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Abstract

This paper discusses nonparametric estimation of the distribution of random coefficients in a struc-
tural model that is nonlinear in the random coefficients. We establish that the problem of recov-
ering the probability density function (pdf) of random parameters falls into the class of convexly-
constrained inverse problems. The framework offers an estimation method that separates compu-
tational solution of the structural model from estimation. We first discuss nonparametric identifi-
cation. Then, we propose two alternative estimation procedures to estimate the density and derive
their asymptotic properties. Our general framework allows us to deal with unobservable nuisance
variables, e.g., measurement error, but also covers the case when there are no such nuisance vari-
ables. Finally, Monte Carlo experiments for several structural models are provided which illustrate

the performance of our estimation procedure.

Keywords: Nonlinear random coefficients, mixture models, structural models, heterogeneity,

inverse problems.



1 Introduction

Many structural microeconomic models postulate that individual decision makers solve complicated
optimization problems governed by a small number of structural parameters . While these param-
eters are fixed for every individual, economic theory does not postulate that they be the same for
every individual. Yet, in most empirical applications, the extent to which individual decision makers
are allowed to vary is severely constrained, but these constraints on heterogeneity are typically not
based on economic theory.

A natural way to relax the constraints and make structural model assumptions more appealing
is to assume that the unobservable parameters € in individuals’ decision problems are random
parameters drawn from a fully flexible nonparametric continuous distribution that may be correlated
with some observable explanatory variables. In this paper, we propose and analyze a method to
estimate a nonparametric distribution of random coefficients 6 in general structural economic models
in which the mapping from random coefficients to outcomes is nonlinear and may only be implicitly
defined. We allow the random coefficients 6 to be correlated with some of the explanatory variables,
analyze identification and propose an estimation method that completely separates computational
solution of the economic model from estimation.

To give a stylized example,consider the workhorse Euler equation model of the consumption

literature, where for simplicity we have set the discount rate to the interest rate:
aCU(Ct, 0, 5t) = ]E [acu(0t+17 0, 6t+1) |Wt7 Zt7 6, St] . (].].)

Here, 0.u denotes the derivative of instantaneous utility with respect to consumption, C; is con-
sumption in period ¢, and the random parameters # may include preference parameters such as the
coefficient of risk aversion or parameters defining beliefs about future states. Moreover, (W;, Zy, ;)
are endogeneous observable, exogenous observable, and unobservable state variables, respectively,
who affect the decision problem in period t. Equation (1.1) implicitly defines the consumption
function Cy = ¢, (Wi, Z4,0,¢;). When we lack information about the probability distribution of het-
erogeneity in the population (for example the pdf fgu ) but have knowledge about the structural
equation (so that we can explicitly compute @), we can use this knowledge to define a mapping

from fgr to the population pdf of observables foyw 7, which is an integral equation of the form

fewz =T fow, (1.2)

where T is a known integral operator derived from the economic model.

This paper makes several contributions. First, it shows how nonlinear random coefficients in
a structural economic model can be analyzed using the tools of linear inverse problems theory.
Second, it shows how to derive the estimating equation (1.2) from the structural economic model
without requiring the structural function ¢ to be monotonic in e. Third, based on (1.2), the paper

proposes two estimators of fgy, derives rates of convergence and shows asymptotic normality. The



estimators are based on a simple Tikhonov regularization method modified to impose the constraint
that the estimate must be a density function. Our main contributions in this respect are: (i) to
extend source conditions and provide the rate of convergence for the convexly-constrained Tikhonov
estimator in a stochastic setting and (7i) to provide and study properties of a step-by-step procedure
to compute the orthogonal projection of the unconstrained Tikhonov-regularized estimate onto the
set of densities. Fourth, the paper studies nonparametric identification of fpy making use of a notion
of completeness (that we call T-completeness) which is weaker than L?- or bounded-completeness,
and characterizing the identified set when the model is not point identified.

This research therefore extends the parametric structural models literature to allow for nonlinear
and endogenous random coefficients. This literature is vast. For a recent survey of the consumption
literature which originally motivated this research, see 7. Our analysis provides insights into when
identification is only partial and provides novel conditions for point identification. In addition, our
analysis makes clear that estimation in these contexts is fundamentally an ill-posed inverse problem.

Most closely related to our approach are nonparametric econometric models involving random
parameters. In particular, there is a literature that considers linear/single index nonparametric
random coefficients models, as in 7, ?, 7, and 7. In these papers, the random coefficients are
continuously distributed and fully independent of explanatory variables. Also related is 7 who
considers a linear simultaneous equations model and focuses on estimation of the density of one
random slope coefficient. We extend these literatures by allowing for endogenous random coefficients
that enter in a nonlinear way and by allowing for models in which the function mapping explanatory
variables into outcomes is often only implicitly defined.

Our work is also linked to the mixture models literature following ? (HS). In a duration model

setting, HS analyze the equation
fewz(cw, z) = / feywze(c;w, z,0) fow (605 w)do. (1.3)
e

They focus on estimating a finite dimensional parameter that impacts the pdf fowzo(c;w,z,0)
while treating fgw as a nuisance parameter. Closely related to HS are 7 and 7. In contrast to
these references, our analysis centers its interest on fy, and the kernel of the operator in (1.3) is
derived from the economic model.

Our work is also related to the stochastic inverse problem literature. See ? for an overview.
In particular, recovering the probability density of 6 from (1.2) is equivalent to solving a convexly
constrained integral equation of the first kind. Integral equations of the first kind have been studied
extensively in different areas of econometrics (see e.g. ?, for an overview). These areas include,
among other: nonparametric instrumental regression estimation - see e.g. ?, 7. 7 7 7 7 and ?
- and moment estimation and deconvolution - see e.g. 7, 7, 7 and ?. There are two important
differences between our model and the models studied in these papers. First, the kernel of our
integral operator is not estimated but is derived from a structural economic model. Second, we seek

to estimate the density of random coefficients not a function of observables.



Our estimating equation is also related to ?. However, our model differs in many core aspects
from their model, not least for the different object of interest (i.e., the distribution of random
parameters), and for the structural nonseparability of the model considered. Moreover, our exclusion
restrictions are different from theirs (e.g., we do not assume conditional independence of C' and Z

given ) and are motivated by the structural economic application.

2 A Roadmap

To illustrate the structure of the model and the main results in this paper, consider a common
specification in consumer demand. Let X measure the true log-expenditure on all nondurable
goods, and let C* measure the true log expenditure for one good. Assume that C* is generated by

a linear random coefficients model with
C* - 90 + 9121 + 02X

where Z; is the log-price and 6 = (g, 6, 0,) is a vector of random parameters. If 6 is independent
from (Z;, X) and if (Z;, X') have support equal to R?, then the joint density of random coefficients
is nonparametrically identified and can be estimated using ?. However, in consumer demand two
important problems arise. First, since X is a choice variable, it is likely to be endogenous, because
the same deep preferences parameters that determine C* also determine X. Second, actual demand
C' is frequently measured with error, i.e., C' # C*.

To handle endogeneity, we follow the demand literature and use instruments in a control function
fashion. Let Zs measure log-income and suppose there is a relation X = g (Z2, W), where g is a
(identified) function that is strictly monotonic in an uniform unobservable W. Here, W can be
obtained as the percentile of log-expenditure conditional on Z,, and we let Z = (Z1, Z5)", see 7 for
such a structure in a demand application. To handle measurement error, we assume that observed
C'is generated as C' = C* +n where 0|0, W, Z ~ exp(\), with A > 0 and assume that Z L (6,n, W).

Substituting all elements into the outcome equation for observed C', we obtain
0291Z1+92g(Z2,W>+8, (21)

where € =1+ 6y and fowze(e, 0) = Ael=(e=0)A}  This model is a special case of the general class
of nonlinear models developed below, and it is useful to illustrate why we consider the specific
structure put forward in this paper, and how our assumptions cause identification. First, observe
the dual sources of unobserved variation in the model, € and 6, where the latter is the preference
heterogeneity of interest, and the former contains a measurement error. Since it is a nuisance part
of our model, we follow the measurement error deconvolution literature and assume a (partially)
parametric model for . Second, note that X is endogenous due to correlation between W and 6,
which prohibits to use standard approaches like ?. The main idea that we adapt from the control

function literature is that conditional on W there is no endogeneity. Since the independence of



the instruments from all unobservable implies that Z L 6|W, conditional on W = w equation
(2.1) becomes exogenous and, provided there is enough variation in g(Zs,w), the pdf fouw(-;w) is
nonparametrically identified, using standard arguments from the random coefficients literature.

Thus, our model introduces two general elements that are novel to this literature and stem from
more complex structural models. First, # may depend on some variables W, while the instruments Z
provide exogenous variation in the sense that Z 1 6| W. As we shall see below in the Euler equation
and duration examples, allowing for some variables W to be correlated with the heterogeneity of
interest while having others, the Z, be (conditionally) independent is a feature that arises more
generally. Our strategy is thus to first perform all steps conditional on W, thus recovering fow,
and then to obtain fy by integrating out W. The case without endogenous variables is obviously a
special case, where Z I 6, and we can directly obtain fy. The instruments Z, however, are generally
necessary to identify fy, as it is their variation that is mapped into variation of 6.

The second general feature is a composite error e, comprised of preference heterogeneity ¢ and
a nuisance part n. In the “demand with measurement error” application, as well as in the Euler
equation application, this is a necessary feature of the structural model. Our strategy in this part
is motivated by the deconvolution literature, and requires a parametric assumption on the nuisance
error. While we believe this to be an important feature of many applied models, our approach does
not rely on the existence of € and, as we demonstrate in a Supplementary Appendix, all arguments
go through with minor modifications if there is no nuisance unobservable ¢.

The rest of the paper formalises these ideas for a general nonlinear model in which C' =
©(W,Z,0,¢). In Theorem 1, we show that there is an integral operator 7" which maps fgu into
feywz. After characterising some properties of this operator, in Proposition 2 we characterise the set
of solutions of the inverse of T" using the singular value decomposition of 7. Since ¢ and f. are known,
this set can be computed. Next, for the general model, point identification requires a completeness
condition on the probability distribution characterizing the operator. The completeness condition
we require is weaker than that required in the nonparametric IV literature since our object of inter-
est is a probability density and not an unrestricted function. We call this condition 7-completeness
and must be established in every application, but we provide a sufficient condition that is easier
to check. For instance, in the demand example (2.1), fiwze(e,0p) = Ael=E=0N e ~ Eap(N), the

equation that identifies fou is

fewz(cw, z) = / NeMemlo=thm=b20(z200) 1 Lo > 0y + 0121 + Oag(20,w)} foyuwdo,
)

and the function (f.ewz © ¢; Y(c,w, z,0) which characterizes the kernel of the operator can be

rewritten as:

(fs|0WZ o 90;1)(07707 z,0) = )\GXP{—)‘(C — 0y — 2191 — 029(22, w))}
= Nexp{-Ac} exp{A[L, 2, g(z2, w)]6)}.



