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Abstract

Random mechanisms have been used in real-life situations for reasons such as fair-
ness. Voting and matching are two examples of such situations. We investigate whether
desirable properties of a random mechanism survive decomposition of the mechanism as
a lottery over deterministic mechanisms that also hold such properties. To this end, we
represent properties of mechanisms—such as ordinal strategy-proofness or individual
rationality—using linear constraints. Using the theory of totally unimodular matrices
from combinatorial integer programming, we show that total unimodularity is a suf-
ficient condition for the decomposability of linear constraints on random mechanisms.
As two illustrative examples, we show that individual rationality is totally unimodular
in general, and that strategy-proofness is totally unimodular in some individual choice
models. However, strategy-proofness, unanimity, and feasibility together are not totally
unimodular in collective choice environments in general. We thus introduce a direct
constructive approach for such problems. Using this approach, we prove that feasibility,
strategy-proofness, and unanimity, with and without anonymity, are decomposable on
non-dictatorial single-peaked voting domains.
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1 Introduction

Random mechanisms are frequently used in sustaining fairness among market participants.
For example, admission to public schools through school choice in the US (cf. Abdulkadiroğlu
and Sönmez, 2003) is administered in many districts through centralized random mechanisms
that use random tie-breakers. Some voting and social-choice environments also use random
mechanisms. Jury selection, draft lotteries, and ballot positioning are further examples (cf.
Fishburn, 1984). Other examples include voting in olympic figure skating competitions and
the election method of military leaders (known as doges) in Venice (used for more than 500
years; cf. Lines, 1986). Some random mechanisms are designed directly to use a lottery over
predetermined deterministic mechanisms, as in school choice. Another approach in random
mechanism design uses probabilistic assignment over outcomes for each situation rather than
deterministic mechanisms in the support of the random mechanism. Competitive equilibrium
from equal incomes of Hylland and Zeckhauser (1979), the probabilistic serial mechanism
of Bogomolnaia and Moulin (2001) for object allocation, and maximal lottery methods (cf.
Kreweras, 1965; Fishburn, 1984) for voting are some examples of this approach.

Random mechanisms correspond to the full range of possible mechanisms. From the
point of view of mechanism design, they cannot be neglected in the search for the best
mechanism to implement a desired goal. On the other hand, many market design situations
require transparency of the mechanism. Randomness of a mechanism is often a source of
additional complexity in explaining and educating the agents who will participate in its im-
plementation. Although simple tie-breakers can easily be explained to the participants in
certain situations (e.g., in school choice), more complex random mechanism implementation
often hinges on the condition that we can implement a deterministic mechanism to repre-
sent the random mechanism. For this reason, the market designer may want to resolve the
uncertainty regarding the mechanism as soon as possible, before the participants’ private
information is collected. Thus, the representability of a random mechanism as a randomiza-
tion over deterministic mechanisms that also have the same properties could be crucial to
the success of the design.

When a property is transferable through decomposition, it holds both ex ante, i.e., before
the uncertainty regarding the mechanism is resolved, and ex post, i.e., after this uncertainty
is resolved. In this case, the mechanism is more robust and is not affected by the market
participants’ access to information regarding the resolution of the uncertainty in the mech-
anism. For example, if dominant-strategy incentive-compatibility (or strategy-proofness) is
decomposable, then it is best for an agent to reveal his preferences truthfully regardless of if
all he knows is that a stochastically strategy-proof mechanism will be implemented or if he
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knows exactly, after the lottery is resolved, which strategy-proof deterministic mechanism
will be implemented. If such a decomposition goes through, this deterministic mechanism,
in many cases, can be explained more transparently to the participants. 1

The goal of this paper is to narrow the gap between our understanding of random and
deterministic mechanisms in ordinal environments. Although we have a good understand-
ing of which properties of deterministic mechanisms are preserved when we randomize over
deterministic mechanisms, the other direction remains quite unclear. Exploring the possi-
bility or impossibility of decomposition of a property shows whether or not, without loss of
generality, we can focus on lotteries over deterministic mechanisms in mechanism design.

We adopt two approaches in determining the decomposability of properties of random
mechanisms. We start with formulating a simple sufficient condition and then use a con-
structive approach for more complex properties where this first approach is inconclusive.

First, we reformulate a useful approach to mechanism design, which has been used in com-
binatorial integer programming in various applications. We show how to analyze which prop-
erties of a random mechanism are decomposable by employing totally unimodular (TUM )
decomposition (cf. Theorem 1). In this way, we contribute to the growing literature on new
approaches to mechanism design using linear programming tools, which have recently found
their way to mainstream economics (see Vohra, 2011). Using these methods, we show that
every individually rational random mechanism is a lottery over individually rational deter-
ministic mechanisms in a variety of environments including object allocation, social choice,
and matching (cf. Theorem 2). Strategy-proofness with and without individual rationality
constraints are also TUM in certain models. We give an example of an individual choice
model where strategy-proofness is TUM and hence decomposable (cf. Theorem 3).2,3

Surprisingly, we find a counter-example that even with a single agent, in the universal
house allocation or voting domains, strategy-proofness is not decomposable, and hence not
TUM (cf. Proposition 1). On the other hand, together with other properties, strategy-

1In algorithmic game theory, the computer science literature that deals with game theory and mechanism
design, decomposability of a property has also attracted special attention. The literature refers to decompos-
ability of a property as universality (cf. Nisan and Ronen, 1999). For example, universal strategy-proofness
(or truthfulness, as sometimes referred to in the computer science literature) is inspected in a recent paper
by Krysta et al. (2014) to find a matching that matches as many agents as possible without sacrificing
universal strategy-proofness in the house allocation problem. They find an upper approximation bound for
this problem.

2A deterministic mechanism is individually rational if its outcome is preferred by agents to their outside
options. A random mechanism is individually rational if its outcome first-order stochastically dominates
agents’ outside options.

3Observe that there could be other ways of proving that these properties are decomposable in the afore-
mentioned domains. Some of these proofs are simpler and they may not need the TUM property. However,
our theorems are stronger than just showing these properties are decomposable, as we prove that they are
TUM (a sufficient but not necessary condition for decomposability).
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proofness can still be decomposable on these domains.
Moreover, TUM decomposability is sometimes too strong. Even though a property is not

TUM, it could still be decomposable. For example, it is straightforward to show that on
the single-peaked voting domain (and hence on the universal domain), strategy-proofness,
unanimity, and feasibility taken together are not TUM.4,5 Despite this fact, we prove that
they are decomposable (cf. Theorem 4). In proving this result, we employ a constructive
approach, which requires the knowledge of the characterization of deterministic mechanisms
that carry the same properties as the random mechanism. Using this information, we con-
struct a lottery over deterministic mechanisms with the required properties that induces a
given random mechanism. To prove this result, we also obtain an interesting result, showing
that on single-peaked domains, strategy-proof and unanimous random mechanisms are tops-
only, i.e., the mechanism outcome relies only on the reported top choices of the agents (cf.
Proposition 3).6 Moreover, we prove that strategy-proofness is decomposable for tops-only
mechanisms on a single-peaked voting domain and unanimity is not needed for this result
as an additional property (cf. Theorem 5).

As a corollary to the proof of decomposability of strategy-proofness and unanimity
on a single-peaked voting domain, we also establish that anonymity, unanimity, strategy-
proofness, and feasibility are jointly decomposable (cf. Theorem 6).7

A forerunner to our work, Gibbard (1977) studied the decomposition of strategy-proofness
in voting when all strict preference rankings are admissible, i.e., on the universal social-choice
domain. In this model, he showed that any unanimous and strategy-proof random mecha-
nism is a randomization over unanimous and strategy-proof deterministic mechanisms. Such
deterministic mechanisms are known to be dictatorships (cf. Gibbard, 1973; Satterthwaite,
1975). The question of whether such a decomposition is possible on restricted domains on
which there are non-dictatorial unanimous and strategy-proof deterministic mechanisms has
remained open. Using our tools, we answer it in the affirmative on the single-peaked vot-
ing domain. Deterministic strategy-proof and unanimous mechanisms on this domain were

4A deterministic mechanism is strategy proof if for every agent, submitting his true preference ranking is
at least as good as submitting any other ranking irrespective of the preference rankings submitted by other
agents. This is equivalent to ex-post incentive-compatibility. A random mechanism is strategy-proof if for
every agent, submitting his true preference ranking first-order stochastically dominates submitting any other
preference ranking irrespective of the preference rankings submitted by other agents. This is the standard
notion of incentive-compatibility of ordinal random mechanisms introduced by Gibbard (1977, 1978); Roth
and Rothblum (1999); Bogomolnaia and Moulin (2001).

5Unanimity is a weak form of efficiency. A mechanism is unanimous if, whenever there are outcomes that
are among the most desirable choices for all agents then the mechanism implements one of these outcomes.

6To our knowledge, we are the first to prove this interesting result.
7A mechanism is anonymous if the outcome of the mechanism depends only on the set of preferences

reported, not on who reported them.
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characterized by Moulin (1980) and have been studied intensively ever since. It turns out
that strategy-proofness and unanimity, with and without anonymity, are decomposable even
though they are not TUM.8 This result is surprising given the observation by Ehlers, Peters,
and Storcken (2002) that some strategy-proof and unanimous mechanisms cannot be decom-
posed on the same domain as a randomization over the particular subset of strategy-proof
and unanimous deterministic mechanisms that they study.

We introduce the decomposition tools in a unified model of many economic environments.
In our model, there is a finite number of agents and a finite number of social and personalized
outcomes. Agents have preferences over personal outcomes. The model encompasses voting,
public goods provision, assignment of discrete goods with and without transfers, assignment
of divisible goods, matching, coalition formation, and network formation. Each of these
environments corresponds in the unified model to a set of conditions on what outcomes are
feasible and a condition on the class of allowable ordinary preference profiles. The feasibility
condition allows us to include both standard strict-preference voting problems (everybody
obtains the same outcome) and object allocation (everybody obtains a different outcome).
The preference domain condition allows us to include both environments without transfers
(all preference profiles over outcomes are allowed) and environments with transfers.

In this unified model we primarily study ordinal mechanisms, that is, mechanisms whose
message space consists of ordinal preference rankings over sure outcomes.9 To draw on
combinatorial integer programming, we represent the random mechanism as a vector of
probabilities indexed by agents, agents’ outcomes, and agents’ preference profiles. We show
that the feasibility of the mechanism (e.g., the sum of the probabilistic outcomes sum up
to 1, or constraints implying this end) along with certain properties can be represented as
a TUM matrix whose rows are indexed by agents, agents’ outcomes, and agents’ preference
profiles, and columns correspond to these constraints. A matrix is TUM if all of its square
submatrices have determinants equal to �1, 0, or 1. We represent the feasibility constraints
by columns corresponding to each preference profile separately, over every pair of agent and
agent’s outcome. Certain properties, like individual rationality constraints, are also sepa-
rable across preference profiles. However, properties such as strategy-proofness are defined
over preference profile pairs as well as agents and their outcomes. Provided the structure
of feasibility constraints of the environment is also TUM, we show that TUM feasibility

8While proving this result, we also obtain a corollary to Moulin (1980) using our tops-onlyness results,
the characterization of the full class of deterministic, unanimous, and strategy-proof voting mechanisms
on a single-peaked domain (cf. Corollary 2). As far as we know, we are the first ones to give this full
characterization.

