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Abstract

Assume individuals are treated if a latent variable, containing a continuous in-

strument, lies between two thresholds. We place no functional form restrictions on

the latent errors. Here unconfoundedness does not hold and identification at infinity

is not possible. Yet we still show nonparametric point identification of the average

treatment effect. We provide an associated root-n consistent estimator. We apply our

model to reinvestigate the inverted-U relationship between competition and innova-

tion, estimating the impact of moderate competitiveness on innovation without the

distributional assumptions required by previous analyses. We find no evidence of an

inverted-U in US data.
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1 Introduction

Suppose an outcome Y is given by

Y = Y0 + (Y1 − Y0)D (1)

where Y0 and Y1 are potential outcomes as in Rubin (1974) and Angrist, Imbens, and Rubin (1996),

and D is a binary treatment indicator. Generally, point identification of the average treatment

effect (ATE) E (Y1 − Y0) requires either (conditional or unconditional) unconfoundedness, or an

instrument for D that can drive D to zero and to one (with probability one), or functional

restrictions on the joint distribution of Y0, Y1 and D. In contrast, we provide a novel point

identification result (and an associated estimator) for the ATE in a model where none of these

conditions hold.

Let V be a continuous instrument that affects the probability of treatment but not the out-

come, and let X denote a vector of other covariates. In our model, D is given by a structure that

is identical to one of the middle choices in an ordered choice model, that is,

D = I [α0 (X) ≤ V + U ≤ α1 (X)] (2)

where I (·) is the indicator function that equals one if · is true and zero otherwise, U is a latent

error term, and α0 (X) and α1 (X) are unknown functions. The joint distribution of (U, Y0, Y1 | X)

is assumed to be unknown.

In the special case of this model where α0 (X) is linear and α1 (X) − α0 (X) is constant,

treatment is given by the more standard looking ordered choice specification

D = I
(
δ0 ≤ X ′β1 + β2V + U ≤ δ1

)
for constants δ0, δ1, β1, and β2. However, we don’t impose these linearity restrictions. In

addition, unlike standard ordered choice models, we allow the distribution of U to depend on X

in completely unknown ways. Equivalently, the covariates X can all be endogenous regressors,

with no available associated instruments. The only covariate we require to be exogenous is V .

The proposed model is confounded, because the unobservable U that affects D can be cor-

related with Y0 and Y1, with or without conditioning on X. No parametric or semiparametric
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restrictions are placed on the distribution of (U, Y0, Y1 | X), so treatment effects are not identified

by functional form restrictions on the distributions of unobservables. We assume V has large

support, but the model is not identified at infinity. This is because both very large and very

small values of V drive the probability of treatment close to zero, but no value of V (or of other

covariates) drives the probability of treatment close to one. So in this framework none of the

conditions that are known to permit point identification of the ATE hold. Even a local ATE

(LATE) is not identified in the usual way, because monotonicity of treatment with respect to the

instrument is not satisfied. Nevertheless, we show that the ATE is identified in our model, using

a special regressor argument as in Lewbel (1998, 2000, 2007). We also provide conditions under

which the corresponding estimate of the ATE converges at rate root n.

To illustrate the model and foreshadow our later empirical application, suppose the outcome Y

is a measure of innovation in an industry and D = 1 when a latent measure of competitiveness in

the industry lies between two estimated thresholds, otherwise D = 0. According to the "Inverted-

U" theory in Aghion, Bloom, Blundell, Griffi th, and Howitt (2005) (hereafter ABBGH), industries

with intermediate levels of competitiveness have more innovation than those with low levels or high

levels of competition. As in Revenga (1990, 1992), Bertrand (2004), and Hashmi (2012), we use a

source-weighted average of industry exchange rates as an instrumental variable for competition,

which we take to be our special regressor V . This instrument is computed from the weighted

average of the US dollar exchange rate with the currencies of its trading partners. When V is

low, products from the U.S. becomes relatively cheaper, thereby reducing competition by driving

out competitors. The treatment effect we estimate is therefore the gains in innovation that result

from facing moderate (rather than very low or very high) levels of competition.

Existing methods for point identifying ATE’s are discussed in surveys such as Heckman and

Vytlacil (2007a, 2007b) and Imbens and Wooldridge (2009). The early treatment effects literature

achieves identification by assuming unconfoundedness, see, e.g., Cochran and Rubin (1973), Rubin

(1977), Barnow, Cain, and Goldberger (1980), Rosenbaum and Rubin (1983), Heckman and Robb

(1984), and Rosenbaum (1995). As noted by ABBGH, competition and innovation are mutually

endogenous. Much of what determines both is diffi cult to observe or even define, making it

very unlikely that unconfoundedness would hold, regardless of what observable covariates one

conditions upon.

Without unconfoundedness, instrumental variables have been used in a variety of ways to

3



identify treatment effects. Instead of estimating the ATE, Imbens and Angrist (1994) show

identification of a local average treatment effect (LATE), which is the ATE for a subpopulation

called compliers (the definition of who compliers are, and hence the LATE, depends on the choice

of instrument). An assumption for identifying the LATE is that the probability of treatment

increase monotonically with the instrument. This assumption does not hold in our application,

since both increasing or decreasing V suffi ciently causes the probability of treatment to decrease.

Kitagawa (2009) shows that, if possible, point identification of the ATE without identification

at infinity, based only on an exogenous instrument, would require instrument nonmonotonicity.

Our model possesses this necessary nonmonotonicity (another example of such nonmonotonicity

is Gautier and Hoderlein 2011).

Building on Björklund and Moffi tt (1987), in a series of papers Heckman and Vytlacil (1999,

2005, 2007a) describe identification of a marginal treatment effect (MTE) as a basis for program

evaluation. The MTE is based on having a continuous instrument, as we do. However, identi-

fication of the ATE using the MTE requires the assumption that variation in V can drive the

probability of treatment to either zero or one, and hence depends on an identification at infinity

argument. As we have already noted, identification at infinity is not possible in our model, since

no value of V can drive the probability of treatment to one.

A few other papers consider identification of treatment effects in ordered choice models, such

as Angrist and Imbens (1995) and Heckman, Urzua, and Vytlacil (2006). However, these papers

deal with models having more information that ours, i.e, observing extreme as well as middle

choices, and they consider identification of LATE and MTE, respectively, not ATE.

The way we achieve identification here is based on special regressor methods, particularly

Lewbel (2007), which exploits a related result to identify a class of semiparametric selection

models. The instrumental variable V needs to be continuous, conditionally independent of other

variables and have a large support, which are all standard assumptions for special regressor based

estimators. See, e.g., Dong and Lewbel (2012), Lewbel, Dong, and Yang (2012), and Lewbel

(2012). Some of the previously discussed papers also implicitly assume a special regressor, notably,

Heckman, Urzua, and Vytlacil (2006).

In addition to the ATE, our methods can be immediately extended to estimate quantile treat-

ment effects as in Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005). Bitler,

Gelbach, and Hoynes (2006), or Firpo (2006). This is done by replacing Y with I(Y ≤ y) in our
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estimator.

Our empirical application uses panel data. Our identification method extends to the following

panel data case

Dit = I(α0(xit) ≤ ai + bt + Vit + Uit ≤ α1(xit)), (3)

Yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit, (4)

where ai, ãi, bt, b̃t are individual and time dummies in selection and outcome equations. Now Y0it

and Y1it are potential outcomes that are purged of cross section and time fixed effects, so the

interpretation of the ATE E(Y1it − Y0it) is analogous to the interpretation of treatment effects in

difference-in-difference models, except that here Dit can be endogenous and hence correlated with

the potential outcomes.

Analogous to Honore and Lewbel (2002), our identification and estimation strategy overcomes

the incidental parameters problem, attaining a rate root n estimate for the ATE, even when the

treatment equation contains fixed effects ai and when the number of time periods is fixed. We also

provide asymptotics allowing for both ai and bt fixed effects, by letting both n and the number

time periods go to infinity.

In the panel context, if unconfoundedness held so that Y ⊥ D|X and if in addition ai and bt

were absent from the selection equation, then one could achieve identification via the difference-

in-difference (DID) method. See, e.g., Ashenfelter (1978), Ashenfelter and Card (1985), Cook and

Tauchen (1982, 1984), Card (1990), Meyer, Viscusi, and Durbin (1995), Card and Krueger (1993,

1994) and many others for applications of DID methods. In contrast, we obtain identification

without unconfoundedness, while still allowing for ai and bt fixed effects.

In the next section we introduce the model and establish the consistency and asymptotic nor-

mality of our cross section and panel estimators. In section three, we apply our estimators to

investigate the relationship between competition and innovation. We also implement simulation

experiments to evaluate small sample properties of our estimators, using a Monte Carlo design

that replicates features of our empirical data. This is followed by conclusions, and by an appen-

dix containing proofs. Another Appendix provides an evaluation of how the robustness of our

approach compares to more structural models (of the type others have used to evaluate competi-

tiveness and innovation) in the presence of measurement errors, because competitiveness is likely

to not be measured very precisely. Finally, in a supplemental appendix separate from the main
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paper, we provide details regarding application of relatively standard semiparametric methods for

deriving the limiting distribution of our estimators.

2 The Model

In this section we first prove identification of the unconditional ATE, and of the ATE conditioning

on X, in our model. The proof we provide is constructive, and we next describe a corresponding

estimator. This is followed by some extensions, in particular, a panel data estimator with fixed

effects. The remaining parts of this section then provide root n limiting distribution theory for

the estimators.

2.1 Identification and Estimation

Let Ω and f denote supports and density functions, e.g., Ωx and fx are the support and density

function for the random variable X. Let Ê(.) denote the sample mean of the argument inside, and

let f̂(.) and Ê(.|.) denote nonparametric Nadayara-Watson kernel density and kernel regression

estimators, with bandwidth denoted h. For notational convenience, h is assumed the same for all

covariates. We use R to denote any set of residual terms that are proven to be asymptotically

irrelevant for our derived limiting distributions.

Assumption 2.1 We observe realizations of an outcome Y , binary treatment indicator D, a co-

variate V , and a k × 1 covariate vector X. Assume the outcome Y and treatment indicator D

are given by equations (1) and (2) respectively, where α0 (X) and α1 (X) are unknown threshold

functions, U is an unobserved latent random error, and Y0 and Y1 are unobserved random un-

treated and treated potential outcomes. The joint distribution of (U, Y0, Y1), either unconditional

or conditional on X, is unknown.

