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Abstract

We consider the optimal pricing and referral strategy of a monopoly that uses a sim-
ple consumer communication network (a chain) to spread product information. The
�rst-best policy with fully discriminatory position-based referral fees involves standard
monopoly pricing and referral fees that provide consumers with strictly positive referral
incentives. E¤ective price discrimination among consumers based on their positions in
the chain occurs in both the �rst-best solution and the second-best solution (with a
common referral fee).
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1 Introduction

Referrals are part of our daily life. We rely on recommendations from friends and acquain-

tances to learn about available products and services in such diverse areas as education,

medical services, construction, labor markets, �nancial services, telecommunications, infor-

mation technology, entertainment, hospitality services, and retail trade.1 Recognizing the

power of consumer referrals,2 �rms try to manage the information �ow in consumer commu-

nication networks by using referral policies. A consumer referral policy is a promise made by

a �rm to pay its current customers rewards for referring new customers. Typically, �rms o¤er

consumers rewards in the form of cash, discounts, deposits, gift certi�cates, bonus points,

free products or services, or entry into a lottery.

In this paper, we examine how a �rm should choose its price and referral fees when it relies

on consumer referrals to raise consumer awareness of its product. In particular, we ask the

following questions. Should the �rm lower its price in an attempt to facilitate referrals? Is it

optimal for the �rm to o¤er referral payments? If yes, would the �rm more than compensate

consumers for making referrals, providing them with a positive expected net referral bene�t?

Or would the referral condition be binding for some consumers? Would the �rm e¤ectively

discriminate among consumers based on their position in the referral chain? Finally, what
1For example, at Comcast, "When a friend subscribes to residential Comcast High-Speed Internet through

the Refer-A-Friend program, they�ll experience powerful 100% Pure Broadband Internet and you�ll enjoy one
free month of residential service." At the Top of the Key basketball training company, "You are eligible for the
reduced renewal rate if you have brought a friend or teammate who has also signed up for a training package"
(for a Silver Package, $259 per month is reduced to $159). DIRECTV �s "Spread the Word Program" o¤ers
a $100 credit to any customer referring a friend who signs up for DIRECTV �s service. The C-Loans online
commercial lender guarantees "1/8th of a point on any closed commercial mortgage loan that came from
your site." PeopleWare Technical Resources pays up to $500 in referral fees for each new person placed into
a contract or full-time position.

2Recommendations from personal acquaintances are by far the most relevant and trustworthy, compared
with all other information sources, according to Nielsen�s 2012 Global Trust in Advertising Survey of 28,000
Internet respondents from 56 countries.

2



are the welfare implications of consumer referrals?

To answer these questions, we �rst consider a two-step �ow of communication.3 We

assume that there is one �rm that can reach some consumers (called in�uentials or mavens)

by advertising its product through mass media, and these consumers choose whether to buy

the product and spread information about it to other people (called followers, imitators,

or late adopters). Consumer valuations are determined stochastically. A consumer who

purchases the product can at a cost refer it to one of the followers. A referral fee is paid by

the �rm for each referral that results in a sale.

We show that in such a model, the �rm would provide in�uentials with a positive net

referral bene�t, e¤ectively discriminating in their favor. In�uentials would be better o¤ than

followers, but since the price remains unchanged after an introduction of the referral policy,

referrals result in a Pareto improvement. The expected payo¤ of each consumer is higher

because referrals increase consumer awareness, there are positive bene�ts to giving referrals,

and the price is unchanged (compared to the standard monopoly level).

Clearly, product information can propagate for several steps in a consumer communi-

cation network. Using the framework of Jun and Kim (2008), we assume that one �rm

sells a product to a �nite chain of n consumers. A consumer receives a referral fee if the

consumer�s referral of the next-in-line consumer to the product results in that consumer�s

purchase. The monopoly �rm can choose a price and the referral fees it pays for successful

referrals. Jun and Kim (2008) look at the case where the �rm sets a common referral fee to

all consumers. In contrast, we assume that a �rm could set di¤erential referral fees for early

3The two-step model of communication was originally proposed in the 1940s to explain the e¤ects of media
on voting behavior. According to the theory, media directly a¤ect only a small fraction of the population,
and those tuned into media act as opinion leaders, in�uencing others�behavior.
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and late adopters.4

Would a �rm provide higher expected referral payments to consumers who buy earlier?We

�nd that this is the case. When the �rm can charge di¤erent referral fees based on consumers�

positions (the �rst-best problem), both the probability of purchase and the expected referral

payment are decreasing along the referral chain (Theorem 1). The result is intuitive. The last

consumer (consumer n) cannot make a referral, and her purchase of the product and referral

do not generate extra sales. The second-to-last consumer�s purchase has an externality since

her purchase may lead to consumer n�s purchase, but the externality is limited only to sales

made to her successor. For consumers positioned earlier in the chain, the externality is larger.

That is, early buyers are more valuable to the �rm than later buyers since their purchase of

the product is necessary for the referral chain to continue, and the potential gains from a

longer chain are larger.

This intuition is the same as in the second-best problem of Jun and Kim (2008), in which

the �rm has to set a common price p and referral fee r to all consumers. Since in their

framework n purchase probabilities (variables �1; :::; �n) need to be controlled by two policy

tools p and r, �nding an optimal choice of (p; r) can be a highly nonconvex problem with

multiple local maxima. This means that although intuitively it may be bene�cial for the

�rm to e¤ectively discriminate between consumers based on their positions in a chain, the

stationary outcome is another plausible candidate for the optimal solution, especially for

large n. It is easy to show that purchase probabilities must be equal (which also implies

that there is no discrimination among consumers) if the referral condition is binding even

4After we completed the current paper, Jeong-Yoo Kim let us know about his unpublished note that
considers the �rst-best problem for the special case of n = 3.
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for one consumer. With their unusual tie-breaking rule, Jun and Kim (2008) assume away

the stationary outcome.5 We revisit the second-best problem of Jun and Kim in Appendix

B, where we prove that such a stationary outcome is not optimal.

In sum, we show that both in the �rst-best and the second-best scenarios, the �rm would

choose to discriminate between consumers based on their positions in the communication

chain and would provide positive expected net referral bene�ts to all consumers in a position

to refer. Despite the simplicity of the model, the proofs are rather involved. Techniques

developed in this paper may be useful for other purposes.

