.007) - (0.004) -
CI:95 and CI��j ;:95 [0.070,0.096] [0.022,0.094] - [0.022,0.145]

3 1
100
Experience2 -0.220 [-0.220,-0.133] -0.087��� [-0.307,-0.133]

Robust s.e. (0.032) - (0.023) -
CI:95 and CI��j ;:95 [-0.283,-0.157] [-0.273,-0.070] - [-0.373,-0.070]

4 Black indicator -0.187 [-0.187,0.015] -0.201��� [-0.388,0.015]
Robust s.e. (0.020) - (0.013) -
CI:95 and CI��j ;:95 [-0.225,-0.148] [-0.219,0.050] - [-0.429,0.050]

Notes: The results extend the speci�cation in Table 1 by conditioning on covariates S corresponding
to 8 indicators for region of residence in 1966, an indicator for residence in SMSA in 1966, imputed father
and mother education plus 2 indicators for missing father or mother education, 8 binary indicators for
interacted parental high school, college, or post graduate education, an indicator for father and mother
present at age 14, and an indicator for single mother at age 14. The remaining notes in Table 1 apply
analogously here.

Table 3: Regression Estimates of Log Wage Equation Conditioning on Covariates and
KWW

Education Experience 1
100
Experience2 Black indicator KWW

R̂~y:(~x0; ~s�0)0;j 0.055 0.071 -0.198 -0.143 0.008
Robust s.e. (0.005) (0.007) (0.032) (0.021) (0.001)
CI:95 [0.046, 0.064] [0.057,0.085] [-0.261,-0.135] [-0.184,-0.102] [0.006,0.010]

Notes: This table reports estimates R̂~y:(~x0; ~s�0)0;j from a regression of ~Y on ~X conditioning on covariates
~S� with S� = (S0;KWW )0 and Y , X, and S de�ned as in Tables 1 and 2.
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Table 4: Regression-Based Estimates of Log Wage Equation with an Education and Race
Interaction Term Conditioning on Covariates under Restrictions on Confounding

R̂~y:(~x0;~s0)0;j B̂j(
������ � 1; 0 � ��) R̂ ~w:(~x0;~s0)0;j B̂j(

������ � 1)
1 Education 0.068 [0.004,0.068] 0.064��� [0.004,0.131]
Robust s.e. (0.004) - (0.003) -
CI:95 and CI��j ;:95 [0.060,0.076] [-0.004,0.075] - [-0.004,0.140]

2 (Education-12)�Black 0.017 [-0.012,0.017] 0.029��� [-0.012,0.046]
Robust s.e. (0.006) - (0.005) -
CI:95 and CI��j ;:95 [0.005,0.030] [-0.024,0.028] - [-0.024,0.060]

3 Experience 0.081 [0.036,0.081] 0.045��� [0.036,0.127]
Robust s.e. (0.007) - (0.004) -
CI:95 and CI��j ;:95 [0.068,0.095] [0.023,0.092] - [0.023,0.140]

4 1
100
Experience2 -0.210 [-0.210,-0.139] -0.070��� [-0.280,-0.139]

Robust s.e. (0.032) - (0.023) -
CI:95 and CI��j ;:95 [-0.273,-0.146] [-0.263,-0.075] - [-0.347,-0.075]

5 Black indicator -0.193 [-0.193,0.018] -0.211��� [-0.403,0.018]
Robust s.e. (0.020) - (0.013) -
CI:95 and CI��j ;:95 [-0.231,-0.154] [-0.225,0.055] - [-0.445,0.055]

Notes: The results augment the speci�cation in Table 2 to include in X an interaction term multiplying
years of education minus 12 with a black binay indicator. The remaining notes in Tables 1 and 2 apply
analogously here.
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Table 5: IV Regression-Based Estimates of Log Wage Equation Conditioning on Covariates
under Restrictions on Confounding

R̂~y:(~x0;~s0)0j(~z0;~s0)0;j B̂j(
������ � 1; 0 � ��) R̂ ~w:(~x0;~s0)0j(~z0;~s0)0;j B̂j(

������ � 1)
1 Education 0.134 [0.029,0.134] 0.106��� [0.029,0.240]
Robust s.e. (0.052) - (0.032) -
CI:95 and CI��j ;:95 [0.033,0.236] [-0.060,0.220] - [-0.060,0.350]

2 Experience 0.061 [0.006,0.061] 0.054��� [0.006,0.115]
Robust s.e. (0.025) - (0.015) -
CI:95 and CI��j ;:95 [0.011,0.110] [-0.036,0.102] - [-0.036,0.168]

3 1
100
Experience2 -0.113 [-0.113,0.009] -0.122�� [-0.235,0.009]

Robust s.e. (0.122) - (0.072) -
CI:95 and CI��j ;:95 [-0.352,0.127] [-0.314,0.214] - [-0.493,0.214]

4 Black indicator -0.162 [-0.162,0.026] -0.189��� [-0.351,0.026]
Robust s.e. (0.028) - (0.018) -
CI:95 and CI��j ;:95 [-0.218,-0.107] [-0.209,0.075] - [-0.412,0.075]

Notes: The results employ the speci�cation in Table 2 but use an indicator for whether there is a four
year college in the local labor market, age, and age squared as instruments for education, experience, and
experience squared. The remaining notes in Tables 1 and 2 apply analogously for the IV-based results
here.
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Table 6: Regression-Based Estimates of Log Wage Equa-
tion with Year-Speci�c Education Indicators Condition-
ing on Covariates under Restrictions on Confounding