Assumption 2.2 Assume E(Yj |X,V, U) = E (Yj |X,U) for j = 0, 1, and V ⊥ U | X. Assume V |

X is continuously distributed with probability density function f(V | X). For all x ∈ supp (X), the

supp(V | X = x) is an interval on the real line, and the interval [inf supp (α0(X)− U | X = x) ,

sup supp (α1(X)− U | X = x)] is contained in supp(V | X = x).

Assumption 2.1 defines the model, while Assumption 2.2 says that V is an instrument, in

that V affects the probability of treatment but not outcomes (after conditioning on X). The
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instrument V is also continuously distributed, and has a large enough support so that, for any

values U and X may take on, V can be small enough to make D = 0 or large enough to make

D = 0. But no value of V and X will force D = 1, so identification at infinity is not possible.1

In this model, obtaining identification by imposing unconfoundedness would be equivalent to

assuming that U was independent of Y1−Y0, possibly after conditioning on covariatesX. However,

we do not make any assumption like this, so unconfoundedness does not hold. Alternatively, one

might parametrically model the dependence of Y1−Y0 on U to identify the model. In contrast we

place no restrictions on the joint distribution of (U, Y0, Y1), either unconditional or conditioning

upon X.

Assumption 2.3 For some positive constant τ , define the trimming function Iτ (v, x) = I[inf supp(V |X =

x) + τ ≤ v ≤ sup supp(V |X = x) − τ ]. Assume that the interval [inf supp (α0(X)− U | X = x) ,

sup supp (α1(X)− U | X = x)] is contained in {v : Iτ (v, x) = 1}.

Assumption 2.4 Assume there exists a positive constant τ̃ < τ such that, for all v,x having

Iτ̃ (v, x) = 1, the density f(v|x) is bounded away from zero (except possibly on a set of measure

zero) and is bounded. fx(X) and Y are also bounded, and fx(X) is bounded away from zero.

Assumption 2.3 is not necessary for identification, but is convenient for simplifying the limit-

ing distribution theory for the estimator we construct based on the identification. In particular,

this assumption permits fixed trimming that avoids boundary bias in our kernel estimators. This

assumption could be relaxed using asymptotic trimming arguments. Some components of As-

sumption 2.4 might also be relaxed via asymptotic trimming. Define the function ψ (X) by

ψ (X) =
E [IτDY/f(V | X) | X]

E [IτD/f(V | X) | X]
− E [Iτ (1−D)Y/f(V | X) | X]

E [Iτ (1−D) /f(V | X) | X]
(5)

Theorem 2.1 Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then

ψ (X) = E (Y1 − Y0 | X)

1 If instead of the ordered choice D = I [α0 (X) ≤ V + U ≤ α1 (X)] we had a threshold crossing binary choice
D = I (α0 (X) ≤ V + U), then Assumption 2.2 would suffi ce to use "identification at infinity" to identify the
treatment effect, by using data where V was arbitrarily low to estimate E (Y0 | X) and data where V was arbitrarily
high to estimate E (Y1 | X). However, in our ordered choice model identification at infinity is not possible, since no
value of V guarantees with high probability that Y will equal Y1.
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Proof. See Appendix.

Theorem 2.1 shows identification of the conditional ATE since ψ (X) is defined in terms of

moments and densities of observed variables. Equation (5) would still hold without Assumption

2.3 and without the trimming terms Iτ , but their inclusion simplifies the later asymptotics.

It follows immediately from Theorem 2.1 that Ψ =E[ψ (X)] equals the ATE, which is therefore

identified and can be consistently estimated by Ψ̂ = 1
n

∑n
i=1 ψ̂ (xi) where

ψ̂ (x) =
Ê
[
IτDY/f̂(V | X) | X = x

]
Ê
[
IτD/f̂(V | X) | X = x

] − Ê
[
Iτ (1−D)Y/f̂(V | X) | X = x

]
Ê
[
Iτ (1−D) /f̂(V | X) | X = x

] ,
with uniformly consistent kernel estimators f̂ and Ê. Later we apply standard theory on two step

estimators with a nonparametric first step to obtain the root n limiting distribution of Ψ̂.

If V had a uniform distribution, thereby making f a constant, then equation (5) would simplify

to standard propensity score weighting which is consistent when there is no confounding. So in

our model, weighting by f(V | X), i.e., weighting by the density of the instrument, essentially

fixes the problem of confounding. This density weighting is a feature of some special regressor

estimators like Lewbel (2000), (2007), and indeed V has the properties of a special regressor,

including appearing additively to unobservables in the model, a continuous distribution, large

support, and conditional independence.

2.2 Extensions

The above identification and associated estimator can be extended to handle independent random

thresholds, that is, all the results go through if α1 (X) and α0 (X) are replaced with random

variables α1 and α0, provided that (α0, α1) ⊥ (U, Y1, Y0) | X.

Our results also immediately extend to permit estimation of quantile treatment effects. The

proof of Theorem 2.1 shows that the first term in Equation (5) equals E(Y1 | X) and the second

term equals E(Y0 | X). Suppose we strengthen the assumption that E(Yj | X,V, U) =E(Yj | X,U)

for j = 0, 1 to say that Fj (Yj | X,V, U) = Fj (Yj | X,U), where Fj is the distribution function of

Yj for j = 0, 1. Then one can apply Theorem 2.1 replacing Y with I (Y ≤ y) for any y, and thereby

estimate E(I (Yj ≤ y) | X) = Fj (y | X). Given this identification and associated estimators for

the distributions Fj (y | X) of the counterfactuals Yj , we could then immediately recover quantile
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treatment effects.

Now consider panel data. Define the treatment indicator equation as

Dit = I(α0(xit) ≤ ai + bt + Vit + Uit ≤ α1(xit)), (6)

and the outcome equation as

Yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit, (7)

where ai, bt, ãi, b̃t are equivalent to coeffi cients times individual and time dummies in these two

equations. For example, bt equals some unknown scalar times a dummy variable that equals one

for all observations in time period t and zero otherwise.

As before, the observables in the model are the outcome Y, treatment D, instrument V,

and covariate vector X. We interpret (ai, bt, ãi, b̃t) as fixed effects, in that they will not be esti-

mated and they can correlate with unobservables and with X in unknown ways. However, we

do require (ai, bt, ãi, b̃t) to be random variables, because we make an independence assumption

involving them and the instrument V in Assumption 2.5 below. However, the joint distribution of

(ai, bt, ãi, b̃t, Uit, Y0it, Y1it) conditional or unconditional on Xit, is unknown. A similar assumption

regarding fixed effects in discrete choice appears in Honore and Lewbel (2002).

Assumption 2.5 For individuals i and time periods t, ai, bt, ãi, b̃t are random variables.

E
(
ãi + b̃t + Yjit|Xit, Vit, ai, bt, Uit

)
= E

(
ãi + b̃t + Yjit

∣∣∣Xit, ai, bt, Uit

)
,

for j = 0, 1. Vit ⊥ ai, bt, Uit|Xit.

Assumption 2.6 Assumption 2.3 holds after replacing supp[α0(x)−u, α1(x)−u] with supp[α0(xit)−

ãi − b̃t − uit, α1(xit)− ãi − b̃t − uit].

Assumption 2.5 is essentially a panel data version of Assumption 2.2.

Theorem 2.2 Let Assumption 2.1, 2.4, 2.5, and 2.6 hold for each individual i in each time period

t. Let fvt denote the density of V in time t. Then

E[IτitDitYit/fvt(Vit|Xit)|Xit]

E[IτitDit/fvt(Vit|Xit)|Xit]
− E[Iτit(1−Dit)Yit/fvt(Vit|Xit)|Xit]

E[Iτit(1−Dit)/fvt(Vit|Xit)|Xit]
= E(Y1it − Y0it|Xit). (8)
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Note that the expectations in Theorem 2.2 are both over time and over individuals. Equation

(8) is essentially identical to ψ(X) in Equation (5), and therefore the corresponding estimator for

panel data is essentially identical to the cross section case from Theorem 2.1, despite the addition

of fixed effects. If the distribution of V varies by time then the density of V must be estimated

separately in each time period, but other than that estimation is the same, just averaging across

all individuals in all time periods. Estimation does not require first differencing or other similar

techniques to remove the fixed effects. As one can see from the proof of Theorem 2.2, this

convenience comes from the fact that fixed effects in the treatment equation are eliminated by

taking expectations after density weighting, and fixed effects in the outcome equation are canceled

out when differencing the average effect for the untreated from the average effect for the treated.

2.3 Consistency and Asymptotic Normality

To ease the notational burden, for the purpose of deriving asymptotic theory we will write IτiDi

as just Di and Iτi(1 − Di) as just (1 − Di), so the fixed trimming term Iτi will be implicit.

Our identification theorem permits fixed trimming, which then allows our limiting distribution

derivation to follow standard arguments like those in Newey and McFadden (1994), avoiding the

complications associated with boundary bias. These assumptions also avoid rates of convergence

issues, yielding estimation of the ATE at rate root n. As noted briefly in Lewbel (2000b) and

discussed more thoroughly in Khan and Tamer (2010), without fixed trimming obtaining root n

rates with inverse density weighted estimators like ours would generally require V to have very

thick tails (such as having infinite variance). Otherwise, attainable rates of convergence may be

considerably slower than root n. Our fixed trimming avoids this thick tails requirement.

For this section, proofs and the standard assumptions regarding kernels, bandwidths and

smoothness are provided in an Appendix, while assumptions that require some discussion are

kept in the main text.

2.3.1 Cross Section Case

We first derive properties for the version of our estimator in which the density function f (V |X)

is known, i.e.,

1

n

n∑
i=1

 Ê
(

DiYi
f(vi|xi)

∣∣∣xi)
Ê
(

Di
f(vi|xi)

∣∣∣xi) −
Ê
(

(1−Di)Yi
f(vi|xi)

∣∣∣xi)
Ê
(

1−Di
f(vi|xi)

∣∣∣xi)
 . (9)
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This version of our estimator might be used in cases when V is determined by experimental design,

but will otherwise typically be infeasible. We then extend these results to handle the usual case

where f is estimated instead of known. Denote h1i = DiYi
f(vi|xi) , g1i = Di

f(vi|xi) , h2i = (1−Di)Yi
f(vi|xi) ,

g2i = 1−Di
f(vi|xi) , ψ1(xi) = E(h1i|xi)

E(g1i|xi) , and ψ2(xi) = E(h2i|xi)
E(g2i|xi) . From Theorem 2.1,

ψ1(xi) = E(Y1|xi), ψ2(xi) = E(Y0|xi).