9See Bogomolnaia and Moulin (2001) for a thorough discussion of the role of ordinal random mech-
anisms. Ordinal mechanisms in the presence of random outcomes were also studied by Gibbard (1978);
Abdulkadiroğlu and Sönmez (1998).
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constraints and the individual-rationality constraint may be jointly represented by a TUM
matrix. We also show that strategy-proofness and simple feasibility can be represented by a
TUM constraint matrix in certain environments. Finally, we rely on the result of Hoffman
and Kruskal (1956) to show that the real-valued vector that codes a random mechanism
satisfying the constraint represented by the TUM matrix is equal to a probability-weighted
sum of integer-valued vectors. Each of these integer-valued vectors represents a deterministic
mechanism that satisfies the same feasibility constraints and properties.

A forerunner to our study is Sethuraman, Teo, and Vohra (2003, STV from now on).
They used the theory of combinatorial integer programming to represent and decompose Ar-
rovian social choice functions through linear constraints. The work of Budish, Che, Kojima,
and Milgrom (2010, BCKM from now on) is also related to ours in that they use combinato-
rial integer programming to study decomposition problems related to matching. In contrast
to our paper, both of these papers only study the question of whether we can decompose
a particular random allocation into a randomization over deterministic outcomes while pre-
serving constraints. This is an important question: the outcome of a random mechanism
is a matrix of marginal probabilities that needs to be implemented through feasible deter-
ministic outcomes. They restrict their attention to constraints expressible as an unweighted
sum of probabilistic decision variables and allocation probabilities, respectively. Our setup
allows richer, integer-weighted constraints on implementation of random allocations. Our
constraint language is rich enough to study mechanism design, and, for instance, to express
and study constraints such as strategy-proofness constraints that are not expressible in the
language of STV and BCKM.10

Our paper is also related to Peters, Roy, Sen, and Storcken (2011), Chatterji, Roy, and Sen
(2012a), Picot and Sen (2012), and Chatterji, Sen, and Zeng (2012b). Their and our papers
are independent.11 The closest to ours among these papers is Peters, Roy, Sen, and Storcken
(2011). They show that on the single-peaked domain, every strategy-proof and unanimous
random mechanism is a lottery over such deterministic mechanisms; their proof technique
relies on Farkas Lemma and is different from our approach for the proof of Theorem 5.
Chatterji, Roy, and Sen (2012a) prove a decomposability property on lexicographic product
domains; Picot and Sen (2012) prove it for the case of two social alternatives; and Chatterji,
Sen, and Zeng (2012b) show that the decomposability of strategy-proofness and unanimity
does not hold in general.

10BCKM show that their bi-hierarchy condition is not only sufficient but also necessary for decomposability;
as demonstrated by our paper, their necessity result hinges on the restriction to the set of constraints they
study, and in fact we can decompose constraints that fail the bi-hierarchy condition.

11We became aware of each other’s work after both their and our papers were completed. We thank
Arunava Sen for telling us about his and his co-authors’ work.
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2 Motivating Examples

We start by giving some examples of random mechanisms and the types of constraints and
properties that are decomposable. Our results will generalize these examples.

We start with simple feasibility constraints of summation type over random outcomes,
which our model covers.

Example 1 Consider an environment in which a random assignment gives each agent a
probability of assignment for each object such that each object and each agent cannot be
given a total assignment probability greater than 1. This constraint is a typical feasibility
constraint. It can be written as a linear summation saying that summations of all entries
regarding any agent should not exceed 1 and all entries regarding any object should not
exceed 1. In this environment, a social outcome is an assignment of objects to agents such
that no two agents receive the same object, while a personal outcome is the object that an
agent receives. It turns out that any such random assignment, which consists of marginal
probability distributions over personalized outcomes subject to the feasibility constraint,
is decomposable into a lottery over social outcomes. This is a famous result independently
proven by Birkhoff (1946) and von Neumann (1953). The recent paper by BCKM generalizes
this result and shows that as long as there are at most two (or bi-) hierarchical summation
constraint sets regarding these entries, the random assignment can be decomposed into a
lottery over deterministic assignments such that each also satisfies the same constraints. A
hierarchical summation constraint set is a set of linear summation constraints over entries of
the random assignment such that any two constraints in the set are either embedded in one
another or are mutually exclusive from each other in regard to the entries they apply to. ⇧

By contrast, our representation is more general and handles not only bi-hierarchical sum-
mation constraints but also integer (or rational number) weighted summation constraints by
constraints with +1 and �1 (i.e., summation and subtraction constraints). Thus, in the
sequel, we focus on constraints with +1 and �1. Two constraints of this sort are individual
rationality and strategy-proofness. An ordinal random mechanism allocates a probability
distribution over a social outcome subject to the reported ordinal preferences of agents. An
outcome of such a mechanism not only satisfies simple feasibility constraints (such as that
the sum of outcome probabilities should be one), but usually also has certain properties that
require linkages among different random outcomes such as its lottery outcomes regarding
different preference profiles. In this vein, the first example demonstrates decomposability
of the individual rationality property using TUM decomposition, which links an initial de-
terministic outcome to random outcomes obtained by the mechanism at different preference
profiles.
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The second property we explore is strategy-proofness. We give an example of a non-
dictatorial decomposition of a strategy-proof mechanism on an individual choice subdomain
of preferences, truncation choice models (see Subsection 4.3). It turns out that in this domain
strategy-proofness is TUM. However, in other domains, this is not necessarily true, as we
explore in Section 5.

3 Model

3.1 Environments

Let I be a finite set of agents. Let Oi be a finite set of sure personal outcomes of agent
i 2 I. For instance, the sure outcome might be a social choice, voting result, an object
the agent was assigned, or the assigned object and the price paid. Let O ✓ ⇥i2IOi be the
set of feasible profiles of sure social outcomes. We will use also the term environment
to refer to O. We will derive our strongest positive results for voting problems where
O1 = ... = O|I| and O =

��
o1, ..., o|I|

� 2 ⇥i2IOi | o1 = ... = o|I|
 
. Although by introducing

indifferences we make this environment rich enough to embed house allocation, matching, and
other problems we are interested in, the formulation of the results becomes more transparent
when we build into the model the distinction between a personal outcome for agent i and
agent j. For instance, in the house allocation problem, we assume that O1 = ... = O|I|

and O =

��
o1, ..., o|I|

� 2 ⇥i2IOi | 8x1 2 O1 |{i : oi = x1}|  1

 
.

We consider randomizations over social outcomes as well as sure social outcomes. A
lottery is a probability distribution over feasible social outcomes. Formally, a lottery
L=(L(o))o2O satisfies (1) for all o 2 O, L(o) 2 [0, 1], and (2)

P
o2O L(o) = 1. By a slight

abuse of notation, we will denote by L(i, oi) the probability that agent i obtains personal
outcome oi 2 Oi under lottery L, i.e., L(i, oi) =

P
x2O :xi=oi

L(x). By �O we will denote the
set of lotteries over social outcomes.

Each agent i 2 I has preferences over personal outcomes drawn from a preference domain
Di. The domain is universal if every possible ranking of personal outcomes is possible. For
any %i2 Di and Yi ✓ Oi, let Ch(Yi,%i) ✓ Yi denote the choice set of agent i at preference
%i among the personal outcomes in Yi, i.e., for all oi 2 Ch(Yi,%i), oi %i xi for all xi 2 Yi.
When the choice set is a singleton, we will occasionally treat it as the choice outcome by an
abuse of notation.
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3.2 Mechanisms and Constraints

A(n ordinal) random mechanism � : D ! �O is a mapping from preference profiles
to lotteries over feasible profiles of sure social outcomes. By �(%; o) we will denote the
probability that social outcome o is chosen by � at preference profile %. A mechanism is
deterministic if it maps preference profiles into O. That is, a deterministic mechanism � is
such that for all %2 D, �(%, o) = 1 for some o 2 O. We will sometimes denote this by
slight abuse of notation as �(%) = o. For a general random mechanism, by �(%; i, oi) we
will denote the probability that personal outcome oi 2 Oi is being chosen for agent i at %;
that is, �(%; i, oi) =

P
x2O :xi=oi

�(%; x). Let IO = {(i, oi) | i 2 I and oi 2 Oi} be the set of
feasible agent and individual outcome pairs.

We study mechanisms that satisfy a number of elementary constraints of the following
form

c 
X

(%,i,oi)2C

�(%; i, oi)�
X

(

%0,i0,o0
i0)2C

0

�(%0
; i0, o0i0)  c̄,

where C,C 0 ⇢ D ⇥ IO (one of them might be empty) and c, c̄ 2 Z [ {�1,+1}. Any
elementary constraint is thus identified with a quadruple (C,C 0, c, c̄). We define a constraint
as a conjunction of elementary constraints. A constraint is thus identified with a set of
quadruples (C,C 0, c, c̄).

The above class of constraints is surprisingly versatile. For instance, strategy-proofness
belongs to this class of constraints. An ordinal mechanism � is strategy-proof if for
every agent i and every profile of preferences reported by other agents, the distribution
of agent i’s outcomes when he reports his preferences truthfully first-order stochastically
dominates the distribution of outcomes from reporting any other preference profile.12 We
write the strategy-proofness constraint in our language of elementary constraints as follows:
for all i 2 I, %�i2 ⇥j 6=iDj, %i,%0

i2 Di and xi 2 Oi,

0 
X

oi%ixi

�(%i,%�i; i, oi)�
X

oi%ixi

�(%0
i,%�i; i, oi)  1. (1)

The two above examples of feasibility constraints are also expressible in terms of elementary
constraints. Thus, a mechanism � satisfies the feasibility constraint of the house allocation

12See Bogomolnaia and Moulin (2001). One interpretation of the condition is that there is no profile
of other agents’ reports, and no cardinal representation of %i2 Di that allows an agent i to submit a
non-truthful %i and improve his expected payoff from submitting the true preferences.
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problem if it satisfies

0  �(%; i, x1)  1 8i 2 I, 8x1 2 O1, 8 %2 D, (2)
X

x12O1

�(%; i, x1) = 1 8i 2 I, 8 %2 D, (3)

0 
X

i2I

�(%; i, x1)  1 8x1 2 O1, 8 %2 D.

A mechanism � satisfies the feasibility constraint of the voting problem if it satisfies Equations
2 and 3 above, and

�(%; i, x1)� �(%; j, x1) = 0 8i, j 2 I, 8x1 2 O1, 8 %2 D.

4 Totally Unimodular Decomposition

We define the incidence matrix of a constraint C as a matrix whose rows are indexed by
(%, i, o) and columns indexed by the first two coordinates (C,C 0

) of elementary constraints in
C. Without loss of generality, we assume that constraint C contains at most one elementary
constraint with a given pair of the first two coordinates (C,C 0

). The value of a cell is 0 if it
does not belong to C [C 0, +1 if it belongs to C, and �1 if it belongs to C 0. We thus impose
asymmetric roles on sets C and C 0 even though they may play symmetric roles. The way in
which we order them turns out to be insubstantial: multiplying any column by �1 will not
affect any of the statements below.

