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Abstract

This paper discusses nonparametric estimation of the distribution of random coefficients in a struc-

tural model that is nonlinear in the random coefficients. We establish that the problem of recov-

ering the probability density function (pdf ) of random parameters falls into the class of convexly-

constrained inverse problems. The framework offers an estimation method that separates compu-

tational solution of the structural model from estimation. We first discuss nonparametric identifi-

cation. Then, we propose two alternative estimation procedures to estimate the density and derive

their asymptotic properties. Our general framework allows us to deal with unobservable nuisance

variables, e.g., measurement error, but also covers the case when there are no such nuisance vari-

ables. Finally, Monte Carlo experiments for several structural models are provided which illustrate

the performance of our estimation procedure.

Keywords: Nonlinear random coefficients, mixture models, structural models, heterogeneity,

inverse problems.



1 Introduction

Many structural microeconomic models postulate that individual decision makers solve complicated

optimization problems governed by a small number of structural parameters θ. While these param-

eters are fixed for every individual, economic theory does not postulate that they be the same for

every individual. Yet, in most empirical applications, the extent to which individual decision makers

are allowed to vary is severely constrained, but these constraints on heterogeneity are typically not

based on economic theory.

A natural way to relax the constraints and make structural model assumptions more appealing

is to assume that the unobservable parameters θ in individuals’ decision problems are random

parameters drawn from a fully flexible nonparametric continuous distribution that may be correlated

with some observable explanatory variables. In this paper, we propose and analyze a method to

estimate a nonparametric distribution of random coefficients θ in general structural economic models

in which the mapping from random coefficients to outcomes is nonlinear and may only be implicitly

defined. We allow the random coefficients θ to be correlated with some of the explanatory variables,

analyze identification and propose an estimation method that completely separates computational

solution of the economic model from estimation.

To give a stylized example,consider the workhorse Euler equation model of the consumption

literature, where for simplicity we have set the discount rate to the interest rate:

∂cu(Ct, θ, εt) = E [∂cu(Ct+1, θ, εt+1)|Wt, Zt, θ, εt] . (1.1)

Here, ∂cu denotes the derivative of instantaneous utility with respect to consumption, Ct is con-

sumption in period t, and the random parameters θ may include preference parameters such as the

coefficient of risk aversion or parameters defining beliefs about future states. Moreover, (Wt, Zt, εt)

are endogeneous observable, exogenous observable, and unobservable state variables, respectively,

who affect the decision problem in period t. Equation (1.1) implicitly defines the consumption

function Ct = ϕt (Wt, Zt, θ, εt). When we lack information about the probability distribution of het-

erogeneity in the population (for example the pdf fθ|W ) but have knowledge about the structural

equation (so that we can explicitly compute ϕ), we can use this knowledge to define a mapping

from fθ|W to the population pdf of observables fC|WZ , which is an integral equation of the form

fC|WZ = Tfθ|W , (1.2)

where T is a known integral operator derived from the economic model.

This paper makes several contributions. First, it shows how nonlinear random coefficients in

a structural economic model can be analyzed using the tools of linear inverse problems theory.

Second, it shows how to derive the estimating equation (1.2) from the structural economic model

without requiring the structural function ϕ to be monotonic in ε. Third, based on (1.2), the paper

proposes two estimators of fθ|W , derives rates of convergence and shows asymptotic normality. The
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estimators are based on a simple Tikhonov regularization method modified to impose the constraint

that the estimate must be a density function. Our main contributions in this respect are: (i) to

extend source conditions and provide the rate of convergence for the convexly-constrained Tikhonov

estimator in a stochastic setting and (ii) to provide and study properties of a step-by-step procedure

to compute the orthogonal projection of the unconstrained Tikhonov-regularized estimate onto the

set of densities. Fourth, the paper studies nonparametric identification of fθ|W making use of a notion

of completeness (that we call T -completeness) which is weaker than L2- or bounded-completeness,

and characterizing the identified set when the model is not point identified.

This research therefore extends the parametric structural models literature to allow for nonlinear

and endogenous random coefficients. This literature is vast. For a recent survey of the consumption

literature which originally motivated this research, see ?. Our analysis provides insights into when

identification is only partial and provides novel conditions for point identification. In addition, our

analysis makes clear that estimation in these contexts is fundamentally an ill-posed inverse problem.