The sample counterpart estimate for ψ1(xi) is then

ψ̂1(xi) =
Ê (h1i|xi)
Ê (g1i|xi)

. (10)

Define

E
(
h̃1i

∣∣∣xi) = E (h1ifx(xi)|xi) , (11)

E ( g̃1i|xi) = E (g1ifx(xi)|xi) (12)

which can be estimated using leave-one-out kernel estimators

Ê
(
h̃1i

∣∣∣xi) =
1

nhk

n∑
j=1,j 6=i

h1jK

(
xj − xi
h

)
, (13)

Ê ( g̃1i|xi) =
1

nhk

n∑
j=1,j 6=i

g1jK

(
xj − xi
h

)
, (14)

so we can write

ψ̂1(xi) =
Ê
(
h̃1i

∣∣∣xi)
Ê ( g̃1i|xi)

. (15)

Replacing the subscript 1 with 2, similarly define ψ̂2(xi), Ê (h2i|xi) , Ê (g2i|xi) , E
(
h̃2i

∣∣∣xi) ,
E( g̃2i|xi) , Ê

(
h̃2i

∣∣∣xi) , and Ê ( g̃2i|xi). The resulting estimator (9) is then

1

n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)

]
.

Assumptions 4.1 4.2, and 4.3, provided in the Appendix, are all standard. Given these as-

sumptions, the consistency of estimator (9) is established as follows.
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Theorem 2.3 Let the Assumptions in Theorem 2.1 and Assumptions 4.1, 4.2, 4.3, hold, and let

h→ 0 and nhk →∞, as n→∞. Then Equation (9) is a consistent estimator of E(Y1 − Y0).

The proof is in the Appendix. For asymptotic normality, we make additional standard as-

sumptions of boundedness, smoothness, and Lipschitz conditions, used to control bias and the

size of residuals, given by Assumption 4.4 in the Appendix and the folowing.

Assumption 2.7 Define

q1i =

(
h1i

E(g1i|xi)
− E(h1i|xi)g1i

[E(g1i|xi)]2

)
−
(

h2i

E(g2i|xi)
− E(h2i|xi)g2i

[E(g2i|xi)]2

)
+ E(Y1 − Y0|xi)− E(Y1 − Y0).

and assume the second moment of q1i exists.

The following theorem gives the asymptotics for estimator (9), based on showing that q1i

defined above is the influence function for ψ̂1(xi)− ψ̂2(xi)−E(Y1 − Y0).

Theorem 2.4 Let Assumptions 4.4, 2.7, and all of the Assumptions in Theorem 2.3 hold. Let

nh2p → 0 and n1−εh2k+2 →∞ for any small positive ε as n→∞. Then

1

n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)− E(Y1 − Y0)

]
=

1

n

n∑
i=1

q1i + op

(
1√
n

)

and, since observations are i.i.d. across i,

1√
n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)− E(Y1 − Y0)

]
d→ N(0, var(q1i)).

The proof of this theorem is straightforward but lengthy, and so is provided in a supplemental

appendix. The influence function q1i can be decomposed into two pieces. One piece, E(Y1−Y0|xi)−

E(Y1−Y0), comes from estimating expectations as sample averages, while the remaining terms in

q1i embody the effects of the first stage nonparametric estimates. These additional terms in q1i

correspond to δ(zi) in Theorem 8.1 of Newey and McFadden (1994).

We now consider the case where the conditional density f(V |X) is estimated (nonparametri-

cally) instead of being known. The resulting estimator is now

1

n

n∑
i=1

 Ê
(

DiYi
f̂(vi|xi)

∣∣∣xi)
Ê
(

Di
f̂(vi|xi)

∣∣∣xi) −
Ê
(

(1−Di)Yi
f̂(vi|xi)

∣∣∣xi)
Ê
(

1−Di
f̂(vi|xi)

∣∣∣xi)
 . (16)
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Redefine the sample counterpart estimates for ψ1(xi) as

ψ̂1(xi) =
Ê
(
ĥ1i

∣∣∣xi)
Ê ( ĝ1i|xi)

, (17)

where

ĥ1i =
DiYi

f̂(vi|xi)
, ĝ1i =

Di

f̂(vi|xi)
.

Similarly, the sample counterpart estimates for E
(
h̃1i

∣∣∣xi) and E( g̃1i|xi) for estimator (16) are

Ê
(̂̃
h1i

∣∣∣∣xi) =
1

nhk

n∑
j=1,j 6=i

ĥ1jK

(
xj − xi
h

)
, (18)

Ê
(̂̃g1i

∣∣∣xi) =
1

nhk

n∑
j=1,j 6=i

ĝ1jK

(
xj − xi
h

)
. (19)

Let ψ̂2(xi), Ê
(̂̃
h2i

∣∣∣∣xi), and Ê(̂̃g2i

∣∣∣xi) be defined analogously, with subscript 1 replaced by
2. Estimator (16) can then be written as

1

n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)

]
.

Theorem 2.5 Let all the Assumptions in Theorem 2.3 hold, except that nhk+1 →∞, as n→∞.

Then Equation (16) is a consistent estimator of E(Y1 − Y0).

For asymptotic normality, similar to what was imposed for estimator (9), make Assumption

4.5 in the Appendix to control the bias and the size of residuals, and the following.

Assumption 2.8 Define

q2i =

[
h1i

E (g1i|xi)
− E (h1i|xi, vi)

E (g1i|xi)
− E (h1i|xi) g1i

[E (g1i|xi)]2
+
E (h1i|xi)E (g1i|xi, vi)

[E (g1i|xi)]2

]
−
[

h2i

E (g2i|xi)

−E (h2i|xi, vi)
E (g2i|xi)

− E (h2i|xi) g2i

[E (g2i|xi)]2
+
E (h2i|xi)E (g2i|xi, vi)

[E (g2i|xi)]2

]
+ E (Y1 − Y0|xi)− E(Y1 − Y0),

and assume the second moment of q2i exists.

The next theorem provides asymptotics for estimator (16), by showing that q2i is the influence

function for ψ̂1(xi)− ψ̂2(xi)−E(Y1 − Y0) . The additional terms in q2i compared with q1i, and the

13



expectation terms that condition on both X and V instead of just on X, are due to nonparametric

estimation of f(V |X). This makes f̂xv appear in the estimator, where before we only had f̂x.

Theorem 2.6 Let Assumptions 4.5, 2.8 and all Assumptions in Theorem 2.5 hold. Let nh2p → 0,

n1−εh4k+4 →∞ for a very small positive ε, as n→∞. Then

1

n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)− E (Y1 − Y0)

]
=

1

n

n∑
i=1

q2i + op

(
1√
n

)
,

and since observations are i.i.d. across i

1√
n

n∑
i=1

[
ψ̂1(xi)− ψ̂2(xi)− E(Y1 − Y0)

]
d→ N(0, var(q2i)). (20)

This theorem is proved in the supplemental appendix. Compared to Theorem 2.4, in this

theorem stronger rate restrictions are imposed on n and h, because estimation of f(V |X) requires

another summation inside estimator (16).

2.3.2 Panel Data Case

The panel version of our estimator is essentially identical to averaging our cross section estimator

across multiple time periods, because, as noted in the proof of Theorem 2.2, the estimator au-

tomatically accounts for fixed effects. Deriving the asymptotic properties of the panel estimator

is therefore relatively straightforward but tedious. The main differences from the cross section

case come from allowing the distribution of V to vary over time, and accounting for the impact

of fixed effects. To simplify this analysis and to match our empirical application, we take Xit to

be constant in equations (6) and (7), yielding the model

Yit = ai + bt + Y0it + (Y1it − Y0it)Dit, (21)

Dit = I
[
0 ≤ ãi + b̃t + Vit + Uit ≤ α

]
, (22)
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where i = 1, 2, ..., n, t = 1, 2, ..., T, and α is an unknown constant. The sample counterpart we

estimate is then

1
nT

T∑
t=1

n∑
i=1

DitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
f̂vt (vit)

. (23)

The presence of fixed effects affects rates of convergence of the estimator. We consider as-

ymptotics where T is small relative to n. We show
√
T convergence rates in the presence of both

time and cross section dummies (i.e., ai, bt, ãi, and b̃t) and
√
n convergence rates with fixed T ,

without time dummies (keeping ai and ãi but dropping bt and b̃t).

Assumption 2.9 n→∞, T →∞, and T
n → 0.

Assumption 2.10 ai, ãi are i.i.d. across i. bt, b̃t are i.i.d. across t. (Y0it, Y1it) are identically dis-

tributed across i, t. (Uit, Y0it, Y1it)⊥ (Ui′t′ , Y0i′t′ , Y1i′t′) for any i 6= i′, t 6= t′. (Uit, Y0it, Y1it)⊥ (Uit′ , Y0it′ , Y1it′) |ai, ãi
for any i, t 6= t′. (Uit, Y0it, Y1it)| bt, b̃t are i.i.d. across i for any given t.

The assumption that (Y0it, Y1it) is identically distributed over t as well as over i for each t

is made for convenience, and could be relaxed at the expense of additional notation that would

include redefining the estimand to be the average value over time of E(Y1 − Y0|t). We could allow

heterogeneity (non-identical distributions) over the time dimension for other variables as well, but

we do rely on the i.i.d. assumption across i, conditional on t. Variables with the same i or the

same t subscript are correlated with each other through individual or time dummies.

In Assumption 2.10, we define ai, ãi, bt, b̃t as random variables, but we estimate the model

treating them as one would handle fixed effects, without imposing the assumptions that would be

required for random effects estimators. For example, ai and bt are allowed to be correlated with

Uit and Yit in arbitrary unknown ways. Also, based on our identification theorem, ai and bt are

not estimated, but are instead eliminated from the model when taking expectations, analogous

to the elimination of fixed effects by differencing in linear panel models.

Assumption 2.11 E
(
ãi + b̃t + Yjit

∣∣∣Vit, ai, bt, Uit) = E
(
ãi + b̃t + Yjit

∣∣∣ ai, bt, Uit) , for j = 0, 1.