Our approach to feasibility constraints relies on earlier results on totally unimodular
integer matrices. A matrix is totally unimodular (TUM) if the determinant of each of its
square submatrices is either �1, 0, or 1. We will rely on a useful characterization of TUM
provided by Ghouila-Houri (1962):

Lemma 1 (Ghouila-Houri (1962) TUM Matrix Decomposition Lemma) A matrix
A 2 {�1, 0, 1}m⇥n is totally unimodular if and only if every subset S of rows may be parti-
tioned into sets S+ (we will also refer to this as the set of “blue” rows) and S� (we will also
refer to this as the set of “red” rows) such that for every column c of A:13

X

r2S+

A (r, c)�
X

r2S�

A (r, c) 2 {�1, 0,+1} . (4)

We refer to {S+, S�} as the Ghouila-Houri partition of S and the difference in
13We can also state this result by interchanging the roles of rows with columns.
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Equation 4 as the Ghouila-Houri difference along c.14 We call a constraint totally
unimodular if it is has a TUM incidence matrix.

Our first theorem is related to the sufficiency of TUM decomposability in decomposing
properties.

Theorem 1 If a random mechanism � : D ! �O satisfies a TUM constraint, then it is
a convex combination of a finite number of deterministic mechanisms {�k : D ! O} each
of which satisfies the same constraint, i.e., there is a finite number of weights {�k} ⇢ [0, 1]

with
P

k �k = 1 such that � =

P
k �k�k. If a mechanism � : D ! ⇥i2IR|Oi| satisfies a

TUM constraint, then it is a convex combination of finitely many integer-valued mechanisms
{�k : P ! ⇥i2IZ|Oi|} each of which satisfies the constraint.

Proof of Theorem 1. Because the constraint is TUM, it has a TUM incidence matrix.
Let us call that matrix A. Consider a row vector � of real numbers, one for each triple: agent
i, outcome oi of agent i, and preference profile of all agents % such that the cell (%, i, oi)

of the vector equals �(%; i, oi). Since � satisfies the constraint, �A is a row vector indexed
by the first two coordinates of the constraint (C,C 0

), and for each constraint (C,C 0, c, c̄) the
relevant entry in �A is between the relative c and c̄. By Hoffman and Kruskal (1956), the
set of all vectors with this property is an integral polyhedron: that is, it is a polyhedron
with integer-valued extreme points. Since it is convex, we may represent vA as a convex
combination of the extreme points. Each of the extreme points represents a {0, 1}�valued
mechanism �k. Since the extreme point belongs to the polyhedron, the mechanism satisfies
the constraints represented by A. The proof of the second statement follows the same lines.

Below we give three examples of TUM properties.

4.1 Feasibility

Observe that a number of feasibility constraints are TUM. Ghouila-Houri decomposition
immediately implies that voting and house allocation feasibility constraints are TUM. BCKM
gave examples of feasibility constraints that are defined over a random outcome on the house
allocation domain. Ghouila-Houri decomposition can be used to prove their results. We can
extend this result to feasibility constraints for mechanisms that not only pertain to a random
outcome but also link random outcomes generated by different preference profiles.

14We give a detailed example of the construction of such a partition in Example 3 below.
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4.2 Individual Rationality

Theorem 1 allows us to decompose random mechanisms while preserving individual ratio-
nality. To define individual rationality we need to enrich the model by identifying a status
quo outcome !i 2 Oi, an outside option for each agent i 2 I such that ! = (!1, ...,!|I|) 2 O.
A mechanism � is individually rational if each agent’s outcome first-order stochastically
dominates the status quo outcome; that is, for all i 2 I and %2 D, !i �i oi ) �(%; i, oi) = 0.

Our main result for this subsection is as follows:

Theorem 2 The conjunction of individual rationality and any TUM feasibility constraint is
TUM. In particular, if � is an individually rational mechanism, then it is a convex combi-
nation of finitely many individually rational deterministic mechanisms {�k : D ! O}.

Proof of Theorem 2. Individual rationality is a conjunction of simple constraints denoted
by IR = {(C,C 0

) = ({(%, i, oi)}, ;) | !i �i oi} . Lemma 1 and Theorem 1 imply that any
set of rows of feasibility may be partitioned into Ghouila-Houri sets S+ and S�. Since each
individual rationality column contains exactly one non-zero element, the same Ghouila-Houri
partition establishes that feasibility together with individual rationality is TUM.

Below, we illustrate this result with an example:

Example 2 Consider an environment in which there are two agents with preferences over
a number of discrete objects such as dormitory rooms, and each of them is initially endowed
with a distinct room. Some rooms are not initially endowed to anybody. Consider the
following direct mechanism that probabilistically distributes rooms based on the agents’
reported preferences:

• each agent will receive his first-choice room with probability 1, if they are distinct;

• if both agents rank the same room as their first choice, which is endowed to one of the
agents, then the owner of that room will receive it with probability 1 and the other
agent will receive his second-choice room with certainty; and

• if both agents rank the same room as their first choice and this room is not initially
endowed to anybody, then an even lottery will determine who receives it, and the
second choice of each agent will be assigned to him with probability 1

2 .

This mechanism is individually rational, as nobody will receive a room strictly worse than
his endowment with a positive probability.

Using our methodology, the incidence matrix A of individual rationality and simple feasi-
bility constraints is as follows: rows of A refer to each (preference profile, agent, room) triple
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(%, i, oi); columns are for feasibility and individual rationality constraints: the first part of
the feasibility constraint columns is indexed for each (preference profile, room) pair (%, oi)

(We refer to them as type (a) columns) and for each preference profile, agent pair (%, i)

(type (b) columns); and the individual rationality constraints and the remaining feasibility
constraints are indexed for each (preference profile, agent, room) triple (%, i, oi) (type (c)
columns). Let (!i)i2I 2 O be the endowment. Let row vector � refer to the above mechanism
where each entry refers to the probability of assignment for each (preference profile, agent,
room) triple. Then all constraints are denoted by c  �A  c for row vectors c and c where
for all (%, i, oi), we have

A[(%, i, oi), (%0, o0i)] =

(
1 if oi = o0i and %=%0

0 otherwise
8(%0, o0i),

A[(%, i, oi), (%0, i0)] =

(
1 if i = i0 and %=%0

0 otherwise
8(%0, i0),

A[(%, i, oi), (%0, i0, o0i)] =

(
1 if i = i0, oi = o0i, and %=%0

0 otherwise
8(%0, i0, o0i); and

c[(%, oi)] = 1 and c[(%, oi)] = 1 8(%, oi),

c[(%, i)] = 1 and c[(%, i)] = 1 8(%, i),

c[(%, i, oi)] = 0 and c[(%, i, oi)] =

(
1 if oi %i !i

0 otherwise
8(%, i, oi).

It is straightforward to verify that A is TUM. Using the Ghouila-Houri decomposition method
for columns instead of rows, for any subset of columns S, we can color them blue (i.e., assign
to subset S+) or red (i.e., assign to subset S�) as follows: Color all type (a) constraints in
S blue and all type (b) constraints red. Consider type (c) constraints in S. Observe that
type (c) constraints apply only to a single row for each column (i.e., positive only at one
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cell), i.e., the cell indexed by the same row and column dimensions. One can color the type
(c) columns of S as follows: Check the difference in sums of blue and red columns of type
(a) and type (b) along a row (%, i, oi) that is also a type (c) column index in S. This is
either �1, 0, or 1, as there is at most one blue and one red column already colored with a
positive entry along each row in S. If the difference is �1, color column (%, i, oi) blue, if the
difference is 1 then color it red, and if the difference is 0 color it any color, for example blue.
Now the difference of blue and red columns in S with positive entries along a row is 0 or 1,
and we are done. By Theorem 1, � is decomposable into individually rational deterministic
mechanisms.

It turns out that we can decompose � as follows: Consider two priority orders of agents,
one ranking agent 1 over 2 and the other ranking agent 2 over 1. Based on one of these
priority orderings, which is selected with an even lottery, each agent is assigned, in order, his
top-choice available house, provided that the top choice of the first agent in the order is not
the endowment of the second agent who also ranks it first. In this case, the second agent is
assigned his first choice and the first agent is assigned his second choice.15⇧

4.3 Strategy-proofness

Strategy-proofness constraints also turn out to be TUM in certain cases. We provide an
example of an individual choice model where strategy-proofness is TUM.16 We consider an
agent whose rankings of outcomes are known and common knowledge. However, he can
potentially truncate his preferences by declaring some choices unacceptable. This model is
consistent with Simon’s (1955; 1956) model of satisficing, which is a decision-making strategy
that involves searching through the available alternatives until a satisfaction threshold is met.
We formally introduce a truncation decision domain as follows. Let I = {i}, and O⇤ be an
ordered finite set of sure real outcomes of agent i; denote the ordering by A. Without loss of
generality let O⇤

= {o1, ..., on} and o1 A o2 A ... A on. This refers to the common-knowledge
strict ranking of the agent regarding the real outcomes. For instance, the sure real outcome
might be a social choice, voting result, an object the agent was assigned, or the assigned
object and the price paid. The set of all sure outcomes is given by O = O⇤ [ {o0}, where o0

is the satisfaction bound. It can be an outside option in models with individual rationality.
A truncation preference relation % is a strict ranking over O such that ok � ok+1 for all
k 2 {1, 2, ..., n � 1}. Hence, two difference truncation preferences differ from each other
only where o0 is ranked. Each agent i is endowed with a strict ranking <i over Oi, and a

15These deterministic mechanisms are in the class of top-trading cycles mechanisms (cf. Abdulkadiroğlu
and Sönmez, 1999; Pápai, 2000).

16For strategy-proofness in collective choice situations, see Section 5.
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satisfactory threshold oi. Given an outcome ok for k 2 {0, ..., n}, the preference relation %k

is the one with o0 ranked just below ok if k � 1 and o0 ranked at the top if k = 0.
We consider mechanisms that elicit the agent’s threshold and map it into lotteries over

sure outcomes. In this environment, we will see that — with a single agent — if the fea-
sibility constraints are totally unimodular, then the incentive compatibility and feasibility
constraints are totally unimodular. Hence, our main results imply that each incentive-
compatible random mechanism can be decomposed as a lottery over incentive-compatible
deterministic mechanisms.

We also care about individual rationality ; mechanisms that select only random outcomes
that are at least as good as o0 .

We consider simple feasibility constraints: the sum of the probabilities over all outcomes
is equal to one for an agent and each probability is non-negative.

Theorem 3 For a truncation decision model, the strategy-proofness constraint with or with-
out an individual rationality constraint is TUM together with the simple feasibility constraint.
In particular, if � is a strategy-proof mechanism, then it is a convex combination of finitely
many strategy-proof deterministic mechanisms {�k : D ! O}.

Proof of Theorem 3. Rewriting Equation 1 for a single agent I = {i} by dropping the
i subscript, strategy-proofness is a conjunction of simple constraints of the form %,%02 D,

where D is the truncation preference domain and x 2 O,

0 
X

y%x

�(%, y)�
X

y%x

�(%0
; y)  1.

