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Abstract

We explore whether stable matchings and trade in commodities can
coexist. For this purpose, we consider competitive markets for mul-
tiple commodities with endogenous formation of one- or two-person
households. Within each two-person household, individuals obtain
utility from his/her own private consumption, from discrete actions
such as job choice, from the partner’s observable characteristics such
as appearance and hobbies, from some of the partner’s consumption
vectors, and from the partner’s action choices. We investigate com-
petitive market outcomes with an endogenous household structure in
which no individual and no man/woman-pair can deviate profitably.
We find a set of sufficient conditions under which a stable matching
equilibrium exists. We further establish the first welfare theorem for
this economy.
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1 Introduction

In their seminal contribution, Gale and Shapley (1962) show that stable
matching of partners obtains. The main results of the subsequent literature
on two-sided matching are surveyed in Roth and Sotomayor (1990). A paral-
lel literature, starting with the seminal paper of Shapley and Shubik (1972),
has established the existence of stable outcomes in assignment games. In all
of these models, markets for commodities are inactive simply because there
exists at most one tradeable commodity.1

Gersbach and Haller (2011) show that two tradeable commodities may
already endanger stable matchings in finite populations. They present an
example with two private commodities and household formation reducible to
a two-sided matching problem in which stable matchings and market clearing
cannot be achieved simultaneously. The reason is that when households trade
actively, different matchings may be associated with different price systems
that clear commodity markets if consumption externalities are present or if
group externalities are not separable. In such cases, individuals may find it
optimal, for instance, to split at the going market prices to reduce negative
consumption externalities. However, when the household structure changes
and market clearing prices change, individuals may find it optimal to remarry
or match again. Incompatibility of stable matching and market clearing does
not disappear under replication.

It remains open, however, whether the non-existence problem is a con-
sequence of having a finite population. In this paper, therefore, we explore
the compatibility of stable household structures and market clearing for a
continuum of individuals. In addition to the standard matching model and
to Gersbach and Haller (2011), we also allow for a richer interaction of house-
hold members.

More specifically, we consider a market economy in which any two part-
ners of opposite sex can form a household. Within each two-person house-
hold, externalities from the partner’s commodity consumption in some cat-
egories and unpriced actions are allowed. Each individual has two charac-
teristics: observable characteristics, which may include a taste component,
and unobservable taste characteristics. Each individual gets utility from its
own private consumption and discrete actions (in particular job choice), the
partner’s observable characteristics (such as appearance and known hobbies),
the partner’s consumption vector in certain categories, and the action choice
of the partner.2

1A noteworthy exception are Drèze and Greenberg (1980).
2Remark 1 discusses in more detail the rationale for an endogenous discrete action
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Partners in a household jointly choose consumption bundles and actions.
They achieve intra-household Pareto efficiency. Such negotiated outcomes
have to be stable, i.e., they have to be immune against (a) deviation of
individuals who would fare better on their own and (b) a deviation of an
arbitrary pair of individuals who could form a household and could choose a
feasible allocation of commodities and actions. Stable matching and market
clearing together define a stable matching equilibrium.

Our main result is a set of sufficient conditions under which a stable
matching equilibrium exists. We illustrate the advantage of the continuum
version over the corresponding finite population model by means of an exam-
ple based on the motivating counter-example in Gersbach and Haller (2011).
We further show a first welfare theorem. We illustrate the theorem by an
example and describe how the qualitative properties of the equilibria differ
from equilibria that could be obtained with the continuum version of the
club model.

The paper is organized as follows. In the next section we elaborate further
on the relation to the literature. In section three, we introduce the model
and define matching and feasible allocations in the continuum economy. In
section four, we define a stable matching equilibrium and illustrate it by an
example. In section five, we state our main result. Section six is devoted to
welfare analysis. There we show that every stable matching equilibrium is
efficient under an appropriate definition of Pareto efficiency of allocations.
Section seven provides the example that illustrates the welfare conclusions
and the difference from the club literature. Section eight concludes. The
proof of the main result is contained in the Appendix.

2 Relation to the Literature

Although general equilibrium models with multi-member households as out-
lined in Gersbach and Haller (2010, 2011) motivate our current investigation,
the present model does not constitute a continuum version of Gersbach and
Haller (2011). It is more restrictive in that it is focused on the formation
of two-person and singleton households; but it is more general and richer
regarding the features of individuals and households as will be discussed be-
low.3 By focussing on one- or two-person households, we follow the bulk of
the literature dealing with households:

choice.
3In general, Gersbach and Haller do not impose any a priori restrictions on household

or group size — while individual preferences may prevent large groups from being formed
in equilibrium.
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• The vast majority of the empirical literature deals with decision making
of one- or two-person households or households with children and one or
two adults. For details and discussion, see Bourguignon and Chiappori
(1992, 1994), Kapteyn and Koreman (1992), Bergstrom (1997) and
Apps and Rees (2009).

• Most of the theoretical literature on household formation is devoted
to two-sided matching, where the population is divided into males and
females and individuals either remain single or form a heterosexual cou-
ple. Gale and Shapley (1962), Shapley and Shubik (1972) and Roth and
Sotomayor (1990) are the main references mentioned before. Becker
(1973) makes the same basic assumption. He derives an assortative
matching when all individuals on each side have the same preference
ordering over individuals on the other side.

Existence of stable matchings. Gale and Shapley (1962) consider a
finite set of males and a finite set of females. Each person has preferences
for members of the other sex or remaining single. There are no commodities
involved. A stable matching is a partition of the population into heterosexual
pairs and singletons so that (i) no matched individual would rather be single
and (ii) no two individuals of opposite sex would both prefer being matched
with each other to their current status. The authors show, among other
things, existence of stable matchings. In the classical assignment game of
Shapley and Shubik (1972), there is a single commodity or money. In our
context, their model can be interpreted as follows. The population is divided
into two groups, say M and W . Individual i ∈ M has endowment ei ≥ 0,
utility ui = xi when single and consuming xi ≥ 0, and utility ui = −ci + xi

when matched with some j ∈ W and consuming xi. Individual j ∈ W has
endowment ẽj, utility vj = x̃j when single and consuming x̃j ≥ 0 and enjoys
utility vj = hij + x̃j when matched with i ∈ M and consuming x̃j. It is
assumed that ci ≥ 0 for all i and hij ≥ 0 for all ij. Shapley and Shubik
(1972) show that without budget constraints, there exists a stable matching
of the following form: There exist transfers ti ≥ 0, i ∈ M , such that xi = ei

if i ∈ M remains single; x̃j = ẽj if j ∈ W remains single; xi = ei + ti
and x̃j = ẽj − ti in case the match {i, j} obtains. This constitutes a stable
matching equilibrium in our sense provided the endowments ẽj are sufficiently
large, that is ẽj ≥ ti for all matched pairs {i, j}. Notice that there is no active
trade across households. The existence theorem of Alkan and Gale (1990)
applies to a variety of cases, including the model of Crawford and Knoer
(1981) with a perfectly divisible good. Their model can be recast as a model
of household formation with a single good in our sense.
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The influential contribution by Hatfield and Milgrom (2005) on matching
with contracts synthesizes several previous approaches. It encompasses Gale
and Shapley (1962), the discrete version of Crawford and Knoer (1981), Kelso
and Crawford (1982) — who introduce a gross substitutes condition, allowing
for many-to-one matchings and endogenous salaries — and a number of other
models with applications to marriage markets, labor markets, school, college
and ROTC branch choice, assignment of medical interns to hospitals, kidney
exchange, etc. Their model is discrete, their analysis relies on arguments
from lattice theory, and markets for commodities are absent. They show
existence of stable allocations.4

Non-Existence of a stable matching equilibrium. Stable match-
ings in the previous models of matching constitute competitive equilibria in
the sense of Gersbach and Haller (2011) and stable matching equilibria as
defined in the present paper. Our main concern, however, are models with
pairwise matching and active commodity markets that can serve as general
models of household formation and “marriage markets”. With active trade
in commodity markets, we and the matching literature face a serious chal-
lenge, illustrated by the intriguing features of the aforementioned example in
Gersbach and Haller (2011):

1. Given a price system p and the associated affordable utility allocations
for each potential single household or couple, a stable matching exists.
Let S(p) denote the set of those stable matchings.

2. For each matching µ, there exists a market clearing price system. Let
P(µ) denote the set of such price systems.

3. However, the correspondence p 7→ P(S(p)) does not have a fixed point.
This means that despite favorable conditions for the existence of stable
matchings and market clearing prices, a stable matching and market
clearing cannot be achieved simultaneously. A stable matching equi-
librium does not exist. This example shows that active trade across
households poses a challenge with regard to existence of stable out-
comes not only for Gersbach and Haller, but also for the traditional
matching literature.

Existence with a continuum of consumers. We consider a two-
sided matching model with a continuum of males, a continuum of females,
finitely many male types, finitely many female types, I + K commodities
where I ≥ 1 and K ≥ 1, and with a constant returns to scale production
sector. We set out to identify sufficient conditions for the existence of a

4See Aygün and Sönmez (2013) for a qualification.
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stable matching equilibrium. Since we are primarily interested in endogenous
household formation, we augment the model with several pertinent features
of households:

• Discrete actions that affect endowments, consumption sets, and
utilities (e.g., an agent’s job choice).

• Both observable and unobservable traits (types).

• Intra-household consumption externalities.

• Joint budget constraint for a couple.

• Pareto efficient choices within households.

• Active commodity markets.

The first two features constitute innovations relative to Gersbach and Haller
(2011). Insofar, the current model is more general in some respects while
being more restrictive in others.

Despite a superficial resemblance between our model and the ones in the
literature on two-sided matching, there are no direct methodological connec-
tions between them. Two-sided matching theory is concerned with matching
markets in a partial equilibrium setting. To find and to characterize equilib-
ria, it primarily resorts to lattice theory, uses Tarski’s fixed point theorem and
takes an algorithmic approach. In contrast, the current paper deals with a
continuum of atomless agents who form households. To establish existence of
equilibrium and to prove the first welfare theorem, we extend the standard
general equilibrium approach, by developing a global mapping with seven
submappings to handle individual choices, matching of continua of agents,
and market clearing simultaneously. A suitably constructed global mapping
will ultimately allow to apply Kakutani’s fixed point theorem.5 In contrast
to discrete matching models, we cannot rely on algorithms that converge to
an equilibrium in finitely many steps.

Reexamination of the non-existence example from Gersbach and Haller
(2011) in its continuum version proves instructive in several respects: Closer
examination reveals the severity of the non-existence problem. It shows that
non-existence in the original example does not go away under suitable repli-
cation, that it is not merely a small number or integer problem. We find,
however, that existence is restored in the continuum model. Moreover, the

5Recently, the matching literature has used topological fixed point arguments as well.
E.g., Azevedo and Hatfield (2013) apply Brouwer’s fixed point theorem and Che, Kim and
Kojima (2014) apply the Kakutani-Fan-Glicksberg fixed point theorem.
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stable matching equilibrium of the continuum model indicates how to con-
struct approximate equilibria for sufficiently large replicas of the original
model.

Clubs. Some of the literature lists households as examples of clubs.
Indeed, most club models also deal with an endogenous partition of the pop-
ulation into groups and some allow for the competitive market allocation of
multiple private goods as well. See in particular Cole and Prescott (1997), El-
lickson (1979), Ellickson, Grodal, Scotchmer, and Zame (1999, 2001), Gilles
and Scotchmer (1997, 1998), Wooders (1988, 1989, 1997). However, the
members of a typical club do not reach a collective decision regarding their
consumption of private goods. Procurement of private goods remains an indi-
vidual decision and is subject to an individual budget constraint. Moreover,
this paper allows for

(i) consumption externalities;

(ii) externalities from observable types;

(iii) no discrimination by their preference type.

In contrast, Ellickson, Grodal, Scotchmer, and Zame (1999) allow for (ii) and
(iii), but not (i); Allouch, Conley, and Wooders (2007) allow for unbounded
size coalitions, and (ii), but neither (i) nor (iii); Konishi (2010 and 2013)
allow for (i) and (iii), but not (ii). We comment further on the assumptions
and the strategy of proof after the statement of the theorem. The proof itself
if given in the Appendix.

While existence of equilibrium is a crucial issue, qualitative properties of
equilibria are equally important. The equilibria obtained in club models and
stable matching equilibria tend to be different. Gersbach and Haller (2010)
amend the concept of valuation equilibrium à la Gilles and Scotchmer (1997)
by two modest requirements that should hold in the presence of externalities:
a) A group (club, household) member should not afford an alternative private
consumption bundle so that ceteris paribus the individual is better off. b)
A group member should not be better off going single. They present a two-
person example where the stable matching equilibrium is strongly Pareto
optimal whereas none of the valuation equilibria is weakly Pareto optimal. In
the continuum context, the model of Ellickson et al. (1999) is often taken as a
yardstick. In section seven, we develop an example where the stable matching
equilibrium is Pareto optimal and the corresponding transfer equilibria are
not.
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3 The Basic Model

The basic model describes and defines consumer and household characteris-
tics, the production sector, and feasible allocations.

3.1 Individuals and Couples

There is a continuum of individuals with two different kinds of characteristics
— observable characteristics (“crowding characteristics” in the terminology
of Conley and Wooders (1997)) and unobservable taste characteristics. The
set of observable characteristics is partitioned into two finite non-empty sets
M and W . The sets M and W denote a list of male types and female types,
respectively. An element m ∈ M (w ∈ W ) describes a type m male’s (type w
female’s) observable characteristics — his (her) appearance and observable
hobbies etc. — that may be cared for by a partner w ∈ W (m ∈ M). For
expositional purposes, we will assume that each male (female) will be either
matched with a female (male) or stay single. For each m ∈ M (w ∈ W ),
there is a set Θ of unobservable (taste) characteristics, with generic elements
θ, θ̃, etc. That is, the set of individual types is denoted by (M ∪ W ) × Θ.
This specification is for notational simplicity. It is easy to accommodate
observable-type-dependent taste sets Θm for m ∈ M and Θw for w ∈ W . In
such a case, we can just assume that Θ = (∪m∈MΘm)∪ (∪w∈W Θw), postulat-
ing that for all θ /∈ Θm, the population measure of m-type having taste-type θ
is zero and for all θ /∈ Θw, the population measure of w-type having taste-type
θ is zero. Whenever warranted, we distinguish sets and variables attributed
to females by .̃

Asymmetric information in the form of unobservable (taste) characteris-
tics is not crucial for our analysis. The model and the proofs would work
perfectly well when all taste characteristics were observable. But our ap-
proach is not limited to that case. Hence we choose the more general setting,
allowing for asymmetric information, where our approach still applies. This
is possible because of two reasons. First, stability in our equilibrium concept
can be viewed as a sort of “long run” outcome immune to deviations. In a
dynamic setting, outcomes may depend on how information is revealed dur-
ing the bargaining process — and might be inefficient. Second, our analysis
rests on the fact that unobservable characteristics do not affect endowments
and consumption sets and individuals do not care for a partner’s θ. As a
consequence, a stable matching equilibrium remains a stable matching equi-
librium when ceteris paribus the θ’s become observable — while the converse
is not obvious.

We assume that M , W and Θ are all finite sets. We use the distribution
approach to describe consumers: Let N (m,θ) (N (w,θ)) be the population mea-
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sure of type (m, θ) ((w, θ)) with
∑

(`,θ)∈(M∪W )×Θ N (`,θ) = N > 0. To make
the analysis relevant at all, we further assume that both the male and the
female population have positive measure:

∑
(m,θ)∈M×Θ N (m,θ) = NM > 0 and∑

(w,θ)∈W×Θ N (w,θ) = NW > 0.

3.2 Actions

Let A be a finite non-empty action set that is common to all individuals.6 A
typical example for an action is a consumer’s job choice. But the consumer’s
opportunities are not necessarily limited to job choice. E.g., an action can
indicate the number of kids to have, or which spouse primarily takes care of
kids etc. Each job may have a different wage rate and different time com-
mitment. That is, a person’s leisure endowment in particular is dependent
on her job choice, not only because wage rates are different7, but also be-
cause the time available for leisure consumption can differ. For example, the
minimum working hours or commuting time can vary. Moreover, if action
a means that a spouse commits to taking care of kids primarily, his (her)
leisure endowment would shrink since his (her) time to spend on the job or
leisure needs to be reduced.

3.3 Consumption Sets, Endowments, and Job Choice

Sets I = {1, ..., I} and K = {I + 1, ..., I + K} denote the set of commodi-
ties without externalities (as when reading books), and the set of commodi-
ties with externalities (such as from smoking) to and from the partner if
matched, respectively. These sets are common to all individuals, regardless
whether they are matched or single. Each male with observable type m ∈ M
has an endowment bundle dependent on his action, given by a mapping
em : A → RI+K

+ . Similarly, a female of observable type w ∈ W has an en-
dowment bundle given by a mapping ẽw : A → RI+K

+ . The consumption set
of each person can depend on the action taken by the person and, therefore,
consumption sets are represented by correspondences Xm : A ³ RI+K

+ and
X̃w : A ³ RI+K

+ . Xm
I (a) ⊂ RI

+ and Xm
K (a) ⊂ RK

+ describe the projections of
Xm(a) on the first I commodities and the last K commodities, respectively.
The projections X̃w

I (ã) and X̃w
K(ã) are defined similarly.

6This is again for notational simplicity. We can obtain the same results allowing action
sets to be dependent on observable types: For m ∈ M and w ∈ W , action sets Am and
Aw are finite. Regarding endogenous discrete action choices, see Remark 1.