Most closely related to our approach are nonparametric econometric models involving random

parameters. In particular, there is a literature that considers linear/single index nonparametric

random coefficients models, as in ?, ?, ?, and ?. In these papers, the random coefficients are

continuously distributed and fully independent of explanatory variables. Also related is ? who

considers a linear simultaneous equations model and focuses on estimation of the density of one

random slope coefficient. We extend these literatures by allowing for endogenous random coefficients

that enter in a nonlinear way and by allowing for models in which the function mapping explanatory

variables into outcomes is often only implicitly defined.

Our work is also linked to the mixture models literature following ? (HS). In a duration model

setting, HS analyze the equation

fC|WZ(c;w, z) =

∫
Θ

fC|WZθ(c;w, z, θ)fθ|W (θ;w)dθ. (1.3)

They focus on estimating a finite dimensional parameter that impacts the pdf fC|WZθ(c;w, z, θ)

while treating fθ|W as a nuisance parameter. Closely related to HS are ? and ?. In contrast to

these references, our analysis centers its interest on fθ|W , and the kernel of the operator in (1.3) is

derived from the economic model.

Our work is also related to the stochastic inverse problem literature. See ? for an overview.

In particular, recovering the probability density of θ from (1.2) is equivalent to solving a convexly

constrained integral equation of the first kind. Integral equations of the first kind have been studied

extensively in different areas of econometrics (see e.g. ?, for an overview). These areas include,

among other: nonparametric instrumental regression estimation - see e.g. ?, ?, ?, ?, ?, ? and ?

- and moment estimation and deconvolution - see e.g. ?, ?, ? and ?. There are two important

differences between our model and the models studied in these papers. First, the kernel of our

integral operator is not estimated but is derived from a structural economic model. Second, we seek

to estimate the density of random coefficients not a function of observables.
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Our estimating equation is also related to ?. However, our model differs in many core aspects

from their model, not least for the different object of interest (i.e., the distribution of random

parameters), and for the structural nonseparability of the model considered. Moreover, our exclusion

restrictions are different from theirs (e.g., we do not assume conditional independence of C and Z

given θ) and are motivated by the structural economic application.

2 A Roadmap

To illustrate the structure of the model and the main results in this paper, consider a common

specification in consumer demand. Let X measure the true log-expenditure on all nondurable

goods, and let C∗ measure the true log expenditure for one good. Assume that C∗ is generated by

a linear random coefficients model with

C∗ = θ0 + θ1Z1 + θ2X

where Z1 is the log-price and θ = (θ0, θ1, θ2) is a vector of random parameters. If θ is independent

from (Z1, X) and if (Z1, X) have support equal to R2, then the joint density of random coefficients

is nonparametrically identified and can be estimated using ?. However, in consumer demand two

important problems arise. First, since X is a choice variable, it is likely to be endogenous, because

the same deep preferences parameters that determine C∗ also determine X. Second, actual demand

C is frequently measured with error, i.e., C 6= C∗.

To handle endogeneity, we follow the demand literature and use instruments in a control function

fashion. Let Z2 measure log-income and suppose there is a relation X = g (Z2,W ), where g is a

(identified) function that is strictly monotonic in an uniform unobservable W. Here, W can be

obtained as the percentile of log-expenditure conditional on Z2, and we let Z = (Z1, Z2)′ , see ? for

such a structure in a demand application. To handle measurement error, we assume that observed

C is generated as C = C∗+η where η|θ,W,Z ∼ exp(λ), with λ > 0 and assume that Z ⊥ (θ, η,W ).

Substituting all elements into the outcome equation for observed C, we obtain

C = θ1Z1 + θ2g(Z2,W ) + ε, (2.1)

where ε = η + θ0 and fε|WZθ(ε, θ0) = λe{−(ε−θ0)λ}. This model is a special case of the general class

of nonlinear models developed below, and it is useful to illustrate why we consider the specific

structure put forward in this paper, and how our assumptions cause identification. First, observe

the dual sources of unobserved variation in the model, ε and θ, where the latter is the preference

heterogeneity of interest, and the former contains a measurement error. Since it is a nuisance part

of our model, we follow the measurement error deconvolution literature and assume a (partially)

parametric model for ε. Second, note that X is endogenous due to correlation between W and θ,

which prohibits to use standard approaches like ?. The main idea that we adapt from the control

function literature is that conditional on W there is no endogeneity. Since the independence of
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the instruments from all unobservable implies that Z ⊥ θ|W, conditional on W = w equation

(2.1) becomes exogenous and, provided there is enough variation in g(Z2, w), the pdf fθ|W (·;w) is

nonparametrically identified, using standard arguments from the random coefficients literature.