This is equivalent to, for all k 2 {0, 1, ..., n� 1},

0 = �(%k
; o`)� �(%k+1

; o`), 8` 2 {1, 2, ..., k};
0  �(%ok

; o0)� �(%ok+1
; o0)  1;

�1  �(%ok
; ok+1)� �(%ok+1

; ok+1)  0; (5)

0 = �(%ok
; o`)� �(%ok+1

; o`), 8` 2 {k + 2, ..., n}.

That is, we can inspect only local deviations in the satisfaction threshold, if we would like to
capture all deviations. Thus, we incorporate strategy-proofness constraints in Equation 5 in
the constraint matrix A: Consider C = (%k , x) and C 0

= (%k+1, x) for all k 2 {0, ..., n� 1}
and x 2 O: for column c = (C,C 0

), at row r = (%k, x), A(r, c) = 1 and at row r0 = (%ok+1 , x),
A(r0, c) = �1, respectively.
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On the other hand, simple feasibility and individual rationality constraints are of the
form: for all k 2 {0, 1, ..., n},

0  �(%k
; o`)  1 8` 2 {0, 1, ..., k},

0 = �(%k
; o`) 8` 2 {k + 1, k + 2, ..., n}, and (6)

1 =

X

x2O

�(%k
; x).

If there were no individual rationality constraints, then the second line of Equations 6 would
be an inequality between 0 and 1. Thus, with or without individual rationality, the same A

constraint matrix is formed: for all columns of the form c = (%k
; x) and rows of the form

r = c, A(r, c) = 1; for all the columns of the form c = (%k
) and rows of the form r = (%k, x),

we have A(r, c) = 1.

We are ready to introduce a Ghouila-Houri (1962) decomposition for A: Take any subset
S of rows of A. In constructing a Ghouila-Houri partition of S, {S+, S�}, our goal is to pair
rows (%, x), (%, y) 2 S for each %2 D such that

C1. Rows (%, x) 2 S and (%, y) 2 S will be placed in opposite sets, S+ and S�, or S� and
S+, respectively.

C2. All rows in {(%0, x) 2 S | %02 D} will be placed in the same set, S+ or S�.

We may not be able to perfectly pair all rows for a profile %, as there can be an odd number
of rows in {(%, o) 2 S | o 2 O}; for such an outcome we impose only C2 above:

C2. If there is an unpaired row (%, o) 2 S, then all rows in {(%0, o) 2 S | %02 D} will be
placed in the same set in the partition, S+ or S�.

Our goal is the achieve the following for the all three types of columns of the constraint
matrix A if rows (%, x), (%, y) 2 S are paired together or (%, x) 2 S is left unpaired.

Type 1. As we proceed down a column (%, x): the Ghouila-Houri difference will be exactly 1

or �1, for the whole column, since there is only one cell with a non-negative entry, i.e.,
the one corresponding to row (%, x).

Type 2. As we proceed down a column (%): if the two rows (%, x) and (%, y) are paired
together, the Ghouila-Houri difference will cancel out to zero for these two rows, since
these belong to opposite sets, and they each have cell value 1. On the other hand, if
row (%, x) 2 S is left unpaired, the Ghouila-Houri difference will be �1 or 1 for the
row (%, x). (Achieved by C1.)
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Type 3. As we proceed down a column ((%k, x), (%k+1, x)) such that {%,%0} = {%k,%k+1}:
if (%0, x) 2 S, then the Ghouila-Houri difference will cancel out to zero for the whole
column, since these belong to the same set, S+ or S�, and they have cell values +1 and
�1, respectively. On the other hand if (%0, x) 62 S, then the Ghouila-Houri difference
will be �1 or +1 for the whole column. (Achieved by C2.)

Observe that pairing will be crucial for Type 2 and Type 3 columns above. Moreover, because
of Type 2 of columns (%), we need the pairing to be mutually exclusive: i.e., if (%, x) and
(%, y) are paired together, then there is no z 6= y such that also (%, x) and (%, z) are paired
together; otherwise we cannot achieve our goal of the Ghouila-Houri difference being �1, 0,

or 1 along the whole column (%).
We construct an undirected graph G = (S,E) with nodes S and edges E: Each node

consists of a row in S. For all k and x 2 O, if (%k, x),(%k+1, x) 2 S, then we place an edge
between nodes (%k, x) and (%k+1, x). This edge signifies that these rows should go to the
same set of the partition, S+ or S�, to be determined later.

We pair the rows in S, i.e., nodes of G, as follows, iteratively. Initially, we set counter
k0

= 0 and set G0
= G.

Step k0 for pairing of nodes of G:

Order the nodes of Gk0 in Sk0
= {(%k0 , x) 2 S | x 2 O} according to the length of the

paths in Gk0 that they initiate. Let (%k0 , x1
), (%k0 , x2

), ..., (%k0 , x`
) be this ordering such that

(%k0 , x1
) initiates the longest path,(%k0 , x2

) initiates the second longest path, and so on (if
there is a tie, it is broken arbitrarily). Pair nodes in these encountered paths as follows: for all
odd p (%k0 , xp

)&(%k0 , xp+1
),...,(%k, xp

)&(%k, xp+1
) are paired (where & shows the pairings)

such that k is the largest possible index satisfying the following two conditions:

• (%k, xp
) is on the path initiated by (%k0 , xp

), and

• (%k, xp+1
) is on the path initiated by (%k0 , xp+1

).

If ` (the number of the nodes in Sk0) is odd, an unpaired node (%k0 , x`
) 2 S will remain

involving preference profile %k0 .

Remove all paired nodes, node (%k0 , x`
) if it was left unpaired, and all of their edges

from Gk0 to form the new graph Gk0+1. Continue with the new graph as above by setting
k0

:= k0
+ 1.

We construct another auxiliary graph � = (S⇤, E⇤
) from G = (S,E) as follows using the

above pairings.
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Whenever two nodes r1, r2 2 S are paired in G, construct a single node from them named
r1&r2 2 S⇤. Any unpaired node r 2 S becomes a node r 2 S⇤. Take an edge (r1, r2) 2 E

between nodes r1 and r2 2 S and place an edge between the node including r1 and the node
including r2 in E⇤ as follows:

• If r1&r 2 S⇤ for some r and r2&r0 2 S⇤ for some r then place an edge between these
two pairs in �, i.e., (r1&r, r2&r0) 2 E⇤.

• If r1 2 S⇤ and r2&r 2 S⇤ for some r then place an edge between them in �, i.e.,
(r1, r2&r) 2 E⇤.

• If r1&r 2 S⇤ for some r and r2 2 S⇤ then we place an edge between them in �, i.e.,
(r1&r, r3) 2 E⇤.

We are ready to finish the proof of the theorem through two claims:
Claim 1. � has no cycles.
Proof. Suppose that we form � step by step as we pair the nodes in G. We start with � = G
and update � as we pair new nodes at every step of the pairing process.

Suppose there was no cycle in � until the pairing (%k, x)&(%k, y) was done in some Step
k0  k, but to the contrary of the claim, this pairing has resulted with a cycle in � as
we updated it. For each {a, b} = {x, y}, let P a be the tree of nodes (i.e., the component
without a cycle) in � that (%k, a) is located prior to being paired with (%k, b). Now pairing
of (%k, x) with (%k, y) causes a cycle in � that traverses backward through the preference
profiles %k�1, ...,%k�k00+1,%k�k00 and then traverses forward %k�k00+1, ...,%k�1,%k for some
k00. Suppose (%k�k00 , a)&(%k�k00 , b) is the node of � in this cycle for the preference pro-
file %k�k00 . Suppose (%k�k00+1, a)&(%k�k00+1, c) and (%k�k00+1, b)&(%k�k00+1, d) are the two
distinct nodes of � in the same cycle (observe that one should have a and the other one
should have b to be connected to the node (%k�k00 , a)&(%k�k00 , b)). But then, this contra-
dicts the pair construction: since (%k�k00 , a)&(%k�k00 , b) are already paired and we have both
(%k�k00+1, a), (%k�k00+1, b) 2 S, we should have also paired (%k�k00+1, a)&(%k�k00+1, b). ⇧

Claim 2. Take a component of �. The two rows in each of its pair nodes can be assigned
to S+ and S�, respectively, and its individual row nodes can be arbitrarily assigned to S+

or S� such that C1 and C2 hold.

Proof. Each component of � can be represented as a tree, since there is no cycle. Suppose
that the node with the largest indexed preference profile is taken as the root of the tree.
Moreover, each paired node in the tree (%k, a)&(%k, b) has at most three edges connected
to it in �: one of which can be an unpaired row node (%k+1, a) or a paired rows node
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(%k+1, a)&(%k+1, x) and at most two nodes: (1) (%k�1, a)&(%k�1, y) or (%k�1, a), and (2)
(%k�1, b)&(%k�1, z) or (%k�1, b).

We use induction in the construction of S+ and S�:

• Start with the root of the tree: If it is a paired rows node (%k0 , a)&(%k0 , b), then assign
(%k0 , a) to S+ and (%k0 , b) to S�. If it is an unpaired row node (%k0 , a), then assign it
to S+. Observe that both C1 and C2 hold for this assignment.

• Assuming that we have already assigned all the nodes in the tree with preference
profiles %k0 ,%k0�1, ...,%k+1 consistent with C1 and C2, we make the assignment of a
node with preference profile %k as follows:

– If it consists of paired rows (%k, x)&(%k, y), then for a 2 {x, y}, (%k+1, a) is in
the tree as well either by itself or in a pair. Suppose (%k+1, a) was assigned to
S� for some � 2 {+,�}. Then we assign (%k, a) to S� (so C2 holds for these two
rows) and assign (%k, b) to S• for b 2 {x, y} \ {a} and • 2 {+,�} \ {�} (so C1
holds for these two rows). If (%k+1, b) is also in the tree, then it was paired with
(%k+1, a) by construction. Therefore, (%k+1, b) 2 S• by the inductive assumption,
as (%k+1, a) 2 S�. Hence, this is consistent with (%k, b) 2 S• (so C2 holds for
these two rows).

– If it consists of unpaired row (%k, x), then (%k+1, x) is in the tree as well. And if
(%k+1, x) 2 S� for some � 2 {+,�}, we assign (%k, x) 2 S�.

This completes the proof of the claim.⇧

As C1 and C2 are simultaneously satisfied for all components of �, A is TUM by Lemma
1 and hence the contraints are decompoasable by Theorem 1.

The example below illustrates the Ghoulia-Houri partition construction used in the proof:

Example 3 Consider an individual choice truncation problem with nine real outcomes
{o1, ...o9} and an outside option o0. There are ten preference profiles as %k, where ok being
the last acceptable real choice for k � 1 and %0 has no acceptable real outcome. Consider a
set of rows of the constraint matrix A, denoted by S. The graph G as defined in the proof
of Theorem 3 is given in Figure 3.