These expressions satisfy the sufficient conditions of Lemma 1, with h(0) = X\, m(0) = 6 = (6o, 60, 65)’
the identity function, 7(c,w, 2) = A(1, 21, g(22,w))" and k(c,w, z) = exp{—Ac}, implying that fyu
is point-identified.

The plan of the rest of the paper is as follows. In Section 3, we present the model and as-
sumptions. Then, we analyse identification in Section 4. Section 5 presents our two estimators and
Section 6 concludes with results from two Monte Carlo simulations. Proofs of the main results are

in Appendix A while minor and technical results are in the Supplementary Appendix.

3 The general structural model

Let (€2, F, P) be a complete probability space and (C,W, Z,0,¢) be a real-valued random vector
defined on it, and partitioned into C e R, W e W CR¥, Z € Z CR!, § € © C R? and ¢ € R, with
k, [ and d finite integers. We denote by B¢, By, Bz, Be and B. the corresponding Borel o-fields in
R, R¥, R, R? and R, respectively, and use capital and lowercase Latin letters for observable random
variables and their realizations, but lowercase Greek letters for unobservable random variables, as
well as their realizations. For two random vectors A and B we write: Pyp for the conditional
distribution of A given B and fap for the density function (pdf, hereafter) of Pyp with respect to
Lebesgue measure. We use the convention that fp(a;b) = 0 if a is not in the support of Pyp—p.
We denote by C C R (resp. Z x W) the support of the marginal distribution of C' (resp. (Z, W)).

To exploit desirable properties of Hilbert spaces, we develop our analysis in L? spaces with
respect to some suitable measures. For this purpose, we introduce two non-negative weighting
functions, my and 7., with support on © and C x Z respectively.! Define the space Lfm (resp. Lfrcz)
of real-valued functions defined on © (resp. C x Z) that are square integrable with respect to my

(resp. m..). That is,

L2, = {h:@ﬁR‘/@h2(6)ﬂ9(0)d0<oo},

L: = {1/1 CxZ— R‘ V2 (¢, 2)mes(c, 2)dedz < oo} :

CxZ

We denote the scalar product by (-,-) and the induced norm by || - || in both spaces without
distinction, e.g., Vhy, hy € L2 . (h1, he) = [ h1(0)h2(0)7e(0)dh. The sets of conditional pdfs relevant

e ?

for our analysis are defined as follows

Fopw = { f is a conditional pdf on (R%,Be) given W and f € Lfre a.s. }
Fowz = {f is a conditional pdf on (R, B¢) given (Z, W) and f € Licz a.s. },

!The weighting functions should be chosen to ensure that the operator T' defined below is compact and bounded
as discussed after Proposition 1 and to reflect the researcher’s statistical loss function as discussed after equation
(5.2) in Section 5.



and analogously for Fowze. The next assumption specifies the structural data generating process.

Assumption 1. The random element (C,W, Z,0,¢) satisfies a structural economic model

U(C,W,Z,0,e) =0 a.s. (3.1)

2

where U is a known Borel measurable real-valued function.* We assume that (3.1) has a unique

global solution in terms of C':

C=p(W,Z,0,¢), a.s. (3.2)

where ¢ : RFHHL 5 R is a Borel-measurable function. In addition, we assume (3.2) has a finite

number s of solutions in terms of € almost surely.?

This assumption describes how our structural model links observables (C, W, Z) to unobservables
(0,¢). We distinguish between three different observables. C'is the dependent variable, while W
and Z denote variables that cause C. W is allowed to be correlated with 6 while Z is assumed to be
conditionally independent of # given W. As was discussed in section 2, this distinction is motivated
by applications in which some important explanatory variables Ware endogenous. The distinction
between the unobservable variables 6 and ¢ is made to separate objects of interest from an error
term e. Consequently, the distribution of 6 is allowed to be completely nonparametric while the
distribution of ¢ is flexible, but parametric.

Our approach does not require that the function ¢ be available in closed-form nor that it be
globally monotone in €. All that is required is that we can solve equation (3.1) numerically, and
that the function ¢ be piecewise monotonic. Hence, its inverse can be written as a finite collection
of one-to-one functions each defined for a subset of the domain of ¢. More precisely, for some set
A, let Im (Alw,z,0) be the image of A through ¢ conditional on (w, z,0). We can then define a
finite partition of R, (&, ...,&,), such that ¢; '(w,2,0,-) : Im (&|w,z,0) — & is one-to-one for
each i € {1,...,s}. The elements of the partition and the inverse can be computed since they are
implicitly defined by (3.1). In the following we denote, Vi € {1,..., s}, by ¢; *(w, 2,0, -) the function
o (w, z,0,-) with domain p(w, 2,0, &;) and image &;.

Allowing for this general form of the structural model is an important weakening of assumptions,
as closed form expressions are frequently not available and monotonicity conditions are difficult to
justify. In our Euler equation example, the consumption function is only implicitly defined and
there is little reason to believe that there is a monotonic relationship between unobserved states
and levels of consumption.

The only other assumption on W is differentiability. Let 0.W¥(c,w, 2,0, ¢) and 0.V(c,w, 2,0, ¢€)

denote the partial derivatives of ¥ with respect to C' and ¢.

°In the assumption, we state that ¥ is known. In fact, if ¥ is estimated in a first-stage, it affects neither our
procedure nor the rate of convergence as long as the first-stage estimator converges faster than our estimator described
below. In this case, the asymptotic normality result that we provide below still holds under further assumptions
similar to assumption 6 in ?.

3For simplicity, we assume that ¢ is a scalar. The analysis can be extended to the multivariate case without great
difficulty.



Assumption 2. The structural function ¥ : RFH+4+2 s R s almost everywhere differentiable in
C and in € with 0,V (c,w, z,0,¢) # 0 and 0.V (c,w, z,0,¢) # 0 for every (c,w, z,0,¢) in the support

of (C,W,Z,0,¢) except, possibly, on a set of (c,w, z,0, ) values whose Lebesque measure is 0.
Finally, the next assumptions characterize the joint conditional distribution of (g, Z, 8) given W.

Assumption 3. The conditional probability distribution Pwze on B. given (W, Z,0) admits a pdf
fewze with respect to the Lebesque measure. This pdf fewze is known up to a finite-dimensional
parameter 0., a subvector of the vector 0. Moreover, fiwzg is strictly positive and bounded away

from infinity a.s. on the support of Pew ze.

Assumption 4. The conditional probability distribution Prew on Bz ® Be given W admits a pdf
Jzopw with respect to the Lebesque measure. The pdf fow is strictly positive and bounded away from

nfinity a.s. on its support.
Assumption 5. The random element Z is conditionally independent of 6 given W, i.e. Z 1 0|W .

Assumption 3 allows the conditional distribution of ¢ to depend on all variables in the model.
Unlike in deconvolution, we can allow for € and 6 to be dependent. By allowing f.wz¢ to be
known up to a finite dimensional random parameter*, we allow for cases where not everything is
known about f;wzg. In theory, the specification for f.wzs can be very close to a nonparametric
specification. As in all semi-parametric models there is a trade-off between flexibility and feasibility.
Adding flexibility in this fashion will generally increase the dimension of the estimation problem,
reduce the convergence rate of the estimator and may even lead to a failure of point identification
if there is not enough independent variation in the data.

Note that Z and 6 are continuous random vectors while W may be discrete. If some elements of
Z are discrete, then the analysis is unchanged as long as the pdf of Z is replaced with the probability
mass function and integrals with respect to Z are replaced by sums. Note however that discrete Z
are likely to have little identifying power. If some elements of 6 are discrete and random with known
support, then the analysis also is unchanged. In this case, all of the statements with respect to fow
have their finite dimensional counterparts. If some elements of § are deterministic (or equivalently
discrete random variables with unknown, finite support), then the analysis is slightly different. We
discuss this case in Section 5.3 and explain how to estimate the model when some components of 8
are deterministic.

Finally, Assumption 5 is the key independence condition that is often required for point identi-
fication of the pdf fow. Strictly speaking Z is not required for point identification. It is possible
to specify a model in which fg is point identified solely by nonlinearities in fcoywg. When 6 is a
scalar, such a specification may be reasonable. However, especially when 6 is a large dimensional
vector, it is easy to specify models in which fgu is not point identified without exogenous variation
in Z. The linear random coefficients model in Section 2 is a leading case. We now provide a second

example that illustrates these points as well as how our model can be applied in a richer setting.

4This finite dimensional parameter may be either included in the vector # and treated as a random parameter, or
estimated as a fixed parameter.



Example 1 (Intertemporal consumption model). Consider the constant absolute risk aversion
(CARA) intertemporal utility mazimization problem with finite horizon T, constant interest rate
r and random parameter 0 capturing heterogeneity in utility. Define R = (1 + ). Let A; be a con-
sumer’s beginning-of-period assets after having received all interest payments and let Y; be his/her
income. Suppose income follows a random walk. Let Sy = (A, Y;) be the state vector and let
vy (St, 0) be the value function for a consumer of type 0 at date t. Let the terminal value function be

Y AT+1

vri1 (S741,0) = — and let 0 = (v, ) where ~y is the coefficient of risk aversion and [ is the

discount factor. At each date t < T, a consumer’s value function is defined by

_e*’Vth —+ B]Et [Ut-}-l (St+1, 8)]
Ut (St7 0) = max SUbject to
{Cr} A =R(A+ Y, —CY)
Yiei =Y+ e

where C} is consumption, n, ~ N (0,0,27), and E; is the time t conditional expectation operator.
We assume that ag has been estimated in advance. Suppose observed consumption C; equals actual
consumption C} plus measurement error so that C, = Cf+e,. Let Wy, = (A, Y1) and Z; = Y=Y, 1.

Under the assumptions stated, the consumption function (with measurement error) takes the form
Cy = ouW, + o (Wt2 + Zt) +my (7, 8) + & (3.3)

with g
my (’Ya 5) = Q3¢ + Pary + ¢5tn7-

The vector ¢ = (G1t, oty O3ty Pat, G5t) consists of parameters that depend only on R, t and 02.
The vector 0 = (v, 8) is assumed to be a time-invariant random coefficient vector, heterogeneously
distributed in the population. We assume that the income process (Yt)t:L..,T 1 0 and that e, ~
N (0,02).5

Because 0 is time invariant and determines both past and current consumption and savings, it

s correlated with Wy. However, by assumption, Z; =Y, — Y;_1 is independent of 6. Consequently,
with the choice Wy = (A, Y1) and Zy =Y, — Y1, we obtain 6 L Z,|W,.