The next section is devoted to the simplest �rst-best problem: the in�uentials-and-

followers model. In Section 2, we analyze the �rst-best problem for a chain of any �nite

length. We discuss the results in Section 3 and conclude in Section 4. Appendix A contains

proofs for all the statements for the �rst-best problem. In Appendix B, we present results

for the second-best problem of Jun and Kim (2008), in which the �rm charges a common

referral fee to all consumers.

2 In�uentials-and-Followers Model (n = 2)

In this section, we consider a two-step model of communication, in which in�uentials (in-

formed by the �rm through advertising) can buy the product and recommend it to other

potential consumers. While the problem is interesting in its own right, it also provides some

intuition for the general case of consumer chain networks of length n, presented in the next

5Jun and Kim (2008) say nothing about the case where the referral condition is binding: r(1�F (p)) = �
(or r�n = �). They assume that if a consumer is indi¤erent between making and not making a referral, then
she will not make a referral. This tie-breaking rule is convenient since it directly implies that consumers
make referrals if and only if there are positive incentives for referral (their Proposition 2). Thus, a stationary
outcome is ruled out as it is not compatible with active referrals. Here, we are assuming a tie-breaking rule
that allows for referrals to be given in the stationary outcome. That is, we assume that if a consumer is
indi¤erent between making and not making a referral, she refers.
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section. As we restrict the number of referrals to one,6 we can normalize the number of

in�uentials and followers to one and refer to them as consumer 1 and consumer 2.

The �rm chooses a price p � 0 and referral fee r � 0 to maximize its pro�ts from selling

a product it produces at a marginal cost c � 0. Each consumer�s willingness-to-pay v is an

i.i.d. random variable drawn from a twice continuously di¤erentiable distribution function

F (v) over [v; �v] with density function f(v). Denote by �k the probability that consumer k

buys the product conditional on being introduced to it, k = 1; 2. Consumers need to pay a

cost � > 0 to make one referral, which yields a referral fee r if it results in a sale. Consumers

make their purchase and referral decisions to maximize their expected utility. We assume

that when indi¤erent between making and not making a referral, consumers refer. That is,

consumer 1 refers whenever �2r � �.

Let D(p) = 1� F (p) and P (�) = D�1(�) be the standard demand and inverse demand

functions. We assume that the pro�t function without referrals, � (�) � � (P (�)� c), is

concave. Let �m be the standard monopoly output, �m = argmax f� (P (�)� c)g, and

let pm = P (�m) and �m = �m (pm � c) be the associated monopoly price and pro�t. We

will assume that �m > �, which (according to Proposition 1 below) guarantees that the

�rm supports referrals. The purchase probabilities are then �1 = D (p� �2r + �) � 0 and

�2 = D (p) � 0.

The �rm chooses a strategy (p; r) to maximize its pro�ts

�̂(p; r) = (p� c)�1 + (p� r � c)�1�2 (1)

= (p� c� r�2)�1 + (p� c)�1�2:
6The analysis and results are similar when this assumption is relaxed. See Section 4 for the discussion.
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From the expressions for �1 and �2,

p = P (�2) (2)

and

r =
P (�2)� P (�1) + �

�2
: (3)

We can write the pro�ts as a function of only �1 and �2:

�(�1; �2) = (P (�1)� c� �)�1 + (P (�2)� c)�1�2: (4)

The following proposition describes the optimal (pro�t-maximizing) solution for monopoly.

Proposition 1. The �rm supports consumer referrals whenever �m > �. It sets the stan-

dard monopoly price and provides in�uentials with a positive net referral bene�t, e¤ectively

discriminating in their favor. Consumer referrals result in a Pareto improvement. The

purchase probability of in�uentials is higher than that of followers, and both probabilities

decrease in referral and production costs. Assuming that demand is not too convex, the �rm

sets a higher referral fee and supports higher expected referral payments when referral cost is

higher. When consumer valuations are uniformly distributed over [0; 1], the optimal referral

fee and expected referral payment decrease in production cost.

Proposition 1 states that the presence of consumer referrals does not a¤ect the price in

this model. The price is the standard monopoly price pm, which increases with the marginal

cost c and is independent of the referral cost �. Both in�uentials and followers are better

o¤ when referrals exist because of an increase in consumer awareness about the product,
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positive net bene�ts to giving referrals, and no price change. Assuming that demand is not

too convex,7 the �rm compensates in�uentials for the higher cost of referral with a higher

referral fee and expected referral bene�t. At least in the case of the uniform distribution of

valuations, the referral fee decreases in production cost.

3 The First-Best Problem for a Finite Chain Network

We maintain the modeling assumptions of the two-step communication model, extending it

to the case of a communication chain of length n � 2. Suppose a �rm can set referral fees

conditional on consumer location in the communication network. That is, the policy tools are

p and r2; :::; rn, where rk is the referral fee that consumer k�1 receives if consumer k purchases

the product following her referral. Consumer k�s probability of purchase when she is informed

about the product is determined by the �rm�s policy as follows: �n = D (p) = 1�F (p) � 0

and �k = D (p� �k+1r + �) � 0 for k = 1; :::; n� 1.

The monopoly pro�t with active consumer referrals is

b� = nX
k=2

"
(p� c� rk�k)

 
k�1Y
`=1

�`

!#
+ (p� c)

nY
`=1

�`: (5)

From the expressions for purchase probabilities, we �nd that

p = P (�n) (6)

and

rk =
P (�n)� P (�k�1) + �

�k
(7)

for k = 2; :::; n, where P (�) = D�1(�).

7Although we analyze a monopoly problem, the condition is exactly the same as the condition for strategic
substitutes in the Cournot oligopoly problem.
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We can then describe the problem in terms of �ks only. The �rm�s pro�t can be written

as

� =

n�1X
k=1

"
(P (�k)� c� �)

 
kY
`=1

�`

!#
+ (P (�n)� c)

nY
`=1

�`: (8)

Let ��k denote the pro�t-maximizing probability of buying for consumer k, k = 1; :::; n. It

is easy to see what the optimal probability of buying is for consumer n. Taking the �rst-order

condition with respect to �n, we obtain

@�

@�
= (MR(�)� c)

 
n�1Y
`=1

�`

!
= 0; (9)

where MR(�) � P (�)� �P 0(�) is the marginal revenue.

This implies that for any n, ��n = �m and the optimal monopoly price is p� = pm as

long as �k > 0 for k = 1; :::; n� 1. This observation is quite sensible: no matter how many

consumers there are, the last consumer does not make a referral, and the �rm should charge

the monopoly price for her. The main results for the optimal monopoly policy are stated in

Proposition 2.