Nodes of G consist of the rows in S, and edges of G are drawn with solid lines. For labeling
the nodes, the vertical axis is indexed by all ten outcomes reindexed as a, b, ..., j, and the
horizontal axis is indexed by the preferences profiles in order (e.g., node in cell (%3, c) means
(%3, c) 2 S and no node in cell (%2, c) means (%2, c) 62 S ). If we have two consecutive nodes
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Figure 1: Nodes are the rows in S. Graph G is denoted by solid edges. Pairings are
denoted by dashed edges.

horizontally in the figure for an outcome x along preference profiles %k and %k+1, (e.g., at
(%1, f) and (%2, f); however, observe that (%2, j) and (%4, j) do not fulfill this requirement,
as node (%3, j) 62 S), then these two rows have a 1 and a �1 respectively in the column
((%k, x), (%k+1, x)) of A. For the Ghoulia-Houri difference for these two rows to neutralize
to 0, we need both of these rows to be in the same set S+ or S� (to be determined later).
Hence, the horizontal solid edges between two consecutive nodes in the figure refer to this
requirement, which is condition C2 in the proof.

We also add some dashed vertical edges – denoting the pairing of rows in the proof –
to satisfy condition C1. These can be added in a number of ways. The proof illustrates
only one way of adding those. More specifically, dashed vertical edges are drawn between
two nodes with the same preference profile. This means that, as these rows have entry 1

along the column (%k
) of A, we need them to belong to the two opposite sets S+ and S�,

respectively. Hence, the Ghoulia-Houri difference neutralizes to 0 for these two rows along
column (%k

) of A. (Which one will go to set S+ and which one will go to set S� will be
determined later.) This requirement is denoted as C1 in the proof.

Now, can we achieve these two goals C1 and C2 simultaneously for all rows in S that
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are linked through solid edges? The dashed edges will be added specifically to make this
possible using the pairing procedure in the proof.

In Step 0, we pair nodes vertically in the two longest solid-edge paths initiated by %0:
(%0, a)&(%0, b), (%1, a)&(%1, b), (%2, a)&(%2, b) as in the figure. We continue with the third-
and fourth-longest solid-edge paths: (%0, c)&(%0, d), (%1, c)&(%1, d). The fifth row with %0

in S, (%0, g), remains unpaired (the pairings – dashed edges – are labeled by their step
number in the figure).

In Step 1, we vertically pair the nodes of the two longest solid-edge paths that are
initiated by %1-nodes and do not have an already paired node. We pair (%1, e)&(%1, f), ...,
(%4, e)&(%4, f). The final node (%1, j) remains unpaired.

Continuing in a similar manner, we obtain the pairings in the figure.
Now we index each component in the figure (using both dashed edges and solid edges).

There are seven of them.
We construct a new graph � by simply representing each node pair by a new single node

and each unpaired node by itself. Hence, we eliminate dashed edges. If there is a solid edge
between two nodes of the old graph, we place an edge between the new nodes containing the
old nodes. This new graph is represented in Figure 3.

Figure 2: Graph �.
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As seen in Figure 3,17 there are no cycles in this new graph. This is a sufficient condition
to form the partition of S so that C1 and C2 are satisfied. Each component of the old graph
is now represented as a tree in the new graph. We choose its root as the leftmost node. Each
tree can be partitioned independently from the other trees. We illustrate it on Tree 4 in the
graph, as the others are trivial to partition. Tree 4 spans across 6 outcomes d, e, f, i, j.

We start with the root of the tree (%9, d), an unpaired row, and arbitrarily assign it to
S+. Then all rows (%k, d) are assigned to S+ for k = 8, 7, 6, 5. As the pair (%8, d)&(%8, f) is
in the tree and (%8, d) is already assigned to S+, we assign (%8, f) to S�. Hence the rows on
the branch stemming from (%8, d)&(%8, f) including f should also be in S�: (%7, f), (%6, f)

are assigned to S�. Row (%7, j) is assigned to S+ as the pair (%7, f)&(%7, j) is in the tree
and (%7, f) 2 S�. So are (%k, j) for k = 6, 5, 4. Thus, rows (%6, i) and (%5, i) are assigned
to S� as pairs (%k, i)&(%k, j) for k = 6, 5 are in the tree and each (%k, j) 2 S+.

We continue with the other branch of Tree 4 initiated by pair (%8, d)&(%8, f): Pairs
(%k, d)&(%k, e) for k = 7, 6, 5 are in the tree. As (%k, d) 2 S+, we assign (%k, e) to S�.
Hence all e rows linked to the pair (%5, d)&(%5, e) consecutively need to be assigned to S�.
These are (%k, e) for k = 4, 3, 2, 1. Finally, as pairs (%k, e)&(%k, f) for k = 4, 3, 2, 1 are
in the tree and rows (%k, e) 2 S� for k = 4, 3, 2, 1, then rows (%k, f) for k = 4, 3, 2, 1 are
assigned to S+, concluding the partitioning of the rows associated with the nodes of Tree 4.

It is straightforward to verify that S’s Ghoulia-Houri difference through partition {S+, S�}
along each column of A is �1, 0, or 1. ⇧

5 Non-totally-unimodular Decomposition and Strategy-

Proofness

Although TUM decomposability is a sufficient condition for decomposability of a constraint,
it is not necessary. It is also straightforward to show that strategy-proofness and unanimity
along with feasibility are non–TUM constraints even on subdomains of the universal domain
such as single-peaked preferences (hence they are not TUM in the universal domains, either).
In this section, we employ a constructive method to show the decomposability of strategy-
proofness along with other desirable properties.

We start with showing that strategy-proofness and feasibility together are not decom-
posable in general:

17
We dropped the preference profiles from the notation of the nodes and instead put them on the heading

of the figure.
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Proposition 1 For universal voting and house allocation problems, strategy-proofness and
feasibility together are not decomposable; hence they are not TUM, either.

Proof of Proposition 1. The proof is through a counterexample. Suppose we have a
single agent I = {i} and three outcomes O = Oi = {a, b, c}. With a single agent, feasibility
constraints are the same for voting and house allocation.

Let � be a random mechanism that assigns 1/2 probability to the agent’s first choice
and 1/2 probability to the agent’s second choice for each preference the agent submits. As
the first choice is given at least as high probability as lower choices by the mechanism, this
mechanism is strategy-proof. On the other hand, it cannot be decomposed as a convex
combination of feasible and strategy-proof deterministic mechanisms, as we prove below.

Suppose not. First suppose that there are k deterministic mechanisms �1,�2, ...,�k that
constitute a feasible strategy-proof decomposition of �, i.e., � = �1�1 + �2�2 + .... + �k�k

for some probability distribution {�`}. Let’s denote a preference relation of agent i as xyz

meaning x �i y �i z for all {x, y, z} = {a, b, c}. Feasibility is used implicitly in the below
arguments:

1. When %i= abc, since �(abc; i, a) = 1
2 and �(abc; i, b) = 1

2 , without loss of generality, let
�1(abc; i, a) = ... = �`(abc; i, a) = 1 such that

P`
m=1 �m =

1
2 and �`+1(abc; i, b) = ... =

�k(abc; i, b) = 1 such that
Pk

m=`+1 �m =

1
2 for some `.

2. When %i= acb, by strategy-proofness of �s for all s 2 {1, ..., `} (from abc), �s(acb; i, a) =

1, and hence, for all m 2 {`+ 1, ..., k}, �m(acb; i, c) = 1.

3. When %i= cba, by strategy-proofness of �m for all m 2 {` + 1, ..., k} (from acb),
�m(cba; i, c) = 1, and hence, for all s 2 {1, ..., `}, �s(cba; i, b) = 1.

4. When %i= bca, by strategy-proofness of �s for all s 2 {1, ..., `} (from cba), �s(bca; i, b) =

1, and hence, for all m 2 {`+ 1, ..., k}, �m(cba; i, c) = 1.

5. When %i= bca, by strategy-proofness of �m for all m 2 {` + 1, ..., k} (from abc),
�m(cba; i, b) = 1, contradicting (4) above.

Finally, by Theorem 1, strategy-proofness and feasibility together are not TUM.
However, strategy-proofness can be decomposed under certain preference domains to-

gether with unanimity, as we will see in the next section.

5.1 Strategy-proofness and Unanimity

In this subsection we use voting domains, i.e., for all i, j 2 I, o 2 O ) oi = oj. As we
deal with voting domains, by a slight abuse of notation we denote O ⌘ Oi for all i 2 I in
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this subsection. Single-peaked preferences are one of the cornerstones of voting theory, as
they give rise to a wide range of strategy-proof voting mechanisms and negate the Gibbard-
Satterthwaite impossibility result for universal domains.

Formally single-peaked preferences are defined as follows: Fix a linear order �⇤ on O.18

Let o = max

⇤ O and o = min

⇤ O. We assume each agent i 2 I is endowed with a single-
peaked preference %i2 Di with respect to this order; that is, there exists a peak outcome
oi 2 O such that for all o <⇤ x ⇤ oi, x �i o, and for all o >⇤ x �⇤ oi, x �i o. Let o(%i) = oi

refer to the peak outcome of %i.
In addition to strategy-proofness, we use a weak but desirable efficiency property. A

mechanism � : D ! O is unanimous if, for any %2 D, if there exists some o 2 O such
that for all i 2 I, oi 2 Ch(Oi,%i), then for all i 2 I, �(%; i, xi) = 0 for all xi /2 Ch(Oi,%i).
It requires that whenever the preference profile is such that there exists a social outcome
that can accommodate the top choice of each agent, then the mechanism does not select
any social outcome that does not correspond to a top choice of each agent with a positive
probability. For strict preferences this simply means that if there is a social choice that can
accommodate the top choice of each agent then the mechanism chooses this social outcome
with probability 1. For voting domains with strict preferences, such as the single-peaked
domain, unanimity simply means that when each agent ranks the same candidate as his top
choice, then this candidate is elected with probability 1.

Our main result in this section is as follows:

Theorem 4 Any unanimous and strategy-proof random mechanism on a single-peaked vot-
ing preference domain is a finite lottery over unanimous and strategy-proof deterministic
mechanisms.

Its proof follows directly from Proposition 2 and Theorem 5, below. We will prove these
two results as the main results of the following two subsections, respectively.

5.2 Tops-onlyness of Strategy-proofness for Unanimous Random

Mechanisms

It turns out that strategy-proof and unanimous random mechanisms are tops-only on the
single-peaked voting domain, i.e., their outcome depends only on the peak choices reported

18Let >⇤ be the associated strict ranking of alternatives. Let min

⇤ X and max

⇤ X refer to minimum and
maximum of set X ✓ O under linear order �⇤, respectively. Let [x, y]⇤ = {o 2 O | x ⇤ o ⇤ y} and
(x, y)⇤ = {o 2 O | x <⇤ o <⇤ y} for all x ⇤ y. Let also (x, y]⇤ and [x, y)⇤ be appropriately defined. We will
also use terminology such as median*, largest*, and smallest* referring to the respective unstarred terms
applied to linear order �⇤ .
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by the agents.19 To prove this result, we first state the following corollary that follows
immediately from the definition of strategy-proofness:

Corollary 1 (Local Stochastic Strategy-proofness) For any domain D, strategy-proofness
implies C of the elementary constraints of the following form:
C : Let preference profiles %,%02 D differ only in preferences of some agent i 2 I and %i

and %0
i differ only in relative ranking of two personal outcomes oi, o0i 2 Oi such that o0i �i oi,

and no personal outcome is ranked between oi and o0i both in %i and %0
i. For all such %,%0

we require

� (%; i, oi) � � (%0
; i, oi) ,

� (%; i, xi) = � (%0
; i, xi) , 8xi 2 Oi \ {oi, o0i}. (7)

We prove the aforementioned “tops-onlyness” property of the single-peaked domain for
random mechanisms.