4 Identification of the distribution of parameters

In the following, we use (f-wzeop; ') (¢, w, z,0) to denote fowzo (Lp;l(w, z,0,¢);w, z, 9), We suppress
the dependence of the operator T on W (where T is defined below), and, for a subset A C L2 ., use

the notation T[4 to denote the operator T" restricted to A, that is, T[4 : A — L2 . We also use
R(T) to denote the range of the operator 7.

5In the CARA example, the consumption function is available in closed form. ? develop an application in which
the consumption function must be computed numerically.



Theorem 1. Let Assumptions 1 - 5 be satisfied. Then,

fewz =Tfow a.s. (4.1)

where Yh € L?

YR

80\11(07 w? Z? 07 (pz_l(w, Z7 07 C))
a&‘g[(cﬂ w’ Z? 07 sp’i_l(w7 27 07 C))

Th = / Sz o7 )(ew,2,0)- Lo (Yh(0: w)dd,  (4.2)

Ci={ceIm(&|w,z0)} and Im (& |w, z,0) is the image of & through ¢ conditional on (w, z,6).
Thus implies that fow s a solution of

fewz =T fow  subject to  fow € Fow, a.s. (4.3)

The operator T' is a mixing operator and fowz is an a.s. fow-mixture of fowze. Equation
(4.2) provides an expression for the operator T' that depends only on the elements of the structural
model (\I!, ©, few Z@) . These elements are known by assumption and can be directly computed.

Equation (4.3) is the basis for our estimation strategy. This equation characterizes fo as the
solution of a convezly-constrained Fredholm integral equation of the first kind. Under Assumptions
1-5 the existence of at least one solution to (4.3) is guaranteed since fewz € R(T'|7,,, ). We note
that recovering fop from (4.3) is an ill-posed inverse problem.

The properties of the solution (or solutions) to (4.3) depend on the properties of T" and its

adjoint. The next proposition characterizes the adjoint operator of 7.

Proposition 1 (Adjoint of T'). Let T : L2 — L2 be the operator defined in (4.2). Assume that T is
bounded. Then, the operator T* defined as: Vi € L2, T*i) = fc [z fewzo(c;w, z,0)1(c, z)w;z((%’)z) dedz,
with

s

fewzeo(c;w, 2,0) = Z(fawvze o w; )(e,w, 2,0) -

=1

88\11(07 w7 Z? 97 SOZ_1<w7 Z? 87 c))
86\:[/(67 w) Z’ 0’ 907;_1(1’07 Z’ 07 C))

1Ci (C)

exists and is the adjoint of T. The operator T* : L2 — Lfro is bounded and linear.

Because the kernel of T' is known, we can choose weight functions 7y and 7., so that T is
bounded and compact with R(T) C L2 . Assumption 6 gives sufficient conditions for compactness
and boundedness of T" in terms of ¥, fowze, 7. and my.

Assumption 6. The function s%fg‘wzgmclll/@g\ml/? : is a.s. square integrable in (g, Z,0)
c=p(w,z,0,e
with respect to 77%; ( X where s < 00 s the number of piecewise monotonic components of the
c=p(w,z,0,&
inverse of ¢ as defined in Assumption 1.
In the Supplementary Appendix, we show that this assumption ensures that 7' is compact and

bounded (see Proposition ??). This proposition is not necessary to define our estimator nor to



derive its asymptotic properties. However, when it is true, one of our proposed estimators can be
written simply in terms of the singular value decomposition of T. In practice, compactness can
be checked by scrutinizing Assumption 6. To do this, simply compute the integral of the square
of s2 fow 2610V /0. WY 2’ - , with respect to the weight functions. Under Assumptions 1 -
6, T*T is characterized kf}?wziwézc;ﬁitable number of eigenvalues which accumulate only at zero and

admits the following singular value decomposition (SVD):

Tp; = Ay, T = Njpj, JjeEN (4.4)

where {\;}jen and {¢;,1;}jen are the sequences of singular values and singular functions, respec-
tively. The set of functions {¢;}jen (resp. {¢;}jen) is a complete orthonormal system of eigenfunc-
tions of T*T (resp. of T'T*) which spans R(T*) = R(T*T) (resp. R(T) = R(TT*)) where R(T*)
is the closure of the range of the operator T* in L2 . When N(T) is not a singleton, where N(-)

denotes the null space of an operator, we can complete this orthonormal system in order to form

an orthonormal basis (0.n.b.) of L2 denoted by {{;};en, {@i}ies,} Where Jo C N and ¢; are such
that N(T) = span{@; hies,- In words, the null space is spanned by the elements in Jp.

In the following, we use the SVD to characterize the set of possible solutions of (4.3), i.e. the
identified set. To gain intuition, consider the analogous case in which the support of # was discrete
so that 6 took on only k distinct values. Suppose the support were known. In that case, if we
evaluate T at a finite number of points (C, Z, W), the operator T is a finite dimensional matrix.
The probability mass function of 6 conditional on W is identified if the researcher can identify, for
each value of W, k distinct values (C, Z) such that T is invertible. If the matrix is not invertible
(because some of its eigenvalues equal zero), then the identified set can be computed using the
singular value decomposition of T". In the limit, as k grows to infinity, the discrete case approaches
the continuous case. Assumptions 4 and 6 are required to ensure that this discrete intuition holds
true in the continuous case.

The pdf fow € Fow will be called identified (with respect to the class Fow) if

T\ ry (fow) = Tlry (fow) = fow = fow, as. (4.5)

for all fow, fg‘w € Fow. In words, fgw is point identified if the operator T|;0‘W is injective. The
injectivity of T'| Forw depends on the injectivity of T' but it is not equivalent. If T' is injective, that
is, N(T') = {0}, then T'|,,, is injective as well. However, when 7" is non-injective the restricted
operator 7| Fow May be injective. This is possible when the domain of T Fow 18 sufficiently restricted.

The following proposition characterizes the set of possible solutions of (4.3). We denote by fng
the minimum-norm solution of the unconstrained linear inverse problem fowz = T fow, that is,
fQT'W = argmin{||h|[;h € L2, and foywz = Th}.
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Proposition 2. Under Assumptions 1-5, the set of all the solutions of (4.3) is:

A= {h e Fow| fows =Th, as.} = {flw @ N(D)} 0 Fo

If in addition, Assumption 6 holds, then T is compact and there exist (; € R forl € Jy C N such
that

A=< h(O;w) = f9|W9w ZQQO[@"LU ZCl<ooandsuph (0;w) =0 a.s.

{ieJo} {iedo} b<o
where h™(0;w) := —min(h(0; w),0) denotes the negative part of h and span{@ hes, = N(T).

The second part of this proposition characterizes the set A in terms of the SVD of T which is
known and the density fopwz which can be easily estimated. When the null space of T'| Fopw 18

singleton, A is a singleton as well and the model is point-identified. This occurs in two cases:

(i) the operator T is injective, i.e. N(T)) = {0}. Then, fng € Fow and is the unique solution of
(4.3);

(ii) the operator T'is not injective, i.e. N'(T') # {0}, but Tz, is injective, i.e. (4.5) holds. In this
case we have A = (fJIW + hoyw) where hoy € N(T) is such that fe(fgw + hopw ) (0; W)df = 1
and (fg|W + hgpw) is non-negative a.e. on O, a.s. In this case we can also have A = fg|w if

fGTIW is a probability density function.

In our context, injectivity of T" is determined by the structural economic model and depends
on how C, Z and 6 interact. When T'| Fopw 18 MOt injective, computation of A requires computation
of the complete singular value expansion of the kernel of the operator 7. In theory, because T
is known and is not estimated, a researcher can compute the SVD of T, calculate the elements
{@j}jes, by a simple procedure of basis completion, like the Gram-Schmidt orthonormalization,
and then characterize the null space of the operator, see 7. In practice, a researcher must truncate
the expansion at some point and impose that all singular values not computed equal zero. The
error of this approximation can be bounded using methods in ?.

It is well known that shape restrictions may provide identifying power. For example, see 7 or 7.
Nonetheless, the econometric literature on inverse problems for the most part has not exploited the
fact that point identification can be obtained even without injectivity of T because T Fopw May be
injective®. Restricting the domain of interest or imposing shape potentially has identifying power.
We discuss this formally in the next section where we provide a necessary and sufficient condition
for point identification that we call T-completeness. This condition is weaker than the conditions of
completeness or bounded completeness that have been used in the previous econometric literature

on inverse problems.

6An exception is ?.
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4.1 Identification and completeness

Define Fycwz := {f | fis a conditional pdf on (R?,Be) given (C, W, Z)} as the set of pdf of 6
conditional on (c,w, z). Provided that fopwz and fow are bounded away from zero and infinity,
injectivity of the operator T' is equivalent to the requirement that Fycwz is Lfro—complete (or
bounded-complete) as noted in 7, 7, 7, 7 and ? in different setups.

However, in our framework, neither Lie—completeness nor bounded completeness are equivalent
to identification of fo. In fact, because the solutions of (4.3) are constrained to be pdf’s, then
identification of fgu is equivalent to completeness of Fycwz with respect to a class of functions
smaller than L2 , and the class of bounded functions. This class, that we denote by T, is the class
of functions that equal the difference between two densities scaled by the true density of #. That
is, T = {h € L72r@ ch =022 for somefy, fo € ]-"g‘w} C L72r9 where fopy is the true conditional pdf

forw
of # given W. This is summarized in the following proposition.

Proposition 3 (7T-completeness). Under the assumptions of Theorem 1, (4.5) holds if and only if
Fojcwz is complete with respect to T C Lfm.

2
g ?

Since the set 7 is strictly smaller than L2 , identification can be achieved even when L2 -
completeness fails. ? provide more background on completeness of a probability distribution with
respect to a general family of functions 7.

It is well-known that, if the elements of Fycwz belong to the exponential family, then Fycw 7 is
Lfrg—complete. However, since T C Lfrg, the elements of F4 o1z do not need to be in the exponential
family in order for our model to be point identified. In general, checking that Proposition 3 is
satisfied is a computational issue that must be checked on a case by case basis. The next lemma,
while stronger than required, provides a sufficient condition for identification that can be more
easily checked in practice and that provides some intuition as to the type of mathematical structure

that is required to provide identification.