Proposition 2. For any n, the �rm�s optimal policy supports consumer referrals whenever

�m > �, and it is such that ��1 > �
�
2 > ::: > �

�
n = �

m. The �rm sets the standard monopoly

price p� = pm and provides all referring consumers with a positive net referral bene�t such

that ��2r
�
2 > �

�
3r
�
3 > ::: > �

�
nr
�
n > �, e¤ectively discriminating in favor of consumers located

earlier in the chain. Consumer referrals result in a Pareto improvement.

The formal proof of Proposition 2 is in Appendix A, but we provide a sketch of the proof

here. To prove Proposition 2, we analyze the problem where k consumers are left in the

chain and solve it recursively by backward induction. Let V (k) be the optimal pro�t from
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the last k consumers, and let 
�(k) be the pro�t-maximizing purchase probability of the kth

to last consumer. Since 
�(1) = �m, the expected pro�t from the last consumer reached by

referral is the simple monopoly pro�t, V (1) = �m.

The optimal solutions V (k) and 
�(k) when k consumers are left in the chain can be

de�ned recursively:

V (k) = max
�
f� [P (�)� c� �+ V (k � 1)]g (10)

and


�(k) = argmax
�
f� [P (�)� c� �+ V (k � 1)]g (11)

for k � 2. Lemma 1 shows that the optimal purchase probability for the kth to last consumer


�(k) is an increasing sequence of k: 
�(k+1) > 
�(k) for all k, assuming the optimal pro�t

is increasing with the number of consumers left, i.e. V (k + 1) > V (k) for all k.

Lemma 1. Suppose that �m > � and V (k + 1) > V (k) for any k � 1. Then, 
�(k + 1) >


�(k) holds for all k � 1.

Under the assumption of an increasing pro�t sequence, we can use Lemma 1 to charac-

terize the optimal purchase probability sequence: ��k = 
�(n � k + 1) for any �xed n � 2

and all k = 1; :::; n because the kth consumer from the top is the (n � k + 1)th consumer

from the bottom: i.e., ��1 > �
�
2 > ::: > �

�
n.

Corollary 1. Suppose that �m > � and V (k + 1) > V (k) for any k � 1. Then, for all n,

under the optimal strategy, the probability of purchase declines along the referral chain: i.e.,

��1 > �
�
2 > ::: > �

�
n.

10



Lemma 2 shows that the optimal pro�t sequence V (k) is indeed increasing as long as

�m > �.

Lemma 2. Suppose that �m > �. Monopoly pro�t increases in the length of the consumer

chain: V (k) < V (k + 1) for all k � 1.

Lemma 2 is proved by induction in Appendix A. There we suppose that V (k) > ::: > V (1).

Then, looking at the monopoly problem with k + 1 consumers, we show that the �rm can

achieve higher pro�ts V (k + 1) > V (k) if it applies the optimal policy for k to the �rst

k consumers and provides consumer k with just enough incentives to make a referral to

consumer k+1 (which is pro�table because �m > � and consumer k+1 will face the monopoly

price). This proves that V (k) is an increasing sequence. Putting together Corollary 1 and

Lemma 2, we conclude that ��1 > �
�
2 > ::: > �

�
n = �

m, and from (7) we have ��2r
�
2 > �

�
3r
�
3 >

::: > ��nr
�
n > �. The next proposition presents some comparative statics results.

Proposition 3. Suppose that �m > �. The purchase probabilities and pro�ts decrease in

referral and production costs. The price decreases in production cost but is independent of

referral cost. The net referral bene�ts and consumer payo¤s decrease in referral cost.

As expected, the �rm sells less and has lower pro�ts when costs increase. The �rm favors

lower referral and production costs. The optimal price is the standard monopoly price. It

is insensitive to referral cost and decreases with production cost. Consumers face higher

(expected) net referral bene�ts and consumer payo¤s when the cost of referral goes down. If

we assume that the distribution of values is uniform, we can derive further results. We can

show that not only is the expected referral bene�t decreasing in consumer location in the
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chain (Proposition 2), but the referral fees themselves are lower for later buyers: r�k+1 < r
�
k

for k = 2; :::; n� 1.

Proposition 4. Suppose that �m > � and consumer valuations are uniformly distributed

over [0; 1]. Then the optimal referral fees satisfy r�2 > r
�
3 > ::: > r

�
n > 0. Both referral fees

and expected referral payments decrease in production costs.

Figure 1 illustrates the solution for a chain of length n = 5, the uniform distribution of

values, � = 0:01, and c = 0. Figure 1 plots the optimal pro�ts starting at the kth consumer

(when there are n � k + 1 consumers left in the chain), V (n � k + 1). As expected, the

pro�ts increase with the number of consumers left in the chain, V (1) < V (2) < ::: < V (5).

Figure 1 also shows that the purchase probability ��k, referral fee r
�
k, and the expected

referral payments ��kr
�
k for the kth consumer are all decreasing in k. Comparative statics

results for the referral cost � and production cost c are presented in Figures 2 and 3. Panels

A, B, and C of each �gure depict purchase probabilities, referral fees, and referral payments,

respectively. From Panel C of Figure 2, it is clear that the expected referral payments may

decrease with referral cost for consumers positioned early in the chain. The reason is that

although referral fees are shown to increase with referral cost (Panel B of Figure 2), the

purchase probabilities always decrease in referral cost (Proposition 3). The overall impact

of referral cost on the expected referral payments depends on the consumer�s location in the

communication network.
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4 Conclusion

With the advancement of Internet technology, the data on consumer positions in social

networks become more easily available. Firms can now identify in�uential persons within a

network with greater precision. Indeed, Google and Microsoft, among other companies, have

obtained patents on systems for identifying nodes in social networks for more targeted ad

delivery.8 Firms should then utilize this new capability of targeting speci�c consumers in

social networks to e¤ectively discriminate between consumers based on their position in the

network. Our paper suggests how referral fees should be set in this case. Importantly, we

�nd that the �rm discriminates in favor of more in�uential customers. This is consistent, for

example, with the practice by Amazon to o¤er free products to its top reviewers (Amazon

Vine members).

The optimal price-referral fee mix depends on whether the number of �rm�s tools is

su¢ cient to achieve the �rst-best. This is the case in the two-step model of communication,

in which opinion leaders serve as intermediaries between the mass media and other potential

consumers. This is also the case when referral fees can vary with consumer position on the

referral chain. In these cases, we �nd that the standard monopoly price is preserved. The

result is important because it implies that there is no downside to consumer referrals. If a

�rm supports consumer referrals, it always bene�ts consumers as well.