Thus, our model introduces two general elements that are novel to this literature and stem from

more complex structural models. First, θ may depend on some variables W, while the instruments Z

provide exogenous variation in the sense that Z ⊥⊥ θ|W . As we shall see below in the Euler equation

and duration examples, allowing for some variables W to be correlated with the heterogeneity of

interest while having others, the Z, be (conditionally) independent is a feature that arises more

generally. Our strategy is thus to first perform all steps conditional on W , thus recovering f θ|W ,

and then to obtain fθ by integrating out W . The case without endogenous variables is obviously a

special case, where Z ⊥⊥ θ, and we can directly obtain fθ. The instruments Z, however, are generally

necessary to identify fθ, as it is their variation that is mapped into variation of θ.

The second general feature is a composite error ε, comprised of preference heterogeneity θ and

a nuisance part η. In the “demand with measurement error” application, as well as in the Euler

equation application, this is a necessary feature of the structural model. Our strategy in this part

is motivated by the deconvolution literature, and requires a parametric assumption on the nuisance

error. While we believe this to be an important feature of many applied models, our approach does

not rely on the existence of ε and, as we demonstrate in a Supplementary Appendix, all arguments

go through with minor modifications if there is no nuisance unobservable ε.

The rest of the paper formalises these ideas for a general nonlinear model in which C =

ϕ (W,Z, θ, ε). In Theorem 1, we show that there is an integral operator T which maps fθ|W into

fC|WZ . After characterising some properties of this operator, in Proposition 2 we characterise the set

of solutions of the inverse of T using the singular value decomposition of T . Since ϕ and fε are known,

this set can be computed. Next, for the general model, point identification requires a completeness

condition on the probability distribution characterizing the operator. The completeness condition

we require is weaker than that required in the nonparametric IV literature since our object of inter-

est is a probability density and not an unrestricted function. We call this condition T -completeness

and must be established in every application, but we provide a sufficient condition that is easier

to check. For instance, in the demand example (2.1), fε|WZθ(ε, θ0) = λe{−(ε−θ0)λ}ε ∼ Exp(λ), the

equation that identifies fθ|W is

fC|WZ(c;w, z) =

∫
Θ

λe−λ(c−θ0−θ1z1−θ2g(z2,w))1 {c ≥ θ0 + θ1z1 + θ2g(z2, w)} fθ|Wdθ,

and the function (fε|θWZ ◦ ϕ−1
i )(c, w, z, θ) which characterizes the kernel of the operator can be

rewritten as:

(fε|θWZ ◦ ϕ−1
i )(c, w, z, θ) = λ exp{−λ(c− θ0 − z′1θ1 − θ2g(z2, w))}

= λ exp{−λc} exp{λ[1, z′1, g(z2, w)]θ}.
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These expressions satisfy the sufficient conditions of Lemma 1, with h(θ) = λ, m(θ) = θ = (θ0, θ
′
1, θ2)′

the identity function, τ(c, w, z) = λ(1, z′1, g(z2, w))′ and k(c, w, z) = exp{−λc}, implying that fθ|W

is point-identified.

The plan of the rest of the paper is as follows. In Section 3, we present the model and as-

sumptions. Then, we analyse identification in Section 4. Section 5 presents our two estimators and

Section 6 concludes with results from two Monte Carlo simulations. Proofs of the main results are

in Appendix A while minor and technical results are in the Supplementary Appendix.

3 The general structural model

Let (Ω,F , P ) be a complete probability space and (C,W,Z, θ, ε) be a real-valued random vector

defined on it, and partitioned into C ∈ R, W ∈ W ⊂ Rk, Z ∈ Z ⊂ Rl, θ ∈ Θ ⊂ Rd and ε ∈ R, with

k, l and d finite integers. We denote by BC, BW , BZ , BΘ and Bε the corresponding Borel σ-fields in

R, Rk, Rl, Rd and R, respectively, and use capital and lowercase Latin letters for observable random

variables and their realizations, but lowercase Greek letters for unobservable random variables, as

well as their realizations. For two random vectors A and B we write: PA|B for the conditional

distribution of A given B and fA|B for the density function (pdf, hereafter) of PA|B with respect to

Lebesgue measure. We use the convention that fA|B(a; b) = 0 if a is not in the support of PA|B=b.

We denote by C ⊂ R (resp. Z ×W) the support of the marginal distribution of C (resp. (Z,W )).