Lemma 1. Let dim(f) denote the dimension of 0 and Assumptions 1-5 hold. Assume that Vi =

17 - S, (fsl@WZ © gpi_l)(c’ w, z, 0) is Of the form
eXp{Ti(c7 w, Zyml(e)}hz(e)kl(ca w, 2)7 L= 17 sy S
where for everyi=1,...,s, hi(-) is a positive function depending only on 6, m;(-) is a vector-valued

invertible function whose image has dimension equal to dim(0). The functions 7; and k; are real-
valued, do not depend on 0 and k; is a positive and bounded function. Further, the rank of E (1/;)
is equal to dim (0) and the vector 7; varies over the entire real line. Then, fow is identified with

respect to the class Fopw -

The conditions of this lemma are satisfied in the linear random coeflicient model outlined in the
roadmap section as long as g(Z,, W) has support on the entire real line. Moreover, remark that if

O is bounded, then a more limited variation of 7; is sufficient to get the result of the lemma. The
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conditions of the lemma are also satisfied in the classical examples of the additively-closed and the
location-scale one-parameter family of distributions. We detail these classes in the Supplementary

Appendix. In contrast, the conditions are not satisfied in Example 1.

Example 1 (Continued). Suppressing the time subscript, (3.3) can be written as
(P(W Z’Q,S) - ¢1W1 + ¢2 (WQ + Z) +m(775) +e

This implies that the density of measured consumption is

1 <0—¢1w1—¢>2(w2+Z)—m(%ﬂ))2

eXp( 5 o
cw,z) =
Jenws (cw, 2) /@ N

Define § = m (v, ). Denote by D the support of § and by I' the support of . After a change of
variable, this integral equation can be rewritten

Fraw (v, Biw) dydp. (4.6)

c Pprw1—p2(wa+2z)— 5)

Mayere——_
fewz (Gw,z) = // Jropw (77, 05 w) drydé (4.7)

27r<72

exp (_% <C_¢1UJ1_(i_i(w2+z)_6> 2
/D \/2mo?
C—¢1w1—¢2(w1+z)—5> 2

exp (—% ( - N
= /D \/Fag fspw (65 w) dé

Om~ ! (7,9)
35

Ffow (83 w) (/F Fyiws (7, 63 w) d7> db

where f:ﬂqw (v,0;w) = foaw (v,m ™t (7,0)) ‘ The joint density of (v,0) is not point-
wdentified because any proper conditional density ﬁ|W5 (v;9,w) is consistent with the data. In fact,
the conditions of Lemma 1 are not satisfied. The marginal density fsw (0;w) is point-identified.

The identified set A is the set containing all elements of the form

om

Fuaw (0, B;w) = fawr (m (7, B) 50) - Fyws (v;m (v, ), )‘aﬁ

for some conditional density .ﬁ,‘wg. In Section 6, we show in simulations that despite this failure
of point identification of f,gw , the model has identifying power because our estimate of }::5|W (0;w)
places meaningful bounds on the identified set. For example, Figures 6-7 show that the probability
that v is between 2 and 2.5 and B is between 0.95 and 0.96 is identified. Joint densities of (3,7)

that are inconsistent with the estimated probability of this event are ruled out.

13



5 Estimation

Our estimation strategy is based on equation (4.3). While the solution of (4.3) need not be unique,

there is a unique solution of minimal norm which we denote by fglcw This solution takes the form
i =Tk, (5.1)
o|w Fopw/ CIWZ .

where T}GIW denotes the constrained generalized inverse of the restricted operator T'| Fow (see e.g.,
?, Definition 2.1). The definition of f(jﬁxv differs from the definition of fng since the latter is not
constrained to belong to Fyw. However, in some cases (for instance in the point identified case):
fgfw = fg‘W. It is important to note that the operator T' JTTmW is nonlinear and noncontinuous since,
in general, R(T|%,,,) is non closed. As a result, the inverse problem of recovering fyw from (4.3)
suffers from ill-posedness. This means that the naive estimator obtained by replacing fojwz with a
consistent estimator in (5.1) would be inconsistent and a regularization procedure must be used.”
To implement our estimation procedure we assume that a nonparametric consistent estimator

of foywz is available.

Assumption 7. Let (¢;,w;, 2;), i =1,...,n be an i.i.d. sample of (C,W, Z) that is used to construct
an estimator quz of feywz such that fC|WZ € L? a.s. and IEH]?C‘WZ — fowz|? = 0 asn 1 .

Once an estimator fC|W 7 has been computed we use a constrained Tikhonov-type estimator for
fojw. This is the infinite dimensional counterpart of Ridge regression. The constrained Tikhonov-

type estimator is defined as the minimizer, with respect to h, of
ITh = fewz|* +ollBIP, b€ Fow, (5.2)

where the regularization parameter o > 0 decreases to 0 at a suitable rate.

We develop the classical case where the penalty term ||h[[* is simply based on the L2 norm.
This penalty has the benefit of being easy to compute and well understood in the literature. From
an economic point of view, since the minimum norm element is closest to the origin, heuristically,
it may have the smallest impact on counterfactual predictions and lead to the smallest variation
in counterfactual predictions across a wide. Alternatively, if a researcher has a prior belief on fyw
based on previous research, then the penalty can be replaced by ||h — fé"W||2 or by the entropy
[ log(h/ fg|W)h where fgy is the researcher’s prior belief about the density.

Since the norm in (5.2) depends on 7y and 7., choice of the weighting functions can be important.

As noted after Proposition 1, the weights should be chosen so that the operator T is compact. In

7An alternative estimator could be based on seminonparametric sieve maximum penalised likelihood estimation
of equation (4.1). Three main advantages of the Tikhonov-type estimator are that it is computationally simple, it is
guaranteed to converge, and the eigenvalues and eigenfunctions are computed as part of the estimation procedure.
In contrast, sieve penalised MLE may lack these features. One advantage of the sieve MLE approach is that it is
relatively straightforward to impose the constraints of the model when estimating the density of C. When the model
is correctly specified, this may result in efficiency gains.
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addition, the weights 7., and 7y should be chosen to reflect the researcher’s loss function. For
example, a researcher may choose to place greater weight on some values of C' or Z than others
to reflect greater economic importance. Or, they may place greater weights on some values of 6 to
reflect prior beliefs about the distribution of #. In our simulations in Section 6, we use constant
weights that weight all values equally.

We propose two methods to compute the minimizer of (5.2). The first method is a two-step
procedure that first computes the unconstrained Tikhonov regularized estimator and then projects
it onto the closed and convex set Fgy. The second method uses numerical methods to directly
solve the constrained minimization problem in (5.2).

The main advantage of the first estimator is that it is simple. The first step has a closed-form
and the second step consists of a simple iterative procedure. As a result, in many cases it will be
very fast to compute. On the other hand, the two-step estimator is only consistent if fgch = fng.
The second estimator we propose overcomes this problem. It does not have a closed form but works
regardless of whether fgfw = f9T|W holds or not.

When point-identification fails, our second estimator converges to the minimum norm element
in the identified set A. This particular element of the identified set is easy to compute. Once it is
computed, it can be used to estimate the set A using the formula detailed in Proposition 2. The
procedure is straightforward. Estimate fZIW’ compute the eigenfunctions of 7', and then construct
the identified set as described in Proposition 2.

The first step of our two-step estimator has been used in nonparametric instrumental variable
regression estimation and deconvolution problems for instance by ? and ?. In our mixture model
setting the expression for our estimator is somewhat different from the one in ? 8. We provide
asymptotic properties of the two-step estimator and extend previous results by considering the
important case where the problem is severely ill-posed and the pdf fy is not analytic. Therefore,
the rates given in Corollary 1 below, and the asymptotic normality results are new and not provided
in the previous literature. These rates are given for the case where fC‘W 7 is obtained by using kernel
smoothing.

Another contribution of this section is to provide the rate for the constrained estimator and
discuss how the regularity condition on fg has to be modified in order to obtain the rate in
this case. To the best of our knowledge, these results are available only for deterministic inverse

problems and not for stochastic inverse problems which are relevant in econometrics.

5.1 Estimation of fng: a two-step approach

The two-step estimator is computed as follows.

8In our case, the generalized Fourier coefficient ( feywz,;), cannot be simplified as in ?. Therefore, fowz must
be estimated nonparametrically and plugged-in. This allows us to obtain a rate of convergence which is in general
faster.
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First step. Compute the solution, denoted by fél‘w, of the unconstrained problem:

i {7~ fawz]* + allh|P } (5.3)

heL

The solution is the classical Tikhonov regularized estimator:
foiw (03w) = (ol + T°T)"'T* feywz (5.4)

where I denote the identity operator in Lfre. When T is compact, expression (5.4) simplifies to
fow (O3w) = 3752 M@+ A fewz, ¥5)w;(0;w) where {A;,1;,¢;}jen denotes the SVD of T
Second step. Compute the orthogonal projection, denoted by Pcfeo“w, of fea‘w onto the set Fy:

. . c
Pefojw = max {0, Tow — 7T_9} (5.5)

where ¢ is such that [, P. ngWdG =1.

We call P, ngW the indirect Tikhonov reqularized estimator of fglcw. ? shows that the projection
can be computed simply using the following iterative algorithm.

P.—algorithm:

ra(0 fo
L. Set fyy) = fay and k=0,
2. Set f9| k1) — max{0, feolég;)} and check Cry1 = [ f9| KD (9:10)df. If Chpy = 1 stop. Otherwise,
3 Qet f9| a(k+2) fa(k+1 wfj’:l_ge

4. Set k =k + 2 and repeat 2 - 4 until |Cy1 — 1| < ¢, for € > 0.

While other projection methods exist, ? shows that this algorithm converges pointwise and in
norm to P, faofw and that P, fgfw minimizes the weighted MISE E|| - ||2.

5.1.1 Rates of convergence

The two-step estimator is consistent when feT\CW = fGTIW’ that is, when fng € Fopw. This is possible
for instance when T is injective, or when T is not injective but 7| Fopw 18 and fg\w € Fow. Theorem
2 below provides the rate of the (weighted) Mean Integrated Square Error (MISE) associated with
the two-step estimator P, faofw- The rate depends on the smoothness of fgfw and on the smoothness
of T. The next assumption (which is a type of source condition®) quantifies the smoothness of
fgfw relative to the smoothness of T'. It is only required to derive the rate of convergence of the

estimator.