7The type of labor being different implies that the type of leisure is different: There
exists a difference in opportunity costs due to wage rate differentials.
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If consumers cannot buy more leisure than their time endowments, the
consumption set typically cannot be RI+K

+ itself. For example, suppose that
there are J jobs representing different types of labor inputs and associated
leisure choices. Then, a type m man’s consumption set and endowment
are dependent on the chosen action a ∈ A in the following manner: Let
{I +1, ..., I + J} = J ⊂ K be the set of different types of labor (J ≤ K).8 If
consumer m’s choice is a ∈ A, then his job choice associated with his action
choice a ∈ A is some j(a) ∈ {I + 1, ..., I + J}, his endowment given a ∈ A is

em(a) = (em
1 (a), ..., em

I (a)︸ ︷︷ ︸
i∈I

; 0, ..., 0, em
j(a)(a), 0, ..., 0︸ ︷︷ ︸
j(a)∈J

; em
I+J+1(a), ..., em

I+K(a)︸ ︷︷ ︸
k∈K\J

),

and his consumption set is, assuming that he cannot buy more leisure than
his time endowment:

Xm(a) ⊆ RI
+ × {0} × ...× {0} × [0, em

j(a)(a)]× {0} × ...× {0} × RK−J
+ .

This rich setup allows for many different situations: For example, if by its
nature, job j(a) requires at least T hours of working, the j(a)-axis of Xm(a)
can be written as [0, em

j(a)(a)− T ].

We will assume that ∪a∈Aj(a) = J which means that for every job j ∈ J ,
there exists an action that entails that job.

We further assume that (non-externality) commodity 1 in I is a special
good as we shall specify in more detail in Section 4. In particular, we write
for all m ∈ M and all a ∈ A, Xm(a) = [0,∞) × Xm

−{1}(a) where Xm
−{1}(a)

denotes type m’s consumption set for all other commodities. For all w ∈ W
and all ã ∈ A, we define ẽw(ã) and X̃w(ã) in a similar manner.

Remark 1 (Discrete action choices). We have opted for discrete action
spaces for two reasons. First, job choice and its effects on endowment are
best expressed by means of a discrete choice. Second, a continuous action
space does not simplify the analysis in our context, but rather complicates
it, both in notation and analytical details. Lateron, we exploit the finiteness
of A and resort to extended household types like (m, θ, a). A finite action
space yields a finite extended type set, which would no longer be the case
with a continuous action space.

3.4 Preferences

Male type (m, θ) ∈ M × Θ has the following utility presentation. If he
is matched and his partner has (observable) type w ∈ W , then his utility

8By positing J ⊂ K, we are assuming that leisure consumption by a man/woman
affects his/her spouse’s utility.
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function is
u(m,θ) : (∪a∈AXm(a)× {a})× {w} × (∪ã∈AX̃w

K(ã)× {ã}) → R such that

u(m,θ) = u(m,θ)(xI , xK, a; w, x̃K, ã),

where a ∈ A and x = (xI , xK) ∈ Xm(a) are his own action and consumption
vector and ã ∈ A and x̃K ∈ X̃w

K(ã) are his female partner’s action and
(mutually relevant) consumption vector. Note that a male of type (m, θ)
does not care what preference type θ̃ his partner has. He cares only about
her observable type w ∈ W and her choice (x̃K, ã). If he is single, his utility
function is simply u(m,θ) : (∪a∈AXm(a)× {a})× {∅} → R so that

u(m,θ) = u(m,θ)(x, a; ∅),
where a ∈ A and x = (xI , xK) ∈ Xm(a). Note that there is no externality in
consumption in this case. The same comment applies to the case of w being
single.

Female type (w, θ̃) ∈ W ×Θ has utility function

u(w,θ̃) : (∪ã∈AX̃w(ã)× {ã})× {m} × (∪a∈AXm
K (a)× {a}) → R such that

u(w,θ̃) = u(w,θ̃)(x̃I , x̃K, ã; m,xK, a)

if she is matched with observable male type m ∈ M . She has utility function
u(w,θ̃) : (∪ã∈AX̃w(ã)× {ã})× {∅} → R so that

u(w,θ̃) = u(w,θ̃)(x̃, ã; ∅),
if she is single.

3.5 Matching

In order to define an allocation, we impose assumptions on the populations
of individuals and the number of couples. Let Γ̄C = M ×Θ×W ×Θ denote
the set of couple types, Γ̄M = M × Θ denote the set of male types, and
Γ̄W = W ×Θ denote the set of female types. Then Γ̄ = Γ̄C ∪ Γ̄M ∪ Γ̄W would
be the set of all possible household types. However, it proves more conve-
nient to augment a household type by its members’ actions because household
members’ endowments and consumption sets depend on their action choices
and, thus, the set of feasible allocations in each household depends on the
actions taken by its members. Augmented or extended household type sets
are defined as follows. Let ΓC = M ×Θ×A×W ×Θ×A, ΓM = M ×Θ×A,
ΓW = W ×Θ×A, and Γ = ΓC∪ΓM ∪ΓW .9 For example, γ ∈ ΓC assumes the

9Working with augmented household types also helps overcome the non-convexity prob-
lem associated with discrete action set A.
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form γ = (m, θ, a; w, θ̃, ã) which is a couple consisting of a male of observable
type m who has unobservable taste type θ and takes action a and a female
of observable type w who has unobservable taste type θ̃ and takes action ã.

Remark 2 (Endogenous action choices). Introducing extended types
when proving existence is not the same as making extended types primitives
of the model, that is making action choice exogenous. To illustrate this point,
let us consider an example of matching where consumption of commodities
is absent. There exist one male type m with Lebesgue measure 1 and one
female type w of Lebesgue measure 1. The sole unobservable type can be
ignored. The binary action space is A = {−1, 1}. The utility of a single
person who takes action a is a. The utility of a member of a couple where
one partner takes action a and the other takes action a′ is a + a′. In equilib-
rium, all individuals get matched and everybody chooses action a = 1. This
outcome is also achieved in the unique stable matching when there are two
exogenous extended types, (m, 1) and (w, 1), each with Lebesgue measure
1. Now suppose that all four extended types, (m, 1), (m,−1), (w, 1), and
(w,−1) are exogenously given, each with Lebesgue measure 1/2. Then the
unique stable matching yields couples of the type (m, 1; w, 1) and unmatched
types (m,−1) and (w,−1). This is different from the original equilibrium
allocation with endogenous action choice. More elaborate examples with
commodity markets can be constructed.

A matching is a mapping µ : Γ → R+ such that µ(γ) is the Lebesgue
measure of households of augmented type γ ∈ Γ.

In our formal derivations, we shall further assume Measurement Con-
sistency (MC). This is a technical assumption how population sizes line up
in a continuum economy. In our context, it requires that

• the measure µ(m, θ, a; w, θ̃, ã) of couples of extended type (m, θ, a; w, θ̃, ã),

• the measure µ(m,θ)(m, θ, a; w, θ̃, ã) of the sub-population of males of
type (m, θ) belonging to couples of extended type (m, θ, a; w, θ̃, ã) and

• the measure µ(w,θ̃)(m, θ, a; w, θ̃, ã) of the sub-population of females of
type (w, θ̃) belonging to couples of extended type (m, θ, a; w, θ̃, ã)

coincide. MC has been introduced by Kaneko and Wooders (1986), to prop-
erly account for resources consumed by finite coalitions in a continuum econ-
omy. When MC holds in our context, that is when µ(m, θ, a; w, θ̃, ã) =

µ(m,θ)(m, θ, a; w, θ̃, ã) = µ(w,θ̃)(m, θ, a; w, θ̃, ã), we can take em(a) + ẽw(ã) as
the endowment of a couple of extended type (m, θ, a; w, θ̃, ã). Otherwise, it
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is unclear how such a couple’s endowment would be determined. We will
assume MC throughout the paper.

Now, we can define feasibility of matchings. A matching µ is feasible if
we have:

(F1)
∑

(w,θ̃,a,ã)∈W×Θ×A×A µ(m, θ, a; w, θ̃, ã) +
∑

a∈A µ(m, θ, a) = N (m,θ)

for all (m, θ) ∈ M ×Θ.

(F2)
∑

(m,θ,a,ã)∈M×Θ×A×A µ(w, θ̃, ã; m, θ, a) +
∑

ã∈A µ(w, θ̃, ã) = N (w,θ̃)

for all (w, θ̃) ∈ W ×Θ.

3.6 Production

We next introduce production. We assume that the aggregate production
technology exhibits constant returns to scale so that there will not be profits
in equilibrium. We denote the aggregate production set by Y ⊂ RI+K .

3.7 Feasible Allocations

Let the household consumption correspondence X : Γ ³ RI+K ∪ (RI+K)2 be
given by X (m, θ, a) = Xm(a), X (w, θ̃, ã) = X̃w(ã), and X (m, θ, a, w, θ̃, ã) =
Xm(a)× X̃w(ã).

A symmetric household consumption allocation is given by a selec-
tion x of X : Γ ³ RI+K ∪ (RI+K)2, that is x : Γ → RI+K ∪ (RI+K)2 such that
x(γ) ∈ X (γ) for γ ∈ Γ. Frequently, we shall write xγ instead of x(γ). Let
X be the set of all selections of X , that is, the set of symmetric household
consumption allocations. In a symmetric household consumption allocation
x ∈ X,

1. for each γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , (xγ; x̃γ) ∈ X (γ) is the consumption
combination of couples of type γ;

2. for each γ = (m, θ, a) ∈ ΓM , xγ ∈ X (γ) is the consumption bundle of
singles of type γ;

3. for each γ = (w, θ̃, ã) ∈ ΓW , x̃γ ∈ X (γ) is the consumption bundle of
singles of type γ.

Three details ought to be noted here. First, taste types θ, θ̃ do not
affect feasibility of household consumption. Second, this definition presumes
that households of the same type choose identical consumption, an “equal
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treatment property” for households.10 Third, although we list a consumption
plan for all possible types of households, we do not require that all types of
households must be present in equilibrium.

A (symmetric) consumption allocation is a pair (x, µ) where x ∈ X

is a symmetric household consumption allocation and µ is a matching. A
feasible allocation is a triple (x, µ, y) such that (x, µ) is a consumption
allocation and y ∈ Y is a production vector satisfying

∑
γ∈ΓC µ(γ) (xγ + x̃γ) +

∑
γ∈ΓM µ(γ)xγ +

∑
γ∈ΓW µ(γ)x̃γ

≤ ∑
γ∈ΓC µ(γ) (eγ + ẽγ) +

∑
γ∈ΓM µ(γ)eγ +

∑
γ∈ΓW µ(γ)ẽγ + y



 (1)

where we set eγ = em(a) for γ = (m, θ, a; w, θ̃, ã) ∈ ΓC or γ = (m, θ, a) ∈ ΓM

and ẽγ = ẽw(ã) for γ = (m, θ, a; w, θ̃, ã) ∈ ΓC or γ = (w, θ̃, ã) ∈ ΓW .
A production plan y ∈ Y is feasible if it is part of a feasible allocation
(x, µ, y). For later use we establish sufficient conditions to ensure that the
set of feasible production plans is bounded.

Lemma 1 Suppose the aggregate production set Y ⊂ RI+K is a closed and
convex set satisfying (i) Y +RI+K

− ⊆ Y (free disposal), (ii) Y ∩RI+K
+ = {0}

(no free lunch), and (iii) ty ∈ Y for all y ∈ Y and all t > 0 (constant returns
to scale). Then the set of feasible production plans is bounded.

Proof. There exists b À 0 such that the aggregate endowment

e =
∑

γ∈ΓC

µ(γ) (eγ + ẽγ) +
∑

γ∈ΓM

µ(γ)eγ +
∑

γ∈ΓW

µ(γ)ẽγ

satisfies 0 ≤ e ¿ b regardless of the distribution µ of augmented household
types and action choices by households. Then the feasibility condition (1)
requires 0 ≤ “lhs of (1)” ≤ e + y ¿ b + y (and, consequently, −b ¿ y).

Application of assertion (2) in Debreu (1959, 5.4) to the Robinson Crusoe
economy with consumption set RI+K

+ , endowment bundle b, and production
set Y with the hypothesized properties yields an upper bound bo (and a lower
bound) for feasible production plans when exact market clearing is imposed.
Such an upper bound will also do in our context: In the Robinson Crusoe

10Obviously, we can assign different consumption-action combinations to two households
of the same type. In this sense, the equilibrium concept proposed below is not the most
general one. More general definitions using the “distribution approach” can be found
in Mas-Colell (1984) or Zame (2007). Notice, however, that we need Pareto indifference
among realized equilibrium outcomes since consumers are free to choose available policies
in the market. We will assume convex preferences for our main theorem. Therefore, we
essentially lose nothing by choosing the simpler definition.
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economy, x = b+y for x ∈ RI+K
+ and y ∈ Y implies y ≤ b0. Hence for y ∈ Y :

0 ≤ e + y implies 0 ¿ b + y, therefore x = b + y for some x ∈ RI+K
+ and

y ≤ b0. ¤

4 Equilibrium Analysis

In this section we specify first the choices available to households and next
how households decide. Then we introduce the equilibrium concept, stable
matching equilibrium. Finally, we present an example, the continuum version
of Example 3 in Gersbach and Haller (2011).

4.1 Household Decisions

Let ∆ = {p = (pI , pK) ∈ RI+K
+ :

∑
i∈I pi +

∑
k∈K pk = 1} be the set of price

vectors. For p ∈ ∆, a couple of observable type (m,w) has (for any θ, θ̃ ∈ Θ)
the budget set dependent of their actions (a, ã) ∈ A× A,

B(m,w;a,ã)(p) ≡
{

(x, x̃) ∈ Xm(a)×Xw(ã)

∣∣∣∣
p · (x + x̃)
≤ p · (em(a) + ẽw(ã))

}
. (2)

The members of that household determine their consumption-action bun-
dles either by negotiating or independently. If consumption or action exter-
nalities within the household are absent, then the members can choose their
consumption-action vectors independently, achieving an intra-household effi-
cient allocation. However, as is well known, independent decisions need not
lead to intra-household efficiency in the presence of externalities. Hence in
general, they jointly decide what actions a and ã and what consumption vec-
tors causing externalities — xm

K and x̃w
K — to choose, and divide their residual

aggregated income pem(a) + pẽw(ã)− pxm
K − px̃w

K into residual income shares
B and B̃, so that B + B̃ = pem(a) + pẽw(ã) − pKxm

K − pKx̃w
K. That is, the

members can negotiate over B and B̃ by taking their outside options (by
deviating unilaterally or by finding another partner) into account.

Therefore, it is natural to think about a contract over consumption and
actions together with a budget share agreement between the partners. Note
that both members of a household contribute their endowments to the house-
hold joint budget first and then receive budget shares (allowances) for con-
sumption of goods in I. If for example, good j ∈ J is a type of leisure (based
on the male partner’s job choice a), then pj is the corresponding wage rate
(or opportunity cost of leisure). In this case, he has to contribute pje

m
j (a) to

the household first, and buy back afterwards some of the leisure time xm
j by

using his “allowance” (that is residual income share) B. This is the same as
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deciding on labor supply em
j (a)− xm

j yielding net allowance B− pjx
m
j . Here,

a further issue is that such a contract must be formed without knowing the
true preference types of partners, although the contract can be contingent
on their observable types and reported taste types.

A single’s budget constraint is easier to describe. A type m male has a
budget set (for any θ ∈ Θ) dependent on his action a ∈ A,

B(m,a)(p) ≡ {x ∈ Xm(a) : px ≤ pem(a)} . (3)

A type (m, θ) male chooses a ∈ A and x ∈ B(m,a)(p) to maximize his utility
u(m,θ)(x, a; ∅). Similarly, a type w female has a budget set (for any θ̃ ∈ Θ)
dependent on her action ã ∈ A,

B(w,ã)(p) ≡
{

x̃ ∈ X̃w(ã) : px̃ ≤ pẽw(ã)
}

. (4)

A type (w, θ̃) female chooses ã ∈ A and x̃ ∈ B(w,ã)(p) to maximize her utility

u(w,θ̃)(x̃, ã; ∅).

4.2 Negotiations over Intra-Household Allocation
(Consumption and Actions)

We think of an ideal situation of negotiations within a household (between
partners). They try to achieve an intra-household Pareto efficient allocation
given their reported preference types (and their observable types) that is im-
mune to joint deviations with other partners (with negotiated allocations)
and to single deviations as well.11 Suppose that (observable) types m and w
met discussing their potential intra-household allocation. They report their
taste types (truthfully or manipulatively) θ and θ̃ to each other, and jointly
choose their actions and consumption vectors that cause externalities to the
partners. An intra-household Pareto-efficient allocation given the participa-
tion constraints needs to ensure that their utilities from the allocation exceed
or equal U (m,θ)∗ and U (w,θ̃)∗, respectively, where U (m,θ)∗ and U (w,θ̃)∗ are the
outside options for these types. For the purpose of the following analysis of

11Notice that intra-household Pareto efficiency or collective rationality does not presume
that the partners follow a specific bargaining or decision-making protocol when negotiat-
ing. In principle, any Pareto efficient outcome can be agreed upon while we are not
specifying a particular procedure by which it is reached. The important feature is that in
equilibrium (in a stable matching), none of the partners has an incentive to deviate.
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premarital negotiations, it is convenient to consider indirect utility functions:

V (m,θ)(p,B, xK, a; w, x̃K, ã)

= max
xI∈Xm

I (a)
u(m,θ)(xI , xK, a; w, x̃K, ã)

subject to
∑
i∈I

pixi ≤ B;

V (w,θ̃)(p, B̃, x̃K, ã; m,xK, a)

= max
x̃I∈Xw

I (ã)
u(w,θ̃)(x̃I , x̃K, ã; m,xK, a)

subject to
∑
i∈I

pix̃i ≤ B̃.

These indirect utility functions describe what a member of a household can
achieve when an agreement over consumption and action vectors (xK, a, x̃K, ã)
and an expenditure sharing rule (allowances for commodity consumption
without externalities) (B, B̃) has been reached. Now, we will consider ne-
gotiations between husband and wife — or more generally, male and female
partner. Let us denote again the wife’s consumption-action vector by tildes
(˜). Consider a couple consisting of types (m, θ) and (w, θ̃). A feasible plan
for observable types m and w under p is a list (B, xK, a; B̃, x̃K, ã) such
that

B +
∑

k∈K
pkxk + B̃ +

∑

k∈K
pkx̃k ≤ pem(a) + pẽw(ã).