Proposition 2 (Tops-onlyness of Stochastic Strategy-proofness and Unanimity) On
a single-peaked voting preference domain D with linear order �⇤ on O, if an ordinal random
mechanism � : �D ! O is strategy-proof and unanimous, then its outcome depends only on
top-ranked alternatives of agents.

Proof of Proposition 2. Let � be a strategy-proof and unanimous mechanism defined
on a single-peaked voting domain subject to linear order �⇤ on O, D = ⇥iDi.

We first focus on %, %02 D that swap in some agent i’s preferences ranking of two
consecutively ranked outcomes, x, y 2 Oi, which are not his top choices, while all other
outcomes are relatively ranked the same way, and all other agents’ preferences are the same.
Suppose x �i y while y �0

i x. We will prove that �(%) = �(%0
). Later on we will extend this

result to any preference of i with z being the top-ranked choice. Let z be the top alternative
of i at both %i and %0

i. If z is ranked by all other agents as their top choice, then by unanimity
of �, �(%; z) = �(%0

; z) = 1, and we are done. So suppose that there exists some agent j

such that his top choice is not z. By Corollary 1, �(%;w) = �(%0
;w) for all w 2 Oi \ {x, y},

and �(%; x) + �(%; y) = �(%0
; x) + �(%0

; y). Let � = �(%; x)� �(%0
; x) = �(%0

; y)� �(%; y).

It remains to show that � = 0:
We will push up z to the first choice of j using a number of swaps. This is possible as z

is i’s first choice and Dj = Di by assumption; then there exists a sequence of preferences so
19Tops-onlyness results were previously proven for deterministic mechanisms on single-peaked voting do-

mains (cf. Chatterji and Sen, 2011) and for random mechanisms on universal strict voting domains (cf.
Tanaka, 2003).
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that some consecutively ranked outcomes are reversed in ranking one swap at a time, and x

and y are never swapped. We prove the proposition using three claims:

Claim 1. There exists a sequence %0
j=%j,%1

j , ...,%k
j2 Dj such that Ch(Oj,%k

j ) = z, %`
j is

obtained from %`�1
j by swapping two consecutively ranked outcomes for all ` < k, and we

do not swap x and y with each other in any of the swaps.

Proof. Let social outcomes be superscripted in order, so that o = x|O| >⇤ x|O|�1 >⇤ ... >⇤

x1
= o. Since z �i x �i y and z �0

i y �0
i x for the given single-peaked preferences %i and %0

i

with respect to �⇤, we have either y >⇤ z >⇤ x or x >⇤ z >⇤ y. Without loss of generality,
suppose y >⇤ z >⇤ x. Four cases are possible: (a) y �j z �j x, (b) z �j y �j x, (c)
x �j z �j y, (d) z �j x �j y. Suppose xm

= o(%j) (the peak of %j) and xn
= z for some

superscripts m and n.
Case (a) y �j z �j x: Then xm

= o(%j) �⇤ y >⇤ z = xn >⇤ x, and hence
m > n. Observe that for any w 2 {xm, xm�1, ..., xn+1} and any w0 2 {xn�1, xn�2, ..., x1},
w �j w0. We choose %0

j=%j,%1
j , ...,%k

j as follows: First, if |O| > m and if needed, we
push x|O| down in preferences one by one until x|O| is ranked last; then if |O| � 1 > m

and if needed, we push x|O|�1 down in preferences one by one until x|O|�1 is ranked just
above x|O|; and we continue iteratively in a similar fashion until we obtain the prefer-
ence xmxm�1...xnxn�1...x1xm+1xm+2...x|O|. Then we push down xm one at a time until it
is ranked just below xn, and continue in a similar fashion with xm�1 until it is ranked
just below xn and just above xm. Continuing on similarly, we eventually obtain the pref-
erence %k

j= xnxn+1...xmxn�1xn�2...x1xm+1xm+2...x|O|. We have o(%k
j ) = z. Observe that

each preference in the sequence is single peaked with respect to �⇤. Moreover, for any
w 2 {xm, xm�1, ..., xn+1} and any w0 2 {xn�1, xn�2, ..., x1}, we kept the relative ranking
w �j w

0 in all the preferences in the sequence. Thus, in no transition in the sequence are y

and x swapped, because y 2 {xm, xm�1, ..., xn+1} and x 2 {xn�1, xn�2, ..., x1}.
Case (b) z �j y �j x: Then y >⇤ z = xn >⇤ o(%j) = xm >⇤ x, and hence n > m. We

choose %0
j=%j,%1

j , ...,%k
j as follows: First, if needed, we push x1 down in preferences one

by one until x1 is ranked last; then if 2 < n and if needed, we push x2 down in preferences
one by one until it is ranked just above x1; and we continue iteratively swapping in a similar
fashion until we obtain the preference xmxm+1...x|O|xm�1xm�2...x1. Then we push down xm

one at a time until it is ranked just below xn and continue swapping in a similar fashion
with xm�1 until it is ranked just below xn and just above xm. Continuing on similarly, we
eventually obtain the preference %k

j= xnxn�1...xmxn+1xn+2...x|O|xm�1xm�2...x1. We have
o(%k

j ) = z. Observe that each preference in the sequence is single peaked with respect to
�⇤. Moreover, we kept the relative ranking y �j x in all the preferences in the sequence.
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Thus, in no transition in the sequence are y and x swapped.20

Case (c) x �j z �j y: This is the symmetric version of Case (a), replacing x with y and
traversing along �⇤ in the opposite direction.

Case (d) z �j x �j y: This is the symmetric version of Case (b), replacing x with y and
traversing along �⇤ in the opposite direction. ⇧

Claim 2. �(%) = �(%0
).

Proof. We use induction to show that in each swap the difference in probabilities of x (or y)
being chosen when %i versus %0

i is submitted is � (or ��). Fix swap ` � 1. In the inductive
step, assume that

�(%�j,%`�1
j ; x)� �(%0

�j,%`�1
j ; x) = �(%0

�j,%`�1
j ; y)� �(% �j,%`�1

j ; y) (8)

One of the following two cases can occur for swap ` from %`�1
j to %`

j by the Claim 1above:

• We swap two outcomes w1, w2 such that neither of them is equal to x or y: By Corol-
lary 1 �(%�j,%`�1

j ;w) = �(%�j,%`
j;w) and �(%0

�j,%`�1
j ;w) = �(%0

�j,%`
j;w) for each

w = x, y. Thus, � = �(%�j,%`
j; x) � �(%0

�j,%`
j; x) = �(%0

�j,%`
j; y) � �(%�j,%`

j; y) by
Equation 8.

• We swap an outcome w1 6= y with x (the case swapping an outcome w1 6= x with y is
similar): By Corollary 1,

�(%�j,%`�1
j ;w1)� �(%�j,%`

j;w1) = �(%�j,%`
j; x)� �(%�j,%`�1

j ; x) (9)

and
�(%0

�j,%`�1
j ;w1)� �(%0

�j,%`
j;w1) = �(%0

�j,%`
j; x)� �(%0

�j,%`�1
j ; x) (10)

Since only i swaps x and y between %�j and %0
�j, we have �(%�j,%`�1

j ;w1) = �(%0
�j

,%`�1
j ;w1) and �(%�j,%`

j;w1) = �(%0
�j,%`

j;w1) by Corollary 1. Subtracting Equation
9 from 9, we obtain

�(%�j,%`�1
j ; x)� �(%0

�j,%`�1
j ; x) = �(%�j,%`

j; x)� �(%0
�j,%`

j; x). (11)

By Equation 8, Equation 11 implies that

�(%�j,%`
j; x)� �(%0

�j,%`
j; x) = �.

20In both Case (a) and Case (b) there are slight redundancies in construction of the sequences. We left
them in for easy visualization of the swapping processes in the constructed sequences of the preferences.
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By Equation 8, as only j swaps w1 with x, we have �(%�j,%`
j; y) = �(%�j,%`�1

j ; y)

and �(%0
�j,%`

j; y) = �(%0
�j,%`�1

j ; y). By Equation 8, we get

�(%0
�j,%`

j; y)� �(% �j,%`
j; y) = �.

We iteratively update the preferences of all agents (different from i) whose first choice is not
z. Eventually we obtain a preference profile %00

�i such that each agent ranks z as his first
choice and

�(% i,%00
�i; x)� �(%0

i,%00
�i; x) = �(%0

i,%00
�i; y)� �(% i,%00

�i; y) = �.

As all agents rank z as their first choices at (% i,%00
�i) and (%0

i,%00
�i), by unanimity of

�, we have �(% i,%00
�i; z) = �(%0

i,%00
�i; z) = 1 and �(% i,%00

�i;w) = �(%0
i,%00

�i;w) = 0 for
w = x, y. Thus, � = 0, concluding the proof of Claim 2. ⇧

Claim 3. Suppose %00
i is a preference such that z is the top choice. Then it can be obtained

from %i as a result of a sequence of swaps of consecutively ranked two alternatives, such
that each preference in the sequence is single-peaked and has the top choice z.

Proof. Let yk <⇤ yk�1 <
⇤ ...y1 <

⇤ z <⇤ x1 <
⇤ x2... <

⇤ x` be the set of all alternatives ranked
according to the common linear order ⇤. Now both %i and %00

i rank {yp} alternatives
the same way i.e., in the increasing order of the indexes from most preferred to the least
preferred. The same statement is true also for {xp} alternatives. Only the relative order of
{xp} and {yp} alternatives are different with respect to each other. However, we can freely
move up and down an alternative xp as long as xp�1 �i xp �i xp+1 (where x0 ⌘ z) and
we can freely move up and down an alternative yp as long as yp�1 �i yp �i yp+1 (where
y0 ⌘ z). As both %i and %00

i respect the previous restrictions, we can obtain such a sequence
as proposed in the hypothesis of the claim.⇧

Recall that %i’s top ranked alternative is z. Thus, Claim 2 and Claim 3 imply that
�(%00

i ,%�i) = �(%i,%�i) for any preference %00
i with top ranked alternative z.

Using Proposition 2, we focus on tops-only mechanisms. We reformulate a tops-only
mechanism as an indirect mechanism with a reduced message space: Each agent reports
a top personal outcome and the mechanism  maps this to a probability distribution over
social outcomes, that is,  : ⇥i2IOi ! �O, where  (o1, ..., o|I|; x) is the probability of x 2 O

being chosen when agents 1, 2, ..., |I| report their top choices as (o1, ..., o|I|). Without loss of
generality for a deterministic tops-only mechanism  , let  (o1, ..., o|I|) 2 O and let it denote
the alternative that is chosen with probability 1 by  when agents report (o1, ..., o|I|).
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We say that a tops-only mechanism  is strategy-proof if, for each agent, reporting
his true top choice first-order stochastically dominates reporting any other alternative as top
choice; that is, for all i 2 I, %i2 Di, o�i 2 O|I|�1, xi 2 O, we have

P
y%iz

 (o(%i), o�i; y) �P
y%iz

 (xi, o�i; y) for all z 2 O.
The following seminal result of Moulin (1980) characterizes the full set of strategy-proof

tops-only mechanisms on the single-peaked voting domain:

Lemma 2 (Moulin, 1980) On a single-peaked voting domain with linear order �⇤ on O, a
deterministic tops-only mechanism � is strategy-proof if and only if there exists a vector of
alternatives p = (pS)S✓I such that pT �⇤ pS for all T ✓ S ✓ I, and for all o1, .., o|I| 2 OI ,

�(o1, .., o|I|) = min⇤
S✓I{max⇤(S [ {pS})}.