9We refer to ? for a discussion on different types of source conditions in inverse problems.
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Assumption 8. Let ¢ : [0,00) — [0, 00) be a continuous, strictly increasing function with ¢(0) = 0.
LetT : L2 — L2 be as defined in (4.2) and bounded. There ezists a source v € L2, such that for
some 0 < M < o0,

fle = o Ty and ] < M.

When the operator T is finitely smooth (mildly ill-posed case) and fgfw belongs to a Sobolev
class of functions, then an appropriate choice of ¢ is ¢(t) = %/ for some 3 > 0. For example, in our
intertemporal consumption model, this choice of ¢ is appropriate if fg is infinitely differentiable.
In contrast, when T is infinitely smooth (severely ill-posed case) and fgfw is not analytic, then an
appropriate choice of ¢ is ¢(t) = (—log(t))™#/% for some $ > 0. In this latter case, the rate of
convergence is much slower.

The following theorem states the rate of convergence:

Theorem 2. Let Assumptions 1-5 and 7-8 be satisfied, and fng = fg\w € Foyw. Assume that there

exists a constant 4 such that

sup ‘qb(t)oz(oz + t)’l‘ < yp0(), a—0 (5.6)
teo(T*T)
where o(T*T) denotes the spectrum of T*T. Then, the weighted MISE associated with PcngW 18
EHPCféTW — fg‘cwl‘z - O(¢2<Oé) + Oé_lEch‘WZ — fC\WZHQ)' [f ¢(t) = t’B/2 U}Zth B > 0 then, (56) iS
satisfied for 8 < 2 and

: fou c r _BA2
inf E|[P.fiw — il = O ([Ellfowz — fewzlF1755) .
If ¢(t) = (—log(t)) /% with 3 > 0 and (5.6) is satisfied then
. /\a C n _ﬂ
inf E|[P.fiiw — fli | = O ([— log (Ell fowwz = fewz|?) | ) .

In the case ¢(t) = (—log(t))~?/2, it has been shown in ? that (5.6) holds automatically for
0 < B < 2. The rate given in the theorem is at most of order [E||f0\wz - fC|WZ||2]§. This
rate is slower than the minimax rate for estimation of a density function because we use indirect
observations of ¢ to estimate fyu. Let feo“l(,’;) be the two-step estimator obtained by using the
P.-algorithm. It is possible to show that E||f§7§,€) — fgICWH2 < ]E||f9°“w — fgﬁ,sz. Therefore, this
theorem also provides the rate of convergence for the approximation of P. fg“w obtained from the
P.-algorithm.

The rate of Theorem 2 can be made explicit by replacing the rate of convergence for fc|w z. We

consider here the case where foywz is a kernel estimator, i.e.,

W Yo Kn(e — ¢, 0) K (w; — w,w)Kp(2 — 2, 2)

n ; 2.7
T S Kol — w9 >0

fC|WZ(C§wa Z) =
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where K (-,-) is a generalized kernel function!®

generality that C = [0,1], W = [0,1]*, Z = [0,1]". By standard Taylor series arguments, as in ?, it
is easy to show that E|| foywz — fowzl)? = O (nmin{hihd}kﬂﬂ + max{h?, hﬁ}), and if h, = hg=h

of order r = 2, and we assume without loss of

is chosen such that m = h* then E| |]EC\WZ — fC|WZ‘ ‘2 = (’)(n_4/(k+l+1+4))_ By plugging this rate

in the optimal rate of Theorem 2, we obtain for ¢(t) = 5/
inf B||P.foy — £15,[17 = O <n_%> (5.8)
a>0 /oW 0w ’

and for ¢(t) = (—log(t)) ™2, infaso E|[Pefsiy — fiiw|? = O((—log(1/n))™"). We show now that
this rate can be improved and made independent of the dimension of Z. This is possible since
the application of the operator T to the error term ( quz — fepwz) has a smoothing effect and
integrates out (C,Z), so that the dimension of (C,Z) does not play any role in the rate. The

following corollary to Theorem 2 gives the new rate.

Corollary 1. Let Assumptions 1-5, 7-8 and (5.6) be satisfied, and fgﬁ/v = feT\W € Fow- Then,

EH’PCJ%TW —f@T'CWH2 = O0(¢*(a) + % (max{hy, hi} +n~ ' (min{h,, ha})")). Moreover, if hy, = hy <
. (512)

n~ VR and ¢(t) = t¥"2/2 we have inf, E[|Pefojw — f;fWH2 =0 (n_ (4+’3(?/3A22>+2>>.

The rate in Corollary 1 is faster than the rate in (5.8) if (I + 1)(BA2+4+1) > 4+ k. It is
clear that, under the conditions of the corollary, if we have no W and if h, = hy =< n~"* then
IEHT*(]ECWZ — fewz)|)? = O(n™'). Our rate is increasing in 3 and decreasing in the dimension k
of W. So, we have a curse of dimensionality only in the dimension of the endogenous variables W
and not in the dimension of the instruments Z. This is due to the action of the operator T that
integrates out (C, Z).

5.1.2 Asymptotic Normality.

We now study pointwise asymptotic normality of the two-step estimator P, ngW in the case where
fC|WZ is computed by using kernel smoothing as in (5.7). For that we introduce the following

technical assumption which uses the SVD of T

Assumption 9. Let Ey, denote the conditional expectation given (W, Z) and fWZ denote the
kernel estimator of the joint pdf of (W, Z). We assume that for every 0 € © and w € W: (i)

3
00

B|Y s ((Rules = e.0) - Bz (i(cs - )

D)
= o<+)\j

Kn(z — z,2) Kp(w; — w,w)

kit 7
hn fwz

71/}j>§0j(9§w)

-0 (a_3/2h’r_7,2k)

10We refer to ?, ? and references therein for an explicit definition of K(-,-)). By abuse of notation, we use the
same second order kernel K for all the variables and the same bandwidth h,, (resp. hq) for the different bandwidths,
though they could in principle be distinct.
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and (ii) there ezists a constant k > 0 such that

K}L(Zi — 2, Z)Kh(wi - w,w)

[
R

Var (Z Aj ' <(Kh(ci —¢,¢) —Ewz(Kp(c; — ¢, c))) ’¢j> @j(e;w)) > Ha—Qh;k.

In the following lemma we use the notation ‘=’ to denote pointwise convergence in distribution.

Lemma 2. Let Assumptions 1-9 and (5.6) hold, fgfw = fQT'W € Fow and Pcfgam, be the two-
step estimator computed by using foywz(c;w, z) defined in (5.7). Let Ewz denote the conditional
expectation given (W, Z) and fwz denote the kernel estimator of the joint pdf of (W, Z). If nah®t* —
0, &®/(hEn) — 0 and if na®hr¢*(a) — 0, then for every 0 € © and w € W:

Pcfé)fvvw; w) — fg\cw(& w)
Ve(t,w)

= N(0,1)

where

- Aj K i\~
Ve(0,w) = %Var (PZ;(QJ:)\?)<<Kh(ci_c’c)_EWZ(Kh(Ci_C’C)))}Lch’:;Jr(ff:;)Z’%>%(9;w)>’

Kni(z,w) = Kp(2 — 2, 2) Kp(w; —w,w) and Pl denotes the projection on the tangent cone of Foyw
at fng defined as {\(f — fgfw); A>0, f€ Fow}

In order to obtain this asymptotic normality result, we require a regularization parameter o that

converges to 0 at a faster rate than the asymptotically optimal one. This guarantees that the bias

of P, f;“w(é’; w) is asymptotically negligible.

5.2 Estimation of fng: constrained Tikhonov regularization

When foTﬁxv #* f;\w the two-step procedure can no longer be applied. Instead, we have to compute
the constrained Tikhonov regularized solution by directly solving the minimization problem
min {||Th—fc|wz||2+a||h||2}. (5.9)
hE]'—9|W
The existence of a unique solution to problem (5.9) is proved in ?. A closed-form solution of this
problem does not exist and numerical methods must be used to compute a solution. We denote

by Jzeawi/ the estimator obtained by solving (5.9) and by Pz, the orthogonal projector of L2 onto

Fow. The next theorem states consistency of the estimator f;fv?/

Theorem 3. Let Assumptions 1-5 and 7 hold, T' be a bounded operator from Lfre to Lfrcz defined in
(4.2) and fgfw € R(Pr,,, T*). Then, if a = 0 and o "E||feywz — fowz|]* — 0 then: E||f;f§,
fiwlI? = 0.

Under a smoothness assumption about fglcw, it is possible to extend the result of Theorem 3

and recover the convergence rate for the constrained estimator. To derive this rate, a regularity
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/ N(T)

Figure 1: Representation of (part of) the set Fy (grey area), the supporting hyperplane Ly :=
{he L2 (fi — f.h = fi5) = 0} of Fyw in f15,, the hyperplane Ly and an element f of M.
condition for f9T|CW different from Assumption 8 is required. This regularity condition is stated in
terms of a set of functions defined as follows.

Define: M :={f € N(T)*| Pr,, f = forw} and, Vf € M, Ly == {h € L2; (fi — f,h) = 0}.

T !

Define ]5f to be the orthogonal projector of L?Te onto L 7. Because we are in Hilbert spaces, 15f is
a linear operator. Finally, for 5 > 0 define N5 := {f € M, pffgﬁ/v €ER ((PfT*Tﬁf)/Bm)}_ The

regularity condition is stated in terms of the set Ng.

Theorem 4. Let Assumptions 1-5 and 7 hold and let T' be a bounded operator. Suppose feT\CW # fng

and Ng # &. Then, EHf;TVCV—fglCWW =0 (aﬂ/\2 + a—lEHfC‘WZ _ fCIWZHQ) and if o < (]EH]?CWVZ—
T Fa,c c A BA2

Jeywz|P) T EHf@\W N fg|w||2 =0 ([EHfCIWZ — fowzlP?] /“2“).

In order to understand this result, consider Figure 1, adapted from ?. From the figure, it is
clear that Nj is the set of all functions f € N (T)* such that the orthogonal projection onto Fow
equals fgfw and such that the orthogonal projection of fGT'CW onto the hyperplane L ¢ is “smooth”.
The regularity condition on fgfw is imposed via the smoothness of its projection Pf fglcw Such
smoothness is measured in terms of smoothness of the operator (ﬁfT*TPf)ﬁ/ 2 which is a projection
of an integral operator. The new regularity condition required for Theorem is that N3 # @. In
words, there exists at least one f € M such that the projection of fglcw on the corresponding

hyperplane f}f has a degree of smoothness .