Denote the set of feasible plans for observable types m and w under p by
C[m, w; p]. The negotiation problem between (m, θ) and (w, θ̃) is to find a
feasible plan (B, xK, a; B̃, x̃K, ã) ∈ C[m,w; p] that is agreeable to them.

If they report their preference types θ and θ̃ before negotiation takes
place, then the negotiation problem may become the one to find an intra-
household Pareto efficient allocation for types (m, θ) and (w, θ̃): a fea-
sible plan (B, xK, a; B̃, x̃K, ã) ∈ C[m,w; p] such that there is no other feasible
plan (B′, x′K, a′; B̃′, x̃′K, ã′) ∈ C[m,w; p] with

(i) V (m,θ)(p, B′, x′K, a′; w, x̃′K, ã′) ≥ V (m,θ)(p,B, xK, a; w, x̃K, ã),

(ii) V (w,θ̃)(p, B̃′, x̃′K, ã′; m,x′K, a′) ≥ V (w,θ̃)(p, B̃, x̃K, ã; m,xK, a),

(iii) V (m,θ)(p, B′, x′K, a′; w, x̃′K, ã′) ≥ U (m,θ)∗ and

V (w,θ̃)(p, B̃′, x̃′K, ã′; m,x′K, a′) ≥ U (w,θ̃)∗,
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and at least one strict inequality in (i) or (ii).

Given that there are unobservable characteristics, it is perfectly legitimate
for types (m, θ) and (w, θ̃) to report (m,ϑ) and (w, ϑ̃) before they enter the
negotiation stage. Note that even if (m, θ) pretends to be (m,ϑ), his partner
(w, θ̃) (or actually (w, ϑ̃)) does not care what actual taste he has, as long as
his observable type is m (his appearance and observable hobbies etc.) and
both agree with his consumption and action vectors (xK, a).

The situation would be different in a model where each couple is com-
mitted to a specific bargaining protocol or mechanism, for instance a specific
asymmetric Nash bargaining solution as in Gori (2010). Then the partner’s
taste parameters would matter and misrepresentation could prove advan-
tageous. The outcome might also be different when a couple engaged in
noncooperative bargaining under incomplete information.

4.3 Stable Matching Equilibrium

Our concept of equilibrium requires a feasible allocation such that (i) men
and women are free to choose a partner and negotiate a budget-feasible intra-
household allocation with that partner or, alternatively, stay single; (ii) there
is no pair of male and female types who can be better off by deviating from the
equilibrium allocation by negotiating their after-deviation intra-household
allocation. Our equilibrium concept is described formally as follows.

Definition. A stable matching equilibrium is a quadruple (p,x, µ, y)
where

p ∈ ∆ is a price system;
(x, µ, y) is a feasible allocation
and the following conditions 1-4 hold:

1. Single-Household Efficiency

1.a: For all γ = (m, θ, a) ∈ ΓM with µ(γ) > 0, (xγ, a) maximizes
u(m,θ)(x, a; ∅) subject to (x, a) ∈ B(m,a)(p).

1.b: For all γ = (w, θ̃, ã) ∈ ΓW with µ(γ) > 0, (x̃γ, ã) maximizes
u(w,θ)(x̃, ã; ∅) subject to (x̃, ã) ∈ B(w,ã)(p).

2. Stable Matching I (immunity to joint deviations)
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2.a: If γ = (m, θ, ā; w, θ̃, ã), δ = (m, θ, a; ŵ, θ̂, â) ∈ ΓC with µ(γ) > 0
and µ(δ) > 0, then there is no feasible plan for observable types
m and ŵ under p, (B′, x′K, a′; B′′, x′′K, a′′) ∈ C[m, ŵ; p], such that

V (m,θ)(p,B′, x′K, a′; ŵ, x′′K, a′′) ≥ u(m,θ)(xγ
I , x

γ
K, aγ; w, x̃γ

K, ãγ) and

V (ŵ,θ̂)(p,B′′, x′′K, a′′; m,x′K, a′) ≥ u(ŵ,θ̂)(x̃δ
I , x̃

δ
K, ãδ; m,xδ

K, aδ) with
at least one strict inequality.

2.b: If γ = (m, θ, ā; w, θ̃, ã) ∈ ΓC , δ = (ŵ, θ̂, â) ∈ ΓW with µ(γ) > 0
and µ(δ) > 0, then there is no feasible plan for observable types
m and ŵ under p, (B′, x′K, a′; B′′, x′′K, a′′) ∈ C[m, ŵ; p], such that

V (m,θ)(p,B′, x′K, a′; ŵ, x′′K, a′′) ≥ u(m,θ)(xγ
I , x

γ
K, aγ; w, x̃γ

K, ãγ) and

V (ŵ,θ̂)(p,B′′, x′′K, a′′; m,x′K, a′) ≥ u(ŵ,θ̂)(x̃δ, ãδ; ∅) with at least one
strict inequality.

2.c: If γ = (m, θ, ā) ∈ ΓM , δ = (m, θ, a; ŵ, θ̂, â) ∈ ΓC with µ(γ) > 0
and µ(δ) > 0, then there is no feasible plan for observable types
m and ŵ under p, (B′, x′K, a′; B′′, x′′K, a′′) ∈ C[m, ŵ; p], such that

V (m,θ)(p,B′, x′K, a′; ŵ, x′′K, a′′) ≥ u(m,θ)(xγ, aγ; ∅) and

V (ŵ,θ̂)(p,B′′, x′′K, a′′; m,x′K, a′) ≥ u(ŵ,θ̂)(x̃δ
I , x̃

δ
K, ãδ; m,xδ

K, aδ) with
at least one strict inequality.

2.d: If γ = (m, θ, ā) ∈ ΓM , δ = (ŵ, θ̂, â) ∈ ΓW with µ(γ) > 0 and
µ(δ) > 0, then there is no feasible plan for observable types m
and ŵ under p, (B′, x′K, a′; B′′, x′′K, a′′) ∈ C[m, ŵ; p], such that

V (m,θ)(p,B′, x′K, a′; ŵ, x′′K, a′′) ≥ u(m,θ)(xγ, aγ; ∅) and

V (ŵ,θ̂)(p,B′′, x′′K, a′′; m,x′K, a′) ≥ u(ŵ,θ̂)(x̃δ, ãδ; ∅) with at least one
strict inequality.

3. Stable Matching II (immunity to single deviations)

For each γ = (m, θ, a; w, θ̃, ã) ∈ ΓC with µ(γ) > 0:

u(m,θ)(xγ
I , x

γ
K, a; w, x̃γ

K, ã) ≥ sup
a′∈A

sup
x∈B(m,a′)(p)

u(m,θ)(x, a′; ∅);

u(w,θ̃)(x̃γ
I , x̃

γ
K, ã; m,xγ

K, a) ≥ sup
ã′∈A

sup
x̃∈B(w,ã′)(p)

u(w,θ̃)(x̃, ã′; ∅).

4. Profit Maximization

py ≥ py′ for all y′ ∈ Y .

Remark 3. Conditions 2.a–2.d refer respectively, to the case where a male
and female cannot do better by forming a couple if they currently belong
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to a) two two-person households of extended types γ and δ with µ(γ) > 0
and µ(δ) > 0, or b) a two-person household of extended type γ and a single
household of extended type δ with µ(γ) > 0 and µ(δ) > 0, or c) a single
household of extended type γ and a two-person household of extended type
δ with µ(γ) > 0 and µ(δ) > 0, or d) two single households of extended types
γ and δ with µ(γ) > 0 and µ(δ) > 0.

Remark 4. The reason that supremum in condition 3 is used is that there
may not be optimal consumption plans for nonexisting (negligible) household
types with constituent characteristics (m, θ) or (w, θ̃) such that N (m,θ) = 0

or N (w,θ̃) = 0. Note that intra-household allocations for γ with µ(γ) = 0 play
no role. They are included in the definition only for simplicity of notation.

Next we present an example that illustrates the differences between a
continuum model and the corresponding finite population model.

4.4 Examples

We begin with the continuum version of Example 3 in Gersbach and Haller
(2011). There are only two observable types, m and w, and one unobservable
type θ0 which we can ignore. We assume Nm = 2 and Nw = 1. There are
two commodities, one without and one with externalities in consumption,
and a single action a0 which we ignore in the sequel. Thus I = K = 1 and
Θ = {θ0}, A = {a0}. Endowments are given by em = (0, 1), ẽw = (1, 1).
Preferences are represented by the functions12

um(xI , xK; w, x̃K) = ln xK;
um(xI , xK; ∅) = ln xK;
uw(x̃I , x̃K; m,xK) = ρ ln x̃I + (1− ρ) ln (max{0, x̃K − kxK}) + g;
uw(x̃I , x̃K; ∅) = ρ ln x̃I + (1− ρ) ln x̃K

with parameters 0 < ρ < 1, 0 < k < 1, 0 < g and the convention ln 0 = −∞.
In the finite version, that is Example 3 of Gersbach and Haller, there are two
males and one female, and commodity 2 is the one that causes externalities.
For certain parameter values, the finite version does not have an equilibrium
nor does any replica of it.

Now let us turn to the continuum version. We are going to show existence
of equilibrium for all parameter constellations. If the finite version has an
equilibrium, then obviously, the continuum model has one as well. Suppose

12This example does not satisfy local nonsatiation in good I for males, as assumed in our
main theorem. But we can modify the utility function to um(xI , xK;w, x̃K) = εxI + ln xK
for ε > 0 small enough without modifying the result.
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the finite version does not have an equilibrium. Let ξ = µ((m,w)) denote
the fraction of females that are matched. Let us consider price systems of
the form p = (pI , pK) = (1, pK). Note that for convenience, we choose here
a different price normalization than in the main model. With this normal-
ization, p /∈ ∆ unless pK = 0. In equilibrium, necessarily xI = 0, xK = 1.
Taking this as a constraint, a female’s demand for the K-commodity is

(1− ρ)(1 + pK)/pK if single and
(1− ρ)(1 + pK)/pK + ρk if matched.

Hence aggregate female demand for the K-commodity is
(1− ρ)(1 + pK)/pK + ρξk

which has to equal 1 to clear the market. Therefore, the market clearing
price is

p∗K =
1− ρ

ρ(1− ξk)
.

The resulting demands are
(x̃I , x̃K) = (1 + p∗Kρξk, 1− ρξk) = (1 + (1− ρ)ξk/(1− ξk), 1− ρξk) for single
females and (x̃I , x̃K) = (1− p∗K(1− ξ)ρk, 1 + (1− ξ)ρk) for matched females.
Hence the corresponding utilities are continuous functions of ξ ∈ [0, 1]. By
assumption, females prefer to be matched if ξ = 0 and females prefer to be
single if ξ = 1. By the intermediate value theorem, there exists a ξ ∈ (0, 1)
so that females are indifferent between being single and being matched. For
such a value of ξ, there exists an equilibrium with µ((m,w)) = ξ, µ(w) =
1 − ξ, µ(m) = 2 − ξ where both males and females are indifferent between
being single and being matched.

Incidentally, ρ = k = 1/2, g = ln 2 yields a unique ξ = 2(
√

5.5 − 2)
which is an irrational number. Therefore, in that case there does not exist
an equilibrium for any replica of the finite model. Moreover, ξ = 0.69041...
for this parameter constellation.

There are several ways to construct approximate equilibria for sufficiently
large replica economies in the model with a finite number of agents. Suppose,
for instance, that 6904 out of 10000 females are actually matched under
the above parameter constellation when there are 10000 females and 20000
males. At the corresponding market clearing price p∗K, all females would
prefer to be matched. The unmatched ones incur a small utility loss relative
to the matched ones. As a second scenario, suppose that p∗K is the price
corresponding to ξ = 2(

√
5.5 − 2), at which females are indifferent between

being matched and remaining single. Further let 6904 of the 10000 females
be matched and get their optimal demand. Of the single females, 3095 also
consume their optimal bundle. One of the single females receives the residual
endowment bundle which is approximately her optimal consumption. Further
approximate equilibria can be devised along these lines.
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In a continuum economy, the action of a single agent or a pair of agents
(forming a new household or going single) does not affect the price system.
In a finite economy the behavioral assumption that an agent takes prices as
given is, indeed, an assumption rather than an implication. For instance, in
a finite pure exchange economy, actions taken prior to competitive exchange
can affect equilibrium prices even if consumers are price takers during the
ensuing competitive exchange. Instances are manipulation via withholding of
endowments studied by Postlewaite (1979), Safra (1985), Haller (1988) and
others or the transfer paradox analyzed by Samuelson (1952, 1954), among
others. In a similar vein, in the original finite example, the female may
realize that a switch of her marital or matching status alters the equilibrium
price.13 She then might want to manipulate the outcome by choosing the
status that would give her higher utility after the optimal consumption choice
under the corresponding prices. Of course, the overall outcome need not be
a stable matching equilibrium. For instance, consider the above parameter
constellation ρ = k = 1/2, g = ln 2. If the household structure with all
singletons was fixed, then the female’s equilibrium utility would be 0. If a
household structure was in place where the female is matched with one of
the males, then her subsequent equilibrium utility would be 0 at best, but
could be worse — provided that the male partner is guaranteed his outside
option value 0. Now suppose that ρ = k = 1/2 and that g is slightly less than
ln 2. Then the female would fare strictly better when she chose to remain
single — unless a male partner was satisfied with less than what he can
obtain when single. In fact, all consumers being single constitutes a stable
matching equilibrium outcome in case everybody is farsighted.

It is more intriguing that under certain model specifications, stable match-
ing equilibria exist and all stable matching equilibria are prone to manipula-
tion. To see this, let us consider a different example.

Suppose that there are two consumers, one man and one woman. They
have the following utility functions (without consumption externalities):14

um(x1, x2; married) = x
1
2
1 x

1
2
2 ;

ũw(x̃1, x̃2; married) = x̃
1
2
1 x̃

1
2
2 ;

um(x1, x2; single) = x
2
3
1 x

1
3
2 − 0.2;

ũw(x̃1, x̃2; single) = x̃
2
3
1 x̃

1
3
2 − 0.1.

13We are indebted to the referee for suggesting this possibility.
14The example involves separable and non-separable group externalities. In particular,

individual preference for a consumption bundle over an other one depends on whether or
not they enter into marriage and thus on whether the partner is present or not. Typical
examples for such commodities are clothing or cars.
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Their endowments are em = (2, 0), ẽw = (0, 2). Let good 2 be the numéraire:
p2 = 1.

If they are married, the market clearing price is p1 = 1 and their efficient
consumption choices are of the form (x, x̃) = ((x1, x2), (2− x1, 2− x2)) with
0 ≤ x1 = x2 ≤ 2, with resulting utilities um = x1, ũw = 2−x1. The currently
married man who does not expect a price change caused by a change of his
marital status assumes the budget constraint to be x1 + x2 = 2 when go-
ing single. Consequently, he expects optimal consumption (x1, x2) =

(
4
3
, 2

3

)

and the resulting utility um
∗ =

(
4
3

) 2
3
(

2
3

) 1
3 − 0.2 ≈ 0.85827. Similarly, the

currently married woman who does not expect a price change when going
single, expects the optimal consumption (x̃1, x̃2) =

(
4
3
, 2

3

)
and the resulting

utility ũw
∗ = um

∗ + 0.1 ≈ 0.95827. Hence there are stable matching equilib-
ria where they are married and the equilibrium consumption is of the form
(x, x̃) = ((x1, x2), (2−x1, 2−x2)) with um

∗ ≤ x1 = x2 ≤ 2− ũw
∗ . In fact, these

are the only stable matching equilibria.
If they are singles, the market clearing price is p1 = 2, and the resulting

utilities are um
o =

(
4
3

) 2
3
(

4
3

) 1
3 = 4

3
− 0.2 ≈ 1.13 and ũw

o =
(

2
3

) 2
3
(

2
3

) 1
3 =

2
3
− 0.1 ≈ 0.567. It follows that (a) there are no stable matching equilibria

where they are single; however, (b) the man prefers to be single if he takes
into account the price change caused by a change of his marital status and (c)
with farsightedness of both individuals, there exists a set of stable matching
equilibria where they are married and the equilibrium consumption is of the
form (x, x̃) = ((x1, x2), (2− x1, 2− x2)) with um

o ≤ x1 = x2 ≤ 2− ũw
o , which

is disjoint from the previous set based on outside option values um
∗ and ũw

∗ .

5 The Main Result

Only in fairly simple cases like the example of subsection 4.4 can one re-
sort to elementary tools like the intermediate value theorem. In general,
more advanced techniques are warranted. The main result of our paper
encompasses the previous example and is stated below. Recall Xm(a) =
[0,∞)×Xm

−{1}(a) where Xm
−{1}(a) ⊂ RI+K−1

+ denotes type m’s consumption
set for all other commodities. Similarly, for all w ∈ W and all ã ∈ A,
X̃w(ã) = [0,∞)× X̃w

−{1}(ã) where X̃w
−{1}(ã) ⊂ RI+K−1

+ .
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Theorem. There exists a stable matching equilibrium under the following
assumptions:

1. For all m ∈ M and all a ∈ A, Xm(a) ⊂ RI+K
+ is closed and convex with

(i) Xm(a) = [0,∞)×Xm
{−1}(a) and (ii) em

1 (a) > 0.

For all w ∈ W and all ã ∈ A, X̃w(ã) ⊂ RI+K
+ is closed and convex with

(i) X̃w(ã) = [0,∞)× X̃w
{−1}(a) and (ii) ẽw

1 (ã) > 0.