To exploit desirable properties of Hilbert spaces, we develop our analysis in L2 spaces with

respect to some suitable measures. For this purpose, we introduce two non-negative weighting

functions, πθ and πcz, with support on Θ and C ×Z respectively.1 Define the space L2
πθ

(resp. L2
πcz)

of real-valued functions defined on Θ (resp. C × Z) that are square integrable with respect to πθ

(resp. πcz). That is,

L2
πθ

=

{
h : Θ→ R

∣∣∣∣ ∫
Θ

h2(θ)πθ(θ)dθ <∞
}
,

L2
πcz =

{
ψ : C × Z → R

∣∣∣∣ ∫
C×Z

ψ2(c, z)πcz(c, z)dcdz <∞
}
.

We denote the scalar product by 〈·, ·〉 and the induced norm by ‖ · ‖ in both spaces without

distinction, e.g., ∀h1, h2 ∈ L2
πθ

, 〈h1, h2〉 =
∫
h1(θ)h2(θ)πθ(θ)dθ. The sets of conditional pdfs relevant

for our analysis are defined as follows

Fθ|W :=
{
f is a conditional pdf on (Rd,BΘ) given W and f ∈ L2

πθ
a.s.

}
FC|WZ :=

{
f is a conditional pdf on (R,BC) given (Z,W ) and f ∈ L2

πcz a.s.
}
,

1The weighting functions should be chosen to ensure that the operator T defined below is compact and bounded
as discussed after Proposition 1 and to reflect the researcher’s statistical loss function as discussed after equation
(5.2) in Section 5.
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and analogously for FC|WZθ. The next assumption specifies the structural data generating process.

Assumption 1. The random element (C,W,Z, θ, ε) satisfies a structural economic model

Ψ(C,W,Z, θ, ε) = 0 a.s. (3.1)

where Ψ is a known Borel measurable real-valued function.2 We assume that (3.1) has a unique

global solution in terms of C:

C = ϕ(W,Z, θ, ε), a.s. (3.2)

where ϕ : Rk+l+d+1 → R is a Borel-measurable function. In addition, we assume (3.2) has a finite

number s of solutions in terms of ε almost surely.3

This assumption describes how our structural model links observables (C,W,Z) to unobservables

(θ, ε). We distinguish between three different observables. C is the dependent variable, while W

and Z denote variables that cause C. W is allowed to be correlated with θ while Z is assumed to be

conditionally independent of θ given W . As was discussed in section 2, this distinction is motivated

by applications in which some important explanatory variables Ware endogenous. The distinction

between the unobservable variables θ and ε is made to separate objects of interest from an error

term ε. Consequently, the distribution of θ is allowed to be completely nonparametric while the

distribution of ε is flexible, but parametric.

Our approach does not require that the function ϕ be available in closed-form nor that it be

globally monotone in ε. All that is required is that we can solve equation (3.1) numerically, and

that the function ϕ be piecewise monotonic. Hence, its inverse can be written as a finite collection

of one-to-one functions each defined for a subset of the domain of c. More precisely, for some set

A, let Im (A|w, z, θ) be the image of A through ϕ conditional on (w, z, θ) . We can then define a

finite partition of R, (E1, ..., Es), such that ϕ−1
i (w, z, θ, ·) : Im (Ei|w, z, θ) → Ei is one-to-one for

each i ∈ {1, ..., s}. The elements of the partition and the inverse can be computed since they are

implicitly defined by (3.1). In the following we denote, ∀i ∈ {1, . . . , s}, by ϕ−1
i (w, z, θ, ·) the function

ϕ−1(w, z, θ, ·) with domain ϕ(w, z, θ, Ei) and image Ei.
Allowing for this general form of the structural model is an important weakening of assumptions,

as closed form expressions are frequently not available and monotonicity conditions are difficult to

justify. In our Euler equation example, the consumption function is only implicitly defined and

there is little reason to believe that there is a monotonic relationship between unobserved states

and levels of consumption.

The only other assumption on Ψ is differentiability. Let ∂cΨ(c, w, z, θ, ε) and ∂εΨ(c, w, z, θ, ε)

denote the partial derivatives of Ψ with respect to C and ε.

2In the assumption, we state that Ψ is known. In fact, if Ψ is estimated in a first-stage, it affects neither our
procedure nor the rate of convergence as long as the first-stage estimator converges faster than our estimator described
below. In this case, the asymptotic normality result that we provide below still holds under further assumptions
similar to assumption 6 in ?.