5.3 Case with non-random parameters

Suppose that some components of § are deterministic, that is, 8 = (0}, 05)’, where 6, is the vector
of deterministic components of 6, assumed to belong to a compact subset ©; C R%, and 6, is
the vector of random components of § (with dimension dy) distributed according to a probability
distribution Py, satisfying Assumptions 4 and 5. In this case, we can use either of the two

estimation procedures we have proposed, after some minor modifications.
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Here, we focus on the constrained Tikhonov regularization procedure.!’ The minimization prob-
lem (5.9) should be replaced by

oottt T = fowal P+ al I} (5.10)
where we write Tp, to make explicit the dependence of the operator on ;. The kernel of Ty, is (up
to the factor ﬂ—lg) equal to foywze (c; w, 2,01, 602) which has the same expression as in (4.2).

Let the parameter space be G = ©; x Fy, ;. Denote by g = (61, h) a generic element of G, with
01 € Oy and h € Fow. Let ¢° = (67, fy,y) the true value of g. Moreover, denote Qn(01,h) =
[ To,h — fepwz||? and Q(61,h) = ||To,h — feywzl]?. The estimator computed by solving (5.10) will
be denoted by g := (él,f;';cw) and belongs to G. Define ||§ — ¢°| := |61 — 69|z + Hf;;ﬁ,v — fawll;
where || - ||z denotes the Euclidean norm induced by the scalar product (-,-)g in R%. Theorem 5

below states consistency of g. We introduce the following assumption.

Assumption 9. Let the following statements hold:

1.

i. The subset ©; C R¥ is compact.

it. The Iamily of functions {Qn(-, h) + othHz}hewa is equidifferentiable at every 6, € O1.

iii. Let Qn1(61,h) denote the first derivative of Qn (01, h) with respect to 0y evaluated at 6. We
assume that SUPpe 7, 1 |@n,1(91, h)| < oo for every 0; € ©1.

w. Q(¢°) =0 and any (01, h) € G that satisfies Q(01,h) = 0 also satisfies 0; = 6 and h = f002|W
almost everywhere.

v. The function fopwze(c;w, 2,601, 02) is continuous in 6;.

vi. The criterion Q, satisfies: |Qn(9°) — Q(g°)| = O,(8,), where §, = o(1).
Theorem 5. Let Assumptions 1-5, 7 and 9 hold. Then: (i) a solution to (5.10) ezists and (ii), if

8, = O(a): ||g — ¢°|| = 0 in probability.

6 Monte Carlo simulation

6.1 Simulation 1: Linear endogenous random coefficient model

Consider model (2.1). Assume that g (Z2, W) = Z,W. Then equation (2.1) becomes
029121 +9222W—|—8. (61)

Assume that e ~ N (0,0.1), W ~ U [1,2], and Z ~ N (0,%,) with 3, equal to the identity matrix.
Finally, assume that 0|W ~ N (ug, X9) with pg = 5o + 51W, (Bo, 81) = (1,1) and 34 equal to 0.1
times the identity matrix.

"' The two-step procedure is described in Appendix ??.
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We simulate 1500 Monte Carlo datasets from this model, 500 for each sample size (N = 500,
N = 100, and N = 2500). For each dataset, we first estimate fmwz using a Gaussian product
kernel with Eandwidth chosen as discussed below. Then we compute fﬁw using (5.4). Finally, we
compute P.. f0a|W as in (5.5), at the 30th, 50th, and 70th percentiles of the distribution of W.

To facilitate accurate numerical integration, we first make a change of variable, mapping (C, Z;, Z5)
into the region [—1,1]°. Specifically, we define U, = 2® <M) -1, U, =29 (%) —1,U, =

Oc z1

20 (@) — 1, where @ is the standard normal CDF and (y., oc), (s, 02,), @ = 1,2 are the em-
22
pirical mean and standard deviation of C, Z; and Z,. Substituting these new variables into (6.1),

and solving for ¢, the structural function € = ¢~ (W, Z, 0, €) can be written as

U, +1 (U, +1 (U, +1
5:MC+UCCI)_1( 9 )_81 <:uz1 +0z1q) 1<T>) _02 <,uzz+0-z2q) 1(T>>W

Next, let wsg, wsg, w7o denote the 30th, 50th and 70th percentile of W, resp.. Using the weight

functions 7., = 1 and 7y = 1, for each w € {wsg, wso, wro} , we then compute feo“W to solve

r&i{l{ / (fUC|WU21U22 —Th>2dcdz1dz2 ta / h(9)2d9}. (6.2)
The solution is given in equation (5.4) . We approximated the integral over [—1,1]* with the tensor
product of three unidimensional Gauss-Legendre quadrature rules with 20 quadrature nodes in each
dimension, and analogously over ©.

Figure 2 displays contour plots of the true density and of the estimated density for the three
different quantiles of W obtained from one of our Monte Carlo datasets (with n = 1000). In each
panel of the figure, the top panel shows the true density and the bottom panel shows the estimate.
In all cases both the shape and location of the estimate track the true density quite closely. In
particular, the unimodality of the density is well covered, and the location of the mode almost
exactly coincides with the true mode. Moreover, the spread also very much coincides in every
dimension with the true spread of the density of random coefficients.

Results are obtained using bandwidths A, = hy = 0.05 and the Tikhonov regularization param-
eter a = 0.01. Bandwidths are chosen to minimize the average of the square root of the density

weighted mean squared error:

AMSE=E |33 ( [ [P @) = o G520 (B5) de) | =EMSE] (63)

q

w, € {wso, wso, wr} and where the average is calculated as the empirical average across 100 Monte
Carlo replications and the pointwise average across three quantiles of the distribution of W.

For sample size of 1000, Figure 3 shows the densities of the square root of the weighted MSE
(WMSE) for the Tikhonov estimator and the oracle estimator (i.e., the infeasible kernel density

estimator). In each case, the distribution is the distribution across 500 Monte Carlo replications
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and across five different values of W. As was to be expected, the oracle estimator performs better,
yet there is significant overlap in the distributions of results. Table 1 shows the AMSE (calculated

as the average across 500 Monte Carlo replications) of both estimators:

Table 1: AMSE as a function of sample size
Sample size

500 1000 2500
Tikhonov estimator | 0.423 0.350 0.280
Oracle estimator | 0.219 0.172 0.140
Ratio 1.93  2.03 2.00

Several features are noteworthy: First, observe that the ratio is approximately twofold, which is
not very large if one considers the small sample size and the complexity of the procedure. Second,
note the absolute value decreases, showing consistency. Third, note also that the ratio of the two
averages increases slightly from 1.93 to 2.03. This is to be expected given the fact that the unfeasible
oracle estimator converges faster. Nevertheless, the ratio is almost constant, suggesting that the

theoretical large sample differences may slightly overstate the small sample differences.

6.2 Simulation 2: Intertemporal consumption model

To analyse the CARA model, we simulated n = 1000 agents starting at age ¢t = 21, working for 45
periods and then obtaining a terminal retirement utility. Income grows until retirement. In addition,
in each period each agent faces a permanent i.i.d. income shock 7; distributed as 7; ~ A(0,0.01668).
The initial value of income is set to 0.2 (scaled so that 0.2 equals $20,000) and the initial permanent
shock is set to zero. The interest rate is set to R = 1+ r = 1.05 and the random parameters v and
£ have support on (0.5,4.0) and (0.700,0.999) respectively, covering a range of values suggested in
the literature. The joint distribution of (v, ) is generated as follows. We define © ~ N (u,, ) with
e = (1,0)" and generate v = 0.5+ 3.5® (21), and 8 = 0.7 + 0.299 ® (x3) , where ® is the standard
normal CDF. In addition, measurement error in consumption is &; ~ N (0, 02) with o2 set equal to
25% of the the cross-sectional variance of consumption.

While the data are simulated for 45 periods of life, we select one cross section at age 31 to be
used for our estimator. We obtained similar results for other values of . The dependence between
0 and W (where ¢ is defined below) varies with ¢ as does the distribution of the data. However, the
quality of the estimation results does not.

In this CARA example, the joint distribution of (v, 3) is not identified because the variables

enter the kernel of the operator only through a single index. Instead we estimate the distribution

of In (RB)
v

0 = 0.5¢57 + ¢3 (64)

where ¢35 and ¢ are parameters that depend only on the interest rate R and the time period t.

23



For the estimation, we use a Gaussian kernel with bandwidths h,, = hy = 0.3 and with Tikhonov
regularization parameter o = 0.01. For the infeasible kernel density estimator we set the bandwidth
to hy = 0.3. While tuning parameters may be chosen using least-squares cross-validation, for the
purposes of illustration, we chose tuning parameters to minimize the square root of density weighted
mean squared error computed across the 1000 Monte Carlo replications.

The true distribution of ¢ conditional on W is difficult to compute because it is endogenously
determined from the structural model. Therefore we compute the following square root of the

density weighted mean squared error averaged across quantiles of the W distribution:

3 5 ([ ([PeFiw @) B 050)] ) (B 010) dé)w] - (69)

q

AMSE = FE

To compute the AMSE, we replace the expected values in (6.5) with the average across the 1000
Monte Carlo replications and compute the integral across ¢ using Gauss-Legendre quadrature nodes
with 301 points of support. The average across W is computed as the pointwise average across
vectors w with each coordinate of w equal to either its 25th or 75th percentile.

In Figures 4- 5 we show an (infeasible) kernel density estimator of the pdf of ¢ (in solid black
line) together with our Tikhonov estimator (in dashed green line) and pointwise 95% confidence
intervals obtained using the bootstrap. In each figure, the estimate is conditional on fixed levels of
assets and income. “Low” levels of each variable correspond to the 25th percentile and “high” levels
correspond to the 75th percentile. To estimate the confidence intervals, we created 1000 bootstrap
samples from the data, each a sample of 1000 observations drawn with replacement. We then use
the pointwise 0.025 and 0.975 percentiles of the bootstrap estimates as our confidence bands. As
the results reveal, the unfeasible oracle estimator which we take in place of the true density is, for
every value w of W we consider, within the confidence intervals. This suggests that our estimator
is reasonable accurate, in spite of the only moderate sample size of n = 1000.

To provide an economic interpretation of these results, note that while they characterize the
density of § conditional on W, these results also place constraints on the joint distribution of (3, )
given W. For each quantile of the distribution of §, we can draw a curve representing the values of
(B,7) satisfying (6.4). This is a quantile level set. Suppose we draw such a curve for § = §, the
¢’th quantile of the ¢ distribution. Since (6.4) is monotonic in /3, it must be the case that with
probability ¢, (/3,7) lie below this level set and with probability 1 — ¢ they lie above this level set.