2. For all (m, θ) ∈ M×Θ, all w ∈ W and all a, ã ∈ A, u(m,θ)(xI , xK, a; w, x̃K, ã)
is continuous and quasi-concave in xI , xK, and x̃K, and satisfies local
nonsatiation in I; and for all (w, θ̃) ∈ W × Θ, all m ∈ M and all

a, ã ∈ A, u(w,θ̃)(x̃I , x̃K, ã; m,xK, a) is continuous and quasi-concave in
x̃I , x̃K, and xK, and satisfies local nonsatiation in I.

3. For all (m, θ) ∈ M ×Θ:
(a) u(m,θ)(0, x−1, a; w, x̃K, ã) = u(m,θ) ≡ mina′∈A min u(m,θ)(Xm(a′)) for

all w ∈ W , all a, ã ∈ A, all x−1 ∈ Xm
−{1}(a), and all x̃K ∈ X̃w

K(ã);

(b) There exists a ∈ A such that em(a) ∈ Xm(a) and u(m,θ) < u(m,θ)(em(a), a; ∅).
For all (w, θ̃) ∈ W ×Θ:

(ã) u(w,θ̃)(0, x̃−1, ã; m,xK, a) = u(w,θ̃) ≡ minã′∈A min u(w,θ̃)(Xw(ã′)) for
all m ∈ M , all a, ã ∈ A, all x̃−1 ∈ Xw

−{1}(ã), and all xK ∈ Xm
K (a);

(b̃) There exists ã ∈ A such that ẽw(ã) ∈ X̃w(ã) and u(w,θ̃) < u(w,θ̃)(ẽw(ã), ã; ∅).
4. There exists (m, θ̄) ∈ M × Θ with N (m,θ̄) > 0 and the following char-

acteristics:

(i) For all a ∈ A, Xm
I∪K\J (a) = RI+K−J

+ .

(ii) For all a ∈ A, em
i (a) > 0 for all i ∈ I, em

k (a) > 0 for all k ∈ K\J ,
and em

j(a)(a) > 0;

(iii) There exists û(m,θ̄) : RI+K−J
+ → R such that

(a) u(m,θ̄)(x, a; w, x̃K, ã) = u(m,θ̄)(x, a; ∅) = û(m,θ̄)(xI∪K\J )

for all a, ã ∈ A, w ∈ W , x ∈ Xm(a), and x̃K ∈ X̃w
K(ã);

(b) û(m,θ̄) is strictly quasi-concave; and

(c) for all x, x′ ∈ RI+K−J
+ , there exists x′′1 > 0 such that

û(m,θ̄)(x′′1, xI∪K\J−{1}) > û(m,θ̄)(x′I∪K\J ).

5. The aggregate production set Y ⊂ RI+K is a closed and convex set
satisfying (i) Y + RI+K

− ⊆ Y (free disposal), (ii) Y ∩ RI+K
+ = {0} (no

free lunch), and (iii) ty ∈ Y for all y ∈ Y and all t > 0 (constant
returns to scale).
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The proof of the Theorem is involved, and is provided in the Appendix.
Here we provide a brief road map first. Then we discuss how the assumptions
of our theorem are used.

Road Map for the Proof. Ultimately, our proof relies on an application
of Kakutani’s fixed point theorem to a correspondence ϕ consisting of seven
components β, ν, ζ, τ, π, η, and ρ. Several of the components are constructed
by suitably combining correspondences and mappings from the literature.
Other components are specifically designed for our purposes.

We use the following standard mappings from the literature:
ζ is an excess demand mapping.
τ is the industry supply mapping (correspondence).
π is a variation of the Gale-Nikaido mapping of Debreu (1959, 5.6).

Four particular “mappings” are specifically designed for our purposes.
First, the most involved mapping, denoted β, assigns a consumption plan to
each extended household that will be optimal at a fixed point. Construc-
tion of β includes a Shafer-Sonnenschein mapping (Shafer and Sonnenschein
1975, Greenberg 1979, Ray and Vohra 1997). Second, we design a house-
hold choice mapping α which does not directly enter ϕ. It assigns to each
consumer type, say (m, θ), the extended household types which would yield
the highest utility U (m,θ)∗ to the consumer type. Since preferences, feasibil-
ity and affordability depend only on actions, observable types and the true
unobservable types, β and α can be constructed in such a way that type
(m, θ) cannot gain from pretending to be type (m, θ′), for example. Third,
similar to (Konishi 1996), we devise a population mapping ν that distributes
the mass (Lebesgue measure) of each consumer type over its best extended
household types, that is those distinguished by α. To achieve measurement
consistency, we introduce a hypothetical demographic designer (DD) who
chooses a distribution over extended household types. DD is a price taker
and thus very different from a matchmaker, platform operator or club oper-
ator: DD’s profit maximizing choices define the correspondence η. Finally,
we construct a Gale-Nikaido-type mapping ρ that would guarantee positive
profits for DD if he failed to achieve measurement consistency. At the fixed
point, measurement inconsistency would imply an infeasible outcome and a
contradiction.

After introducing all mappings, we truncate consumption sets and the
production set and adapt all the mappings for the truncated economy except
for the price mapping π. Then, we conclude that all of the assumptions of
Kakutani’s fixed point theorem are satisfied for all components of ϕ, except
π. We show the missing part, upper hemi-continuity of π, and then apply
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Kakutani’s fixed point theorem to ϕ on the truncated domain.
Points (A)-(G) of the proof argue that a fixed point yields a stable match-

ing equilibrium with free disposal for the truncated economy. Point (H)
demonstrates how the truncation can be removed and exact market clearing
can be obtained.

Remark 5. While our proof relies on the finiteness of M , W , and Θ, the si-
multaneous presence of hidden information, inter-household trade and intra-
household consumption externality makes it impossible to use existing ap-
proaches to prove existence. Specifically, Kaneko and Wooders (1986) prove
the non-emptiness of the f -core in any finite type characteristic function-
form game. We cannot apply their theorem to show the existence of stable
marriage equilibrium since (i) inter-household trade is feasible in our model,
and (ii) preference type θ is hidden information. Also Ellickson et al. (1999)
and Allouch et al. (2009) cannot be used either to prove the Theorem,
since we have intra-household consumption externalities.15 Still, despite the
difficulties of directly applying previous results, club theory suggests differ-
ent ways to prove existence of a stable matching equilibrium. A conceiv-
able alternative approach might be to show core equivalence like Conley and
Wooders (2001), e.g., and non-emptiness of the core like for instance Kaneko
and Wooders (1986). Under our assumptions, taking that route appears as
formidable a task as the route taken here, but could be explored in future re-
search. Showing that core allocations can be decentralized by a price system
would, perhaps, be the greatest challenge.

Comments on the Assumptions. Assumptions 1 and 2 are standard.
Assumption 1 (ii) requires that every type has a positive endowment with
commodity 1. Due to assumption 4, the price of commodity 1 will be positive
in equilibrium. The combination of these properties implies that every type
will have positive income irrespective of his/her choice of extended house-
hold type. Assumption 2 further requires quasi-concavity of an individual’s
utility function including its spouse’s consumption vector (for each possible
spouse and each action vector). We need quasi-concave utility because of
consumption externalities within a couple. It is assumed in order to find a
Pareto optimal intra-household allocation.16

Assumption 3 is a variation of a standard assumption when the consump-

15See Gersbach and Haller (2010) for the (lack of) equivalence of “club models” and
“household models”.

16This assumption was used in Konishi (2010) in a more restrictive local externality case.
See also Konishi (2013). Specifically, we will use the Shafer-Sonnenschein (1975) mapping
for the existence of a Pareto-efficient equilibrium. Thus, we need that the intersection of
upper contour sets has an open graph (continuity) and is (semi) convex-valued (convex
preferences).

26



tion set is not connected (indivisible commodities: see Mas-Colell (1977),
Wooders (1978), and Ellickson (1979) for the spirit of this assumption). This
assumption is the simplest way to achieve the closed graph property of the
demand correspondence (Mas-Colell 1977).

Assumption 4 requires that there is a type of man (alternatively, a type
of woman) who only cares about non-leisure commodity consumption (no
concern about his job and his partner), whose endowment is positive for all
commodities relative to his job choice, and who strongly prefers commodity
1. The implication of Assumption 4 is that a type (m̄, θ̄) man will choose the
highest paid job for this type, has positive wealth at any price system, and
would consume an unbounded consumption vector if commodity 1’s price
went to zero. This boundary behavior contradicts feasibility, by Lemma 1.
Thus, assumption 4 together with assumption 1 assures that the price of
commodity 1 is positive in equilibrium, which avoids the violation of lower
hemi-continuity of budget sets. We are going to use the technique illustrated
in the proof of Proposition 17.C.1 in Mas-Colell et al. (1995).

Assumption 5 is standard.17 Assumption 5 (i), free disposal in production,
assures that there is exact market clearing in equilibrium, that is, where
aggregate excess demand z (= lhs of (1) − rhs of (1)) satisfies z = 0. Without
assumption 5 (i), only a “free-disposal equilibrium”, that is one with z ≤
0, z 6= 0 may occur.

To see this, consider a pure exchange example, that is Y = {0}, with
only two observable types, m and w, a single unobservable type θ0 (which we
ignore), Nm = 1/2, and Nw = 1/2. There are two commodities, one without
and one with externalities in consumption, and a single action a0 (which we
ignore). Thus I = K = 1 and Θ = {θ0}, A = {a0}. Endowments are given
by em = ew = (1/2, 1). Preferences are represented by the functions

um(xI , xK; w, x̃K) = − exp(−(xI − x̃K + 1));
um(xI , xK; ∅) = − exp(−xI);
uw(x̃I , x̃K; m,xK) = − exp(−(x̃I − xK + 1));
uw(x̃I , x̃K; ∅) = − exp(−x̃I).

Then for each χ ∈ [0, 1], µ((m,w)) = 1/2, p = (1, 0), (xI , xK) = (χ, 0) for all
males and (x̃I , x̃K) = (1− χ, 0) for all females constitutes a stable matching
equilibrium with z = (0,−1). Indeed, these are all stable matching equilibria.

17Any convex (decreasing returns to scale) technology can be described by constant
returns to scale technology by introducing managerial inputs as consumers’ endowment
(see McKenzie, 1959).
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6 Welfare Analysis

Let (x, µ, y) and (x′, µ′, y′) be two feasible allocations. Informally, we would
like to say that (x′, µ′, y′) improves upon (x, µ, y) if every consumer is at least
as well off at (x′, µ′, y′) as at (x, µ, y) and a group of consumers of positive
measure is better off at (x′, µ′, y′). Since we take the distributional approach,
such a statement requires that the two allocations are aligned the right way.

To explain the matter, let us take a short digression. Let us consider a
pure exchange economy with two commodities and generic consumption bun-
dles (x1, x2) ∈ R2

+. There is a continuum of consumers. Each consumer has
the utility representation ui(x1, x2) = x1x2 and endowment bundle (1/2, 1/2).
Consider two feasible allocations x and x̂. In x, half of the consumers have
consumption x′ = (1/10, 2/3) with utility ui(x

′) = 1/15 and half of the
consumers have consumption x′′ = (9/10, 1/3) with utility ui(x

′′) = 3/10.
In x̂, half of the consumers have consumption x̂′ = (0.2, 0.6) with utility
ui(x̂

′) = 0.12 and half of the consumers have consumption x̂′′ = (0.8, 0.4)
with utility ui(x̂

′′) = 0.32. Can we say that everybody is better off in x̂?
The answer depends on further distributional details. If in fact half of the
consumers get x′ under x and x̂′ under x̂ and half of the consumers get x′′

under x and x̂′′ under x̂, then everybody is better off in x̂. But this is not the
case if half of the consumers get x′ under x and x̂′′ under x̂ and half of the
consumers get x′′ under x and x̂′ under x̂. Nor is it the case if, for instance,
20% of the consumers get x′ under x and x̂′ under x̂, 30% get x′ under x
and x̂′′ under x̂, 20% get x′′ under x and x̂′′ under x̂, and 30% get x′′ under
x and x̂′ under x̂.

Strictly speaking, then (x′, µ′, y′) potentially improves upon (x, µ, y)
if consumers can be aligned in such a way that every consumer is at least
as well off at (x′, µ′, y′) as at (x, µ, y) and a group of consumers of positive
measure is better off at (x′, µ′, y′).

That means in detail (where at least one of the inequalities ≥ in (A) or
(B) is strict):

(A) For all (m, θ) ∈ M ×Θ:

Let Γ(m,θ) = {(m, θ, a) : a ∈ A} ∪ {(m, θ, a; w, θ̃, ã) : a ∈ A, (w, θ̃, ã) ∈
ΓW}. There exist λ(m,θ)(γ, δ) ≥ 0 for (γ, δ) ∈ Γ(m,θ) × Γ(m,θ) such
that:18

• ∑
δ λ(m,θ)(γ, δ) = µ′(γ) for all γ ∈ Γ(m,θ).

18Here the notation x′(γ) and x̃′(γ) instead of x′γ and x̃′γ , respectively, proves more
transparent.
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• ∑
γ λ(m,θ)(γ, δ) = µ(δ) for all δ ∈ Γ(m,θ).

• If γ = (m, θ, a′), δ = (m, θ, a) ∈ ΓM with λ(m,θ)(γ, δ) > 0,
then u(m,θ)(x′(γ), a′; ∅) ≥ u(m,θ)(x(δ), a; ∅).

• If γ = (m, θ, a′) ∈ ΓM , δ = (m, θ, a; w, θ̃, ã) ∈ ΓC

with λ(m,θ)(γ, δ) > 0,
then u(m,θ)(x′(γ), a′; ∅) ≥ u(m,θ)(x(δ), a; w, x̃K(δ), ã).

• If γ = (m, θ, a′; w′, θ̃′, ã′), δ = (m, θ, a; w, θ̃, ã) ∈ ΓC

with λ(m,θ)(γ, δ) > 0,
then u(m,θ)(x′(γ), a′; w′, x̃′K(γ), ã′) ≥ u(m,θ)(x(δ), a; w, x̃K(δ), ã).

• If γ = (m, θ, a′; w′, θ̃′, ã′) ∈ ΓC , δ = (m, θ, a) ∈ ΓM

with λ(m,θ)(γ, δ) > 0,
then u(m,θ)(x′(γ), a′; w′, x̃′K(γ), ã′) ≥ u(m,θ)(x(δ), a; ∅).

(B) For all (w, θ̃) ∈ W ×Θ:

Let Γ(w,θ̃) = {(w, θ̃, ã) : ã ∈ A} ∪ {(w, θ̃, ã; m, θ, a) : ã ∈ A, (m, θ, a) ∈
ΓM}. There exist λ(w,θ̃)(γ, δ) ≥ 0 for (γ, δ) ∈ Γ(w,θ̃) × Γ(w,θ̃) such that:

• ∑
δ λ(w,θ̃)(γ, δ) = µ′(γ) for all γ ∈ Γ(w,θ̃).

• ∑
γ λ(w,θ̃)(γ, δ) = µ(δ) for all δ ∈ Γ(w,θ̃).

• If γ = (w, θ̃, ã′), δ = (w, θ̃, ã) ∈ ΓW with λ(w,θ̃)(γ, δ) > 0,

then u(w,θ̃)(x̃′(γ), ã′; ∅) ≥ u(w,θ̃)(x̃(δ), ã; ∅).
• If γ = (w, θ̃, ã′),∈ ΓW , δ = (w, θ̃, ã; m, θ, a) ∈ ΓC

with λ(w,θ̃)(γ, δ) > 0,

then u(w,θ̃)(x̃′(γ), ã′; ∅) ≥ u(w,θ̃)(x̃(δ), ã; m,xK(δ), a).

• If γ = (w, θ̃, ã′; m′, θ′, a′), δ = (w, θ̃, ã; m, θ, a) ∈ ΓC

with λ(w,θ̃)(γ, δ) > 0,

then u(w,θ̃)(x̃′(γ), ã′; m′, x′K(γ), a′) ≥ u(w,θ̃)(x̃(δ), ã; m,xK(δ), a).

• If γ = (w, θ̃, ã′; m′, θ′, a′) ∈ ΓC , δ = (w, θ̃, ã) ∈ ΓW

with λ(w,θ̃)(γ, δ) > 0,

then u(w,θ̃)(x̃′(γ), ã′; m′, x′K(γ), a′) ≥ u(w,θ̃)(x̃(δ), ã; ∅).

Definition. A feasible allocation (x, µ, y) is a Pareto optimal allocation
(or a Pareto optimum) if there is no feasible allocation (x′, µ′, y′) that
potentially improves upon (x, µ, y).
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Proposition 2 Suppose that (p, µ,x, y) is a stable matching equilibrium,
consumers are locally non-satiated with respect to consumption of commodi-
ties without externalities, and the production set satisfies constant returns to
scale. Then (x, µ, y) is a Pareto optimal allocation.

Note that the assumptions of the main theorem imply that consumers are
locally non-satiated with respect to consumption of commodity 1.

Proof. Suppose that (p, µ,x, y) is a stable matching equilibrium, con-
sumers are locally non-satiated with respect to consumption of commodi-
ties without externalities, and (x, µ, y) is not a Pareto optimal allocation.
Let then (x′, µ′, y′) be a feasible allocation that potentially improves upon
(x, µ, y). That is, (A) and (B) hold, with at least one of the inequalities ≥
being strict.

Now take for instance two extended male types γ = (m, θ, a′) and δ =
(m, θ, a) with λ(m,θ)(γ, δ) > 0. Then u(m,θ)(x′(γ), a′; ∅) ≥ u(m,θ)(x(δ), a; ∅).
Since λ(m,θ)(γ, δ) > 0 — and hence µ(δ) > 0 — and (x(δ), a) is an equilibrium
choice of a consumer of basic type (m, θ), there are no alternative action a′′

and no alternative consumption x′′ in the corresponding budget set such that
u(m,θ)(x′′, a′′; ∅) > u(m,θ)(x(δ), a; ∅). With the assumed local non-satiation,
this implies, by the standard argument,

(i) px′(γ) > pem(a′) in case u(m,θ)(x′(γ), a′; ∅) ≥ u(m,θ)(x(δ), a; ∅).
(ii) px′(γ) = pem(a′) in case u(m,θ)(x′(γ), a′; ∅) = u(m,θ)(x(δ), a; ∅).