Vit ⊥ ai, bt, Uit. Vit are independent across i and t. Vit are identically distributed across i given t,

with distribution fvt(Vit).
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For each time period t, Assumption 2.11 is equivalent to the cross section special regressor

assumption without X. In addition it is assumed that special regressor observations are indepen-

dent over time, but the distribution of Vit is allowed to vary with t. This independence assumption

could be relaxed, and it would even be possible to let Vit not vary with t, though this would entail

dropping the cross section fixed effects from the model.

As in the cross section case, we first show consistency of our panel estimator (23), and then

give its limiting distribution.

Assumption 2.12 fvt(vit) is three times continuous differentiable in vit. Second moments of

DitYit
fvt (vit)

, Dit
fvt (vit)

, (1−Dit)Yit
fvt (vit)

, and (1−Dit)Yit
fvt (vit)

are uniformly bounded by a positive number M .

Smoothness of fvt is imposed to ensure the consistency of f̂vt . The uniform boundedness in

Assumption 2.12 is stronger than necessary in that it suffi ces to prove convergence of the estimator

in mean square. We use this stronger norm to simplify coping with the fixed effects dummies in

equations (21) and (22).

Theorem 2.7 Let all Assumptions in Theorem 2.2 hold, taking X to be a constant. Also let

Assumption 4.3, 2.9, 2.10, 2.11, 2.12 hold and h→ 0, nh→∞, as n→∞. Then Equation (23)

is a consistent estimator of E(Y1 − Y0).

The asymptotics of estimator (23) uses the additional assumption 4.6 in the Appendix, which

plays the same role as Assumption 4.4, 4.5.

Define

Λ1it =

(
Yit − E(ãi + b̃t + Y1)

)
Dit − E

[(
Yit − E(ãi + b̃t + Y1)

)
Dit

∣∣∣ vit]
fvt(vit)

,

Λ2it =

(
Yit − E(ãi + b̃t + Y0)

)
(1−Dit)− E

[(
Yit − E(ãi + b̃t + Y0)

)
(1−Dit)

∣∣∣ vit]
fvt(vit)

,

Π1it =
Dit

f̂vt(vit)
, Π1 = E

(
Dit

fvt(vit)

)
, Π2it =

1−Dit

f̂vt(vit)
, Π2 = E

(
(1−Dit)

fvt(vit)

)
.

Using these definitions, the following theorem provides asymptotics for estimator (23).
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Theorem 2.8 Let all Assumptions in Theorem 2.7 and Assumption 4.6 hold. Assume that nh2p →

0, n1−εh4 →∞ for a very small positive ε, as n→∞. Then

√
T


1
nT

T∑
t=1

n∑
i=1

DitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
f̂vt (vit)

− E(ãi + b̃t + Y1) + E(ãi + b̃t + Y0)


d→ N

0,
var
(
E
[

Λ1it| bt, b̃t
])

Π
2
1

−
2cov

(
E
[

Λ1it| bt, b̃t
]
,E
[

Λ2it| bt, b̃t
])

Π1Π2

+
var
(
E
[

Λ2it| bt, b̃t
])

Π
2
2

 .

This Theorem is proved in the supplemental appendix. For the case when n and T go to

infinity at the same speed, with additional i.i.d. assumptions across t, we could obtain similar

results as above. More practically, if time dummies are dropped from the model then we can

obtain the faster rate of convergence
√
n instead of

√
T , and we can obtain this rate with fixed

T . We conclude this section by deriving this latter result.

Modify the model and assumption as follows. Let

Yit = ai + Y0it + (Y1it − Y0it)Dit, (24)

Dit = I [0 ≤ ãi + Vit + Uit ≤ α] . (25)

Assumption 2.13 T is finite, n→∞.

Assumption 2.14 ai, ãi are i.i.d. across i. (Y0it, Y1it) are identically distributed across i, and t.

Observations are i.i.d. across i.

Since T is now fixed, we can treat terms inside summation over t as a single term and we do

not need to impose assumptions on the structure along t dimension.

Assumption 2.15 The special regressor Vit satisfies E( ãi + Yjit|Vit, ai, Uit) = E ( ãi + Yjit| ai, Uit) ,

for j = 0, 1. Vit ⊥ ai, Uit. Vit are independent across i and t. Vit are identically distributed across

i given t, with distribution fvt(Vit).

Assumption 2.14 and 2.15 are simplified versions of Assumption 2.10 and 2.11 respectively.

Define

Λ̃1it =
(Yit − E(c̃i + Y1))Dit − E [ (Yit − E(ãi + Y1))Dit| vit]

fvt(vit)
,
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Λ̃2it =
(Yit − E(c̃i + Y0)) (1−Dit)− E [ (Yit − E(ãi + Y0)) (1−Dit)| vit]

fvt(vit)
,

Π̃1it =
Dit

f̂vt(vit)
, Π̃1 = E

(
Dit

fvt(vit)

)
, Π̃2it =

1−Dit

f̂vt(vit)
, Π̃2 = E

(
1−Dit

fvt(vit)

)
.

Corollary 2.9 Let all Assumptions in Theorem 2.2 hold, taking X to be a constant. Also let

Assumption 4.3, 2.12, 4.6, 2.13, 2.14, 2.15 hold and h→ 0, nh→∞, as n→∞. Then

√
n


1
nT

T∑
t=1

n∑
i=1

DitYit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
f̂vt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
f̂vt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
f̂vt (vit)

− E(ãi + b̃t + Y1) + E(ãi + b̃t + Y0)



d→ N

0,

var

(
1
T

T∑
t=1

Λ̃1it

)
Π̃

2

1

−
2cov

(
1
T

T∑
t=1

Λ̃1it,
1
T

T∑
t=1

Λ̃2it

)
Π̃1Π̃2

+

var

(
1
T

T∑
t=1

Λ̃2it

)
Π̃

2

2

 .

The proof of this Corollary follows directly from the proof of Theorem 2.8.

3 Competition and Innovation

We apply our model to test the the "Inverted-U" theory of ABBGH (Aghion, Bloom, Blundell,

Griffi th, and Howitt 2005) relating innovation investments to competitiveness in an industry.

ABBGH consider two types of oligopoly industries, called Neck-and-Neck (NN) industries, in

which firms are technologically close to equal, and Leader-Laggard industries, where one firm is

technologically ahead of others. For these industries there are two opposing effects of competition

on innovation. One is the Schumpeterian effect, where increased competition reduces profits and

thus reduces the incentive to innovate. The second is the escape-competition effect, where firms

innovate to increase the profits associated with being a leader. For these latter firms, increased

competition increases the incentive to innovate. ABBGH argue that the escape-competition effect

dominates in NN industries while the Schumpeterian effect dominates in LL industries. This

theory results in an inverted-U relationship, because low levels of competition are associated with

NN industries and hence with low innovation, by the escape-competition effect, and high levels

of competition are associated with LL industries, again leading to low innovation but now by the
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Schumpeterian effect. In contrast, with an intermediate level of competition, both NN and LL

industries innovate to some extent, yielding a higher overall level of innovation in steady state

than in either the low or high competition industries.

ABBGH find empirical support for the inverted-U based mainly on UK data. Hashmi (2012)

revisits the relationship using a richer dataset from the US, and finds no inverted-U. Hashmi notes

that his finding can be reconciled with the ABBGH model by the assumption that US industries

are dominated by NN industries.

For identification and estimation, both the ABBGH and Hashmi empirical results depend

heavily on functional form assumptions, by fully parameterizing both the relationship of compet-

itiveness to innovation and the functional form of error distributions. In contrast, we apply our

model to test for an inverted-U relationship with minimal restrictions on functional forms and

error distributions.

3.1 Data

Our sample, from Hashmi (2012), consists of US three-digit level industry annual data from 1976 to

2001. There are 116 industries, resulting in 2716 industry-year observations. Our analysis is based

on three key variables: a measure of industry competitiveness, a measure of industry innovation,

and a source-weighted average of industry exchange rates that serves as an instrument, and hence

as our special regressor. Summary statistics for this data are reported in Table 1. We only applied

our estimator to Hashmi’s data and not to ABBGH’s data, because the latter does not contain a

continuous instrumental variable that can be used as a special regressor.

The measure of the level of competition for industry i at time t, denoted cit, is defined by

cit = 1− 1

nit

∑nit

i=1
lit, (26)

where i indexes firms, lit is the Lerner index of the price the cost margin of firm i in year t, and

nit is the number of firms in industry i in year t. The higher cit is, the higher is the level of

competition. The innovation index, denoted yit, is a measure of citation-weighted patent counts,

constructed using data from the NBER Patent Data Project. Details regarding the construction

of this data can be found in Hashmi (2012).

To deal with the mutual endogeneity of competition and innovation, Hashmi uses a source-
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weighted average of industry exchange rates as instrument variable for competition. This in-

strument, Vit, is a weighted average of the US dollar exchange rate with the currencies of trading

partners, with weights that vary by industry according to the share of each country in the imports

to the US. This instrument has been used in other similar applications, including Revenga (1990,

1992) and Bertrand (2004).

3.2 Model Specifications

Hashmi (2012) adopts a control function approach to deal with endogeneity. In a first stage, cit

is regressed on Vit, industry dummies and time dummies, so

cit = Vitβ + ai + bt + wit, (27)

where ai and bt are fixed effects (coeffi cients of industry and time dummies) and wit is the error

from the first stage regression. The fitted residuals ŵit from this regression are then included as

additional regressors in an outcome equation of the form

ln(yit) = ãi + b̃t + θ0 + θ1cit + θ2c
2
it + δŵit + εit, (28)

where ãi and b̃t are outcome equation fixed effects (coeffi cients of industry and time dummies).

Hashmi estimates the coeffi cients in equation (28) by maximum likelihood, where the distribu-

tion of errors εit is determined by assuming that ln (yit) has a negative binomial distribution,

conditional on cit, industry, and year dummies. This model assumes the relationship of ln(y)

to c is quadratic, with an inverted-U shape if θ1 is positive and θ2 negative. The industry and

time dummies cannot be differenced out in this model, and so are estimated along with the other

parameters.

In addition to the possibility that this quadratic is misspecified, or that the endogeneity takes

a form that is not completely eliminated by the control function addition of ŵ as a regressor, or

that the distribution is not negative binomial, Hashmi’s estimates could also suffer the from the

problem of incidental parameters (Neyman and Scott 1948). This problem is that the need to

estimate industry and time fixed effects results in inconsistent parameter estimates unless both

T and n go to infinity. In this application neither T nor n is particularly small, but the presence

of the fixed effects still results in over 100 nuisance parameters to estimate, which can lead to
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imprecision. Our intention is not to criticize Hashmi’s or ABBGH’s model, but only to point out

that there are many reasons why it is desirable to provide a less parametric alternative, to verify

that their results are not due to potential model specification or estimation problems.