Figures 6-7 show these level set curves conditional on various values of W; = (As=31, Yi=30)-
For example, the blue solid line in Figure 6 shows the 0.1 quantile level set. With probability 0.1,
(B,7) lie below this curve. In each case, the quantile-level-sets partition the (3, ) space into convex
regions. The convex region in Figure 6 bounded by the 0.1 and 0.9 quantile level sets shows that
people with low assets and low income are likely to be very impatient (5 < 0.9) if they are risk
averse (v > 3.5) but are likely to be patient if they have low risk aversion. The other figures show

that this convex region shifts upward for people with higher assets or income. As theory predicts,
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individuals with higher asset holdings are on average more patient and risk averse, but there is some

evidence of trade off between patience and risk aversion.

A  Proofs

A.1 Proof of Theorem 1

By Assumption 1, there exists a unique ¢ = ¢(w, z, 0, €) that satisfies (3.1). Thus, using the transformation
¢(w, z,0,-) mapping € to ¢, the density of &, f.wzg, specified in Assumption 3, and fgu specified in
Assumption 4, we can characterize the pdf of fecowz- Let &1,...,& be a partition of R such that
o(w, z,0,-) : & — R is one-to-one for each i = 1,...,s, for given (w, z,0) and s € N;. Let cpi_l(w,z,é’, )
Im (& |w, z,0) — &; be the corresponding inverse mapping for given (w, z,6). Then,

fC|WZ9 Gw,z, 9 ZfEH/VZH w z,0 C) ’LU,Z,@) ’ ‘80@;1(11),,2,0, C)‘ 1Ci(c)' (Al)

Further, using Assumption 5 we have foowz = foywze fojw . This implies that

fC|WZ(C;w72):/@fcWZ@(C;w,Z,O)me(Q;M)dQ- (A.2)

Finally, since a unique solution in C to (3.1) exists, the chain rule implies that: 9.V(c,w,z,60,¢c) =
0:V(c,w, z,0,e)0-.c + 0-¥(c,w, z,0,e) = 0, by abuse of notation. Therefore, 0.c = Jd.¢(w, z,0,¢) and

O-p(w, z,0,¢) = —%. We conclude that

1 _ [9:¥(c,w,2,0,¢) !
8690(71’727975)’5:¢;1(w,z,9,c) N 0V (c,w, z,0,¢)

0:¥(c,w, 2,0, ¢; Hw, 2,0, ¢))

_ L ] (A.3)
35‘1’(0,10,2797% (waz’aac))

Oepi H(w, 2,0,¢) =

e=p; H(w,2,0,0)

By replacing (A.3) in (A.1) and (A.1) in (A.2) we get the result.

A.2 Proof of Proposition 2

The first characterization of A follows trivially from (4.3) since every element obtained as the sum of fHTIW
and an element of N(T) is solution of the unconstrained inverse problem. Then, to obtain the set of
solutions to the constrained problem, we only have to take the intersection with Fyy .

To obtain the second characterization of A remark that we can always write a generic element of
fg|W @N(T) in terms of the o.n.b. {{¢;}jen, {@i}ies, } which exists under Assumption 6. Then, we impose
the following constraints to every h € {fe\w SN(T)}: (i) oh(B;w)dd =1, as., (i) [oh*(0;w)me(0)dl <
00, a.s. and (i) h(f;w) > 0, a.s. The first constraint is automatically verified since for every (w, z,6),
fC feiwze(c;w, z,0)de = 1 and, by using Fubini’s theorem: Jo h(O;w)db = fC Jo feiw zedOh(0; w)de =
fc foywzde = 1 (where we have used the fact that fojyz integrates to 1 and Th = foyw ). Constraint
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(i) is equivalent to |\f;lw|\2 + Y 1eg, G < oo for some (; € R and, by definition of feT|W’ Hj‘“gWH2 < o0.

Finally, constraint (%ii) is equivalent to require that the negative part of every function in A is equal to 0.

A.3 Proof of Proposition 3

Suppose that Fycyz is T-complete and that for f91|W, fgIW € Foyws T\]:glw(f‘;lw) = T’fe\W(f92|W) holds.
By using the decomposition foywze = fojcwzfciwz/ fow this equality can be rewritten as

0 = T’}‘QW(f91|W)_T’J-'9W(f92vv):/@fC|W29(C§wvz7‘9> {fel\w(&w)_fez\w(‘g;w) do

= [ fncwa:ew WA [ ) 0] a (A
o Jopw (0;w)
which is equivalent to
0= [ fnewalbic.w.2) ;s [ Fhw (850) = Fu O5w)] a0 (A5)
o fopw (0;0) L7 |

because, by Assumptions 2 and 3, 0 < foz < 0o. Moreover, W [f01|W(65 w) — f92|W(9;w)] €T so
that (A.5) implies m [f01|W(9;w) - fg‘w(ﬁ;w)} = 0 which in turns implies f61|W(9;w) = f62|W(9;w)
under assumption 4.

On the other hand, if (4.5) holds, then 0 = [ focwz(0; ¢,w, 2) oy [ Loy (0:w) — fg‘w(e;w)} o

implies that m [felw(é?;w) — fg‘w(e;w)] = 0 because, by Assumptions 2, 3 and 4, 0 < fopz < o0
and 0 < fyr < co. This concludes the proof.

A.4 Proof of Lemma 1

For simplicity we consider the case where 6 is one-dimensional (the multi-dimensional case can be recovered

in a similar way). Let us suppose that T¢(0;w) = 0, a.s. for some function ¢ € ©. Then, V(c,2) €C x Z
Ty = /@ i felowz ((pi_l (w,z,0,c);0,w, z) . |8cg0i_1(w, 2,0, c)‘ 1, (e)p(6; w)do =0 a.s.
i=1
implies that V(c,z) € C; x Z
/@fdewz (goi_l(w, z,0,¢);0,w, z) : ‘3&,0@-_1(10, z, 9,0)} o(O;w)dd =0 a.s.Vi=1,...,s.
Then, ¥(c,z) € C; x Z and Vi =1,...,s, we have:
0 = /eexp {mi(c,w, 2)m;(0)} hi(0)ki(c, w, z)p(0; w) ‘80901-_1(10, z,0,c)| df

= /@exp{n(c,w,z)ui}hi (m;l(,ui)) ki(c,w, )i (m;l(,ui);w,z,c) dm; (i) as.
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where we have used the notation qB,-(G;w,z,c) = gzﬁ(@;w)‘accp;l(w,z,@,c)‘ and the change of variable
m;(0) = p;. Moreover, since dmi_l(,u,-) and h; are positive functions, we can define a measure v;(du;) =
h; (m;l(uz)) dm;*(u;). Thus, ¥(c,2) €C; x Z and Vi = 1,...,s,

0 = kilew2) /@ exp{i(c,w, )i} s (i (us)s w, 2, ¢) i)
= ki(c,w,z)/@exp{n(c,w,z)ui}g(ui;w,z,c)m(dui)
= ki(c,w,Z)/@eXp{Tz‘(Qw,Z)Mz’} [ (isw, 2, ¢) = ¢ (misw, 2, ¢) ] vildp)

= ki(c,w,2) </ exp{n(c,w,z)m}Fi(dui;w,z,c)—/ exp{n(c,w,z),ui}Gi(d,ui;w,z,c)>
(€] (C]

a.s. where (;(ui;w, z,¢) = giom; b, Fy(dpisw, 2, ¢) = G (i w, 2, ¢)vi(dpi), Gi(dpi; w, 2, ¢) = ¢ (i3 w, 2, ¢)vi(dp;)

and, for a function h, h™ and h~ denote the positive and negative part of it, respectively. It follows that
/ exp{7i(c, w, 2)pu; } Fi(dps; w, z,¢) = / exp{7i(c, w, 2)u; }Gi(dpi; w, z, ¢),
o ©

that is, F; and G; are two measures with the same Laplace transform. Then, they are equal since 7;(c, w, 2)
vary over R. This implies that (;(u;;w,z,¢) = 0 and then ¢;(0;w) = 0, a.s. since accpi_l(w,z,ﬁ, c) is
bounded away from 0 and oo by Assumption 2, V(c,w,0,2) € C x W x © x Z.

A.5 Proof of Theorem 2

First, since |[P.|| < 1 we have: Bl[Pefiy, — fiipl? = ElPe(fiy — f3)lI> < 1Pl PEI fohy — Flwll? <
Elfgiw — fiw % Let fy, = (al +T*T)"'T* fejwz, then

Elfsiw — Fiw P < 2Bl feiw — fotwlI® + 2Bl f5hw — £ |1 = 2(A1 + A2). (A.6)

By the Halmos’spectral theorem (see, for instance, ?7) the operator 7*T admits a spectrum o(7*7"). Hence

we can analyze the two terms A; and As as follows. Term A is

Ar = E||(al +T*T) ' T*(fowz — fowz)l)* < H(0J+T*T)_IT*’|2E|\(fC|WZ — few2)l)?
. 1 .
< swp o+ ) VIPEIGows — fowz)|P = 0 <E|r<f0|wz _ fC|WZ>||2> . @A
tea(T*T) «

Next, we develop term As:

Ay = El(al +T°T) " T fowrs — FhuylP = I — (oI + T*T) T T1f, |12
llaal +T*T) 7 112 = llaal +T°T) " $(T*T)w|

sup [p(t)ee + 1)1 P? = O(¢*(a)) (A.8)
teo(T*T)

IN

where the last inequality follows from (5.6). This shows that E“fgfw_fgWHQ =0 <¢2(a) + éEH(fC‘WZ — fC|WZ)H2>-
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Next, consider the case ¢(t) = t%/2. Then, SUDtco(T+T) P 2a(a+t) 7Y = LaP/?if B < 2 and SUPeq (1) |6(t)a(at
t)7!| = a if B = 2. Hence, (5.6) is satisfied and we choose o < (IEH(fqWZ — fewz)l H/(BA2HD) we get
the result. Finally, consider the case ¢(t) = (—log(t))~#/2. If we choose a = (EH(fqWZ — fewz)|[?)¢ for

0 < € < 1 we get the final result of the theorem.