In the second-best problem by Jun and Kim (2008), they assume that the price of the

product is non-discriminatory, and the referral fee is constant no matter where a consumer is

located on the chain. In contrast with our �rst-best solution, only partial price discrimination

8Microsoft�s patent "Identifying in�uential persons in a social network" was �led in September 2006 and
published March 2008. Google�s patent "Network node ad targeting" was �led by Google in December 2006
and published in July 2008.
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can be achieved with a limited number of tools. In Appendix B, we revisit the second-best

problem of Jun and Kim (2008). As in the case of the �rst-best problem, two qualitatively

di¤erent referral equilibria could possibly arise. The one described by Jun and Kim (the non-

stationary outcome) is characterized by a nonbinding referral condition, unequal probabilities

of purchase, and price discrimination among consumers. The other one (the stationary

outcome) involves a binding referral condition, equal probabilities of purchase, and no price

discrimination among consumers. We strengthen Jun and Kim�s �ndings by showing that

even if we allow for the stationary outcome to arise, it cannot be optimal, even locally. The

second-best solution is therefore qualitatively similar to the �rst-best solution in that the

�rm e¤ectively discriminates between consumers based on their position in the chain.

In the �rst-best model, intuitive comparative statics results arise. Since the price is set

at the standard monopoly level, it is increasing in the marginal cost and independent of

the referral cost and chain length. This is in contrast with the results obtained for the

second-best model by Jun and Kim (2008). Using numerical simulations, they show that the

optimal product price is non-monotonic in chain length and referral and production costs.

We also �nd that higher production costs prompt the �rm to reduce buying probabilities

and, at least for the uniform distribution of values, referral fees as well. A consumer who

has a longer chain of followers buys more often. Such a consumer obtains higher expected

net referral bene�t and payo¤.

Although we restrict our attention in this paper to a simple chain network, the methods

developed here can be applied to more general communication networks. For example, we

can extend the model by allowing consumers to make multiple referrals, with heterogeneous

quotas for di¤erent consumers. As long as the consumer network is a �nite tree, our main
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�rst-best results continue to hold. As in this paper, backward induction would need to be

used to derive the optimal policy for the �rm.

If we allow the �rm to make a decision about the intensity of advertising, it is clear

that the �rm will advertise more when the pro�t from the consumer referral chain is larger.

The �rm�s pro�t would be higher when the cost of production and referral fee are lower

and the consumer chain is longer. Hence, if it becomes cheaper to make referrals (perhaps

due to the advent of a new social media technology), �rms would advertise more and reach

more consumers through referrals. In the model, mass advertising is not displaced by more

e¢ cient consumer referrals. Instead, traditional advertising is more bene�cial when pro�ts

from consumer referral chains increase due to a lower referral cost.9

It would be interesting to combine the above observations with targeted advertising.

Among other applications, Galeotti and Goyal (2009) consider a problem of targeted ad-

vertising by monopoly on a general consumer communication network. They analyze the

�rm�s problem of choosing the intensity of advertising based on the number of people a

consumer obtains information from and spreads information to. For simplicity, they assume

away the �rm�s pricing and consumer referral decisions and do not allow referral chains. In

their model, every informed consumer purchases the product and refers to all the contacts

under her in�uence. They show that in its advertising strategy, the �rm should target the

marginalized consumers (those who seek information from few people) and in�uentials (con-

sumers who inform many people). This is a very interesting result. It is intuitive because the

9Suppose that by spending C(x), the �rm can reach a fraction x of consumers through advertising. Then,
the �rm�s pro�ts are e� = xV (n) � C (x), where V (n) is the optimal pro�t for a consumer chain of size
n, given referral and production costs � and c. Since V (n) is increasing in n and decreasing in � and c, it
follows immediately that the �rm would choose to advertise more when the consumer chain size n is high
and referral and production costs � and c are low.
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marginalized consumers are not likely to be informed by word-of-mouth, while in�uentials

have a higher network value in terms of the future sales they generate.

In contrast to Galeotti and Goyal (2009), we look at a chain network and allow for

chain referrals. Still, we can say something about targeted advertising in the context of

our chain model. Suppose the �rm can set a price and also choose an advertising reach to

each consumer. Following Galeotti and Goyal, assume that consumers who purchase the

product always refer. We can show that, although the �rm would choose to advertise to all

consumers, the �rm should advertise more to consumers located earlier in the chain.

In the spirit of the models with opinion leaders and followers, in this paper we did not

consider the possibility of the same person being reached through both advertising and re-

ferrals. When consumers can receive multiple advertisements and/or referrals, the issue of

congestion has to be carefully addressed. Anderson and de Palma (2009), among others,

study congestion in advertising messages, and Arbatskaya and Konishi (2013) consider con-

gestion in consumer referrals. It would be also interesting to extend the model by allowing

consumer referrals to be targeted. Since consumers would choose to refer their most promis-

ing contacts, this would make referrals more e¢ cient and in turn increase the bene�t of

advertising. We leave such analyses for future work.
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Appendix A

Proof of Proposition 1. Assuming that the �rm supports consumer referrals, it follows

from (4) that for any �1 > 0 the �rm sets

��2 = argmax
�

f� (�)g ; (12)

where � (�) = (P (�)� c)�, and the �rst-order condition for �2 implies �0 (�2) = 0. That

is, the �rm sets the standard monopoly output and price: ��2 = �
m and p� = pm.

At the optimal ��2 = �
m, the pro�ts are

�(�1; �
m) = (P (�1)� c� �+ �m)�1. (13)

The �rst-order condition for �1 is then:

@�(�1; �
m)

@�1
= �0 (�1) + �

m � � = 0: (14)

Hence, as long as �m > �, in�uentials buy more often than followers: ��1 > �
�
2. Note that

this implies that in�uentials obtain a positive net referral bene�t ��2r�� = P (��2)�P (��1) > 0,

and are overall better o¤ than followers (and than themselves in the case of no referrals).