To apply our estimator, let the treatment indicator Dit equal one for industries i that have

neither very low nor very high levels of competition in period t, and otherwise let Dit = 0. We

then let innovation yit be determined by

yit = ãi + b̃t + Y0it + (Y1it − Y0it)Dit. (29)

where ãi, b̃t are the industry and time dummies respectively, and Y0it are Y1it are unobserved

potential outcomes for industry i in time t, after controlling for time and industry fixed effects.

Unlike the specific functional form imposed by equation (28), equation (29) is almost completely

unrestricted. Both Y1it and Y0it are random variables with completely unknown distributions that

can be correlated with each other, and with the error term in the Dit equation, in completely

unknown ways. We will then estimate the ATE E(Y1it−Y0it), which equals the average difference

in outcomes y (after controlling for fixed effects), between industries with moderate levels of

competitiveness, versus industries that have very low or very high levels of competitiveness.

What our model assumes about the treatment indicator Dit is

Dit = I(α0 ≤ ai + bt + Vit + Uit ≤ α1), (30)

where ai and bt are industry and time dummies, Uit are unobserved, unknown factors that affect

competition, and α0 and α1 are unknown constants. The way to interpret equation (30) is that

the latent variable c∗it given by

c∗it = ai + bt + Vit + Uit (31)

is some unobserved true level of competitiveness of industry i in time t. Our model does not

require the observed competitiveness measure cit to equal the true measure c∗it, but if they do

happen to be equal then our model implies that Hashmi’s equation (27) is correctly specified.

Note when comparing the models for c∗it and cit to each other that replacing c
∗
it with βc

∗
it to make

equation (31) line up with equation (30) is a free scale normalization that can be made without

loss of generality, because the definition of Dit is unaffected by rescaling c∗it.
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As in Hashmi’s model, our estimator assumes that Vit is a valid instrument, affecting com-

petitiveness c∗it and hence the treatment indicator Dit, but not directly affecting the outcome yit.

We also require that Vit has a large support. This appears to be the case in our data, e.g., the

exchange rate measure sometimes as much as doubles or halves over time even within a single

industry, and varies substantially across industries as well.

3.3 Measurement Errors in Competitiveness

In our empirical application, we define Dit to be one when the observed cit lies between the

.25 and .75 quantiles of the empirical cit distribution (we also experiment with other quantiles).

This is therefore consistent with equation (27) if cit is linear in c∗it. However, our model remains

consistent even if cit differs greatly from c∗it, as long as the middle 50% of industry and time

periods in the cit distribution corresponds to the middle 50% of industry and time periods in the

c∗it distribution.

More generally, suppose cit equals c∗it plus some measurement error. Then the Hashmi model,

even if correctly specified, will be consistent only if this measurement error satisfies the conditions

necessary for validity of their control function estimator. Some control function estimators remain

consistent in models containing measurement errors that are classical, i.e., independent of the true

c∗it and of the true model. However, the Hashmi control function estimator would not be consistent

even with classical measurement errors, because equation (28) is nonlinear in the potentially

mismeasured variable cit (this is not intended as a criticism of Hashmi’s empirical application,

since that work uses control functions only to deal with endogeneity and never made any claims

regarding measurement errors).

In contrast, our estimator can remain consistent in theory even with measurement errors that

are large and nonclassical, as long as cit correctly sorts industries into moderate versus non-

moderate levels of competitiveness. However, in practice, measurement error in cit will likely

cause some industries to be misclassified, so Dit is likely to be mismeasured for some industries

(particularly for some that are near the .25 and .75 quantile cutoffs). Also, in practice we should

expect Hashmi’s control function specification to at least partly correct for potential measurement

error.

To summarize: competitiveness is diffi cult to precisely define and measure, and as a result the

impact of measurement errors on this analysis could be large. One advantage of our methodology
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is that it only depends on sorting industries into two groups (that is, moderate versus extreme

levels of competitiveness as indicated by Dit). While this sorting discards some information and

may therefore cost some effi ciency, it will also mitigate measurement error biases, because only

a small number of observations of Dit are likely to be mismeasured even if most or all of the cit

observations are mismeasured to some extent. To check whether this intuition is correct, in an

appendix we do a monte carlo analysis that compares the accuracy of our estimator with that of

Hashmi’s in the presence of measurement errors.

3.4 Estimation

Our estimator is quite easy to implement, in part because it does not entail any numerical searches

or maximizations. We first estimate the density of Vit separately for each year, using a standard

kernel density estimator

f̂vt(vit) =
1

n− 1

n∑
j 6=i,,j=1

1

h
K

(
vit − vjt

h

)
.

Note that the density is estimated at each of the data points vit. We employ a Gaussian kernel

function K, and choose the bandwidth h using Silverman’s rule of thumb. Our estimator involves

dividing by these nonparametric density estimates, which can result in outlier observations when

f̂ is close to zero. As suggested in Lewbel (2000) and Dong and Lewbel (2012) for other special

regressor based estimators, we trim out (i.e., discard from the sample) the 2% of observations

with the smallest values of f̂vt . This defines the trimming function Iτ (v) from our asymptotic

theory.

Given the density estimates f̂vt(vit), our resulting estimate of the ATE E(Y1it − Y0it) is then

given by

Trim-ATE =

∑
i

∑
t Iτ (vit)DitYit/f̂vt(Vit)∑

i

∑
t Iτ (vit)Dit/f̂vt(Vit)

−
∑

i

∑
t Iτ (vit)(1−Dit)Yit/f̂vt(Vit)∑

i

∑
t Iτ (vit)(1−Dit)/f̂vt(Vit)

(32)

where the i and t sums are over the 98% of observations that were not trimmed out. This model

corresponds to the estimator (23), which has standard errors that we calculate based on the

asymptotic distribution provided in Theorem 2.8. To assess the effect of the trimming on this
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estimator, we construct a corresponding estimate of ATE that is not trimmed, given by

No-Trim-ATE =

∑
i

∑
tDitYit/f̂vt(Vit)∑

i

∑
tDit/f̂vt(Vit)

−
∑

i

∑
t(1−Dit)Yit/f̂vt(Vit)∑

i

∑
t(1−Dit)/f̂vt(Vit)

. (33)

For comparison, in addition we calculate a Naive-ATE estimator given by

Naive-ATE =

∑
i

∑
tDitYit∑

i

∑
tDit

−
∑

i

∑
t(1−Dit)Yit∑

i

∑
t(1−Dit)

. (34)

This Naive-ATE just subtracts the average value of Yit when Dit = 0 from the average value of Yit

when Dit = 1. This would be a consistent estimator of the ATE if treatment were unconfounded,

that is, if low or high competitiveness as indicated by Dit was randomly assigned over firms

and time periods. One could also consider a LATE estimator such as an instrumental variables

regression of Y on D using V as an instrument. However, as noted in the introduction, LATE

requires that the probability of treatment increase monotonically with the instrument. This

requirement does not hold in our application, since both increasing or decreasing V suffi ciently

causes the probability of treatment to decrease.

We also compare our results to a parametric maximum likelihood estimate of the ATE (de-

noted ML-ATE) assuming a Heckman (1979) type selection model for treatment. This model

assumes equations (29) and (30) hold and that U , Y0, Y1 are jointly normally distributed. Let

Φ denote the standard normal cumulative distribution function, θ0 = E (Y0), θ1 = E (Y1), and

σ = cov [U, Y0, Y1] be the three by three covariance matrix of elements σkl for k = 1, 2, 3 and

l = 1, 2, 3. Then the ML-ATE is defined by

ML-ATE = θ̂1 − θ̂0 where
[
θ̂0, θ̂1, α̂0, α̂1, [σ̂kl]3×3

]
= arg max

∑
i

∑
t{

(1−Dit) log

(
Φ

(
Yit − θ0

σ22

)[
Φ

(
α0 − Vit − σ12

σ22
(Yit − θ0)√

σ11 − σ2
12/σ22

)
+ 1− Φ

(
α1 − Vit − σ12

σ22
(Yit − θ0)√

σ11 − σ2
12/σ22

)])

+Dit log

(
Φ

(
Yit − θ1

σ33

)[
Φ

(
α1 − Vit − σ13

σ33
(Yit − θ1)√

σ11 − σ2
13/σ33

)
− Φ

(
α0 − Vit − σ13

σ33
(Yit − θ1)√

σ11 − σ2
13/σ33

)])}
.

3.5 Empirical Results

Figure 1 shows our kernel density estimates f̂vt for each year t. The estimates can be seen to

vary quite a bit over time, so we use separate density estimates for each year instead of assuming

24



a constant distribution across years. Figure 2 shows a scatterplot of our competitiveness and

innovation data. It is diffi cult to discern any clear relationship between the two by eye.

Table 2 shows our main empirical results. The first row of Table 2 provides estimates where

Dit is defined to equal one for the middle half of the data, that is, Dit equals one for firms and

years that lie between the 25th and 75th percent quantiles of the observed measure of competition,

making half the observations treated and the other half untreated. Other rows of Table 2 report

results using different quantiles to define Dit. In each row of Table 2 we report four estimates of

ATE, as described in the previous section. Standard errors for all the estimates are provided in

parentheses.

An inverted-U would imply a positive ATE, but all of our estimates are negative, confirm-

ing Hashmi’s finding that the inverted-U is not present in US data, perhaps because the US is

dominated by NN type industries. For example, our main estimate from the first row of Table

2 is that the Trim-ATE equals −3.9, and is strongly statistically significant. We conclude that

Hashmi’s main result regarding signs of the effect is likely genuine and not due to possible model

specification errors.

We also find that failure to appropriately control for error correlations between competitiveness

and innovation substantially biases the magnitudes of estimated treatment effects. Our semipara-

metric estimates of the ATE are 50% to 100% larger than both the naive estimates that ignore

these correlations, and the maximum likelihood estimates that allow for correlations but requires

the errors to be jointly normally distributed.