A.6 Proof of Corollary 1

Following the decomposition (A.6) in the proof of Theorem 2, the upper bound for A, remains unchanged
while term A; is now bounded above by A1 < ||(ad + T*T) ' |PE[|T*(foywz — foywz)||? so that A; =
(@) (a‘QEHT*(fC‘WZ - fC|WZ)]|2>. We have to compute the rate ofIEHT*(fC‘WZ — feywz)||?. Remark that
ET*(feywz — fow2)|? = o (VW (T* feywz) + (E(T* foywz) — T*fC|WZ)2> my(0)df. By using standard
Taylor series approximations, it is easy to show (see Lemma 77 in the Supplementary Appendix) that

. 2

the squared bias term is of order (E(T*fC|WZ — T*fC‘WZ)> =0 (max{hfl, hé}) and the variance term is
Var(T*fCWZ) = O (n~!(min{hn, hq})%). Therefore, the rate of the MISE is:

A c 1 1
BIP. I =0 (0 + g (w0l )+ o))

A.7 Proof of Lemma 2

Denote by Eyz the conditional expectation given (W, Z). Let us consider the decomposition ( fgiw —

fTC )(0;w) = [fgfw (o +T*T) ' T*Ew 7 (fow2))(0;w) + [(@I+T* )_IT*]EWZ(fC|WZ) fJ‘W](H;w) =
A + B. The result of Lemma 2 follows from proving that \/j —4 N(0,1) and \/j = 0p(1). We

Ve (6;w) Ve (6;w)

: m —4 N(0,1) where V(A) = Var(A). Let {\}, ¢j,%;}jen denote the SVD of T,
fwz denote the kernel estimator of the joint pdf of (W, Z) and K}, ;(2,w) = Kp(z; — 2, 2) Kp(w; — w, w),
then

start by proving that

Ki )
4 = ;;Q+Az< (K (e —C,C)—sz(Kh(ci—c,c)))M,@j>¢j(6’;w)
I e K L
- Ezza_i_)@ < Kh( )_EWZ(Kh(Ci_Cvc))) M,¢J>Q@j(9,ﬂ]> =: nE;an
=1 j=1 i

By a triangular array version of the Liapounov’s central limit theorem it follows that

\/% = % Z Zni/ /0~ War(Zp) =4 N(0,1)
=1

3
if Y B Zp/ \/nVar(Zm-)’ — 0 as n — co. Lemma 7?7 in the Supplementary Appendix shows that this

latter convergence holds if a®/(nh%) — 0. To prove % —4 N(0,1) we use the functional delta method
e (05w

(see e.g. ? Theorem 20.8). This requires that the projection operator P, is Hadamard differentiable. The

(one-sided) Hadamard derivative of P, in f(j|cW is a projection as well, denoted by 2 , that projects on the
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tangent cone of Fyy at fglcw defined as in the statement of Lemma 2. Moreover, V.(6;w) = Var(P;rA)
and V(A) and V.(0; w) have the same rate.

To prove the second result we follow the strategy in the proof of Proposition 6 in ? and prove that

% — 0. Let us decompose B as
B=(al +T*T)'T* (E(fC\WZ) - f0|WZ) (0;w) — ((OJ + T*T)_lT*fch - f§|w) (0;w),
2 1 ¢ 2 1 T 2
then B < 2|(al + TT) 1 (Buwz(feywz) — fewz) 650)| +2|((@F + 1) ez = fl ) G:w)]

Note that EWZ(fC\Wz) = feywz + O(h%). Then, by using (A.7) and (A.8), under Assumption 8 we

conclude that % =0, (nahﬁ+4 + na2¢2(a)hf;) which converges to zero under the conditions of the

theorem. Since P, is a nonexpansive map, these rates are not affected by replacing B with P.B and V (A)
with V,(0; w) since V(A) and V,(0;w) have the same rate.

A.8 Proof of Theorem 3

The functional J,(h) := ||Th — fC|W 7||> + a||h||? is a strictly convex and Fréchet differentiable functional
with Fréchet derivative 2 ((T*T +al)h —T* fC‘W Z). Hence, the convex problem (5.9) has a unique solu-

tion f; iﬁ, that is characterized as the unique element in F¢)yy 7 such that the following variational inequality
holds:
((af + T*T)fg\éi;/ T fowz, f— fgo‘év(w >0, YfeFyw. (A.9)

For every o > 0 define the inner product (f1, f2)a = ((af +T*T)f1, f2) on L2,. Then (A.9) is equivalent
to
(foiw — (@I + T*T) ' T feywz, £~ Fgiv)a 20, Vf € Fow. (A.10)

Thus, fgoi’vcv =P al + T*T)_lT*fqWZ where P¢* denotes the projector onto Fyy with respect to (-, -)q-
By denoting f;ﬁ; =P al + T*T)_IT*fCWVZ we can write

El|fg — faw | < 2EIP2 (al + T°T) ' T (forwz — fow2)I” + 20550 — S|P
=0 (O‘ilE”]ﬁC\WZ - f0|wz|!2) + 2| fore — 1> (A.11)

It remains to show that Hf;’i‘;, — fngH converges to 0. By definition of fgﬁ;,:

(ol +T°T) foy — T" forwz, fJfW — fopw) = 0 (A.12)

Define the closed and convex set U := {u € R(T); Pr,,, T"u = fgfw} and let @ be the element of U with

minimal norm. It follows that ( fng =T, foiy — fng> > 0 or, equivalently,

(T — fis fisy = Foie) =2 0. (A.13)

29



By summing (A.12), with fcyz replaced by ng‘cw, and (A.13), multiplied by « > 0, we obtain:
(ol + T*T)(ffie, — fi6) + aT*a, fi, = foi5) > 0

which is equivalent to |\T(fgﬁ;—fglcwﬂ|2+a|\fgﬁ;,—fgfw| ? < a(T*a, gfw—fa‘f{,). Then, since a{T*, (;F\CW_
o) < ollall IT(f5i5 = FAell, it follows that || T(fgie — fi5)Il < alla]] and bhence, || £ — fir I <

o?||u||? which converges to 0. From (A.11) and this result, we conclude that: E||f§T§, - fg‘CWH2 — 0.

A.9 Proof of Theorem 4

The first part of the proof is the same as the proof of Theorem 3. Thus, (A.11) still holds and we only

have to determine the rate of ||fg“VCV - fngH To do this we slightly modify the proof of Lemma 3.9 in ?.
For every f € N(T)*, let f0a|’L

by Ly :={he LZ; (fgfw — f,h— fgfw) = 0}. Note that Ly is the supporting hyperplane of Fyy in fgfw.

’ be the solution of (5.9) with fC|WZ replaced by foywz and Fyy replaced

By the triangular inequality:

L L
W ot = Sl < Wi = Far 11+ i — Faiw 1) (A.14)

We start by analyzing the second term in (A.14). Since ng’V]‘:/f,fng € Ly then pf(fglcw — g“%f/f) —
fng — f;’vf/ . Therefore, the rate of the second term can be easily determined if we show that Pf f;i}ﬁf is
an unconstrained Tikhonov-regularized solution of the form ]5f f;%/j‘:,f = (IE’fT*TJBf + al )_1]5fT*T]5f fgch.

In order to show this, we start by showing that
-t * Oé,Lf Of,Lf *
Py (T*T fy? + afgis! = T fonwz) = 0. (A.15)

This is equivalent to show that (T*ngT’VIL,f + af;}f/ =T*feywz, h) = 0 for every h € Ef. Let h € f}f, then
h+ fgfw € Ly. By definition of f;’vf/f , the variational inequality

* a,L % a,L
{((al +T T)f0|Wf —T* feywz, W — Q‘Wf> >0, VI € Ly (A.16)

holds with equality (remark that L; is a linear manifold). Therefore, for h € Ly,
* a,L % % a,L % a,L
(@I +T°T) fyp’ — T feywz, h) + (ol + T*T) fpy =T fC|WZ7f9T|CW — fow’) =0 (A.17)

where the second term is equal to 0 by applying (A.16) with equality and since fgﬁ/[/ € Ly. We conclude
that ((ad + T*T)f;;f,f —T*feywz,h) =0 for every h € I~/f. This proves (A.15).
By using the result of Lemma 7?7 in the Supplementary Appendix and by rearranging terms we get:

Pff;%f/f = (PyT*TP; + aI)_lﬁfT*T]sffng. By Lemma 3.5 (a) in 7: fg‘cw = fgﬁ/{;, where fgﬁ{; satisfies:

L .
IT it = ferwzll = it {|Th— fowzlih € Ly}

iL . tL
Masel = min{lpllih € Ly and [T~ fowrzl = TS5 — fowzl}-
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Finally, by using the regularity condition Ng # @& we conclude that

’L B 7L *
| forw” — fgwa2 = ||1Pr(fom’ — 1, )H2 = ||(PyT*T P + )~ PyT TPff9|W Py wll?
= ||a(15fT*TPf+aI) 'P:f 6|W||2 = O(a’?). (A.18)

We now consider the first term of (A.14). By Lemma 3.6 (b) in ? the following inequality holds for a > 0

L L L
sufficiently small and f € M: ||T(f00ivcv fa =ik +a||f§TV§/ fa a2 < ||T( e\W QOTW’C)H2 +allf] 9|W

L L L L
;|Wf||2 This 1mphes that ||f;VCV fa AP <i ||T( 9\W gTWf)||2 +1£1 H\W QOTW’CH2 From (A.18) and
the fact that ||T(f] 0|W gﬁ,{;)w (’)(aﬁAQH) we conclude that ||f 0" ;Vf/HQ O(aP"2). By putting

all these results together we have proved the results of the theorem.

A.10 Proof of Theorem 5

Part (i) follows from Lemma ?? in the Supplementary Appendix. Hence, we prove (ii) Let U,,(g") denote
an open neighborhood in G in the weak topology around ¢° and U,,(8?) denote its projection onto ©1, that
is, Up(67) = {61 € ©1;3h € Fy, such that (61, h) € Uy,(g°)}. Hence, because O C R? and because the
weak and norm topologies coincides on finite dimensional spaces, then ||61||g — 0 in probability if and only
if P(él € Uy(09)) — 1. This last result follows from Lemma ?? in the Supplementary Appendix and the
inequality P(6; € Uy,(69)) > P(§ € Un(g°)).

Next, we show || f92|W — fgngH — 0 in probability. Lemma 7?7 shows consistency under the weak

topology which implies (g, f92|W — f(%‘w) for every g € ©1 X Fyppy. From Lemma 77

1 fosw > = o I = gyyws Joatw — Toyyw) + el fosyw — fow |12
= (9%9— 9" — (60,01 — ) + cll foyw — foywll:

The first two terms of the right hand side converge to zero in probability by Lemma ?? and the left hand

side converges to zero in probability by Lemma ?? (7). Hence, || f9|W — fg\WHQ — 0 in probability.
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B Figures

Figure 2:
Log linear demand example

Pefow vs. true fow
(lower panel) (upper panel).
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Figure 3: Log linear demand example
Oracle vs. Tikhonov estimator
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Figure 4:
CARA example
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Figure 6:
CARA example 1
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