From (12) and (13), we �nd that @�
�
2

@c
= 1

�00(��2)
< 0, @�

�
2

@�
= 0, @�

�
1

@c
= �

d2�(��1;�
�
2)

dcd�1

�00(��1)
=

1+��2
�00(��1)

<

0, and @��1
@�
= �

d2�(��1;�
�
2)

d�d�1

�00(��1)
= 1

�00(��1)
< 0. To determine how the expected referral payments

and referral fee depend on production and referral costs, we use (3) to obtain

d (��2r
�)

d�
=
d (P (��2)� P (��1) + �)

d�
= 1� P 0(��1)

@��1
@�

= 1� P 0(��1)

�00 (��1)
(15)

From �00 (�) = �P 00(�) + 2P 0(�), it follows that
d(��2r�)
d�

= ��2
dr�

d�
> 0 whenever ��1P

00(��1) +

P 0(��1) < 0. Assuming this condition on demand holds, as in the case of the uniform

distribution of values, we �nd that dr
�

d�
> 0.
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Similarly, we can derive

d (��2r
�)

dc
=
d (P (��2)� P (��1) + �)

dc
(16)

= P 0(��2)
@��2
@c

� P 0(��1)
@��1
@c

(17)

=
P 0(��2)

�00 (��2)
� P 0(��1)

�00 (��1)
(1 + ��2) (18)

and

��2
dr�

dc
=
P 0(��2)

�00 (��2)
� P 0(��1)

�00 (��1)
(1 + ��2)�

r

�00 (��2)
. (19)

For the uniform U [0; 1] distribution of values, � (�2) = (1 � �2 � c)�2, ��2 = 1�c
2
, p� =

1+c
2
, �m =

�
1�c
2

�2
, ��1 =

1
2
(1� c� �+ �m), r� = �+�m

1�c = �
1�c +

�
1�c
4

�
, and ��2r

� � � =

��1 � ��2 = 1
2
(�m � �), where �m = 1

4
(1� c)2. The �rm would support consumer referrals

if �(��1; �
�
2) > �

m, which holds whenever �m > �. Since �00 (�) = �2, P 0(�) = �1, we �nd

that
d(��2r�)
d�

= ��2
dr�

d�
= 1

2
> 0,

d(��2r�)
dc

= �1
2
��2 < 0, and dr�

dc
= �

(1�c)2 �
�
1
4

�
< 0 because

�m = (1�c)2
4

> �. �

Proof of Lemma 1. We take four steps to prove Lemma 1.

1. Consider a chain of length n = 1. The pro�t-maximizing probability 
�(1) = �m

satis�es MR(
�(1)) = c, where MR(�) = (�P (�))0 = P (�) + �P 0(�) is the marginal

revenue from extending sales.

2. Next consider n = 2. In this case, the optimization problem is

V (2) = max
�
[� (P (�)� c� �) + �V (1)] ;

and V (2) > V (1) implies that there is an optimal solution 
�(2) in this problem. Since

MR(�) is decreasing, the following �rst-order condition characterizes 
�(2):

MR(
�(2))� c� �+ V (1) = 0.

18



Since V (1) = �m > �, MR(�) is decreasing, andMR(
�(1))� c = 0, we conclude that


�(2) > 
�(1).

3. Suppose that 
�(1) < ::: < 
�(k � 1) for k � 3. We will show that 
�(k � 1) < 
�(k)

holds. By de�nition, we have

V (k) = max
�
[� (P (�)� c� �) + �V (k � 1)] ;

and the �rst-order condition for 
�(k) is

MR(
�(k))� c+ V (k � 1)� � = 0:

The �rst-order condition for 
�(k � 1) is

MR(
�(k � 1))� c+ V (k � 2)� � = 0:

SinceMR(�) is decreasing and V (k�2) < V (k�1), we conclude that 
�(k�1) < 
�(k)

holds.

4. By an induction argument, we complete the proof.�

Proof of Corollary 1. If n consumers are left in the chain, then the probability of purchase

for the �rst consumer is ��1 = 

�(n). If the second consumer is successfully referred to the

product, then n� 1 consumers are left in the chain, and the probability of purchase for the

second consumer is ��2 = 

�(n � 1). Similarly, ��k = 
�(n � k + 1) for all k = 1; :::; n. The

probability of purchase declines along the referral chain (i.e. ��1 > �
�
2 > ::: > �

�
n) because


�(n) > 
�(n� 1) > ::: > 
�(1) by Proposition 1.�
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Proof of Lemma 2. Note that V (k) is described in the following manner:

V (k) =

k�1X
h=1

"
(P (��h)� c� �)

 
hY
`=1

��`

!#
+ P (��k)

kY
`=1

��` ; (20)

where ��h = 

�(k� h+1) for all h = 1; :::; k. Let�s look at the monopoly problem with k+1

consumers. Consider the following policy for the �rm: set the same purchase probabilities

for the �rst k consumers as in the k-consumer problem (i.e., �h = ��h for all h = 1; :::; k) and

make the kth consumer just willing to make a referral to the last (k + 1)th consumer (by

setting the expected referral bene�t equal to the referral cost: ��k+1r
�
k+1 = �). The monopoly

pro�t under such a policy is

�(�k+1;�
�
1; :::; �

�
k) = V (k) + (�k+1P (�k+1)� c� �)

 
kY
`=1

��`

!
:

Note that
Qk
`=1 �

�
` is the unconditional probability that the kth consumer purchases the

product, and the �rm pays � to let her make a referral. Since the maximum V is achieved

with �k+1 = �m, we have

e� = max
�k+1

�(�k+1;�
�
1; :::; �

�
k) = V (k) + (�

mP (�m)� c� �)
 

kY
`=1

��`

!
> V (k); (21)

if and only if �m = �m (pm � c) > �. Thus, we have e� > V (k). Since V (k + 1) � e�, it
follows that V (k + 1) > V (k) when �m > �.�

Proof of Proposition 2. From Lemma 2 and Corollary 1, we know that ��1 > �
�
2 > ::: >

��n = �m > 0 and p = pm. From (7), ��kr
�
k = p � P (��k�1) + � for k = 2; :::; n, and since

��1 > �
�
2 > ::: > �

�
n, we conclude that �

�
2r
�
2 > �

�
3r
�
3 > ::: > �

�
nr
�
n > �.�

Proof of Proposition 3. We prove the �rst statement by induction. Since 
�(1) =

�m and V (1) = �m, dV (1)
dc

= �
�(1) = ���n = ��m < 0. From (10), we have dV (k)
dc

=
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�
�(k)
�
1� dV (k�1)

dc

�
by the envelope theorem for k = 2; :::; n. Since 
�(k) = ��n�k+1 > 0,

it follows that for any k = 2; :::; n, if dV (k�1)
dc

< 0, then dV (k)
dc

< 0. Hence, dV (k)
dc

< 0 for

k = 1; :::; n. The �rst-order condition for (11) is

P (
�(k))� c� �+ V (k � 1) + 
�(k)P 0(
�(k)) = 0:

Totally di¤erentiating the above, we obtain

(2P 0(
�(k)) + 
�(k)P 00(
�(k)))
d
�(k)

dc
= 1� dV (k � 1)

dc
> 0:

From the second-order condition for pro�t maximization, 2P 0(
�(k)) + 
�(k)P 00(
�(k)) < 0

holds, and we conclude that
d��n�k+1

dc
= d
�(k)

dc
< 0 for k = 1; :::; n.