Thus, it can be observed that any deterministic strategy-proof tops-only mechanism �’s
outcome is the median* of |I| reported peaks and |I|+1 agent-specific constant alternatives.
Let us relabel agents with respect to ranking of their reports so that we obtain o1 ⇤ o2 ⇤

... ⇤ o|I|. Whenever oi = oj for some agents i and j, given that agents 1, ..., k are relabeled,
we relabel i and j so that i gets a lower index number than j, if p{1,...,k,i} >⇤ p{1,...,k,j},
or p{1,...,k,i} = p{1,...,k,j} and i < j. We also relabel the choices in vector p = (pS)S✓I ,
respectively. Observe that, for any T ✓ I such that o` = max⇤T , we have {1, ..., `} ◆ T.

Thus, by construction of p, p{1,...,`} ⇤ pT . This implies min⇤
S✓I:max

⇤S=o`
{max⇤

(S [ {pS})} =

max⇤{o`, p{1,...,`}}. Hence,

�(o1, .., o|I|) = min⇤
`2{0,...,|I|}{max⇤{o`, p{1,...,`}}}, (12)

where o0 ⌘ o. As p; �⇤ p{1} �⇤ ... �⇤ p{1,...,`} �⇤, ...,�⇤ p{1,...,|I|} and o1 ⇤ ... ⇤ o|I|,
�(o1, .., o|I|) is the median* of these 2|I|+ 1 alternatives.

We refer to each pS as the fixed ballot for set S ✓ I and � as the generalized median
voter rule (GMVR) with respect to the fixed ballot vector p = (pS)S✓I . Let mp

: O|I| ! O

denote this mechanism from now on. Let P ⇢ 2

O be the set of all feasible fixed ballot vectors.
We prove the following result regarding unanimous mechanisms, which will help us use

Lemma 2 in our analysis of the single-peaked domain.

Proposition 3 On a single-peaked voting domain with linear order �⇤ on O, a GMVR mp

is unanimous if and only if p; = o and pI = o.

Proof of Proposition 3. First, we show the necessity of this condition. Let mp be a
unanimous mechanism. Suppose, to the contrary of the claim, x; <⇤ o. Then for all S ✓ I,
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xS <⇤ o. When all agents report o, the outcome, mp
(o, ..., o), is the median* of |I| + 1

alternatives smaller than o and |I| alternatives equal to o. The outcome is x;, contradicting
unanimity. Thus, x;

= o. Similarly, suppose, to the contrary of the claim, xI >⇤ o. When
all agents report o, the outcome is xI , contradicting unanimity. Thus, xI

= o.
Next, we show the sufficiency of this condition. Let mp be a GMVR such that xI

= o

and x;
= o. Let oi = y for all i for some y 2 O. Then as we can relabel the agents

and obtain mp
(o1, ..., o|I) as the median* of xS|I| ,...,xS0 , o1, ..., o|I|, for S` = {1, ..., |I|} for all

` 2 {1, ..., |I|} and S0 = ;, mp
(o1, ..., o|I) = y, showing that it is unanimous.

Thus, we have the following full characterization corollary to the above results regarding
deterministic mechanisms:

Corollary 2 A deterministic mechanism is strategy-proof and unanimous on the single-
peaked domain with linear order �⇤ on O if and only if it is a GMVR with respect to a fixed
ballot vector p such that p; = o and pI = o.

We continue with the following lemma, which pins down the most important property
of the strategy-proof tops-only mechanisms that we use extensively in our characterization
below in Theorem 5.

Lemma 3 For any strategy-proof tops-only mechanism � on a single-peaked voting domain
with linear order �⇤ on O, for all i 2 I, oi �⇤ o0i 2 O, o�i 2 O|I|�1,

�(oi, o�i; y) = �(o0i, o�i; y) 8y 2 O such that y >⇤ oi or y <⇤ o0i.

Proof of Lemma 3. Suppose o ⇤ y <⇤ o0i. Let w be the immediate successor of y in the
linear order �⇤. In a preference relation peaked at o0i, there can be any number of alternatives
greater* than or equal to o0i that are strictly worse than y. Thus, by strategy-proofness of �,
for all w0 >⇤ o0i, for all o0i-peaked preferences %0

i such that w0 is the first choice greater* than
o0i that is ranked just below w, we need to have

X

z2[w,o0i]
⇤

�(o0i, o�i; z) +
X

z2(o0i,w0)⇤

�(o0i, o�i; z) =
X

z%0
iw

�(o0i, o�i; z)

�
X

z%0
iw

�(oi, o�i; z)

=

X

z2[w,o0i]
⇤

�(oi, o�i; z) +
X

z2(o0i,w0)⇤

�(oi, o�i; z),

where the first- and third-line equalities follow from single-peakedness of the preferences and
the second-line inequality follows from the strategy-proofness of �.
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If we pick w0 as the immediate successor of oi in the linear order �⇤, then the above
inequality reduces to X

z2[w,oi]⇤

�(o0i, o�i; z) �
X

z2[w,oi]⇤

�(oi, o�i; z). (13)

Next, consider the oi-peaked preference relation %i where the immediate successor to oi,
w0, is ranked just below w. Then, by the strategy-proofness of �, we similarly have

X

z2[w,oi]⇤

�(oi, o�i; z) =
X

z%iw

�(oi, o�i; z) �
X

z%iw

�(o0i, o�i; z) =
X

z2[w,oi]⇤

�(o0i, o�i; z), (14)

where the first and last equalities follow from the single-peakedness of the preferences and
the inequality follows from the strategy-proofness of �.

Inequalities 13 and 14 imply that

X

z2[w,oi]⇤

�(oi, o�i; z) =
X

z2[w,oi]⇤

�(o0i, o�i; z). (15)

The same equality is true for the alternative y, which is the immediate predecessor of w
in the linear order �⇤. Thus,

X

z2[y,oi]⇤
�(oi, o�i; z) =

X

z2[y,oi]⇤
�(o0i, o�i; z). (16)

Subtracting the same-side terms from each other in Equalities 15 and 16 leads to

�(oi, o�i; y) = �(o0i, o�i; y).

A symmetric argument with the above proof for the case o �⇤ y >⇤ oi shows that
�(oi, o�i; y) = �(o0i, o�i; y).

5.3 Decomposability of Tops-only Strategy-proofness

In this subsection, we show that strategy-proof tops-only mechanisms are decomposable on
single-peaked domains. This result does not require unanimity as an additional property.

Theorem 5 Any strategy-proof random tops-only mechanism on a single-peaked voting pref-
erence domain is a lottery over strategy-proof deterministic tops-only mechanisms, i.e., there
exist probabilities (↵p)p2P with (1) ↵p 2 [0, 1] for all (↵p)p2P , and (2)

P
p2P ↵p = 1 such
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that for all o1, ..., o|I| 2 O,

�(o1, ..., o|I|) =
X

p2P

↵pm
p
(o1, ..., o|I|).

Proof of Theorem 5. First, we define for all S ✓ I, oS = (oi = o)i2S and oS = (oi = o)i2S,
i.e., the profiles of extreme peak reports of agents in set S.

We define implicitly the probability vector ↵ = (↵p)p2P by the following system of
equations:

X

p2P:pT=y

↵p = �(oT , o�T ; y) 8 y 2 O, 8T ✓ I, (17)

↵p � 0 8 p 2 P .

If such an ↵ exists, then fix T ✓ I, we have
P

p2P ↵p =

P
y2O

P
p2P:pT=y ↵p =

P
y2O �(oT , o�T ; y) =

1, and hence, ↵ defines a feasible lottery over GMVRs.
We first show that such a vector ↵ exists.

Claim 1. There is a solution ↵ for Equation system 17.
Proof. First observe that

X

o2[x,o]⇤
�(oS, o�S; o) 

X

o2[x,o]⇤
�(oT , o�T ; o) 8 x 2 O, 8 T ( S ✓ I. (18)

by the strategy-proofness of � (repeatedly applied for agents in S \ T ) and the single-
peakedness of preferences. This is the most crucial property of a strategy-proof mechanism
that will be used in our proof.

We claim that there exists some vector of fixed ballots p1 2 P (we use a subscript, as we
construct a number of such vectors iteratively) such that �(oT , o�T ; p

T
1 ) > 0 for all T ✓ I.

We inductively construct such a p1 = (pS1 )S✓I as follows:

• In the initial step: For S = ;, set pS1 = o. Observe that by unanimity, �(o;, o�;; o) =

1 > 0.

• As the inductive assumption, assume that for all sets S ✓ I such that |S|  k < |I| for
some fixed k, (1) we have constructed xS in a well-defined manner, (2) �(oS, o�S; p

S
1 ) >

0, and (3) �(oS, o�S, x) = 0 for all x 2 (pS1 , o]
⇤.

In the inductive step, take a set S ✓ I with |S| = k + 1. Take the largest* x such
that �(oS, oS; x) > 0. Now by Equation 18, for any T ( S, 0 <

P
o2[x,o] �(oS, o�S; o) 

32



P
o2[x,o]⇤ �(oT , o�T ; o). Thus, by the inductive assumption for construction of pT1 , pT1 �⇤

x. Let pS1 = x.

Let �

1
= [�(oS, o�S; x)]S✓I,x2O be the 2

|I| ⇥ |O| dimensional matrix represented by the
mechanism �’s outcomes at extreme peaks. Let M1 be a matrix with the same dimensions
representing the GMVR mp1 such that for all T, x, M1

(T, x) = mp1
(oT , o�T , x). Observe

that mp1
(oT , o�T , x) =

(
1 if x = pT1

0 otherwise
, which follows directly from the definition of mp1 ,

i.e., the median* of reported peaks (oT , o�T ) and the required fixed ballots in vector p1 is
always equal to pT1 .

Let T 1 2 argminT✓I �(oT , o�T , p
T
1 ).

Define
↵p1 = �(oT 1 , o�T 1

; pT
1

1 ) ⌘ �

1
(T 1, pT

1

1 ),

i.e. as the smallest entry in �

1 for the cells (T, pT1 ) for all T ✓ I. Observe that this is positive
by construction of p1.

Form matrix

�

2
=

�

1 � �

1
(T 1, pT

1

1 )M1

1� �

1
(T 1, pT

1

1 )

. (19)

Observe that either (1) �2 is a zero matrix, or (2) �2 is non-negative and
P

x2O �

2
(T, x) = 1

for all T ✓ O.
In Case (1), we are done with the construction of ↵. In Case (2), we define a random

mechanism �2 such that �2
(oT , o�T ; x) = �

2
(T, x) for all T ✓ I, x 2 O. Observe that �2 has

at least one more zero than �

1. Moreover, if the property in Equation 18 holds for �2, we
can replicate the above procedure for �

2 and obtain a new generalized median voter voter
rule with a vector of fixed ballots p2.