Proceeding in a similar way in all other cases, we obtain px′(γ) ≥ pem(a′),
px̃′(γ) ≥ pẽw(ã′), and p(x′(γ) + x̃′(γ)) ≥ p(em(a′) + ẽw(ã′)), respectively,
for γ = (m, θ, a′) ∈ ΓM , γ = (w, θ̃, ã′) ∈ ΓW , γ = (m, θ, a′; w′, θ̃′, ã′) ∈ ΓC ,
respectively, with µ(γ) > 0. And at least one of the derived inequalities is
strict.

Because of constant returns to scale, py = 0 and py′ ≤ 0. It follows
that for the allocation (x′, µ′, y′), p·(lhs of (1)) exceeds p·(rhs of (1)). Since
p ≥ 0, (x′, µ′, y′) must therefore violate (1), in contradiction to its presumed
feasibility. ¤

Remark 6. We obtain a first welfare theorem for a model where non-market
actions are part of the marriage or matching agreement. Versions of the first
welfare theorem in matching models with actions when there are no markets
for commodities have been established in Nöldeke and Samuelson (2014). In
a two-sided matching model without markets for commodities, they consider
actions called “investments” that affect the quality of a match. If like in
our setting, investments (actions) and other terms of a match are negoti-
ated simultaneously, they obtain versions of the first and the second welfare
theorem. In contrast, when investments are chosen first and matches occur
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later, then the previous efficient equilibria persist, but inefficient equilibrium
outcomes can also emerge.

What is needed in the proof are local non-satiation, exact market clearing,
and zero equilibrium profits. Sufficient for the latter are constant returns to
scale (assumed in the proposition and in the main theorem) and certain
instances of increasing returns to scale. In a pure exchange setting, the first
two conditions — local non-satiation and exact market clearing — will do.

With additional notational and expositional effort, one can show that
an equilibrium allocation cannot be improved upon by a feasible allocation
where individuals or couples of the same type can differ in their consumptive
decisions. Also, along the lines of the foregoing proof, a core inclusion result
can be obtained instead of the first welfare theorem.

7 Welfare Comparison

In this section, we perform equilibrium and welfare analysis for a specific
example. We compare the outcome with the club equilibrium of Ellickson,
Grodal, Scotchmer and Zame (1999) for this example. While the stable
matching equilibrium is Pareto efficient, the club equilibrium is not. Mutatis
mutandis, the comparison applies to the club equilibrium of Allouch, Conley
and Wooders (2009) as well.

7.1 Set-up

We consider an economy with a continuum [0, 1] of consumers. There are
two observable types M and W . Consumers in [0, α] are males (m) while
consumers in (α, 1] are females (w) with 1/2 < α < 1. There are two
commodities, both with externalities in consumption. Each consumer has
endowment em = (5, 4) (males) and ẽw = (3, 0) (females). There is one
unobservable type θ0 and a single action a0, which we can ignore in the sequel
as they would only add to the notational description, but not to matching,
behavior and equilibrium allocations.

To ease the presentation, we denote by (xz
m1, x

z
m2) := xK the consumption

of the male and by (xz
w1, x

z
w2) := x̃K the consumption of the female for the

first and second commodity, respectively. Let z ∈ {g, a}, where g denotes
matched consumers and a denotes single consumers.

When both types of consumers are single, we have

ua
m := um(xK; ∅) = 1

2

√
xa

m1 + 1
2
xa

m2;

ua
w := uw(x̃K; ∅) = 1

2

√
xa

w1.
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If a female and a male are matched, utilities are given by:

ug
m := um(xK; w, x̃K) = 1

2

√
xg

m1(x
g
w2 + 1) + 1

2
xg

m2;

ua
w := uw(x̃K; m,xK) = 1

2

√
xg

w1(x
g
m1 + 1).

The example exhibits cross consumption externalities. Suppose for in-
stance that the first commodity is dining and the second one is clothes. The
male enjoys nice clothes worn by himself or by his partner when they have
dinner together. The female enjoys having dinner together.

Throughout the example we normalize prices by setting the price of the
first commodity to 1. The price of the second commodity, denoted by p2, is
determined in equilibrium.

7.2 Full Bargaining Power for Females

We next consider equilibria in which females have all the bargaining power.
We will specifically compute equilibrium values for α = 2

3
.

Let us assume that females maximize their utility subject to the budget
constraint of the match and males obtain the same utility as if they were
going single. The associated Lagrangian is

L(xg
m1, x

g
m2, x

g
w1, x

g
w2, µ1, µ2) =

1

2

√
xg

w1(x
g
m1 + 1)

+µ1 · (8 + 4p2 − xg
m1 − xg

w1 − p2 · (xg
m2 + xg

w2))

+ µ2 ·
(1

2

√
xg

m1(x
g
w2 + 1) +

1

2
xg

m2

−1

2
· p2

2
− 1

2
(

5

p2

+ 4− 1

4
p2)

)

32



which leads to the following system of equations:

∂L

∂xg
m1

=
1

4

√
xg

w1

xg
m1 + 1

− µ1 +
1

4
µ2

√
xg

w2 + 1

xg
m1

= 0, (5)

∂L

∂xg
m2

= −µ1p2 +
1

2
µ2 = 0, (6)

∂L

∂xg
w1

=
1

4

√
xg

m1 + 1

xg
w1

− µ1 = 0, (7)

∂L

∂xg
w2

= −µ1p2 +
1

4
µ2

√
xg

m1

xg
w2 + 1

= 0, (8)

∂L

∂µ1

= 8 + 4p2 − xg
m1 − xg

w1 − p2 · (xg
m2 + xg

w2) = 0, (9)

∂L

∂µ2

=
1

2

√
xg

m1(x
g
w2 + 1) +

1

2
xg

m2 −
p2

8
− 5

2p2

− 2 = 0. (10)

This system of equations can be solved as follows:

µ1 =
1

4

√
xg

m1 + 1

xg
w1

from (7) (11)

xg
w2 =

1

4
xg

m1 − 1 from (6, 8) (12)

µ2 =
p2

2

√
xg

m1 + 1

xg
w1

from (6, 11) (13)

xg
w1 = (1− 1

4
p2)(x

g
m1 + 1) from (5, 11, 12, 13) (14)

xg
m2 =

21

4
+

7

p2

− 2

p2

xg
m1 from (9, 12, 14) (15)

xg
m1 =

p2
2 − 5p2 − 8

2p2 − 8
from (10, 12, 15) (16)

Demand

Hence, demand functions are given by
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Dg
m(p2) = (xg

m1, x
g
m2) =

(p2
2 − 5p2 − 8

2p2 − 8
,

21

4
+

7

p2

− p2
2 − 5p2 − 8

p2
2 − 4p2

)
,

Dg
w(p2) = (xg

w1, x
g
w2) =

(1

8
(16 + 3p2 − p2

2) ,
p2

2 − 13p2 + 24

8p2 − 32

)
.

Note that demand is not well defined for p2 = 4.
When males are singles, their demand is given by

Da
m(p2) =

(p2
2

4
,

5

p2

+ 4− 1

4
p2

)
=: (xa

m1, x
a
m2).

Equilibrium Prices

The market clearing condition for good 1 when α = 2
3

is given as:

1

3
xg

m1 +
1

3
xa

m1 +
1

3
xg

w1 =
13

3

Thus, the prices p2 = 3.19 and p2 = 7.38 qualify as equilibrium candidates.
But p2 = 7.38 can be ruled out, since it would yield xg

w1 < 0.

Equilibrium Allocation

We obtain the following equilibrium allocation:

p2 xg
m1 xg

m2 xg
w1 xg

w2 xa
m1 xa

m2 ug
m = ua

m ug
w

3.19 8.53 2.10 1.92 1.13 2.55 4.77 3.18 2.14

Table 1: Consumption and utilities when matching occurs under the assump-
tion that females have full bargaining power

Moreover, we obtain

xa
w1 xa

w2 ua
w

3 0 0.87

Table 2: Consumption and utility of females if they were not matched

Equilibrium Checks
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As can be seen in Table 1 and Table 2, we have ug
w > ua

w and ug
m = ua

m in
all matches. Hence, the exit condition is fulfilled: Single males might have an
incentive to form a new match with females by offering them a higher utility
than in the existing group. But since matches are constructed by setting
males to their reservation utility level, there is no possibility for single males
to attract females without suffering utility losses beyond the utility level they
can achieve as singles.

We conclude that the constructed equilibrium is indeed a stable matching
equilibrium as defined in this paper.

7.3 Remarks

It is straightforward to verify that the ensuing allocation in case α = 2
3

is
Pareto optimal. It is also a direct consequence of our welfare theorem.

We note that the constructed equilibrium cannot occur in continuum
versions of the club theory. Moreover, it turns out that it is impossible for
individuals to realize gains in a marriage in a club setting. Thus, matching
in a club setting becomes irrelevant.

To illustrate, suppose that matches are formed by consistent group for-
mation in Ellickson, Grodal, Scotchmen and Zame (1999). Each potential
match is associated with membership prices that add up to zero. All in-
dividuals choose memberships in matches and private commodities, given
budget-balancing membership prices for the former and a price system for
the latter. In equilibrium, no agent wants to deviate from his/her private
consumption plan and from his/her group membership plan.

We immediately observe that in any equilibrium xg
w2 = 0 will be chosen

by the female in a match as the choice of xg
w2 is made by her individually,

and she derives no utility from xg
w2.

As xg
w2 = 0 in any match and xa

w2 = 0 for females going single, we next
observe that all females choose xg

w1 = xa
w1 = 3, independently of whether

they are singles or matched. Moreover, as xg
w2 = xa

w2 = 0, males will demand
the same commodity bundle, independently of whether they are matched or
not. Hence, in any equilibrium we will have (xg

w1, x
g
w2) = (xa

w1, x
a
w2) = (3, 0)

and (xg
m1, x

g
m2) = (xa

m1, x
a
m2) = (5, 4), independently of whether individuals

are singles or matched.
Moreover, membership prices will be zero for males and females in all

matches. However, the equilibrium is not Pareto optimal. In each match,
both males and females could achieve higher utility by choosing a positive
amount of xg

w2 and reducing xg
m2 by an equivalent amount (and possibly

further changes of xg
m1 and xg

w1 and trading in commodity markets).
A similar analysis can be performed for α ∈ (0, 1

2
]. In case 0 < α < 1

2
, the
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analysis is simplified when males enjoy all the bargaining power. Examina-
tion of the corresponding club equilibrium proves slightly more cumbersome
because it involves positive transfers from the woman to the man in a group.
Still, the stable matching equilibria are Pareto optimal whereas the transfer
equilibria are not.

8 Conclusion

In this paper, we define an equilibrium for a market economy in which any
two partners of opposite sex can form a household. Within each two-person
household, externalities from the partner’s commodity consumption in some
categories and non-priced actions (such as job choice) are allowed. The main
result is a set of sufficient conditions under which a stable matching equilib-
rium exists. We illustrate the advantage of the continuum version over the
corresponding finite population model by means of an example based on the
motivating counter-example in Gersbach and Haller (2011). We also prove ef-
ficiency of every stable matching equilibrium allocation under an appropriate
definition of efficiency.

In our model, consumers can choose actions which encompass job choice,
an attractive feature absent from prior models of pairwise matching and
previous general equilibrium models with endogenous household formation.
Typically then, one would not expect a consumer to be endowed with la-
bor of various skills, only with the kind of labor compatible with her action
and job choice. But then, a consumer’s endowment bundle may lie on the
boundary of her consumption set. This in turn tends to cause discontinuity
of the budget correspondence and lack of upper hemi-continuity of the de-
mand correspondence, a challenge in proving existence of equilibrium. There
are various ways to overcome that obstacle. Assumption 4 of our existence
theorem postulates a particular type of consumers who guarantees a bound-
ary condition with respect to the first commodity; cf. Lemma 3. Combined
with the further assumptions, this circumvents the upper hemi-continuity
problem of demand correspondences. Instead, we could postulate a Cobb-
Douglas type of agents of positive measure with strictly positive endowment
bundle, who does not impose any externalities and whose utility depends
only on own consumption. Such a special consumer type yields the standard
boundary condition. As a third alternative, one could follow Mirrlees (1971)
and postulate that all kinds of labor are perfect substitutes. Then all kinds
of leisure or labor could be measured in efficiency units in terms of some
normalized labor input and we could proceed as if normalized labor was the
only type of labor input and each consumer was endowed with it.

Our definition of stable matching equilibrium allows for complete and
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efficient contracts between two partners — binding agreements over their ac-
tions and consumption vectors that generate externalities to each other and
over residual budget shares to be spent on consumption without external-
ities. This is an idealized concept that offers the best chance for the first
welfare theorem to hold, and indeed, it has been proven in addition to the
existence result. The complete contract assumption is certainly very strong.
As an alternative, the club literature only requires club members to pay fees
in return for local public goods, club goods and projects, and possibly the
company of other club members. A consumer is free to spend the remaining
budget on private consumption. However, by doing so, the consumers no
longer internalize consumption externalities within groups (couples, house-
holds, clubs, jurisdictions). The resulting group decisions would no longer
be efficient and, as a rule, equilibrium allocations would cease to be Pareto
optimal, if intra-group consumption externalities exist. We refer to Gersbach
and Haller (2010) for a comparison of the “household model” and the “club
model”. It could be fruitful to define a stable matching equilibrium concept
with incomplete contracting of action and consumption choices and to inves-
tigate how the degree of (in)completeness affects equilibrium outcomes. This
task is left for future research.
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Appendix

We will construct a fixed point mapping ϕ : Φ ³ Φ and its domain Φ in
eleven steps. In these steps, we are going to define a number of mappings
(functions and correspondences) that constitute ϕ and whose domains (and
ranges) are components of Φ. After truncating some of the domains (and
ranges), Φ and ϕ satisfy the assumptions of Kakutani’s fixed point theorem.
In a last step, it can be shown that a subsequence of fixed point prices and
allocations converges to a stable matching equilibrium when the truncation
is gradually removed.

First, in order to prove the theorem, we will introduce a hypothetical
demographic designer (DD) and hypothetical gender-dependent membership
prices for each household type. Given marriage contracts consisting of a list
of household type γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , consumption plans of goods
with externalities (xγ

K, x̃γ
K), and membership fees for men and women, DD

proposes a measure hγ for each couple type γ ∈ Γ. In that sense, she may
be called demographic designer. The more common and fancier term match-
maker might be misleading in our context. DD charges the corresponding
membership fees to the respective men and women, but acts as a price-
taker. DD can always choose inaction ∅: i.e., propose measure zero for any
γ ∈ Γ. Denote male and female membership prices of households of type
γ = (m, θ, a; w, θ̃, ã) ∈ ΓC together with consumption plans of goods with
externalities (xγ

K, x̃γ
K) by rm and rw, respectively. That is, a type (m, θ′) man

(it is not necessary to have θ′ = θ) can purchase the right to be partnered
with a woman of observable type w, consuming (a, ã; xγ

K, x̃γ
K), by paying rmγ.

His allowance for non-externality commodities in household γ is pem(a)−
rmγ, which will be B (and B̃ = pẽw(ã)− rwγ) in a fixed point. (DD receives
zero profit.) DD collects rmγ + rwγ and finances pK · (xγ

K + x̃γ
K): I.e., her

profit, if any, is rmγ + rwγ − pK · (xγ
K + x̃γ

K). We assume that DD behaves as
a price-taker. A membership price vector is written r = (rmγ, rwγ)γ∈ΓC . Let
the supply of households of type γ (with consumption plan of externality-
commodities) be hγ ≥ 0, and let the vector of household supply be h =
(hγ)γ∈ΓC . Then DD’s total profit is

∑
γ∈ΓC {rmγ + rwγ − pK · (xγ

K + x̃γ
K)}hγ.

For γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , Bγ = pem(a) − rmγ and B̃γ = pẽw(ã) − rwγ

holds if rmγ +rwγ−pK · (xγ
K+ x̃γ

K) = 0, since the household budget constraint
is written as:

Bγ +
∑

k∈K
pkx

γ
k + B̃γ +

∑

k∈K
pkx̃

γ
k = pem(a) + pẽw(ã). (17)

To be precise, (17) and rmγ + rwγ − pK · (xγ
K + x̃γ

K) = 0 imply Bγ + B̃γ =
pem(a) + pẽw(ã) − (rmγ + rwγ). The identities Bγ = pem(a) − rmγ and
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B̃γ = pẽw(ã)− rwγ result from the constructions in the fourth and fifth step.

Second, note that production technologies are assumed to exhibit con-
stant returns to scale, and there will be zero profit in equilibrium in our
model. However, when we prove existence of equilibrium, we need to specify
how profits are distributed in off-equilibrium states. For simplicity, assume
that there is only one firm (or many identical firms). Let ψm (and ψw)
be the share of the firm that type m men (type w women) own: That is,∑

m∈M ψmNm +
∑

w∈W ψwNw = 1. Let ωm(p; y, h)

= ψm
[
p · y +

∑
γ∈ΓC {rmγ + rwγ − pK · (xγ

K + x̃γ
K)}hγ

]
and

ωw(p; y, h) = ψw
[
p · y +

∑
γ∈ΓC {rmγ + rwγ − pK · (xγ

K + x̃γ
K)}hγ

]
denote the

profit accruing to a man with share ψm and a woman with share ψw, re-
spectively, where y ∈ Y is a production vector. When we work on the proof
of equilibrium existence, we will modify budget constraints in the following
manner:

B(m,w;a,ã)(p; y, h) ≡
{

(x, x̃) ∈ Xm(a)×Xw(ã)

∣∣∣∣
p(x + x̃) ≤ p(em(a) + ẽw(ã))
+ωm(p; y, h) + ωw(p; y, h)

}
,

B(m,a)(p; y, h) ≡ {x ∈ Xm(a) : px ≤ pem(a) + ωm(p; y, h)} ,

and
B(w,ã)(p; y, h) ≡

{
x̃ ∈ X̃w(ã) : px̃ ≤ pẽw(ã) + ωw(p; y, h)

}
.