Attempts to find a positive ATE by experimenting with more unusual quantiles for defining

Dit were for the most part fruitless. An exception, based on examination of Figure 2, was to

define the left and right thresholds by 0.62 (10%) and 0.68 (20%) respectively. This implies a

heavily skewed inverted U where 80% of firms are in the upper tail. This yields a positive ATE

of 8.66, but this model is implausible, since it treats a very narrow spike in Figure 2 as the set

of all moderately sized firms. We also experimented with varying the degree of trimming, but we

only report results without trimming and with 2% percent trimming because the impacts of other

changes in trimming were very small.
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3.6 Monte Carlo designed for the empirical example

To assess how the estimator works in small samples, we provide two sets of Monte Carlo ex-

periments. We designed these experiments to closely match moments and other features of our

empirical data, to see how likely our estimator is to perform well in a controlled setting that mim-

ics our actual application. The number of observations is set to 2716, the same as the number of

observations in our empirical dataset. The same four estimators we applied on the actual data,

Trim-ATE, No-Trim-ATE, Naive-ATE and ML-ATE, are analyzed in each set of Monte Carlo

simulations

Let e1i, e2i, e3i, and Vi be random variables that are drawn independently of each other. We

consider a few different distributions for these variables as described below. The counterfactual

outcomes in our simulation are defined by

Y0i = θ0 + θ01e1i + θ02e3i and Y1i = θ1 + θ11e2i + θ12e3i.

True competitiveness is constructed to equal Vi + θ2e3i, and treatment Di is defined to equal one

for observations i that lie between the 25th and 75th quantile of the distribution of Vi + θ2e3i.

The observed outcome is then constructed as

Yi = Y0i + (Y1i − Y0i)Di.

For simplicity, fixed effect type dummies are omitted from the model. Note that e3i appears

in Di, Y0i, and Y1i, and so is the source of confounding in this model. By construction, the

unobserved Ui in our theoretical model is given by Ui = θ2e3i. Let θ denote the vector of

parameters (θ0, θ1, θ2, θ01, θ02, θ11, θ12). In each Monte Carlo experiment the parameter vector θ

is set to match moments and outcomes of our actual data, specifically, they are set to make the

ATE θ1− θ0 equal our estimate −3.90, and to make the mean and variance of Yi and Di, and the

covariance between Yi and Di, equal the values observed in our data. The variance of Vi is freely

normalized (inside the binomial response indicator) to equal one.

The ML-ATE estimator is asymptotically effi cient when e1i, e2i, and e3i are normally distrib-

uted. In our first experiment we let e1i, e2i, e3i, and Vi each have a standard normal distribution,

so the resulting ML-ATE estimates can then serve as an effi cient benchmark.
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As noted by Khan and Tamer (2010), single threshold crossing model special regressor estima-

tors converge at slow rates when fv has thin tails, as in the previous design. Although their results

are not directly applicable to this paper’s two threshold model, it is still sensible to see if our

estimator works better with thicker tails, so our second experiment gives e1i, e2i, e3i, and Vi each

a uniform distribution on [−0.5, 0.5]. Note this is still likely not the best case for our estimator,

since Khan and Tamer (2010) note that special regressor methods converge fastest when V has a

thick tail and all other variables have thin tails.

Both the normal and uniform designs have symmetric errors, which favors the ML alternative

over our estimator. However, with symmetric errors it is impossible to define a vector θ that

matches all the moments of the empirical data, because symmetry prevents matching the empirical

covariance between Y and D. Therefore, in both designs we choose values for θ that match all

the other moments and come as close as possible to matching this covariance (the required values

for θ are given in the footnote of Table 3).

To match the empirical correlation between Y and D along with other moments, we next

consider designs that introduce asymmetry into the confounder e3i. In our third experiment, we

let e1i, e2i, and Vi be standard normal and let e3i be a modified normal, equaling a standard

normal with probability one half when e3i < 0 and equaling θ3 times a standard normal with

probability one half when e3i ≥ 0. When then choose θ3 along with the other elements of θ to

match the moments of the empirical data including the covariance of Y with D. This required

setting θ3 = 2.65. Similarly, in a fourth experiment we let e1i, e2i, and Vi be uniform on [−0.5, 0.5]

and take e3i to equal a (demeaned) mixed uniform distribution. This mixture was uniform on

[−2, 0] with probability one half and uniform on [0, 5] with probability one half, before demeaning.

Each of these four Monte Carlo experiments was replicated 10,000 times, and the results are

summarized in Table 3. Panel A in Table 3 is the symmetric normal design. Because of symmetry,

all of the estimators in this design are unbiased. ML, being effi cient here, has the lowest root

mean squared error (RMSE), and the naive estimator is almost as effi cient as ML in this case,

since it just involves differencing simple covariance estimates. Our Trim-ATE estimator performs

reasonably well compared to the effi cient estimator, being unbiased and having a RMSE of .43

versus the effi cient .30. Trimming improves the RMSE enormously here, as expected because fv

has thin tails, which produces outliers in the denominator of averages weighted by fv.

Panel B of Table 3 shows that, in the symmetric uniform design, all four estimators are almost
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identical. The happens because, with V is uniform, f̂v is close to a constant, and the estimators

for the average effects of the treated and the untreated are close to their sample means.

In the asymmetric designs, given in panels C and D of Table 3, the ML-ATE and Naive-ATE

are no longer consistent, and both become substantially downward biased, with an average value

of about one half the true value of −3.90. In contrast, our trimmed and untrimmed ATE estimates

had far smaller downward biases, resulting in much smaller RMSE, particularly for the Trim-ATE.

The differences in biases between the inconsistent estimators (ML-ATE and NAIVE-ATE) and

our proposed estimator in these asymmetric Monte Carlos closely match the observed differences

in our empirical application estimates. Specifically, in case 1 of Table 2 the estimated ATE using

the ML and Naive estimators is about one half the estimate of −3.90 we obtained using Trim-ATE.

This provides evidence that the Monte Carlo results in panels C and D of Table 3 are relevant for

assessing the empirical performance of our proposed estimator.

In addition to assessing the quality of estimators we also assess the quality of associated

standard error estimates, by providing, in the last column of Table 3, the percentage of times the

true ATE fell in the estimated 95% confidence interval (defined as the estimated ATE plus or minus

two estimated standard errors). In the symmetric designs all the estimated standard errors for all

the estimators were too large, yielding overly conservative inference. In the asymmetric designs

the estimated 95% confidence intervals of the inconsistent estimators ML-ATE and NAIVE-ATE

were very poor, containing the true value less than 25% of the time. The No-Trim-ATE did much

better, but our preferred estimator, Trim-ATE, was by far the best, giving correct 95% coverage

in panel C, and conservative 99% coverage in panel D.

4 Conclusions

In this article, we propose a new method to estimate the average treatment effect in a two threshold

model, where the treated group is a middle choice. In our application, treatment is defined as

facing an intermediate level of competition, versus a low or high level of competition.

The proposed model is confounded, because the unobservables that affect the treatment indi-

cator D can be correlated in unknown ways with potential outcomes Y0 and Y1, with or without

conditioning on other covariates. No parametric or semiparametric restrictions are placed on

distributions of treatment and potential outcomes, so treatment effects are not identified by func-
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tional form. Our model assumes a continuous instrument V with large support, but treatment

effects are not identified at infinity, because both very large and very small values of V drive

the probability of treatment close to zero, while no value of V (or of other covariates) drives the

probability of treatment close to one. So in this framework none of the conditions that are known

to permit point identification of the ATE hold. Even the monotonicity conditions usually required

for identifying LATE are not satisfied. Nevertheless, we show that the ATE is identified, using a

special regressor argument, and we provide conditions under which the corresponding estimate of

the ATE is consistent, and root-n normal. Root-n consistency is even obtained in a panel context

with fixed effects, despite nonlinearities that would usually induce an incidental parameters prob-

lem in the equaiton determining probability of treatment. We provide Monte Carlo results that

show that our estimator works well in small samples (comparable to the data in our empirical

application) we show in an Appendix that our estimator is relatively robust to measurement error

and misspecification.

We use our method to investigate the relationship between competition and innovation. Our

estimates using a dataset from Hashmi (2012) confirm Hashmi’s findings that an inverted-U is

not present in US data. We also find that standard parametric model and naive treatment effect

estimators substantially underestimate the magnitude of the treatment effect in this context.
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Appendix A: Robustness to Measurement Errors

Observable indices of competitiveness of an industry, like the average Lerner index in equation

(26), may be relatively crude measures of true competitiveness. In this section we therefore

assess the robustness of our estimator, relative to a parametric model estimator like Hashmi’s,

to measurement error in the index of competitiveness. we first show that both models, as one

would expect, become inconsistent if competitiveness is mismeasured, even when the models are

otherwise correctly specified. However, we also show that the bias in our estimator resulting from

measurement error is quite small relative to alternative estimators.

First consider the case where competitiveness is mismeasured, but a parametric model like

Hashmi’s (dropping fixed effects for simplicity) is the correct specification in terms of true com-
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petitiveness. This model assumes

lnY = θ0 + θ1c
∗ + θ2c

∗2 + ẽ, (35)

where lnY is logged innovation, c∗ is the true level of competitiveness, and ẽ is an error term.

For simplicity we ignore discreteness in lnY , and we assume c∗ can be linearly decomposed into

the observable instrument V and an unobserved independent component W , so

c∗ = V +W . (36)

Assume validity of Hashmi’s control function type assumption that ẽ = λW + e where e is

independent of W and V , so

lnY = θ0 + θ1c
∗ + θ2c

∗2 + λW + e (37)

In this model, if c∗ were observed, then control function estimation (first regressing c∗ on a

constant and V , getting the residuals Ŵ , and then regressing lnY on a constant, c∗, c∗2, and Ŵ )

would consistently estimate the θ coeffi cients and hence any desired treatment effects based on θ.

Now assume the observable competitiveness measure c equals the true measure c∗ plus mea-

surement error ce, so

c = c∗ + ce, (38)

where ce is the measurement error and independent of c∗ and e. To take the best case scenario for

the parametric model, assume that the measurement error ce has mean zero and is independent

of V , W , and e.

Substituting equation (38) into Equation (37) gives

lnY = θ0 + θ1c+ θ2c
2 + λW + e∗ (39)

where

e∗ = θ1ce − 2θ2cce − θ2c
2
e + e.

The error e∗ does not have mean zero and correlates with c and c2, which makes the control

function estimator inconsistent. Unlike the case of linear models with independent mean zero
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measurement errors, the control function estimator is not consistent because of the nonlinearity

in this model.