We use similar arguments to derive the comparative statics result for referral cost �. First,

dV (1)
d�

= 0 and dV (2)
d�

= �
�(2) < 0. From (10), dV (k)
d�

= �
�(k)
�
1� dV (k�1)

d�

�
. Since 
�(k) =

��n�k+1 > 0, it follows that if
dV (k�1)

d�
< 0, then dV (k)

d�
< 0 for k = 2; :::; n. Hence, dV (1)

d�
= 0

and dV (k)
d�

< 0 for k = 2; :::; n. From (11), we obtain (2P 0(
�(k)) + 
�(k)P 00(
�(k))) d

�(k)
d�

=

1 � dV (k�1)
d�

> 0, and we can conclude that d��n
d�
= d
�(1)

d�
= 0 and

d��n�k+1
d�

= d
�(k)
d�

< 0 for

k = 2; :::; n.

From Proposition 2, the optimal price is p� = pm, and therefore it decreases in production

cost c but is independent of referral cost �. Finally, from (7), ��kr
�
k � � = pm � P (��k�1).

Hence,
d(��kr�k��)

d�
= �P 0(��k�1)

d��k�1
d�

< 0.�

Proof of Proposition 4. To see that r�k < r�k�1 holds for k = 2; :::; n, in the case of the

uniform distribution of values, note that the pro�t-maximizing solution in this case is 
(k) =

argmax� f� [1� �� c� �+ V (k � 1)]g for all k = 2; :::, and 
(1) = ��n = 1�c
2
. Solving this,

we have 
(k) = 1
2
(1� c� �+ V (k � 1)). Thus, V (k) = 
(k) [1� 
(k)� c� �+ V (k � 1)] =
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�
1
2
(1� c� �+ V (k � 1))

	2
= (
(k))2 for all k = 2; :::; n. We �nd that 
(k) = 1

2

�
1� c� �+ (
(k � 1))2

�
for all k = 2; :::; n with 
(1) = ��n =

1�c
2
. From (7), we have

r�k =
P (��n)� P (��k�1) + �

��k

=
P (
(1))� P (
(n� k + 2)) + �


(n� k + 1)

=
1� 1�c

2
� 1 + 1

2

�
1� c� �+ (
(n� k + 1))2

�
+ �


(n� k + 1)

=
�

2
(n� k + 1) +

(n� k + 1)

2
=

�

2��k
+
��k
2
:

As is easily veri�ed, r�k is increasing in �
�
k as long as (�

�
k)
2 > �. This inequality holds

for any k � n because �m = (��n)
2 > � and V (1) = �m < V (n � k + 1) = (��k)

2 for

any k < n. Since by Proposition 2, ��k is a decreasing sequence, so is rk. Thus, we have

r�2 > r
�
3 > ::: > r

�
n > 0. By Proposition 3,

d��k
dc
< 0 for k = 1; :::; n and since dr

�
k

dc
=

��2k ��
2��2k

d��k
dc
, it

follows that referral fees r�k are decreasing in production cost as well,
dr�k
dc
< 0 for k = 2; :::; n.

Together, these results imply that the expected referral payments r�k�
�
k are decreasing in

production cost for any k = 2; :::; n.�
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Appendix B: The Second-Best Problem

Following Jun and Kim (2008), let us consider the case where the �rm has to set a common

referral fee and price to all consumers, regardless of whether they are early or late adopters.

Jun and Kim show that when the second-to-last consumer has a strictly positive referral

bene�t, r(1 � F (p)) > � (their referral condition RC), the earlier a consumer is located in

the chain, the higher is her probability of purchasing the product �1 > �2 > ::: > �n (their

Proposition 1). This result further implies e¤ective price discrimination among consumers

according to their position in the referral chain: although the �rm charges a common price

p and pays a referral fee r to all consumers, the �rm e¤ectively discriminates in favor of

consumers located earlier in the chain because these consumers obtain a higher expected

bene�t from making a referral.10

We take a closer look at the optimal strategy of the �rm. In particular, we examine the

possibility of a stationary outcome being optimal. We allow for referral equilibrium to be

consistent with a binding referral condition r(1�F (p)) = � by assuming that when indi¤er-

ent, consumers make referrals. We show that the �rm�s pro�t can be improved by increasing

both p and r in a right proportion starting from the optimal stationary outcome, implying

that the stationary outcome is not even a local maximum for any �nite n (Proposition B1).

This result strongly justi�es Jun and Kim�s analysis and also implies that at least for large

n, the optimal solution is perhaps very close to the stationary outcome.

Denote by �k the probability that consumer i buys the product conditional on being

10Consumer k�s purchase probability �k depends on consumer (k + 1)�s purchase probability �k+1 since
consumer k takes the expected net bene�t from referral r�k+1�� into account when she makes her purchase
decision: �k = 1� F (p+ r�k+1 � �)).
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introduced to it, k = 1; :::; n. The �rm chooses a policy (p; r) to maximize its pro�ts

�̂(p; r) = (p� r�2 � c)�1 + (p� r�3 � c)�1�2 + :::

+ (p� r�n � c)�1 � � � �n�1 + (p� c)�1 � � � �n (22)

where �1; :::; �n are determined by (p; r) as follows: �n = D (p) = 1 � F (p) � 0 and

�k = D (p� �k+1r + �) � 0 for k = 1; :::; n � 1. Denote by P (�) = D�1(�) the standard

inverse demand function. We assume that the pro�t function without referrals, � (�) �

� (P (�)� c), is concave.