Clearly, when p · y = 0 and rmγ + rwγ − p(xγ
K + x̃γ

K) = 0 for all γ ∈ ΓC , then
ωm(p; y, h) = ωw(p; y, h) = 0 holds, and we go back to our original budget
constraints. Throughout the appendix, we use the above definitions of bud-
get constraints in order to prove the existence of equilibrium. However, we
are going to show that the conditions ωm(p; y, h) = ωw(p; y, h) = 0 are self-
confirming: If they are assumed, then p·y = 0 and rmγ +rwγ−p(xγ

K+x̃γ
K) = 0

for all γ ∈ ΓC obtain at a fixed point.

Third, let ∆ ≡ {p ∈ RI+K
+ :

∑
`∈I∪K p` = 1}, which is a price simplex.

We will treat commodity 1 differently in order to assure p1 > 0 in equilib-
rium, and we let ∆̊1 ≡ {p ∈ ∆ : p1 > 0} and ∂∆1 ≡ {p ∈ ∆ : p1 = 0}. We
will show that any fixed point price vector of our fixed point mapping is in ∆̊1

(see below). Let ē = max(j,a)∈(M∪W )×A{max`∈I∪K ej
`(a)} and R = [−2ē, 2ē],

where ē denotes the highest possible income a consumer can obtain among all
p ∈ ∆. We allow for negative membership prices, since a couple may cross-
subsidize each other. (At least one partner needs to pay a positive price, but
the other may get a transfer from him/her.) The membership price set is
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denoted by R2ΓC
, with representative elements r ∈ R2ΓC

.

Fourth, for all γ ∈ ΓC , we construct a mapping βγ
K that assigns a Pareto-

efficient allocation of goods with externalities (those in K) to γ. This pro-
cedure needs some preparation. For each γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , let
Fγ : ∆×R2× Y ×H ³ Xm

K (a)× X̃w
K(ã) be a correspondence that describes

feasible consumption plans of commodities with externalities such that

Fγ(p, r
mγ, rwγ, y, h)

≡
{

(xK, x̃K) ∈ Xm
K (a)× X̃w

K(ã)

∣∣∣∣
pK (xK + x̃K) ≤ pem(a) + pẽw(ã)
−rmγ − rwγ + ωm(p; y, h) + ωw(p; y, h)

}

if pem(a)+pẽw(ã)−rmγ−rwγ+ωm(p; y, h)+ωw(p; y, h) ≥ 0 and Fγ(p, r
mγ, rwγ, y, h) =

{0} ∈ Xm
K (a)× X̃w

K(ã), otherwise. I.e., in order to obtain a correspondence,
we assume that 0 is feasible for household γ even if it is actually infeasible.

By choosing feasible γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , type (m, θ′) can obtain
(θ′ = θ is not required):

V (m,θ′)(p, pem − rmγ + ωm(p; y, h), xK, a; w, x̃K, ã)

=





max
xI∈Xm

I (a)
u(m,θ′)(xI , xK, a; w, x̃K, ã)

s.t.
∑

i∈I pixi ≤ pem − rmγ + ωm(p; y, h)

}
if pem − rmγ + ωm(p; y, h) ≥ 0;

u(m,θ′) otherwise;

with u(m,θ′) defined in assumption 3(a) of the Theorem.
Similarly, by choosing γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , a type (w, θ̃′) woman

can obtain

V (w,θ̃
′
)(p, pẽw − rwγ + ωw(p; y, h), x̃K, ã; m,xK, a)

=





max
x̃I∈Xw

I (ã)
u(w,θ̃′)(x̃I , x̃K, ã; m,xK, a)

s.t.
∑

i∈I pix̃i ≤ pẽw − rwγ + ωw(p; y, h)

}
if pẽw − rwγ + ωw(p; y, h) ≥ 0;

u(w,θ̃′) otherwise;

with u(w,θ̃′) defined in assumption 3(ã) of the Theorem.
By assumption 3 of the Theorem, at a fixed point no consumer chooses a

household that gives him or her a nonpositive income.
We will define a Shafer-Sonnenschein utility function based on intra-

household Pareto-efficiency assuming that the types of man and woman are
(m, θ) and (w, θ̃), respectively, for each price vector p ∈ ∆ and (rmγ, rwγ) ∈
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R2. Let Pγ[p, rmγ, rwγ; y, h] : Xm
K (a)× X̃w

K(ã) ³ Xm
K (a)× X̃w

K(ã) be defined
by Pγ[p, rmγ, rwγ; y, h](xK, x̃K) ≡




(x′K, x̃′K) ∈ Xm
K (a)× X̃w

K(ã)

∣∣∣∣∣∣∣∣

V (m,θ′)(p, pem − rmγ + ωm(p; y, h), x′K, a; w, x̃′K, ã)
> V (m,θ′)(p, pem − rmγ + ωm(p; y, h), xK, a; w, x̃K, ã),

V (w,θ̃)(p, pẽw − rwγ + ωw(p; y, h), x̃′K, ã; m,x′K, a)

> V (w,θ̃)(p, pẽw − rwγ + ωw(p; y, h), x̃K, ã; m,xK, a)





.

By continuity of utility functions, the correspondence Pγ[p, rmγ, rwγ; y, h] :
Xm
K (a) × X̃w

K(ã) ³ Xm
K (a) × X̃w

K(ã) has an open graph. For each γ =
(m, θ, a; w, θ̃, ã) ∈ ΓC , the Shafer-Sonnenschein utility function
Uγ

SS[p, rmγ, rwγ; y, h] : (Xm
K (a)× X̃w

K(ã))2 → R+ is defined such that

Uγ
SS[p, rmγ, rwγ; y, h](x′K, x̃′K; xK, x̃K)

= min
(x′′K,x̃′′K)/∈Pγ [p,rmγ ,rwγ ](xK,x̃K)

‖(x′K, x̃′K)− (x′′K, x̃′′K)‖ .

Note that if (x′′′K, x̃′′′K) /∈ Pγ[p, rmγ, rwγ; y, h](xK, x̃K), then
Uγ

SS[p, rmγ, rwγ; y, h](x′′′K, x̃′′′K; xK, x̃K) = 0. Also, Uγ
SS[p, rmγ, rwγ; y, h] is con-

tinuous after compactifying consumption sets (Pγ has an open graph) and
quasi-concave (an intersection of convex upper contour sets is convex). For
each γ = (m, θ, a; w, θ̃, ã) ∈ ΓC , let βγ

K : ∆×R2×Xm
K (a)× X̃w

K(ã)×Y ×H ³
Xm
K (a)× X̃w

K(ã) be such that

βγ
K(p, rmγ, rwγ, xK, x̃K; y, h) = arg max

(x′K,x̃′K)∈Fγ(p,rmγ ,rwγ ,y,h)
Uγ

SS(x′K, x̃′K; xK, x̃K).

Notice that eventually in the fixed point, (xγ
K, x̃γ

K) ∈ βγ
K(p, rmγ, rwγ, xK, x̃K; y, h).

Then (xγ
K, x̃γ

K) ∈ Fγ(p, r
mγ, rwγ, y, h) and

Fγ(p, r
mγ, rwγ, y, h) ∩ Pγ[p, rmγ, rwγ; y, h](xγ

K, x̃γ
K) = ∅.

Fifth, we assign an optimal consumption plan βγ for non-externality
commodities to each type γ.

¥ βγ for singles: For γ = (m, θ, a) ∈ ΓM , let β(m,θ,a) : ∆ × Y × H ³
Xm(a) be such that β(m,θ,a)(p; y, h) ≡ {x ∈ B(m,a)(p; y, h) : u(m,θ)(x, a; ∅) ≥
u(m,θ)(x′, a; ∅) for all x′ ∈ B(m,a)(p; y, h)}. For γ = (w, θ̃, ã) ∈ ΓW , let β(w,θ̃,ã) :

∆ × Y × H ³ X̃w(ã) be such that β(w,θ̃,ã)(p; y, h) ≡ {x̃ ∈ B(w,ã)(p; y, h) :

u(w,θ̃)(x̃, ã; ∅) ≥ u(w,θ̃)(x̃′, ã; ∅) for all x̃′ ∈ B(w,ã)(p; y, h)}. For each price
vector p, production plan y, household supply vector h, and corresponding
income, these mappings simply assign the optimal consumption vectors to
every single household. With continuous and quasi-concave utility functions,
singles’ β-correspondence is nonempty-valued, upper hemi-continuous (after
the minor modification on ∂∆1 made below) and convex-valued (when con-
sumption sets are compactified below by means of suitable truncations).
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¥ βγ for couples: In order to describe consumers’ choices in our fixed point
mapping, we need to extend the definition of consumption allocations to γ ∈
ΓC . In that case, consumption plans assume the form βγ = (βγ

K, βγ
I) where

βγ
K has already been defined in the fourth step. It remains to construct βγ

I .
We will allow each preference type consumer optimize his/her non-externality
commodity consumption plan: i.e., if a type (m, θ′) is matched with (w, θ̃′) at
γ = (m, θ, a; w, θ̃, ã) with (xγ

K, x̃γ
K) and (rmγ, rwγ), then he is not necessarily

to choose xγ
I that is prepared for type (m, θ) since his preference is different

from type (m, θ): He should be able to choose any xI as long as
∑

i∈I pixi ≤
pem − rmγ + ωm(p; y, h) is satisfied, because as long as a man’s appearance
type is the same, his actual preference does not matter for his partner. For
each γ = (m, θ, a; w, θ̃, ã) ∈ ΓC together with (xγ

K, x̃γ
K) and (rmγ, rwγ), and

for any θ′, θ̃′ ∈ Θ, let

b(m,θ′)γ(p, rmγ, xγ
K, x̃γ

K; y, h)

=





arg max
xI∈Xm

I (a)

u(m,θ′)(xI , xK, a; w, x̃K, ã)

s.t.
∑

i∈I pixi ≤ pem − rmγ + ωm(p; y, h)

}
if pem − rmγ + ωm(p; y, h) ≥ 0,

{xI ∈ Xm
I (a) : x1 = 0} otherwise;

b(w,θ̃′)γ(p, rwγ, xγ
K, x̃γ

K; y, h)

=





arg max
x̃I∈Xw

I (ã)

u(w,θ̃′)(x̃I , x̃K, ã; m,xK, a)

s.t.
∑

i∈I pix̃i ≤ pẽw − rwγ + ωw(p; y, h)



 if pẽw − rwγ + ωw(p; y, h) ≥ 0,

{
x̃I ∈ X̃m

I (a) : x̃1 = 0
}

otherwise.

That is, we assign an optimal no-externality commodity consumption plan
for each preference type to describe each preference type’s optimal household
choice (and excess demand correspondence). For each γ = (m, θ, a; w, θ̃, ã) ∈
ΓC , let βγ

I : ∆×R2 ×Xm
K × X̃w

K × Y ×H ³ (Xm
I )Θ × (X̃w

I )Θ be defined by

βγ
I(p, r

mγ, rwγ, xγ
K, x̃γ

K; y, h)

≡ Πθ′∈Θb(m,θ′)γ(p, rmγ, xγ
K, x̃γ

K; y, h)× Πθ̃′∈Θb(w,θ̃′)γ(p, rwγ, xγ
K, x̃γ

K; y, h),

and let βγ : ∆× R2 ×Xm
K × X̃w

K × Y ×H ³ (Xm)Θ × (X̃w)Θ be defined as
a Cartesian product of two mappings:

βγ = (βγ
K, βγ

I).
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Abusing notation, let us extend the consumption correspondence
X : ΓM ∪ ΓW ∪ ΓC ³ RI+K ∪ R2K × R2I to
X̂ : ΓM ∪ ΓW ∪ ΓC ³ RI+K ∪ R2K × (RI)2Θ

by setting X̂ (m, θ, a) = X (m, θ, a) for γ = (m, θ, a) ∈ ΓM , X̂ (w, θ̃, ã) =
X (w, θ̃, ã) for γ = (w, θ̃, ã) ∈ ΓW , and X̂ (m, θ, a, w, θ̃, ã) = (Xm

K (a)×X̃w
K(ã))×

(Xm
I (a))Θ×(X̃w

I (ã))Θ for γ = (m, θ, a, w, θ̃, ã) ∈ ΓC . Note that X (m, θ, a, w, θ̃, ã) =
(Xm

K (a) × X̃w
K(ã)) × (Xm

I (a)) × (X̃w
I (ã)) for γ = (m, θ, a, w, θ̃, ã) ∈ ΓC ,

since we only consider the case of θ′ = θ. Let x̂ denote a selection of
X̂ — which is an (extended) consumption plan — and let X̂ be the col-
lection of all x̂. For γ = (m, θ, a, w, θ̃, ã) ∈ ΓC , we write x̂(γ) = x̂γ =

(x̂m,γ
K , x̂w,γ

K ; (x̂
(m,θ′),γ
I )θ′∈Θ; (x̂

(w,θ̃′),γ
I )θ̃′∈Θ) ∈ (Xm

K (a) × X̃w
K(ã)) × (Xm

I (a))Θ ×
(X̃w

I (ã))Θ, where x̂m,γ
K denotes m’s consumption vector of K commodities

when m chooses household type γ = (m, θ, a, w, θ̃, ã) ∈ ΓC , and x̂
(m,θ′),γ
I de-

notes type (m, θ′)’s consumption vector of I commodities when he pretends

to be type (m, θ) choosing household type γ. (Similarly, x̂w,γ
K and x̂

(w,θ̃′),γ
I

denote female member’s consumption vectors in household type γ ∈ ΓC .)
For γ = (m, θ, a) ∈ ΓM , we write x̂(γ) = x̂γ = (x̂γ

K; x̂γ
I) ∈ Xm

K (a) × Xm
I (a),

and for γ = (w, θ̃, ã) ∈ ΓW , we write x̂(γ) = x̂γ = (x̂γ
K; x̂γ

I) ∈ X̃w
K(ã)×X̃w

I (ã).
With slight abuse of notation, we will use an (extended) consumption vector
(x̂γ)γ∈Γ and an (extended) commodity consumption plan x̂ : ΓM ∪ΓW ∪ΓC ³
RI+K ∪ R2K × (RI)2Θ interchangeably.

¥ From βγ, γ ∈ Γ, to β: The mappings βγ, γ ∈ Γ, compose a mapping β :
∆×R2ΓC×X̂ΓC

K ×Y×H ³ X̂ as follows: β(p, r, x̂ΓC

K ; y, h) ≡ Πγ∈ΓM βγ(p; y, h)×
Πγ∈ΓW βγ(p; y, h) × Πγ∈ΓCβγ

K(p, xγ, x̃γ; y, h) × Πγ∈ΓCβγ
I(p, x

γ, x̃γ; y, h). This
mapping β determines the consumption allocation. Note that for all

γ = (m, θ, a, w, θ̃, ã) ∈ ΓC , (x̂m,γ
K , x̂w,γ

K , x̂
(m,θ),γ
I , x̂

(w,θ̃),γ
I ) is a Pareto-optimal

allocation for γ. (x̂
(m,θ),γ
I is the allocation that realizes if type (m, θ) chooses

γ = (m, θ, a, w, θ̃, ã)). An (extended) commodity consumption plan x̂ is op-
timal if and only if x̂∈β(p, r, x̂ΓC

K ; y, h).

Sixth, we construct each type’s household choice problem. To begin
with, we introduce for m ∈ M the notation ΓC|m ≡ {γ ∈ ΓC : γ =
(m, θ, a; w, θ̃, ã) for some (θ, a; w, θ̃, ã) ∈ Θ × A × W × Θ × A} = {m} ×
Θ×A×W ×Θ×A, the set of elements of ΓC with M -component m. Sim-
ilarly, we define ΓC|w for w ∈ W , ΓM |(m,θ) for (m, θ) ∈ M × Θ, and ΓW |(w,θ̃)

for (w, θ̃) ∈ W ×Θ.
Now male type (m, θ) can choose from ΓC|m, or being single doing his

best by himself. If type (m, θ) chooses to be in a couple of extended type
γ = (mγ, θγ, aγ; wγ, θ̃γ, ãγ) ∈ ΓC|m (thus, mγ = m while θ = θγ is not nec-

essary), he can achieve u(m,θ)(x
(m,θ)γ
I , xγ

K, aγ; wγ, x̃γ
K, ãγ) when the agreement
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assigned to γ is (rmγ, xγ
K, aγ; rwγ, x̃γ

K, ãγ).

Given x̂ ∈ X̂, let

U (m,θ)∗(x̂)

≡ max

{
max

γ∈ΓC|m
u(m,θ)(x̂

(m,θ),γ
I , x̂γ

K, aγ, ãγ), max
γ∈ΓM|(m,θ)

u(m,θ)(x̂γ, aγ; ∅)
}

.

U (m,θ)∗(x̂) is the maximal utility male type (m, θ) can achieve under any of
the possible choices γ ∈ ΓC|m ∪ ΓM |(m,θ). Next, we can define type (m, θ)’s
household choice correspondence α(m,θ), by assigning to (m, θ) the extended
household types γ ∈ ΓC|m ∪ ΓM |(m,θ) at which U (m,θ)∗(x̂) is attained: Let
α(m,θ) : X̂ ³ ΓC|m∪ΓM |(m,θ) be type (m, θ)’s household choice correspondence
given by

α(m,θ)(x̂)

≡
{

γ ∈ ΓC|m : u(m,θ)(x̂
(m,θ)γ
I , x̂m,γ

K , aγ; wγ, x̂w,γ
K , ãγ) = U (m,θ)∗(x̂ΓC|m∪ΓM|(m,θ))

}

∪{
γ ∈ ΓM |(m,θ) : u(m,θ)(x̂γ, aγ; ∅) = U (m,θ)∗(x̂ΓC|m∪ΓM|(m,θ))

}
.