Now consider applying our nonparametric estimator to this model. The treatment indicator D

that we would construct is defined as equaling one for firms in the .25 to .75 quantile of c and zero

otherwise, while the corresponding indicator D∗ based on the true measure of competitiveness

equals one for firms in the .25 to .75 quantile of c∗ and zero otherwise. Unless the measurement

error ce is extremely large, for the large majority of firms D will equal D∗. This is part of what

makes our estimator more robust to measurement error. Even if all firms have c mismeasured to

some extent, most will still be correctly classified in terms of D.

To check the relative robustness of these estimators to measurement error, we perform addi-

tional Monte Carlo analysis. As before, we construct simulated data to match moments and the

sample size of the empirical data set, and to make what would be the true treatment effect in the

model match our empirical estimate of −3.9. We do two simulations, one using normal errors and

one based on uniform errors, as before. In both, V and W are scaled to have equal magnitudes,

so V = δ0 + δ1ε1 and W = δ0 + δ1ε2. To match data moments, the normal error simulations set

δ0 = 0.375, δ1 = 0.0733, and ce = κ1ε3 where ε1, ε2, and ε3 are independent standard normals

and κ1 is a constant with values that we vary to obtain different magnitudes of measurement

error. The uniform error simulations set δ0 = δ1 = 0.25, and ce ∼ κ2(ε3 − 0.5), where now ε1, ε2,

and ε3 are independent random variables that are uniformly distributed on [0, 1].

To check for robustness against an alternative specification as well as measurement error, we

also generate data replacing the quadratic form in Equation (35) with the step function

lnY = θ0 + (θ1 − θ0)D∗ + ẽ, (40)

where D∗, D, c∗, c, V , W , and e are all defined as above.

The Monte Carlo results, based on 10,000 replications, are reported in Tables 4 and 5. In

addition to trying out the four estimators we considered earlier, (Trim-ATE, No-Trim-ATE, Naive-

ATE, and ML-ATE) we also apply the control function estimator described above, analogous to

Hashmi’s estimator.

Our main result is that, with both normal and uniform errors, the greater the magnitude of

measurement error is (that is, the larger the κ1 and κ2 are), the better our estimator performs
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relative to other estimators. For the quadratic model without measurement error the control func-

tion would be a consistent parametric estimator and so should outperforms our semiparametric

estimator. We find this also holds with very small measurement error (e.g., κ1 = .02 in the left

side block of Table 4), however, both control function and Trim-ATE perform about equally at

κ1 = .03, and at the still modest measurement error level of κ2 = .04, Trim-ATE has smaller

RMSE (root mean squared error) than all the other estimators, including control function. Simi-

lar results hold for the uniform error model reported in Table 5. Also, in the step function model

(shown on the right side of Tables 4 and 5) our Trim-ATE is very close to, or superior to, all the

other estimators including control functions at all measurement error levels.

It is worth noting that possible measurement error affects our empirical application only be-

cause we defined treatment D in terms of an observed, possibly mismeasured underlying variable,

competitiveness. In other applications the treatment indicator may be observed without error even

when an underlying latent measure is completely unobserved. For example, suppose an outcome

Y is determined in part by an individual’s chosen education level, which in turn is determined by

an ordered choice specification. The true education level of a student might be unobserved, but

a treatment D defined as having graduated high school but not college could still be correctly

measured.

Appendix B: Additional Assumptions and Proofs

Proof of Theorem 2.1. To prove this look first at

E
(

IτDY

f (V | X)
| U,X

)
= E

[
E
(

IτDY1

f (V | X)
| V,U,X

)
| U,X

]
= E

[
IτI [α0 (X) ≤ V + U ≤ α1 (X)]E (Y1 | V,U,X)

f (V | X)
| U,X

]
=

∫
supp(V |U,X)

IτI [α0 (X)− U ≤ v ≤ α1 (X)− U ]E (Y1 | U,X)

f (v | X)
f (v | U,X) dv

=

∫ α1(X)−U

α0(X)−U

E (Y1 | U,X)

f (v | X)
f (v | X) dv = E (Y1 | U,X)

∫ α1(X)−U

α0(X)−U
1dv

= [α1 (X)− α0 (X)]E (Y1 | U,X) ,

the fourth equality holds by Assumption 2.3.
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Therefore

E

(
IτDY

f (V | X)
| X
)

= [α1 (X)− α0 (X)]E (Y1 | X)

The same analysis dropping Y gives

E

(
IτD

f (V | X)
| X
)

= α1 (X)− α0 (X)

so

E

(
IτDY

f (V | X)
| X
)

= E (Y1 | X)E

(
IτD

f (V | X)
| X
)

Similarly,

E

(
Iτ (1−D)Y

f (V | X)
| X
)

= E

(
Iτ (1−D)Y0

f (V | X)
| X
)

= E

(
IτY0

f (V | X)
| X
)
− E

(
IτDY0

f (V | X)
| X
)

= E (Y0 | X)E

(
Iτ

f (V | X)
| X
)
− [α1 (X)− α0 (X)]E (Y0 | X)

= E (Y0 | X)E

(
Iτ

f (V | X)
− [α1 (X)− α0 (X)] | X

)
= E (Y0 | X)E

(
Iτ (1−D)

f (V | X)
| X
)

Together these equations prove the result.
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Proof of Theorem 2.2. The proof is analogous to that of Theorem 2.1.

E

(
IτitDitYit
fvt (Vit|Xit)

∣∣∣∣Uit, ai, bt, Xit

)
= E

E
IτitDit

(
ãi + b̃t + Y1it

)
fvt (Vit|Xit)

| Vit, Uit, ai, bt, Xit

 | Uit, ai, bt, Xit


= E

IτitI (α0(Xit) ≤ ai + bt + Vit + Uit ≤ α1(Xit))E
(
ãi + b̃t + Y1it | Vit, uit, ai, bt, Xit

)
fvt (Vit|Xit)

| Uit, ai, bt, Xit


=

∫
supp(Vit|Uit,ai,bt,Xit)

IτitI (α0(Xit)− ai − bt − Uit ≤ vit ≤ α1(Xit)− ai − bt − Uit)
fvt (vit|Xit)

E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
fvt (vit | Uit, ai, bt, Xit) dvit

=

∫ α1(Xit)−ai−bt−Uit

α0(Xit)−ai−bt−Uit

E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
fvt (vit|Xit)

fvt (vit|Xit) dvit

= E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)∫ α1(Xit)−ai−bt−Uit

α0(Xit)−ai−bt−Uit
1dvit

= E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
[α1(Xit)− α0(Xit)]

and therefore

E [IτitDitYit/fvt (Vit|Xit) |Xit]

= E
[
E
(
ãi + b̃t + Y1it | Uit, ai, bt, Xit

)
[α1(Xit)− α0(Xit)] |Xit

]
= E

(
Y1it + ãi + b̃t

∣∣∣Xit

)
[α1(Xit)− α0(Xit)] .

Given the above result, the rest of the proof follows similarly as in the proof for Theorem 2.1.

Assumption 4.1 Observations are i.i.d. across i.

Assumption 4.2 E(h1i|xi), E(h2i|xi), E(g1i|xi), E(g2i|xi), fx(xi), fv(vi), and fxv(xi, vi) are

three times continuously differentiable in x, v. E(h1i|xi), E(h2i|xi), E(g1i|xi), and E(g2i|xi) are

bounded. E(h2i|xi) and E(g2i|xi) are bounded away from zero. Second moments of h1i, g1i, h2i,

and g2i exist.

Assumption 4.3 The kernel functions K(v), K(x), and K(x, v) have supports that are convex

and bounded on R1, Rk, and Rk+1 respectively. Each kernel function integrates to one over its
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support, is symmetric around zero, and has order p, i.e., for K(x),

∫
Rk
xl11 ...x

lk
k K(x)dx = 0 for l1 + ...+ lk < p,

∫
Rk
xl11 ...x

lk
k K(x)dx 6= 0 for some l1 + ...+ lk = p,

where l1, ..., lk are nonnegative integers and
∫
K(x)2dx,

∫
‖x‖K(x)dx are finite. This similarly

holds for K(v) and K(x, v).

Proof of Theorem 2.3. Under Assumptions 4.1, 4.2, 4.3, and the assumption on n and

h, Ê (h1i|xi) , Ê (h2i|xi) , Ê (g1i|xi) , Ê (g2i|xi) are uniformly consistent estimates of E(h1i|xi) ,

E(h2i|xi) , E(g1i|xi) , E(g2i|xi) , respectively (see, e.g., Theorem 2.2 in Li and Racine 2007). So

Equation (9) is equal to

1

n

n∑
i=1

E
(

DiYi
f(vi|xi)

∣∣∣xi)
E
(

Di
f(vi|xi)

∣∣∣xi) −
E
(

(1−Di)Yi
f(vi|xi)

∣∣∣xi)
E
(

1−Di
f(vi|xi)

∣∣∣xi)
+ op(1) =

1

n

n∑
i=1

ψ (xi) + op(1).

By Kolmogorov’s law of large numbers, this converges to E[ψ (X)] , which equals E(Y1 − Y0) by

Theorem 2.1.

Assumption 4.4 Let r1(xi) = 1
E(g̃1i|xi) , s1i = h1i, r2(xi) =

E(h̃1i|xi)
E(g̃1i|xi)2

, s2i = g1i, r3(xi) = 1
E(g̃2i|xi) ,

s3i = h2i, r4(xi) =
E(h̃2i|xi)
E(g̃2i|xi)2

, and s4i = g2i. Then for each rj(xi) and sji, j = 1, 2, 3, 4, and fx

there exists some positive numbers M1, M2, M3 such that

|E(sji|xi + ex)− E(sji|xi)| ≤M1 ‖ex‖ ,

|rj(xi + ex)− rj(xi)| ≤M2 ‖ex‖ ,

|fx(xi + ex)− fx(xi)| ≤M3 ‖ex‖ .

E(sji|xi), rj(xi), and fx are bounded and p-th order differentiable in x, and the p-th order deriv-

atives are bounded.