3For simplicity, we assume that ε is a scalar. The analysis can be extended to the multivariate case without great
difficulty.
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Assumption 2. The structural function Ψ : Rk+l+d+2 → R is almost everywhere differentiable in

C and in ε with ∂cΨ(c, w, z, θ, ε) 6= 0 and ∂εΨ(c, w, z, θ, ε) 6= 0 for every (c, w, z, θ, ε) in the support

of (C,W,Z, θ, ε) except, possibly, on a set of (c, w, z, θ, ε) values whose Lebesgue measure is 0.

Finally, the next assumptions characterize the joint conditional distribution of (ε, Z, θ) given W .

Assumption 3. The conditional probability distribution Pε|WZθ on Bε given (W,Z, θ) admits a pdf

fε|WZθ with respect to the Lebesgue measure. This pdf fε|WZθ is known up to a finite-dimensional

parameter θε, a subvector of the vector θ. Moreover, fε|WZθ is strictly positive and bounded away

from infinity a.s. on the support of Pε|WZθ.

Assumption 4. The conditional probability distribution PZθ|W on BZ ⊗ BΘ given W admits a pdf

fZθ|W with respect to the Lebesgue measure. The pdf fθ|W is strictly positive and bounded away from

infinity a.s. on its support.

Assumption 5. The random element Z is conditionally independent of θ given W , i.e. Z ⊥ θ|W .

Assumption 3 allows the conditional distribution of ε to depend on all variables in the model.

Unlike in deconvolution, we can allow for ε and θ to be dependent. By allowing fε|WZθ to be

known up to a finite dimensional random parameter4, we allow for cases where not everything is

known about fε|WZθ. In theory, the specification for fε|WZθ can be very close to a nonparametric

specification. As in all semi-parametric models there is a trade-off between flexibility and feasibility.

Adding flexibility in this fashion will generally increase the dimension of the estimation problem,

reduce the convergence rate of the estimator and may even lead to a failure of point identification

if there is not enough independent variation in the data.

Note that Z and θ are continuous random vectors while W may be discrete. If some elements of

Z are discrete, then the analysis is unchanged as long as the pdf of Z is replaced with the probability

mass function and integrals with respect to Z are replaced by sums. Note however that discrete Z

are likely to have little identifying power. If some elements of θ are discrete and random with known

support, then the analysis also is unchanged. In this case, all of the statements with respect to f θ|W

have their finite dimensional counterparts. If some elements of θ are deterministic (or equivalently

discrete random variables with unknown, finite support), then the analysis is slightly different. We

discuss this case in Section 5.3 and explain how to estimate the model when some components of θ

are deterministic.

Finally, Assumption 5 is the key independence condition that is often required for point identi-

fication of the pdf fθ|W . Strictly speaking Z is not required for point identification. It is possible

to specify a model in which f θ|W is point identified solely by nonlinearities in fC|Wθ. When θ is a

scalar, such a specification may be reasonable. However, especially when θ is a large dimensional

vector, it is easy to specify models in which f θ|W is not point identified without exogenous variation

in Z. The linear random coefficients model in Section 2 is a leading case. We now provide a second

example that illustrates these points as well as how our model can be applied in a richer setting.

4This finite dimensional parameter may be either included in the vector θ and treated as a random parameter, or
estimated as a fixed parameter.
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Example 1 (Intertemporal consumption model). Consider the constant absolute risk aversion

(CARA) intertemporal utility maximization problem with finite horizon T , constant interest rate

r and random parameter θ capturing heterogeneity in utility. Define R = (1 + r). Let At be a con-

sumer’s beginning-of-period assets after having received all interest payments and let Yt be his/her

income. Suppose income follows a random walk. Let St = (At, Yt) be the state vector and let

vt (St, θ) be the value function for a consumer of type θ at date t. Let the terminal value function be

vT+1 (ST+1, θ) = − eγAT+1

γ
and let θ = (γ, β) where γ is the coefficient of risk aversion and β is the

discount factor. At each date t ≤ T , a consumer’s value function is defined by

vt (St, θ) = max
{C∗t }


− e−γC

∗
t

γ
+ βEt [vt+1 (St+1, θ)]

subject to

At+1 = R (At + Yt − C∗t )

Yt+1 = Yt + ηt+1


where C∗t is consumption, ηt ∼ N

(
0, σ2

η

)
, and Et is the time t conditional expectation operator.