For type (w, θ̃) ∈ W × Θ, we can define α(w,θ̃) : X̂ ³ ΓC|w ∪ ΓW |(w,θ̃)

similarly.
The α-mappings are used to define our population mapping ν below. For

type (m, θ) ∈ M ×Θ, let

N (m,θ) ≡ {n(m,θ) ∈ RΓC|m∪ΓM|(m,θ)

+ :
∑

γ∈ΓC|m∪ΓM|(m,θ) n
(m,θ)
γ = N (m,θ)}

be the set of population allocations of type (m, θ). Let ν(m,θ) : X̂ ³ N (m,θ)

be such that ν(m,θ)(x̂) = {n(m,θ) ∈ N (m,θ) : n
(m,θ)
γ > 0 =⇒ γ ∈ α(m,θ)(x̂)}.

ν(m,θ)(·) ensures that the set of consumers of male type (m, θ) who choose
extended household type γ ∈ ΓC|m ∪ ΓM |(m,θ) has positive Lebesgue measure
only if γ ∈ α(m,θ)(·), that is only if the choice of γ yields the maximum utility
U (m,θ)∗(x̂). Observe that α(m,θ) has closed graph. Therefore,
{γ ∈ ΓC|m ∪ ΓM |(m,θ)| γ /∈ α(m,θ)(x̂)} is locally constant and, hence, ν(m,θ)

is upper hemi-continuous. We can define α(w,θ̃) : X̂ ³ ΓC|w ∪ ΓW |(w,θ̃) and
ν(w,θ̃) : X̂ ³ N (w,θ̃) similarly. Let
ν : X̂ ³ Π(m,θ)∈M×ΘN (m,θ)×Π(w,θ̃)∈W×ΘN (w,θ̃) be the product of ν(m,θ)’s and

ν(w,θ̃)’s. This is our population mapping. A representative element of ν(x̂)
is denoted by n ∈ ν(x̂).

Seventh, we introduce a supply mapping. A supply mapping τ : ∆ ³ Y
is such that τ(p) = arg maxy∈Y py. A representative element of τ(p) is
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y ∈ τ(p).

Eighth, we construct an excess demand mapping. An excess demand
mapping ζ : X̂×Π(m,θ)∈M×ΘN (m,θ)×Π(w,θ̃)∈W×ΘN (w,θ̃)× Y → RI∪K satisfies

ζi(x̂,n, y)

=
∑

(θ′,θ̃′,γ)

∈Θ×Θ×ΓC

∑

γ∈ΓC





∑

θ′∈Θ

(x̂
(m,θ′),γ
i − eγ

i (a
γ))n(m,θ′),γ +

∑

θ̃′∈Θ

(x̂
(w,θ̃′),γ
i − ẽγ

i (ã
γ))n(w,θ̃′),γ





+
∑

γ∈ΓM

(x̂γ
i − eγ

i (a))nγ +
∑

γ∈ΓW

(x̂γ
i − ẽγ

i (ã
γ))nγ − yi for all i ∈ I,

and

ζk(x̂,n, y)

=
∑

(θ′,θ̃′,γ)
∈Θ×Θ×ΓC

∑

γ∈ΓC



(x̂mγ

k − eγ
k(a

γ))
∑

θ′∈Θ

n(m,θ′),γ + (x̂wγ
k − ẽγ

k(ã
γ))

∑

θ̃′∈Θ

n(w,θ̃′),γ





+
∑

γ∈ΓM

(x̂γ
k − eγ

k(a))nγ +
∑

γ∈ΓW

(x̂γ
k − ẽγ

k(ã
γ))nγ − yk for all k ∈ K.

Again, τ and ζ will be well defined after truncation later on. A representative
element of ζ(x̂,n, y) is denoted by z ∈ ζ(x̂,n, y).

Ninth, a price mapping is a variation of the Gale-Nikaido mapping (De-
breu 1959, 5.6) with a modification inspired by Mas-Colell et al. (1995,
Proposition 17.C.1). A price mapping π : RI∪K × ∆ ³ ∆ is such that
π(z, p) = arg maxq∈∆ qz if p ∈ ∆̊1, and π(z, p) = {q ∈ ∆| qp = 0} if p ∈ ∂∆1.

Clearly, if there is a fixed point price vector p ∈ π(z, p), p ∈ ∆̊1 must hold.
(Otherwise, ‖p‖2 = 0 which is a contradiction to p ∈ ∆.)

Tenth, we consider DD’s aggregate supply mapping for households with
couples γ ∈ ΓC with externality commodity consumption plans (xγ

K, x̃γ
K) =

(x̂mγ
K , x̂wγ

K ). An externality commodity consumption plan (xγ
K, x̃γ

K) in type
γ = (m, θ, a; w, θ̃, ã) household is regarded as a local public good for exactly
two residents who have appearance types m and w. The provision cost is
p(x̂mγ

K , x̂wγ
K ) = pK · (xγ

K + x̃γ
K) and DD’s revenue is rmγ + rwγ. Let

H = {h ∈ RΓC∪{∅}
+ :

∑
γ∈ΓC∪{∅} hγ = N}, which will be the set of household
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supply allocations. Since total population including both men and women is
N , households will be certainly oversupplied. The choice ∅ assures nonnega-
tive profit of DD. DD’s supply correspondence η : R2ΓC×∆×X̂ΓC

K ³ H is such
that η(rm, rw, p; x̂mγ

K , x̂wγ
K ) = arg maxh∈H

∑
γ∈ΓC∪{∅} {(rmγ + rwγ − p(x̂mγ

K , x̂wγ
K )) hγ},

where rm∅ + rw∅ = 0 and pK ·
(
x∅K + x̃∅K

)
= 0.

Eleventh, we construct a variation of the Gale-Nikaido price mapping
for DD as well. Let ρ : Π(m,θ)∈M×ΘN (m,θ) × Π(w,θ̃)∈W×ΘN (w,θ̃) × H ³ R2ΓC

be such that

ρ(n, h)

= arg max
r∈R2ΓC

∑

γ∈ΓC


(rmγ + rwγ)





(∑

θ∈Θ

n(m,θ)γ − hγ

)2

+


∑

θ̃∈Θ

n(w,θ̃)γ − hγ




2





 .

In order to have a fixed point,
∑

θ∈Θ n(m,θ)γ =
∑

θ̃∈Θ n(w,θ̃)γ = hγ must hold.
Our fixed point mapping is ϕ : Φ ³ Φ where

Φ = ∆× X×R2ΓC ×
∏

(m,θ)∈M×Θ

N (m,θ) ×
∏

(w,θ̃)∈W×Θ

N (w,θ̃)

×Y × RI∪K ×H

and ϕ is composed of

β : ∆×R2ΓC × X̂ΓC

K × Y ×H ³ X̂,

ν : X̂ ³ Π(m,θ)∈M×ΘN (m,θ) × Π(w,θ̃)∈W×ΘN (w,θ̃),

ζ : X̂× Π(m,θ)∈M×ΘN (m,θ) × Π(w,θ̃)∈W×ΘN (w,θ̃) × Y → RI∪K,

τ : ∆ ³ Y,

π : RI∪K ×∆ ³ ∆,

η : ∆×R2ΓC × X̂ΓC

K ³ H, and

ρ : Π(m,θ)∈M×ΘN (m,θ) × Π(w,θ̃)∈W×ΘN (w,θ̃) ×H ³ R2ΓC

,

To be precise,

ϕ(p, r, x̂,n, z, y, h)

= (π(z, p), ρ(n, h), β(p, r, x̂ΓC ; y, h), ν(x̂), ζ(x̂,n, y), τ(p), η(p, r, x̂)).

We are going to truncate sets in the domain of ϕ to obtain compactness
and to apply Kakutani’s fixed point theorem. Note that the aggregate en-
dowment is bounded above, consumption sets are bounded below, and the
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aggregate production set is convex having no intersection with RI+K
+ \{0}.

By the standard argument, we arrived at the conclusion of Lemma 1 that
the set of production vectors y ∈ Y in all feasible allocations is bounded.
Let the feasible production set be Y f , and Ŷ = {y ∈ Y : y ≥ y ≥ y} where

y, y ∈ RI+K with y À 0 À y and y À Y f À y. Clearly, Ŷ contains Y f in its

interior relative to Y , and Ŷ is compact and convex. Similarly, feasible aggre-
gate consumption

∑
γ∈ΓC µ(γ) (xγ + x̃γ) +

∑
γ∈ΓM µ(γ)xγ +

∑
γ∈ΓW µ(γ)x̃γ is

bounded below, since consumption sets are bounded below. By (1), feasible
aggregate consumption is bounded above by b+y where b is an upper bound
for the aggregate endowment. As a consequence, the set of all feasible excess
demand is also bounded.

Let Z ⊂ RI∪K be a compact and convex set that contains all feasible
excess demand vectors in its interior. In order to allow a small number
of consumers consuming a large amount of private goods in an atomless
economy, we follow the technique by Aumann (1966). For all m ∈ M and all
a ∈ A, let Xms(a) ≡ {x ∈ Xm(a) : x ≤ (s, ..., s)}. For each natural number s,
Xms(a) is a compact set. Similarly, for all w ∈ W and all ã ∈ A, let X̃ws(ã) ≡
{x ∈ X̃w(ã) : x ≤ (s, ..., s)}. We will consider an s-truncated economy with
Ŷ , (Xms(a))m∈M,a∈A, and (X̃ws(ã))w∈W,ã∈A for a natural number s. Thus,

the space X̂ can also be truncated as X̂s accordingly. We will consider an
equilibrium of the s-truncated economy, and take the limit of an equilibrium
sequence for s →∞.

We need to slightly modify all the mappings for the truncated economy
except for the price mapping π. The main problem is well known: If for
some price p, a consumer’s wealth allows for only consumption vectors on
the boundary of her consumption set, then her budget correspondence may
fail to be (lower hemi-) continuous, and her demand correspondence may
fail to be upper hemi-continuous (a violation of Berge’s maximum theorem).
Note that under assumption 4 (iii-b), if p1 > 0 is assured, no such problem
exists: each consumer’s wealth is positive. Thus, if the domain is confined
to ∆̊1, the demand correspondence β is upper hemi-continuous. For other
mappings involving prices, we consider two cases: (i) p ∈ ∆̊1 and (ii) p ∈ ∂∆1.
Case (ii) is the only at issue, but we simply map all p ∈ ∂∆1 to the entire
(compactified) range:

β(p, r, x̂ΓC ; y, h) = X̂s

τ(p) = Ŷ

η(p, r,x) = H

Clearly, if β, τ , and η are nonempty-valued and upper hemi-continuous in
∆̊1, they are also nonempty-valued and upper hemi-continuous in ∆. As we
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have explained, a fixed point price vector of the mapping ϕ must lie in ∆̊1

and, thus, the above modifications of the mappings do not affect the fixed
points.

Hence, the only remaining task we have in order to apply Kakutani’s
theorem is to show that the mapping π is upper hemi-continuous. We first
prove the following lemma:

Lemma 3 Let (m, θ̄) be the type described in assumption 4 of the Theorem.
Let pn, n ∈ N, be a sequence in ∆ with pn → p ∈ ∂∆1, and for all n = 1, 2, ...,
let xn ∈ RI∪K\J+ be

xn = arg max û(m,θ̄)(x) subject to
∑

`∈I∪K
pn

` x` ≤ Bn and x ∈ Xm = RI∪K\J+

where Bn = maxa∈A pne(m,θ̄)(a).19 Then, max{xn
1 , ..., x

n
I+K−J} → ∞ as n →

∞.
Moreover, for all s and all n, let

xns = arg max û(m,θ̄)(x) subject to
∑

`∈I∪K\J
pn

` x` ≤ Bn and x ∈ Xms.

If xn
` > s holds for some ` ∈ I ∪ K\J , then xns

l = s for some l ∈ I ∪ K\J .

Proof. Note that this type of consumer only cares about his own consump-
tion of non-leisure goods (assumption 4 (iii)), so he always tries to take an
action (a job) that maximizes his wealth for each p:

a ∈ arg max
a∈A

∑

`∈I∪K
p`e

(m,θ̄)
` (a)

For all p ∈ ∆, at least one commodity has a positive price. Recalling
∪a∈Aj(a) = J , assumption 4 (ii) assures that he has positive wealth for all
p ∈ ∆, even at p ∈ ∂∆1. Since he can be single, he can have his maximum
wealth at his disposal: thus, he spends it for non-leisure good consump-
tion. First we consider the unbounded consumption set Xm. Suppose that
max{xn

1 , ..., x
n
I+K−J} → ∞ does not hold. Then, {xn}∞n=1 is contained in a

compact set. Hence there exists a convergent subsequence, and we can let
x be the limit point. Clearly, max{x1, ..., xI+K−J} < ∞. However, by as-
sumption 4 (iii-b), for large enough n, he can achieve higher utility than x
by consuming unboundedly higher x′′1. This is a contradiction.

19Note that the optimal choice is unique since û(m,θ̄) is assumed to be strictly quasi-
concave.
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Second, consider the case where the consumption set is truncated by
s. Let xns be the utility maximizing consumption vector within the trun-
cated budget set. Suppose n and ` ∈ I ∪ K\J are such that xn

` > s. We
will show that xns

` ′ = s for some ` ′ ∈ I ∪ K\J . Suppose not, that is,
xns

` ′ < s for all ` ′ ∈ I ∪ K\J . By definition, xns 6= xn and û(m,θ̄)(xn) ≥
û(m,θ̄)(xns). Since the utility function is strictly quasi-concave in Xm

I∪K\J , we

have û(m,θ̄)(txn +(1− t)xns) > û(m,θ̄)(xns) for all 0 < t < 1. Since xn
` > s and

xns
` < s, there is a better consumption vector in the truncated budget set. A

contradiction. ¤

This lemma implies that if s > max`∈I∪K
b`+y`

N(m,θ̄) , type (m, θ̄) consumers

alone consume more than b` +y` if xn
` →∞ and pn → p ∈ ∂∆1. Now, we are

ready to prove that π is upper hemi-continuous in RI∪K ×∆ following Mas-
Colell et al. (1995, Proposition 17.C.1). As we mentioned before, π(z, p) is
upper hemi-continuous in (z, p) ∈ RI∪K× ∆̊1, by Berge’s maximum theorem.
Thus suppose (z, p) ∈ RI∪K × ∂∆1, (zn, pn) → (z, p), qn ∈ π(zn, pn). Since
π is a compact-valued correspondence from the metric space RI∪K ×∆ into
the metric space ∆, it suffices to show that qn has a convergent subsequence
whose limit belongs to π(z, p) = {q ∈ ∆| qp = 0}. Compactness of ∆ implies
that qn has a convergent subsequence. Without restriction, we may assume
qn → q. It remains to be shown that q ∈ π(z, p), that is, qp = 0.

Take any ` ∈ I ∪ K with p` > 0. We shall argue that qn
` = 0 for n large

enough and thus q` = 0 and q ∈ π(z, p). Because p` > 0, there is ε > 0
such that pn

` > ε for n large enough. If pn ∈ ∂∆1, then qn
` = 0 holds by the

definition of π. If pn ∈ ∆̊1, then by Lemma 3, we have

zn
` < max{zn

1 , ..., zn
I+K−J}

for n sufficiently large. Thus, qn
` = 0 must hold again. This completes the

proof of upper hemi-continuity of π.
Next, we apply Kakutani’s theorem. For given s, the domain (range)

of ϕ is nonempty, compact and convex. We know that ϕ is nonempty-
valued, upper hemi-continuous, and convex-valued. Thus, by the Kaku-
tani fixed point theorem, for each s-truncated economy, ϕ has a fixed point
(ps, rs, x̂s,ns, ys, hs, zs), where
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ps ∈ π(zs, ps),
rs ∈ ρ(ns, hs),
x̂s ∈ β(ps, rs, x̂s

ΓC ; ys, hs),
ns ∈ ν(x̂s),
zs = ζ(x̂s,ns, ys),
ys ∈ τ(ps), and
hs ∈ η(ps, rs, x̂s).

It remains to be shown that the fixed point yields a stable matching equi-
librium. In (A)—(F) below, we shall proceed under the assumption that for

all (m, θ, a; w, θ̃, ã) ∈ ΓC , all θ′ 6= θ, and all θ̃′ 6= θ̃, x(m,θ′)γs = x(w,θ̃′)γs = 0

and n(m,θ′)γs = n(w,θ̃′)γs = 0 holds. In (G), we are going to justify that
assumption.

(A) Within the truncated domain, it is clear from the definition of the

mapping β that (x
(m,θ),γs
I , x̃

(w,θ̃),γs
I , xγs

K , x̃γs
K ) is intra-household Pareto-efficient

for all γ = (m, θ, a; w, θ̃, ã) ∈ ΓC (couples) and xγs and x̃γ̃s are the best
choices for all γ ∈ ΓM and γ̃ ∈ ΓW , respectively. Regarding the first
claim, we observed at the end of the fourth step that Fγ(p, r

mγ, rwγ, y, h) ∩
Pγ[p, rmγ, rwγ; y, h](xγ

K, x̃γ
K) = ∅ has to hold. In turn, this means that the

indirect utilities V (m,θ′)(·) and V (w,θ̃
′
)(·) cannot be improved upon. At the

fixed point, x
(m,θ),γs
I and x̃

(w,θ̃),γs
I are non-externality consumption bundles

that yield those indirect utilities. The observation of footnote 20 below will
complete the argument.