Proof of Theorem 2.5. By nhk+1 →∞, for the same reasons as in Theorem 2.3, f̂(vi|xi) is a

uniformly consistent estimator for f(vi|xi). By Assumption 4.2, those terms inside the estimate
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are bounded, so Equation (16) is equal to

1

n

n∑
i=1

 Ê
(

DiYi
f(vi|xi)

∣∣∣xi)
Ê
(

Di
f(vi|xi)

∣∣∣xi) −
Ê
(

(1−Di)Yi
f(vi|xi)

∣∣∣xi)
Ê
(

1−Di
f(vi|xi)

∣∣∣xi)
+ op(1),

where the first term converges to E(Y1 − Y0) by Theorem 2.3.

Assumption 4.5 Let r5(xi) = 1
E( g̃1i|xi) , s5i = DiYi

fxv(xi,vi)
, r6(xi) = r5(xi), s6i = DiYifx(xi)

f2xv(xi,vi)
, r7(xi) =

1
E( g̃2i|xi) , s7i = (1−Di)Yi

fxv(xi,vi)
, r8(xi) = r7(xi), and s8i = (1−Di)Yifx(xi)

f2xv(xi,vi)
. Then for each rj(xi) and sji,

j = 5, 6, 7, 8, fx, fxv there exists some positive constants M1,M2,M3 and M4 such that

|E(sji|xi + ex, vi + ev)− E(sji|xi, vi)| ≤M1 ‖(ex, ev)‖ ,

|rj(xi + ex)− rj(xi)| ≤M2 ‖ex‖ ,

|fx(xi + ex)− fx(xi)| ≤M3 ‖ex‖ ,

|fxv(xi + ex, vi + ev)− fxv(xi, vi)| ≤M4 ‖(ex, ev)‖ .

E(sji|xi, vi), rj(xi), fx, and fxv are bounded and p-th order differentiable in x, and the p-th order

derivatives are also bounded.

Proof of Theorem 2.7. Similar to the proof of Theorem 2.5, f̂vt is a uniformly consistent

estimator for fvt , and as a result equation (23) is equal to

1
nT

T∑
t=1

n∑
i=1

DitYit
fvt (vit)

1
nT

T∑
t=1

n∑
i=1

Dit
fvt (vit)

−

1
nT

T∑
t=1

n∑
i=1

(1−Dit)Yit
fvt (vit)

1
nT

T∑
t=1

n∑
i=1

(1−Dit)
fvt (vit)

+ op(1). (41)

By Assumptions 2.9, 2.10, 2.11, 2.12 from Lemma 4.5, and 4.6 in the Supplemental Appendix, we

have that the probability limit of Equation (41) is

E
(
DitYit
fvt (vit)

)
E
(

Dit
fvt (vit)

) − E
(

(1−Dit)Yit
fvt (vit)

)
E
(

(1−Dit)
fvt (vit)

) ,

which equals E(Y1 − Y0) by Theorem 2.2.

40



Assumption 4.6 Let s9it = DitYit and s10it = (1−Dit)Yit. Then for each sjit, j = 9, 10 and

fvt , there exists some positive numbers M1 and M2 such that

|E(sjit|vit + ev)− E(sjit|vit)| ≤M1 |ev| ,

|fvt(vit + ev)− fvt(vit)| ≤M2 |ev| .

E (sjit|vit) , fvt are bounded and p-th order differentiable in v, and their p-th order derivatives are

also bounded.
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Table 1: Summary Statistics of the US Dataset

MEAN SD LQ MED UQ

Competition 0.76 0.11 0.70 0.76 0.83

Innovation 5.53 9.98 0.22 1.59 5.77

Source-weighted Interest Rate 0.91 0.23 0.79 0.87 0.99

Note: MEAN = mean. SD = standard errors. LQ = 25% quantile (lower). MED = 50% quantile (median).
UQ = 75% quantile (upper).

Table 2: Empirical Estimates in Various Cases

Right Threshold Left Threshold Trim-ATE No-Trim-ATE Naive-ATE ML-ATE

Case 1 25% (0.70) 75% (0.83) −3.90 (0.78) −4.25 (0.73) −1.89 (0.38) −1.85 (0.39)
Case 2 33% (0.72) 67% (0.80) −3.27 (0.57) −3.47 (0.63) −1.67 (0.36) −1.69 (0.37)
Case 3 10% (0.63) 90% (0.89) −2.77 (1.17) −2.75 (1.07) −1.95 (0.55) −4.40 (3.48)
Case 4 20% (0.68) 80% (0.85) −4.25 (0.84) −4.62 (0.83) −2.22 (0.42) −2.12 (0.43)
Case 5 30% (0.71) 70% (0.82) −3.54 (0.63) −3.95 (0.62) −1.83 (0.36) −1.81 (0.37)
Case 6 40% (0.74) 60% (0.79) −2.49 (0.51) −2.58 (0.59) −1.18 (0.41) −1.48 (0.39)
Notes: Right Threshold and Left Threshold are the α and α in Equation (30) respectively. The first value is

the percentage of competition set for the thresholds, with corresponding value of competition in the parenthesis.
Four different estimates are reported here, with standard errors in parenthesis. Trim-ATE and No-Trim-ATE are
our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an estimate for E(Y1|T =
1)− E(Y0|T = 0). ML-ATE is Heckman’s selection MLE.
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Table 3: Monte Carlo results matching the empirical data

MEAN(−3.9) SD LQ MED UQ RMSE MAE MDAE %2SE

Panel A: Symmetric setting with normal errors

Trim-ATE −3.90 0.43 −4.19 −3.90 −3.61 0.43 0.34 0.00 1.00

No-Trim-ATE −3.90 1.22 −4.67 −3.92 −3.12 1.22 0.95 0.02 1.00

Naive-ATE −3.90 0.32 −4.11 −3.90 −3.68 0.32 0.25 0.00 1.00

ML-ATE −3.90 0.30 −4.10 −3.90 −3.70 0.30 0.24 0.00 1.00

Panel B: Symmetric setting with uniform errors

Trim-ATE −3.90 0.38 −4.16 −3.90 −3.64 0.38 0.31 0.00 1.00

No-Trim-ATE −3.90 0.38 −4.16 −3.90 −3.64 0.38 0.31 0.00 1.00

Naive-ATE −3.90 0.38 −4.16 −3.90 −3.65 0.38 0.30 0.00 1.00

ML-ATE −3.91 0.38 −4.17 −3.90 −3.65 0.38 0.30 0.00 1.00

Panel C: Asymmetric setting with normal errors

Trim-ATE −3.21 0.51 −3.55 −3.21 −2.87 0.86 0.73 0.69 0.95

No-Trim-ATE −3.65 1.33 −4.50 −3.65 −2.81 1.35 1.06 0.25 0.77

Naive-ATE −1.99 0.34 −2.21 −2.00 −1.77 1.94 1.91 1.90 0.15

ML-ATE −1.98 0.35 −2.22 −1.98 −1.75 1.95 1.92 1.92 0.15

Panel D: Asymmetric setting with uniform errors

Trim-ATE −3.45 0.48 −3.77 −3.45 −3.12 0.66 0.54 0.45 0.99

No-Trim-ATE −3.76 1.08 −4.47 −3.76 −3.06 1.09 0.86 0.14 0.85

Naive-ATE −1.84 0.37 −2.08 −1.84 −1.59 2.10 2.06 2.06 0.09

ML-ATE −2.07 0.39 −2.34 −2.07 −1.81 1.87 1.83 1.83 0.25

Note: True E(Y1)−E(Y0) = −3.9. Parameters set (θ0, θ1, θ01, θ02, θ11, θ12, θ2) for the four MC in order are as
follows: (6.94 3.04 5.64 8.44 6.71 4.87 1.06), (6.97 3.07 23.67 −24.30 22.62 25.72 1.07), (6.67 2.77 6.57 −2.91 4.51
−5.43 0.43), (7.41 3.51 8.43 −4.27 5.47 −1.47 0.55). Trim-ATE and No-Trim-ATE are our proposed estimator with
and without trimming (2%) respectively. Naive-ATE is an estimate for E(Y1|T = 1) − E(Y0|T = 0). ML-ATE is
Heckman’s selection MLE. All statistics are for the simulation estimates. MEAN = mean. SD = standard errors.
LQ = 25% quantile (lower). MED = 50% quantile (median). UQ = 75% quantile (upper). RMSE = root mean
square errors. MAE = mean absolute errors. MDAE = median absolute errors. %2SE = percentage of simulations
in which the true coeffi cient was within two estimated standard errors of the estimated coeffi cient.
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Table 4: Robust check: Monte Carlo with normal errors

Quadratic Step

MEAN (≈ −3.9) SD RMSE MEAN (−3.9) SD RMSE

Panel A: κ1 = 0.02, Noise Ratio = 0.19

Trim-ATE −4.23 0.46 0.49 −3.19 0.41 0.82

No-Trim-ATE −7.79 1.57 4.20 −3.31 1.04 1.20

Naive-ATE −3.75 0.38 0.39 −3.14 0.34 0.83

ML-ATE −3.67 0.73 0.76 −3.10 0.66 1.04

Control Function −3.74 0.24 0.31 −1.38 0.20 2.52

Panel B: κ1 = 0.03, Noise Ratio = 0.28

Trim-ATE −4.08 0.42 0.42 −2.85 0.42 1.11

No-Trim-ATE −7.68 1.61 4.11 −2.96 1.11 1.46

Naive-ATE −3.60 0.37 0.47 −2.79 0.34 1.16

ML-ATE −3.54 0.74 0.82 −2.74 0.64 1.33

Control Function −3.59 0.23 0.41 −1.33 0.21 2.58

Panel C: κ1 = 0.04, Noise Ratio = 0.36

Trim-ATE −3.93 0.48 0.48 −2.55 0.42 1.41

No-Trim-ATE −7.63 1.64 4.07 −2.66 1.09 1.65

Naive-ATE −3.40 0.38 0.62 −2.45 0.34 1.49

ML-ATE −3.33 0.66 0.87 −2.42 0.59 1.60

Control Function −3.40 0.26 0.59 −1.26 0.20 2.62

Note: True mean value is −3.9. Noise ratio is defined as the ratio of standard deviation of ce to the standard
deviation of c∗. The first three and last three columns are the results when the true response forms are quadratic
and step function respectively. Five different estimators are reported here. Trim-ATE and No-Trim-ATE are
our proposed estimator with and without trimming (2%) respectively. Naive-ATE is an estimate for E(Y1|T =
1) − E(Y0|T = 0). ML-ATE is Heckman’s selection MLE. Control function approach is defined as in the paper.
MEAN = mean. SD = standard errors. RMSE = root mean square errors.
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