Assuming r�k � � for k = 2; :::; n, �1; :::; �n, are determined by the following system of

equations:

P (�n) = p (23)

P (�n�1) = p� r�n + �

� � �

P (�1) = p� r�2 + �;

and �1 � ::: � �n. Suppose that the referral condition is binding for the kth consumer:

r�k+1 = � for some k = 1; :::; n � 1. Then, P (�k) = p, and we have P (�1) = P (�2) =

::: = P (�n) = p and �1 = �2 = ::: = �n. This is a stationary outcome, for which consumer

referral conditions are all binding: r�k+1 = � for all k = 1; :::; n� 1. We will show that this

outcome is not locally optimal.

The �rm�s pro�t can be written in terms of �ks only:

�(�1; :::; �n�1; �n;n) = �1 (P (�1)� �� c) + �1�2 (P (�2)� �� c) + ::: (24)

+ �1 � � � �n�1 (P (�n�1)� c� �) + �1 � � � �n (P (�n)� c)
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where (�1; :::; �n) is a solution to system (23). Under the stationary outcome �1 = ::: =

�n�1 = �n = �, the monopoly pro�t when there are n � 1 consumers can be written as

�(�; �; :::; �;n) = An (�) (� (�)� �) + �; (25)

where

An (�) � 1 + �+ �2 + :::+ �n�1 =
1� �n
1� � (26)

and � (�) = � (P (�)� c).

Denote the optimal stationary policy for an n-consumer chain by �(n) � argmax��(�; �; :::; �;n).

Theorem 2 states that �(n) cannot be a local maximum for small �.

Proposition B1. The optimal stationary policy �(n) is not the optimal policy if �(�(n)) > �.

To prove Proposition B1, we will show that the �rm�s pro�t is locally improvable (starting

from �(n)) by choosing an appropriate policy change (dp; dr)� 0. We �rst provide a sketch

of the proof of Proposition B1. First, in Lemma B1, we investigate the properties of the

optimal stationary policy �(n). Then, we look at the pro�t function evaluated at the optimal

stationary policy �1 = ::: = �n�1 = �n = �(n). We show that there is someM (1 �M < n)

such that pro�ts increase with purchase probability for consumers located before M and

decrease with purchase probability for consumers located after M : @�
@�k

���
�=�(n)

> 0 for all

k < M and @�
@�k

���
�=�(n)

< 0 for all k > M (Lemma B2). We then show that there exists

a policy change d� = (dp; dr) � 0 such that for any M (1 � M < n) the probability of

buying increases for consumers located before M and decreases for consumers located after

M . We prove this by showing that, starting at �1 = ::: = �n = �, if �n decreases while �M

is kept constant, d�k > 0 for all k < M and d�k < 0 for all k > M (Lemma B3). Using

Lemmas B2 and B3, we conclude that the optimal stationary policy is not a local maximum.
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We prove Proposition B1 by using a sequence of lemmas.

Lemma B1.

(i) For all n and all � such that � (�)� � > 0, �(�; �; :::; �;n+ 1) > �(�; �; :::; �;n).

(ii) The optimal stationary solution �(n) � argmax��(�; �; :::; �;n) satis�es the following

condition:

�0 (�(n)) = �A
0
n (�(n))

An (�(n))
(� (�(n))� �) : (27)

(iii) Suppose �(�(n))� � > 0. Then, �(n) > �(n� 1) > ::: > �(1) = argmax~� �(~�).

Proof. From (25), the di¤erence in pro�ts from (n+ 1)- and n-consumer chains is

�n(�) � �(�; �; :::; �;n+ 1)� �(�; �; :::; �;n) = �n (� (�)� �) : (28)

Hence, �n(�) > 0 if � (�)� � > 0. This proves (i).

The optimal policy � = � (n) is implicitly de�ned by the �rst-order condition

d�(�; �; :::; �;n)

d�
= A0n (�) (� (�)� �) + An (�)�0 (�) = 0: (29)

This proves (ii).

Finally, using (27), we �nd that at � = �(n)

d�n

d�
= n�n�1 (� (�)� �) + �n�0 (�) (30)

= �n�1 (� (�)� �)
�
nAn (�)� �A0n (�)

An (�)

�
> 0:

The last inequality holds because

nAn (�)� �A0n (�) = n
�
1 + �+ �2 + :::+ �n�1

�
� �

�
1 + 2�+ :::+ (n� 1)�n�2

�
(31)

= n+ (n� 1)�+ (n� 2)�2 + :::+ �n�1 > 0:
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Hence, if � = � (n) > 0 and � (� (n)) � � > 0, then � (n+ 1) > � (n). Since � (1) =

�m > 0, it follows that �0(�) < 0 for all � > �(1). Thus, �(�(1)) > �(�(2)) > ::: > �(�(n))

holds, and we conclude that �(1) > �(2) > ::: > �(n) if � (� (n))� � > 0.�

Notice that the pro�t �(�1; �2; :::; �n;n) in equation (24) can be de�ned recursively:

�(�n; 1) = � (�n) = �n (P (�n)� c) (32)

�(�n�1; �n; 2) = �n�1 (P (�n�1)� c� �) + �n�1�(�n; 1)

� (�n�2; �n�1; �n; 3) = �n�2 (P (�n�2)� c� �) + �n�2�(�n�1; �n; 2)

� � �

�(�1; �2; :::; �n;n) = �1 (P (�1)� c� �) + �1�(�2; :::; �n;n� 1)

Using these formulas, we prove the following result.

Lemma B2. Suppose that � (�(n))�� > 0 holds. At �1 = ::: = �n = � (n), (i) @�@�n < 0 and

@�
@�1

> 0; (ii) there exists M such that @�
@�k

> 0 for any k < M and @�
@�k

< 0 for any k > M .

Proof. The marginal pro�ts with respect to buying probabilities �1; :::; �n are

1

�1�2�3 � � � �n�1
@�

@�n
= �0 (�n) (33)

1

�1�2�3 � � � �n�2
@�

@�n�1
= �0 (�n�1) + � (�n; 1)� �

1

�1�2�3 � � � �n�3
@�

@�n�2
= �0 (�n�2) + � (�n�1; �n; 2)� �

� ��

@�

@�1
= �0 (�1) + � (�2; :::; �n;n� 1)� �:
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Thus, at �1 = �2 = ::: = �n = �,

@�

@�n
= �n�1�0 (�) (34)

@�

@�n�1
= �n�2 (�0 (�) + � (�; 1)� �)

� ��

@�

@�1
= �0 (�) + � (�; :::; �;n� 1)� �

Note that @�
@�n

= �n�1�0 (�) < 0 at � (n) > � (1) = �m by Lemma B1. By assumption,

�(�; 1) = � (� (n)) > �, and by Lemma B1, �(�; :::; �; k) is increasing in k. Hence, if for

some `, @�
@�`

> 0, then @�
@�k

> 0 for any k < `, and if @�
@�`

< 0, then @�
@�k

< 0 for any k > `.