Thus, we prove the property in Equation 18 holds for �2:
Pick T ( T 0 ✓ I and x 2 O.
We have pT 0

1 ⇤ pT1 , mp1
(oT 0 , o�T 0

; pT
0

1 ) = 1, and mp1
(oT , o�T ; p

T
1 ) = 1 by definition. Thus,

X

o2[x,o]⇤
mp1

(oT 0 , o�T 0
; o)�

X

o2[x,o]⇤
mp1

(oT , o�T ; o) =

(
0 if x ⇤ pT

0
1 or x >⇤ pT1

�1 otherwise
. (20)

Also observe that by Equation 18 (for �) we have for all x,
P

o2[x,o] �(oT 0 , o�T 0
; o)�Po2[x,o] �(oT , o�T ; o) 

0. Also we have �(oT , o�T , p
T
) � ↵p1

by definition of ↵p1
and �(oT 0 , o�T 0 , x) = 0 for all
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x >⇤ pT
0

1 by inductive assumption for the construction of p1. Hence, for all x 2 (pT
0

1 , pT1 ]
⇤,

X

o2[x,o]⇤
�(oT 0 , o�T 0

; o)�
X

o2[x,o]⇤
�(oT , o�T ; o)  �↵p1 .

Thus, we showed that

X

o2[x,o]⇤
�(oT 0 , o�T 0

; o)�
X

o2[x,o]⇤
�(oT , o�T ; o) 

(
0 if x ⇤ pT

0
1 or x >⇤ pT1

�↵p1 otherwise
. (21)

Equations 20 and 21 and the definition of �2 in Equation 19 imply

X

o2[x,o]⇤
�2
(oT 0 , o�T 0

; o)�
X

o2[x,o]⇤
�2
(oT , o�T ; o)  0.

Iterating the above procedure, we find fixed ballot vectors p1, ...,pl⇤ and corresponding
matrices for the GMVRs M1, ...,M l⇤ , non-negative probability matrices �1,...,�l⇤+1 satisfying

�

l+1
=

�

l � �

l
(T l, pT

l

l )M l

1� �

l
(T l, pT

l

l )

for each l  l⇤ and �

l⇤+1 is the zero matrix, and weights

↵pl
=

l�1Y

l0=1

✓
1� �

l0
(T l0 , pT

l0

l0 )

◆
�

l
(T l, pT

l

l )

where T l 2 argminT✓I �
l
(T, pTl ) for all l  l⇤.

As �

l
(T, pTl ) > 0 for all l  l⇤ and T ✓ I by construction, 1 > ↵pl

> 0 for all l  l⇤ if
l⇤ > 1, and ↵p1

= 1 if l⇤ = 1.
An l⇤ such that �

l⇤+1 is the zero matrix exists, because each �

l matrix has at least
one more zero cell than �

l�1 matrix has. We conclude by assigning ↵p = 0 for all p 2
P \ {p1, ...,pl⇤} (i.e., the ones not encountered in the above process).⇧

Let mechanism ⇢ be defined as

⇢(o1, ..., o|I|) =
X

p2P

↵pm
p
(o1, ..., o|I|).
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We show that for all y 2 O

⇢(o1, ..., o|I|; y) = �(o1, ..., o|I|; y).

Fix y 2 O. We relabel agents 1, ..., |I| such that o1 ⇤ o2 ⇤ ... ⇤ o|I|. Moreover, we
relabel fixed ballot sets p 2 P and their probabilities ↵p accordingly.

Let

• S0 = ;,

• S` = {1, ..., `} for all ` 2 I,

• o0 = o,

• o|I|+1 = o.

As ⇢(o1, ..., o|I|; y) is the probability of alternative y being chosen at lottery ⇢(o1, ..., o|I|),
we need to count the cases when y is chosen under a GMVR. Observe that any z 2 O

is chosen by a GMVR for some fixed ballots when agents report o1, ..., o|I|, for example,
when pS = z for all S. Whenever y is chosen for some fixed ballots p, by Equation 12,
we have y = max⇤{ok, pSk} for some k 2 {0, ..., |I|}. If there are multiple such k’s, we
choose the maximum index k such that y = max⇤{ok, pSk} is greater* than or equal to
the |I| + 1 alternatives o1, ..., ok, p

S|I| , ..., pSk and less* than or equal to the |I| alternatives
ok+1, ..., o|I|, p

Sk�1 , ..., pS0 (i.e., ok or pSk is the median* with the maximum possible index k).
This choice of k immediately rules out a case like ok <⇤ y = ok+1. In this case, pSk+1 ⇤ pSk

=

y = ok+1. But then, ok+1 �⇤ o1, ..., ok+1, p
S|I| , ..., pSk+1 and ok+1 ⇤ ok+2, ..., o|I|, p

Sk , ..., pS0
;

hence k+1 should have been chosen as k in the first place, leading to a contradiction to the
maximality of k. Thus, we have either ok <⇤ y <⇤ok+1, or ok = y <⇤ ok+1, or ok = y = ok+1.
We deal with the first case and part of the second case below:

Claim 2. If either ok <⇤ y <⇤ ok+1, or y = o <⇤ ok+1, or ok <⇤ o = y, then �(o1, ..., o|I|; y) =
⇢(o1, ..., o|I|; y).

Proof. Observe that, in this case, k is independent of the choice of fixed ballots p as long
as they result in mp

(o1, ..., o|I|) = y. Moreover, we have y = pSk for each such p. Also recall
that for each such p, as pSk �⇤ pS` for all ` > k and y is the minimum of all max⇤{o`, pS`},
then o` �⇤ y for all ` > k. Hence, for all o 2 {o1, ..., ok, pS|I| , pS|I|�1 , ..., pSk+1}, o ⇤ y, and
for all o 2 {ok+1, ..., o|I|, p

S0 , ..., pSk�1}, o �⇤ y and y = pSk .
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We rewrite ⇢(o1, ..., o|I|; y) as follows:

⇢(o1, ..., o|I|; y) =
X

p2P: pSk=y

↵p = �(oSk,
o�Sk

; y) = �(o1, ..., o|I|; y).

where the second equality follows from the implicit definition of ↵ in Equation system 17,
and the last equality follows from

1. if ok <⇤ y <⇤ ok+1, through Lemma 3 applied separately for Sk and I \ Sk;

2. if y = o <⇤ ok+1, through o1 = ... = ok = o and Lemma 3 applied for I \ Sk; and

3. if ok <⇤ y = o, through ok+1 = ... = o|I| = o and Lemma 3 applied for Sk.

⇧

The below claim deals with the case when ok = y and some other reports are possibly
equal to y:

Claim 3. If either

• oj�1 <⇤ oj = ... = ok = ... = o` = y <⇤ o`+1 for some j, ` such that 0 < j  k  ` <

|I|+ 1, or

• o = o1 = ... = ok = ... = o` = y <⇤ o`+1 for some ` such that k  ` < |I|+ 1, or

• oj�1 <
⇤ oj = ... = ok = ... = o|I| = y = o for some j such that 0 < j  k,

then �(o1, ..., o|I|; y) = ⇢(o1, ..., o|I|; y).

Proof. If y = o, let j = 1 and if y = o, let ` = |I|. Observe that by Claim 2, for all z 6= y,

�(oSj�1
, oj, ..., o`, o�S`

; z) = ⇢(oSj�1
, oj, ..., o`, o�S`

; z).

As both �(oSj�1
, oj, ..., o`, o�S`

) and ⇢(oSj�1
, oj, ..., o`, o�S`

) are probability distributions, the
above equality implies that

�(oSj�1
, oj, ..., o`, o�S`

; y) = 1�
X

z 6=y

�(oSj�1
, oj, ..., o`, o�S`

; z)

= 1�
X

z 6=y

⇢(oSj�1
, oj, ..., o`, o�S`

; z)

= ⇢(oSj�1
, oj, ..., o`, o�S`

; y).
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Moreover, as both ⇢ and � are strategy-proof, Lemma 3 used for Sj�1 and I \S` gives us

�(o1, ..., o|I|; y) = �(oSj�1
, oj, ..., o`, o�S`

; y) = ⇢(oSj�1
, oj, ..., o`, o�S`

; y) = ⇢(o1, ..., o|I|; y).

⇧

Claims 2 and 3 conclude the proof of the theorem.

5.4 Strategy-proofness, Unanimity, and Anonymity

Another desirable property of a random mechanism is anonymity, the outcome of the mech-
anism being dependent only on the set of reported preferences but not on who reported
them. Formally, a mechanism � : D ! �O is anonymous on a symmetric domain such
that Di = Dj for all i, j 2 I if, for all i, j 2 I and %2 D, �(%) = �(%i$j

) where %i$j is the
preference profile obtained from % by swapping i’s preferences with j’s preferences. On the
single-peaked domain, the implication of anonymity in addition to strategy-proofness and
unanimity is such that every deterministic mechanism with these properties is a (tops-only)
GMVR mp with p; = o and pI = o and pT = pS for all S, T ✓ I with |S| = |T |.

Observe that if � is a random mechanism that is unanimous, anonymous, and strategy-
proof on a single-peaked domain, then in our proof of Theorem 5 in the proof of Claim
1, every GMVR constructed that has a positive weight in the decomposition of � is also
anonymous. Thus, the following theorem is a corollary to the proof of Theorem 5 and
Proposition 2:

Theorem 6 Any anonymous, unanimous, and strategy-proof random mechanism on a single-
peaked voting preference domain is a finite lottery over anonymous, unanimous, and strategy-
proof deterministic mechanisms.

6 Conclusion

In this paper, we study which desirable properties of a random mechanism survive decom-
position of the mechanism as a lottery over deterministic mechanisms that also hold such
properties. When desirable properties survive decomposition, we can focus our mechanism
design efforts on deterministic mechanisms. We represented properties of random mech-
anisms as linear constraints, and, using combinatorial integer programming, we studied a
sufficient condition, the total unimodularity of the constraint, for decomposability of such
linear constraints. Examples of such totally unimodular constraints are various feasibil-
ity constraints, individual rationality, and strategy-proofness in certain individual choice
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models. On the other hand, strategy-proofness is not decomposable in general. Moreover,
strategy-proofness, unanimity, and feasibility are not totally unimodular in many collective
choice models. In such models, to decompose strategy-proofness, we employed other meth-
ods. Using a direct constructive approach, we proved that feasibility, strategy-proofness,
and unanimity are decomposable on the non-dictatorial single-peaked voting domains. The
proof of this result also shows that feasibility, strategy-proofness, anonymity, and unanimity
are decomposable on the same domains.

It is well known that in many settings, random mechanisms can do better than determin-
istic ones, while in other settings, deterministic mechanisms do as well as random ones. One
question for future research is to identify the connection of the latter domains and various
combinatorial properties of constraints that are being decomposed. Total unimodularity is
one such sufficient condition, although it could be rather too strong for some constraints,
such as strategy-proofness in some settings. Another question is which constraints are totally
unimodular and which ones are not, as total unimodularity is a relatively well-understood
concept in integer programming theory.
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