We assume that σ2
η has been estimated in advance. Suppose observed consumption Ct equals actual

consumption C∗t plus measurement error so that Ct = C∗t +εt. Let Wt = (At, Yt−1) and Zt = Yt−Yt−1.

Under the assumptions stated, the consumption function (with measurement error) takes the form

Ct = φ1tW
1
t + φ2t

(
W 2
t + Zt

)
+mt (γ, β) + εt (3.3)

with

mt (γ, β) = φ3t + φ4tγ + φ5t
ln β

γ
.

The vector φt = (φ1t, φ2t, φ3t, φ4t, φ5t) consists of parameters that depend only on R, t and σ2
η.

The vector θ = (γ, β) is assumed to be a time-invariant random coefficient vector, heterogeneously

distributed in the population. We assume that the income process (Yt)t=1,..,T ⊥ θ and that εt ∼
N (0, σ2

ε).5

Because θ is time invariant and determines both past and current consumption and savings, it

is correlated with Wt. However, by assumption, Zt = Yt − Yt−1 is independent of θ. Consequently,

with the choice Wt = (At, Yt−1) and Zt = Yt − Yt−1, we obtain θ ⊥ Zt|Wt.

4 Identification of the distribution of parameters

In the following, we use (fε|WZθ◦ϕ−1
i )(c, w, z, θ) to denote fε|WZθ

(
ϕ−1
i (w, z, θ, c);w, z, θ

)
, we suppress

the dependence of the operator T on W (where T is defined below), and, for a subset A ⊂ L2
πθ

, use

the notation T |A to denote the operator T restricted to A, that is, T |A : A → L2
πcz . We also use

R(T ) to denote the range of the operator T .

5In the CARA example, the consumption function is available in closed form. ? develop an application in which
the consumption function must be computed numerically.
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Theorem 1. Let Assumptions 1 - 5 be satisfied. Then,

fC|WZ = Tfθ|W a.s. (4.1)

where ∀h ∈ L2
πθ

,

Th =

∫
Θ

s∑
i=1

(fε|WZθ ◦ ϕ−1
i )(c, w, z, θ) ·

∣∣∣∣∂cΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∣∣∣∣ 1Ci(c)h(θ;w)dθ, (4.2)

Ci = {c ∈ Im (Ei |w, z, θ )} and Im (Ei |w, z, θ ) is the image of Ei through ϕ conditional on (w, z, θ).

This implies that fθ|W is a solution of

fC|WZ = Tfθ|W subject to fθ|W ∈ Fθ|W , a.s. (4.3)

The operator T is a mixing operator and fC|WZ is an a.s. fθ|W -mixture of fC|WZθ . Equation

(4.2) provides an expression for the operator T that depends only on the elements of the structural

model
(
Ψ, ϕ, fε|WZθ

)
. These elements are known by assumption and can be directly computed.

Equation (4.3) is the basis for our estimation strategy. This equation characterizes fθ|W as the

solution of a convexly-constrained Fredholm integral equation of the first kind. Under Assumptions

1-5 the existence of at least one solution to (4.3) is guaranteed since fC|WZ ∈ R(T |Fθ|W ). We note

that recovering fθ|W from (4.3) is an ill-posed inverse problem.

The properties of the solution (or solutions) to (4.3) depend on the properties of T and its

adjoint. The next proposition characterizes the adjoint operator of T .

Proposition 1 (Adjoint of T ). Let T : L2
πθ
→ L2

πcz be the operator defined in (4.2). Assume that T is

bounded. Then, the operator T ∗ defined as: ∀ψ ∈ L2
πcz , T

∗ψ =
∫
C

∫
Z fC|WZθ(c;w, z, θ)ψ(c, z)πcz(c,z)

πθ(θ)
dcdz,

with

fC|WZθ(c;w, z, θ) =
s∑
i=1

(fε|WZθ ◦ ϕ−1
i )(c, w, z, θ) ·

∣∣∣∣∂cΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∣∣∣∣ 1Ci(c)
exists and is the adjoint of T . The operator T ∗ : L2

πcz → L2
πθ

is bounded and linear.

Because the kernel of T is known, we can choose weight functions πθ and πcz so that T is

bounded and compact with R(T ) ⊂ L2
πcz . Assumption 6 gives sufficient conditions for compactness

and boundedness of T in terms of Ψ, fε|WZθ, πcz and πθ.