R̂~y:(~x0;~s0)0;j B̂j(
������ � 1; 0 � ��) R̂ ~w:(~x0;~s0)0;j B̂j(

������ � 1)
1 Educ � 2 years -0.444 [-1.438,-0.444] 0.994��� [-1.438,0.550]

Robust s.e. (0.059) - (0.175) -
CI:95 and CI��j ;:95 [-0.559,-0.329] [-1.685,-0.347] - [-1.685,0.901]

2 Educ � 3 years -0.253 [-0.253,0.616] -0.869��� [-1.123,0.616]
Robust s.e. (0.070) - (0.225) -
CI:95 and CI��j ;:95 [-0.390,-0.117] [-0.368,0.970] - [-1.541,0.970]

3 Educ � 4 years 0.446 [0.128,0.446] 0.318�� [0.128,0.764]
Robust s.e. (0.055) - (0.144) -
CI:95 and CI��j ;:95 [0.339,0.554] [-0.137,0.536] - [-0.137,1.004]

4 Educ � 5 years -0.061 [-0.612,-0.061] 0.551��� [-0.612,0.490]
Robust s.e. (0.063) - (0.158) -
CI:95 and CI��j ;:95 [-0.186,0.063] [-0.889,0.043] - [-0.889,0.773]

5 Educ � 6 years 0.094 [0.078,0.094] 0.015 [0.078,0.109]
Robust s.e. (0.114) - (0.202) -
CI:95 and CI��j ;:95 [-0.130,0.317] [-0.278,0.281] - [-0.278,0.514]

6 Educ � 7 years 0.034 [-0.242,0.034] 0.276�� [-0.242,0.310]
Robust s.e. (0.118) - (0.144) -
CI:95 and CI��j ;:95 [-0.197,0.265] [-0.527,0.228] - [-0.527,0.635]

7 Educ � 8 years 0.109 [0.014,0.109] 0.096 [0.014,0.205]
Robust s.e. (0.076) - (0.060) -
CI:95 and CI��j ;:95 [-0.040,0.259] [-0.149,0.235] - [-0.149,0.361]

8 Educ � 9 years -0.063 [-0.063,-0.046] -0.017 [-0.080,-0.046]
Robust s.e. (0.065) - (0.047) -
CI:95 and CI��j ;:95 [-0.192,0.065] [-0.171,0.066] - [-0.230,0.066]

9 Educ � 10 years 0.013 [-0.111,0.013] 0.124��� [-0.111,0.137]
Robust s.e. (0.054) - (0.041) -
CI:95 and CI��j ;:95 [-0.092,0.118] [-0.213,0.101] - [-0.213,0.257]

10 Educ � 11 years 0.118 [0.039,0.118] 0.080��� [0.039,0.198]
Robust s.e. (0.042) - (0.031) -
CI:95 and CI��j ;:95 [0.036,0.200] [-0.041,0.187] - [-0.041,0.290]

11 Educ � 12 years 0.146 [0.016,0.146] 0.130��� [0.016,0.276]
Robust s.e. (0.032) - (0.021) -
CI:95 and CI��j ;:95 [0.082,0.210] [-0.042,0.200] - [-0.042,0.345]

12 Educ � 13 years 0.078 [0.007,0.078] 0.070��� [0.007,0.148]
Robust s.e. (0.023) - (0.014) -
CI:95 and CI��j ;:95 [0.032,0.123] [-0.034,0.116] - [-0.034,0.196]

13 Educ � 14 years 0.034 [-0.035,0.034] 0.069��� [-0.035,0.103]
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Robust s.e. (0.032) - (0.016) -
CI:95 and CI��j ;:95 [-0.028,0.096] [-0.090,0.086] - [-0.090,0.165]

14 Educ � 15 years -0.020 [-0.056,-0.020] 0.036�� [-0.056,0.015]
Robust s.e. (0.038) - (0.018) -
CI:95 and CI��j ;:95 [-0.094,0.054] [-0.121,0.042] - [-0.121,0.088]

15 Educ � 16 years 0.195 [0.133,0.195] 0.062��� [0.133,0.258]
Robust s.e. (0.034) - (0.016) -
CI:95 and CI��j ;:95 [0.130,0.261] [0.075,0.251] - [0.075,0.322]

16 Educ � 17 years 0.012 [-0.070,0.012] 0.082��� [-0.070,0.093]
Robust s.e. (0.039) - (0.014) -
CI:95 and CI��j ;:95 [-0.064,0.088] [-0.134,0.076] - [-0.134,0.164]

17 Educ � 18 years 0.149 [0.139,0.149] 0.010 [0.139,0.159]
Robust s.e. (0.045) - (0.015) -
CI:95 and CI��j ;:95 [0.062,0.237] [0.065,0.223] - [0.065,0.241]

18 Experience 0.087 [0.052,0.087] 0.035��� [0.052,0.122]
Robust s.e. (0.008) - (0.005) -
CI:95 and CI��j ;:95 [0.072,0.102] [0.038,0.099] - [0.038,0.137]

19 1
100
Experience2 -0.241 [-0.241,-0.227] -0.014 [-0.256,-0.227]

Robust s.e. (0.037) - (0.024) -
CI:95 and CI��j ;:95 [-0.313,-0.169] [-0.302,-0.158] - [-0.332,-0.158]

20 Black indicator -0.178 [-0.178,0.019] -0.196��� [-0.374,0.019]
Robust s.e. (0.020) - (0.012) -
CI:95 and CI��j ;:95 [-0.216,-0.139] [-0.210,0.054] - [-0.415,0.054]

Notes: The results extend the speci�cation in Table 2 to include in X indicators for exceeding each
year of education in the sample. The remaining notes in Tables 1 and 2 apply analogously here.
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