In the following, we will show that for � = �(n) > 0, there exists M such that @�
@�k

> 0

for any k < M and @�
@�k

< 0 for any k > M . Recall

Ak (�) = 1 + �+ �
2 + :::+ �k�1 =

1� �k
1� � . (35)

For k � n� 1, we have

@�

@�k
= �k�2 (�0 (�) + � (�; :::; �;n� k + 1)� �) (36)

where

�(�; �; :::; �;n� k + 1) = An�k+1 (�) (� (�)� �) + �: (37)

Hence, @�
@�k

> 0 as long as

�0 (�) + An�k+1 (�) (� (�)� �) > 0 (38)

Plugging in the expression for the optimal �0 (�) from Lemma B1 and assuming � (� (n))�

� > 0, the inequality is equivalent to

An�k+1 (�)An (�) > A
0
n (�) ; (39)
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which is equivalent to

1� �n�k+1
1� �

1� �n
1� � >

@
�
1��n
1��

�
@�

=
1

(1� �)2
�
1� �n � n�n�1 + n�n

�
:

Thus, we conclude that @�
@�k

> 0 holds if and only if

�
n�n�1

1� �
1� �n � �

n�k+1
�
> 0: (40)

The expression in the brackets is strictly decreasing in k. Note that for k = 1,
�
n�n�1 1��

1��n � �
n
�
=�

n 1��
1��n � �

�
�n�1 > 0 because n (1� �)�� (1� �n) > n (1� �)�� (1� �) = (n� �) (1� �) >

0. Hence, @�
@�1

> 0. Since @�
@�n

= �n�1�0 (�) < 0, there exists M (1 � M < n) such that

@�
@�k

> 0 for any k < M and @�
@�k

< 0 for any k > M at � = � (n).�

In Lemma B3, we describe the e¤ects of a policy change (dp; dr) � 0 at a stationary

outcome �1 = ::: = �n = �.

Lemma B3. Consider a policy of increasing p and r, starting at �1 = ::: = �n = �. For

any M ( 1 �M < n), there is a policy change (dp; dr)� 0 such that d�k > 0 for all k < M

and d�k < 0 for all k > M .

Proof. Totally di¤erentiating equations (23) and evaluating at �1 = ::: = �n = �, we have:

P 0(�)d�n = dp (41)

P 0(�)d�n�1 = (dp� �dr)� rd�n

P 0(�)d�n�2 = (dp� �dr)� rd�n�1

� � �

P 0(�)d�1 = (dp� �dr)� rd�2:
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When p is increasing (dp > 0), we necessarily have d�n = 1
P 0(�)dp < 0.

Let x � r
�P 0(�) > 0. We choose (dp; dr)� 0 such that d�M = 0. From

P 0(�)d�M (42)

= (dp� �dr)� rd�M+1

= (dp� �dr) (1 + x)� rxd�M+2

= (dp� �dr)
�
1 + x+ :::+ xn�M�1�� rxn�M�1d�n

= (dp� �dr)
�
1 + x+ :::+ xn�M�1�+ xn�Mdp

= dp
�
1 + x+ :::+ xn�M

�
� �dr

�
1 + x+ :::+ xn�M�1� = 0;

it follows that d�M = 0 implies

dp = �dr
1 + x+ :::+ xn�M�1

1 + x+ :::+ xn�M
(43)

Similarly,

P 0(�)d�k = dp
�
1 + x+ :::+ xn�k

�
� �dr

�
1 + x+ :::+ xn�k�1

�
: (44)

Using (43),

P 0(�)d�k = �dr

�
1 + x+ :::+ xn�M�1

1 + x+ :::+ xn�M
�
1 + x+ :::+ xn�k

�
�
�
1 + x+ :::+ xn�k�1

��
:

(45)

Then, since P 0(�) < 0 and dr > 0, d�k > 0 if and only if

1 + x+ :::+ xn�M�1

1 + x+ :::+ xn�M
<
1 + x+ :::+ xn�k�1

1 + x+ :::+ xn�k
: (46)

This inequality holds whenever k < M because 1+x+:::+xa�1

1+x+:::+xa
= 1�xa

1�xa+1 and
@
�

1�xa
1�xa+1

�
@a

=

xa lnx
(1�xa+1)2 (x� 1) > 0. Similarly, d�k < 0 whenever k > M .�
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From Lemmas B2 and B3, we conclude that, assuming �(�(n)) > �, the optimal sta-

tionary outcome � (n) is not a local optimum for any �nite n. This proves Proposition

B1.

It follows from Proposition B1 that the optimal strategy (p; r) is such that the referral

condition is not binding for any consumer. This justi�es the analysis of Jun and Kim (2008).

As is known from Jun and Kim�s Proposition 1, this implies that the �rm e¤ectively price-

discriminates by subsidizing consumer referrals and supporting a decreasing sequence of

purchase probabilities, �1 > ::: > �n.
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FIGURES 
 
Figure 1. The Optimal Solution for the Chain of Length n=5  
 

 
 
Notes: Purchase probability (αk), referral fee (rk), the expected referral payments (αkrk) for the kth 
consumer in the chain, and the optimal profits starting from the kth consumer (for the remaining 
chain of n-k+1 consumers), V(n-k+1), are plotted for the uniform distribution of values, n=5, 
ρ=0.01, and c=0.1  
 
 
Figure 2. Comparative Statics Results for Referral Cost 
 
Panel A. Purchase Probabilities α1 through α5 as Functions of Referral Cost ρ. 
 

 



Panel B. Referral Fees r2 through r5 as Functions of Referral Cost ρ. 
 

 
 
Panel C. Expected Referral Payments α2r2 through α5r5 as Functions of Referral Cost ρ. 
 
 

 
 
Notes: n=5 and c=0.01. 
 



 
Figure 3. Comparative Statics Results for Production Cost  
 
Panel A. Purchase Probabilities α1 through α5 as Functions of Production Cost c. 
 

 
 
 
 
 
Panel B. Referral Fees r2 through r5 as Functions of Production Cost c. 
 

 
 
 
 
 
 
 



 
 
Panel C. Expected Referral Payments α2r2 through α5r5 as Functions of Production Cost c 
 

 
 
Notes: n=5 and ρ=0.01.  