Assumption 6. The function s
1
2fε|WZθ|∂cΨ/∂εΨ|1/2

∣∣∣
c=ϕ(w,z,θ,ε)

is a.s. square integrable in (ε, Z, θ)

with respect to πcz
πθ

∣∣∣
c=ϕ(w,z,θ,ε)

, where s <∞ is the number of piecewise monotonic components of the

inverse of ϕ as defined in Assumption 1.

In the Supplementary Appendix, we show that this assumption ensures that T is compact and

bounded (see Proposition ??). This proposition is not necessary to define our estimator nor to
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derive its asymptotic properties. However, when it is true, one of our proposed estimators can be

written simply in terms of the singular value decomposition of T . In practice, compactness can

be checked by scrutinizing Assumption 6. To do this, simply compute the integral of the square

of s
1
2fε|WZθ|∂cΨ/∂εΨ|1/2

∣∣∣
c=ϕ(w,z,θ,ε)

with respect to the weight functions. Under Assumptions 1 -

6, T ∗T is characterized by a countable number of eigenvalues which accumulate only at zero and

admits the following singular value decomposition (SVD):

Tϕj = λjψj, T ∗ψj = λjϕj, j ∈ N (4.4)

where {λj}j∈N and {ϕj, ψj}j∈N are the sequences of singular values and singular functions, respec-

tively. The set of functions {ϕj}j∈N (resp. {ψj}j∈N) is a complete orthonormal system of eigenfunc-

tions of T ∗T (resp. of TT ∗) which spans R(T ∗) = R(T ∗T ) (resp. R(T ) = R(TT ∗)) where R(T ∗)

is the closure of the range of the operator T ∗ in L2
πθ

. When N (T ) is not a singleton, where N (·)
denotes the null space of an operator, we can complete this orthonormal system in order to form

an orthonormal basis (o.n.b.) of L2
πθ

denoted by {{ϕj}j∈N, {ϕ̃l}l∈J0} where J0 ⊂ N and ϕ̃l are such

that N (T ) = span{ϕ̃l}l∈J0 . In words, the null space is spanned by the elements in J0.

In the following, we use the SVD to characterize the set of possible solutions of (4.3), i.e. the

identified set. To gain intuition, consider the analogous case in which the support of θ was discrete

so that θ took on only k distinct values. Suppose the support were known. In that case, if we

evaluate T at a finite number of points (C,Z,W ), the operator T is a finite dimensional matrix.

The probability mass function of θ conditional on W is identified if the researcher can identify, for

each value of W , k distinct values (C,Z) such that T is invertible. If the matrix is not invertible

(because some of its eigenvalues equal zero), then the identified set can be computed using the

singular value decomposition of T . In the limit, as k grows to infinity, the discrete case approaches

the continuous case. Assumptions 4 and 6 are required to ensure that this discrete intuition holds

true in the continuous case.

The pdf fθ|W ∈ Fθ|W will be called identified (with respect to the class Fθ|W ) if

T |Fθ|W (fθ|W ) = T |Fθ|W (f̃θ|W ) ⇒ fθ|W = f̃θ|W , a.s. (4.5)

for all fθ|W , f̃θ|W ∈ Fθ|W . In words, fθ|W is point identified if the operator T |Fθ|W is injective. The

injectivity of T |Fθ|W depends on the injectivity of T but it is not equivalent. If T is injective, that

is, N (T ) = {0}, then T |Fθ|W is injective as well. However, when T is non-injective the restricted

operator T |Fθ|W may be injective. This is possible when the domain of T |Fθ|W is sufficiently restricted.

The following proposition characterizes the set of possible solutions of (4.3). We denote by f †θ|W
the minimum-norm solution of the unconstrained linear inverse problem fC|WZ = Tfθ|W , that is,

f †θ|W = arg min{‖h‖;h ∈ L2
πθ

and fC|WZ = Th}.

10



Proposition 2. Under Assumptions 1-5, the set of all the solutions of (4.3) is:

Λ =
{
h ∈ Fθ|W

∣∣ fC|WZ = Th, a.s.
}

=
{
f †θ|W ⊕N (T )

}
∩ Fθ|W .

If in addition, Assumption 6 holds, then T is compact and there exist ζl ∈ R for l ∈ J0 ⊂ N such

that

Λ =

h(θ;w) = f †θ|W (θ;w) +
∑
{l∈J0}

ζlϕ̃l(θ;w);
∑
{l∈J0}

ζ2
l <∞ and sup

θ∈Θ
h−(θ;w) = 0 a.s.

 .

where h−(θ;w) := −min(h(θ;w), 0) denotes the negative part of h and span{ϕ̃l}l∈J0 = N (T ).