Now, we will show that any pair (
a
m,

a
θ; ŵ, θ̂) cannot find an improving

deviation from xs∈X and its action choice. Suppose that there is a feasi-

ble intra-household allocation (x′, a′; x̃′, ã′) under ps such that both (
a
m,

a
θ)

and (ŵ, θ̂) improve. From mapping ν, all types of agents in (M ∪W ) × Θ
choose their favorite household type from all possible household types. Let

U (
a
m,

a
θ )∗ and U (ŵ,θ̂)∗ be the payoffs from the choices of (

a
m,

a
θ) and (ŵ, θ̂),

respectively. Let us consider a type of household γ′ = (
a
m,

a
θ, a′; ŵ, θ̂, ã′).

Note that u(
a
m,

a
θ )(xγ′ , a′; ŵ, x̃γ′

K , ã′) ≤ U (
a
m,

a
θ )∗ and u(ŵ,θ̂)(x̃γ′ , ã′;

a
m,xγ′

K , a′) ≤
U (ŵ,θ̂)∗ by construction of ν (or α). This implies u(

a
m,

a
θ )(xγ′ , a′; ŵ, x̃γ′

K , ã′) <

u(
a
m,

a
θ )(x′, a′; ŵ, x̃′K, ã′) and u(ŵ,θ̂)(x̃γ′ , ã′;

a
m,xγ′

K , a′) < u(ŵ,θ̂)(x̃′, ã′;
a
m,x′K, a′).20

20By assumptions 1 and 3 (positive endowment for commodity 1, and essentiality of
commodity 1), commodity 1 is consumed in positive amounts in equilibrium. Hence,
if an intra-household allocation is strictly improving for one side while the other side
is indifferent, then there is another intra-household allocation that improves both sides
strictly.
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Since (xγ′ , x̃γ′) is an intra-household Pareto-efficient allocation, this is a con-
tradiction. Thus, the fixed point matching is stable.

(B) The mapping τ assures 0 ≤ psys, since 0 ∈ Ŷ .
(C) The mapping η assures that DD makes zero profit from each house-

hold type, since otherwise, the resulting allocation is infeasible. To see this,
first note that DD can achieve a nonnegative profit by setting h∅ = N . She
can make a positive profit if rmγ + rwγ − p(x̂mγ

K , x̂wγ
K ) > 0 for some γ ∈ ΓC .

Suppose that ΓC
+ = {γ ∈ ΓC | rmγ + rwγ − p(x̂mγ

K , x̂wγ
K ) > 0} 6= ∅. Let ΓC

++ =
{γ ∈ ΓC

+|hγ > 0}. Then
∑

γ∈ΓC
++

hγ = N whereas
∑

γ∈ΓC
++

∑
θ∈Θ n(m,θ)γ =∑

θ∈Θ

∑
γ∈ΓC

++
n(m,θ)γ ≤ ∑

θ∈Θ N (m,θ) = NM < N , a contradiction. Hence to

the contrary, DD makes zero profit.

(D) The mappings η and ρ assure that the household assignment is

measurement consistent. That is,
∑

θ∈Θ n(m,θ)γ =
∑

θ̃∈Θ n(w,θ̃)γ = hγ for

all γ ∈ ΓC . Suppose that
∑

θ∈Θ n(m,θ)γ 6= hγ or
∑

θ̃∈Θ n(w,θ̃)γ 6= hγ for
some γ ∈ ΓC . Then according to ρ, rmγ + rwγ = 4ē. This yields the
“infeasible” case Fγ = {0}, provided that the couple’s budget is not aug-
mented by a positive term ωm(p; y, h) + ωw(p; y, h). If we assume that
ωm(p; y, h) + ωw(p; y, h) = 0, then household type γ exhibits infeasibility,
indeed. But then rmγ + rwγ − p(x̂mγ

K , x̂wγ
K ) > 0 which has been shown to be

impossible, by the argument in (C). Hence to the contrary,
∑

θ∈Θ n(m,θ)γ =∑
θ̃∈Θ n(w,θ̃)γ = hγ has to hold for all γ ∈ ΓC .
In (C), we have already shown that DD’s profits are zero. At the end of

the proof, we will show that py = 0. The same argument holds for psys = 0 as
well. Hence the conditions ωm(p; y, h) = ωw(p; y, h) = 0 are self-confirming:
If they are assumed, then p · y = 0 and rmγ + rwγ − p(xγ

K + x̃γ
K) = 0 for all

γ ∈ ΓC obtain at a fixed point.
(E) Each household satisfies its budget constraint. Therefore, pszs ≤ 0.
(F) Next we show zs ≤ 0. We apply the argument of the Gale-Nikaido

lemma (Debreu 1959, 5.6). To begin with, note that every fixed point satisfies
ps ∈ ∆̊1. Further note that, consequently, the mapping π yields pzs ≤ pszs

for all p ∈ ∆. Suppose for instance that zs
1 > 0. Then, we have e1zs ≤

pszs ≤ 0, while e1zs = zs
1 > 0, where e1 = (1, 0, ..., 0) ∈ ∆. This is a

contradiction. Thus, zs ≤ 0 holds for all s. With the above arguments, we
have demonstrated that the fixed point is a stable matching equilibrium for
all s (with zs ≤ 0).

(G) Concerning the assumption made in (A)—(F), note that if there is
a fixed point allocation (ps, Rs, x̂s, n̂s, ys, hs, zs), then there is another fixed
point allocation (ps, Rs, x̌s, ňs, ys, hs, zs) such that for all (m, θ, a; w, θ̃, ã) ∈
ΓC , all θ′ 6= θ, and all θ̃′ 6= θ̃, x̌(m,θ′)γs = x̌(w,θ̃′)γs = 0 and ň(m,θ′)γs =
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ň(w,θ̃′)γs = 0 holds. That is, the latter fixed point is consistent with a trun-
cated stable matching equilibrium (ps, µs,xs, ys). Since

∑
θ′′∈Θ ň(m,θ′′)γs =∑

θ̃′′∈Θ ň(m,θ̃′′)γs must hold for all γ ∈ ΓC in a fixed point (otherwise, either
rmγs or rwγs will be infeasible by mapping ρ), we can match up each man and

each woman. Suppose that ň(m,θ′)γs > 0 and ň(w,θ̃′)γs > 0 with θ′ 6= θ and
θ̃′ 6= θ̃. (Other cases can be treated in the same manner.) By the construction
of the α mapping, this implies

u(m,θ′)(x̂
(m,θ′),γ
I , x̂mγ

K , x̂wγ
K , a, ã, w) ≥ u(m,θ′)(x̂

(m,θ′),γ′
I , x̂mγ′

K , x̂wγ′
K , a, ã, w),

u(w,θ̃′)(x̂
(w,θ̃′),γ
I , x̂mγ

K , x̂wγ
K , a, ã,m) ≥ u(w,θ̃′)(x̂

(w,θ̃′),γ′
I , x̂mγ′

K , x̂wγ′
K , a, ã,m),

where γ′ = (m, θ′, a; w, θ̃′, ã). Since the mapping β assigns an intra-household

Pareto efficient allocation for true types, (x̂
(m,θ′),γ′
I , x̂mγ′

K , x̂
(w,θ̃′),γ′
I , x̂wγ′

K , a, ã, w)
is intra-household Pareto efficient for (m, θ′) and (w, θ̃′). This implies that

u(m,θ′)(x̂
(m,θ′),γ
I , x̂mγ

K , x̂wγ
K , a, ã, w) = u(m,θ′)(x̂

(m,θ′),γ′
I , x̂mγ′

K , x̂wγ′
K , a, ã, w),

u(w,θ̃′)(x̂
(w,θ̃′),γ
I , x̂mγ

K , x̂wγ
K , a, ã,m) = u(w,θ̃′)(x̂

(w,θ̃′),γ′
I , x̂mγ′

K , x̂wγ′
K , a, ã,m),

must hold because choosing (x̂mγ
K , x̂wγ

K ) at γ′ is certainly joint-budget feasible
under the price vector ps. Since each consumer has a quasi-concave utility

function, any convex combination of (x̂
(m,θ′),γ
I , x̂

(w,θ̃′),γ
I , x̂mγ

K , x̂wγ
K ) and

(x̂
(m,θ′),γ′
I , x̂

(w,θ̃′),γ′
I , x̂mγ′

K , x̂wγ′
K ) achieves the same utility levels for both of

(m, θ′) and (w, θ̃′) with (a, ã,m, w). Such a convex combination allocation
is always budget feasible under ps. So, these pairs can be moved to truthful
household type γ′ = (m, θ′, a; w, θ̃′, ã) with the convex combination consump-
tion plan by weighting population. Repeating this procedure until every type
of consumer chooses households truthfully, we can create a truthful fixed
point (ps, Rs, x̌s, ňs, ys, hs, zs). By omitting non-truthful arguments (assum-

ing γ = (m, θ, a; w, θ̃, ã), ň(m,θ′)γs = 0 for all θ′ 6= θ, and ň(w,θ̃′)γs = 0 for all
θ̃′ 6= θ̃), we can create a (truncated) stable marriage equilibrium by letting

µ(γ) = ň(m,θ)γs = ň(w,θ̃)γs for all γ = (m, θ, a; w, θ̃, ã).
(H) Finally, we enlarge s to infinity. Define an aggregate demand vec-

tor for the s-truncated economy given consumption allocation for the s-
truncated economy (µs, (xs(γ), x̃s(γ))γ∈ΓC , (xs(γ))γ∈ΓM , (x̃s(γ))γ∈ΓW ). An ag-
gregate demand vector xs = ((xs(γ), x̃s(γ))γ∈ΓC , (xs(γ))γ∈ΓM , (x̃s(γ))γ∈ΓW ) is
such that (xs(γ), x̃s(γ)) = (µs(γ)xs(γ), µs(γ)x̃s(γ)) for γ ∈ ΓC , xs(γ) =
µs(γ)xs(γ) for γ ∈ ΓM , x̃s(γ) = µs(γ)x̃s(γ) for γ ∈ ΓW . Since the set
of aggregate feasible consumption vectors is compact and µs ∈ RΓ

+ such

that (i)
∑

γ∈Γ:γM×Θ=(m,θ) µs(γ) = N (m,θ) for all for all γ = (m, θ, a; w, θ̃, ã),

(N̄ ΓC × N̄ ΓM × N̄ ΓW
, the equilibrium sequence {µs,xs}∞s=1 has a convergent
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subsequence. Also, the sequence {ys}∞s=1 has a convergent subsequence, since
the set of feasible production plans is compact; and the sequence {ps}∞s=1 has
a convergent subsequence, since ∆ is compact. Without restriction of gener-
ality, we assume that the original sequences converge and {µs,xs, ys, ps} →
{µΓ,x, y, p}. For γ with µΓ(γ) > 0, we set x(γ) = x(γ)/µΓ(γ) with xs(γ) →
x(γ) and x̃(γ) = x̃(γ)/µ(γ) with x̃s(γ) → x̃(γ). For γ with µ(γ) = 0, there
need not exist accumulation points of {xs(γ)}∞s=1 and {x̃s(γ)}∞s=1. However,
in the limit, equilibrium conditions 2 and 3 are met. For example, consider
the possibility that condition 2.a is not met in the limit. Then, there is a fea-
sible plan for observable types m and ŵ under p ∈ ∆, (B′, x′K, a′; B′′, x′′K, a′′) ∈
C[m, ŵ; p], such that V (m,θ)(p,B′; x′K, a′; ŵ, x′′K, a′′) > u(m,θ)(xγ

I , x
γ
K, aγ; w, x̃γ

K, ãγ)

and V (ŵ,θ̂)(p,B′′; x′′K, a′′; m,x′K, a′) > u(ŵ,θ̂)(x̃δ
I , x̃

δ
K, ãδ; m, xδ

K, aδ). (By assump-
tions 1 and 3, both parties can be better off, if one party is strictly better off.)
Then, by continuity of utility functions and Berge’s maximum theorem, the
same conditions must hold for (Ḃ, ẋK, a′; B̈, ẍK, a′′) with (Ḃ, ẋK; B̈, ẍK) suffi-
ciently close to (B′, x′K; B′′, x′′K). There exists s0 such that for s ≥ s0, µs(γ) >
0 and there exists (Ḃ, ẋK, a′; B̈, ẍK, a′′) ∈ C[m, ŵ; ps] with (Ḃ, ẋK; B̈, ẍK) suf-
ficiently close to (B′, x′K; B′′, x′′K). This is a contradiction to equilibrium con-
dition 2.a in the s-truncated economy.

zs ≤ 0 yields z ≤ 0 in the limit. Since psys = max psŶ for all s,
py = max pŶ . Further y ∈ Y f and py ≥ 0, Y f is contained in the rela-
tive interior of Ŷ , y À 0 À y, and Y satisfies constant returns to scale.
Therefore, py = max pY and py = 0 must hold. With the free disposal as-
sumption, y∗ = y + z ∈ Y . With y∗ instead of y, aggregate excess demand
becomes z∗ = z − z = 0. Because of non-satiation and absence of external-
ities in commodity 1, all households of type γ with µ(γ) > 0 exhaust their
budget. Therefore, Walras law holds for aggregate excess demand of house-
holds. Hence, py∗ = 0, that is, y∗ is a profit maximizing production plan.
Thus, (p, µ,x, y∗) is a stable matching equilibrium. ¤

53



References

[1] Allouch, N., J.P. Conley, and M. Wooders, 2009, Anonymous Price Tak-
ing Equilibrium in Tiebout Economies with a Continuum of Agents: Ex-
istence and Characterization, Journal of Mathematical Economics 45,
492-510.

[2] Alkan, A. and D. Gale, 1990, The Core of the Matching Game, Games
and Economic Behavior 2, 203-212.

[3] Apps, P. and R. Rees, 2009, Public Economics and the Household, Cam-
bridge, UK, Cambridge University Press.

[4] Aumann, R.J., 1966, Existence of Competitive Equilibria in Markets
with a Continuum of Traders, Econometrica 34, 1-17.

[5] Azevedo, E.M. and J.W. Hatfield, 2013, Complementarity and Multidi-
mensional Heterogeneity in Large Matching Markets, mimeo.

[6] Aygün, O. and T. Sönmez, 2013, Matching with Contracts: Comment,
American Economic Review 103, 2050-2051.

[7] Becker, G. S., 1973, A Theory of Marriage, Part I, Journal of Political
Economy 81, 813-846. Reproduced as Chapter 11, in R. Febrero, P.S.
Schwartz (Eds.), 1995, The Essence of Becker, Stanford, CA, Hoover
Institution Press.

[8] Bergstrom, T. C., 1997, A Survey of Theories of the Family, in Rosen-
zweig, M. and O. Stark, editors, Handbook of Population and Family
Economics, Ch. 2, pp. 21-79, Amsterdam, Elsevier.

[9] Bourguignon, F. and P.–A. Chiappori, 1992, Collective Models of House-
hold Behavior, European Economic Review 36, 355-364.

[10] Bourguignon, F. and P.–A. Chiappori, 1994, The Collective Approach to
Household Behavior, in Blundell, R., Preston, I., and I. Walker, editors,
The Measurement of Household Welfare, pp. 70-85, Cambridge, UK,
Cambridge University Press.

[11] Che, Y.-K., Kim, J. and F. Kojima, 2014, Stable Matching in Large
Economies, mimeo.

[12] Cole, H. L. and E. C. Prescott, 1997, Valuation Equilibrium with Clubs,
Journal of Economic Theory 74, 19=39.

54



[13] Conley, J. P. and M. H. Wooders, 1997, Equivalence of the Core and
Competitive Equilibrium in a Tiebout Economy with Crowding Types,
Journal of Urban Economics 41, 421-440.

[14] Crawford, V. P. and E. M. Knoer, 1981, Job Matching with Heteroge-
neous Firms and Workers, Econometrica 49, 437-450.

[15] Debreu, G., 1959, Theory of Value, Wiley, New York.
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atica per le Decisioni, Università degli Studi di Firenze. Available at
http://www.dmd.unifi.it/RePEc/flo/WorkingPapers/2010n/DiMaDWP2010-
09.pdf

55



[26] Greenberg, J., 1979, Existence and Optimality of Equilibrium in Labour
Managed Economies, Review of Economic Studies 46, 419-433.

[27] Haller, H., 1988, Manipulation of Endowments in Replica Economies:
an Example, European Economic Review 32, 1375-1383.

[28] Hatfield, J. W. and P. R. Milgrom, 2005, Matching with Contracts,
American Economic Review 95, 913-935.

[29] Kaneko, M., and M.H. Wooders, 1986, The Core of a Game with a Con-
tinuum of Players and Finite Coalitions: The Model and Some Results,
Mathematical Social Sciences 2, 105-137.

[30] Kapteyn, A. and P. Kooreman, 1992, Household Labor Supply: What
Kind of Data Can Tell Us How Many Decision Makers There Are? Eu-
ropean Economic Review 36, 365-371.

[31] Kelso, A. S. and V. P. Crawford, 1982, Job Matchings, Coalition For-
mation, and Gross Substitutes, Econometrica 50, 1483=1504.

[32] Konishi, H., 2010, Efficient Mixed Clubs: Nonlinear-Pricing Equilibria
with Entrepreneurial Managers (JEA Nakahara Lecture, 2009) Japanese
Economic Review 61, 35-63.

[33] Konishi, H., 2013, Entrepreneurial Land Developers: Joint Production,
Local Externalities, and Mixed Housing Developments, Journal of Urban
Economics 75, 68-79.

[34] Mas-Colell, A., 1977, Indivisible Commodities and General Equilibrium
Theory, Journal of Economic Theory 16, 443-456.

[35] Mas-Colell, A., 1984, On Schmeidler’s Theorem, Journal of Mathemat-
ical Economics 13, 201-206.

[36] Mas-Colell, A., M.D. Whinston, and J.R. Green, 1995, Microeconomic
Theory, New York, Oxford University Press.

[37] McKenzie, W.L., 1959, On the Existence of General Equilibrium for a
Competitive Economy, Econometrica 27, 54-71.

[38] Mirrlees, J.A., 1971, An Exploration in the Theory of Optimum Income
Taxation, The Review of Economic Studies 38, 175-208.
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