The second part of this proposition characterizes the set Λ in terms of the SVD of T which is

known and the density fC|WZ which can be easily estimated. When the null space of T |Fθ|W is a

singleton, Λ is a singleton as well and the model is point-identified. This occurs in two cases:

(i) the operator T is injective, i.e. N (T ) = {0}. Then, f †θ|W ∈ Fθ|W and is the unique solution of

(4.3);

(ii) the operator T is not injective, i.e. N (T ) 6= {0}, but T |Fθ|W is injective, i.e. (4.5) holds. In this

case we have Λ = (f †θ|W + hθ|W ) where hθ|W ∈ N (T ) is such that
∫

Θ
(f †θ|W + hθ|W )(θ;W )dθ = 1

and (f †θ|W + hθ|W ) is non-negative a.e. on Θ, a.s. In this case we can also have Λ = f †θ|W if

f †θ|W is a probability density function.

In our context, injectivity of T is determined by the structural economic model and depends

on how C, Z and θ interact. When T |Fθ|W is not injective, computation of Λ requires computation

of the complete singular value expansion of the kernel of the operator T . In theory, because T

is known and is not estimated, a researcher can compute the SVD of T , calculate the elements

{ϕ̃j}j∈J0 by a simple procedure of basis completion, like the Gram-Schmidt orthonormalization,

and then characterize the null space of the operator, see ?. In practice, a researcher must truncate

the expansion at some point and impose that all singular values not computed equal zero. The

error of this approximation can be bounded using methods in ?.

It is well known that shape restrictions may provide identifying power. For example, see ? or ?.

Nonetheless, the econometric literature on inverse problems for the most part has not exploited the

fact that point identification can be obtained even without injectivity of T because T |Fθ|W may be

injective6. Restricting the domain of interest or imposing shape potentially has identifying power.

We discuss this formally in the next section where we provide a necessary and sufficient condition

for point identification that we call T -completeness. This condition is weaker than the conditions of

completeness or bounded completeness that have been used in the previous econometric literature

on inverse problems.

6An exception is ?.
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4.1 Identification and completeness

Define Fθ|CWZ := {f | f is a conditional pdf on (Rd,BΘ) given (C,W,Z)} as the set of pdf of θ

conditional on (c, w, z). Provided that fC|WZ and fθ|W are bounded away from zero and infinity,

injectivity of the operator T is equivalent to the requirement that Fθ|CWZ is L2
πθ

-complete (or

bounded-complete) as noted in ?, ?, ?, ? and ? in different setups.

However, in our framework, neither L2
πθ

-completeness nor bounded completeness are equivalent

to identification of fθ|W . In fact, because the solutions of (4.3) are constrained to be pdf ’s, then

identification of fθ|W is equivalent to completeness of Fθ|CWZ with respect to a class of functions

smaller than L2
πθ

and the class of bounded functions. This class, that we denote by T , is the class

of functions that equal the difference between two densities scaled by the true density of θ. That

is, T =
{
h ∈ L2

πθ
: h = f1−f2

fθ|W
for somef1, f2 ∈ F θ|W

}
⊂ L2

πθ
where fθ|W is the true conditional pdf

of θ given W . This is summarized in the following proposition.

Proposition 3 (T -completeness). Under the assumptions of Theorem 1, (4.5) holds if and only if

Fθ|CWZ is complete with respect to T ⊂ L2
πθ

.

Since the set T is strictly smaller than L2
πθ

, identification can be achieved even when L2
πθ

-

completeness fails. ? provide more background on completeness of a probability distribution with

respect to a general family of functions T .

It is well-known that, if the elements of Fθ|CWZ belong to the exponential family, then Fθ|CWZ is

L2
πθ

-complete. However, since T ⊂ L2
πθ

, the elements of Fθ|CWZ do not need to be in the exponential

family in order for our model to be point identified. In general, checking that Proposition 3 is

satisfied is a computational issue that must be checked on a case by case basis. The next lemma,

while stronger than required, provides a sufficient condition for identification that can be more

easily checked in practice and that provides some intuition as to the type of mathematical structure

that is required to provide identification.

Lemma 1. Let dim(θ) denote the dimension of θ and Assumptions 1-5 hold. Assume that ∀i =

1, . . . , s, (fε|θWZ ◦ ϕ−1
i )(c, w, z, θ) is of the form

exp{τi(c, w, z)′mi(θ)}hi(θ)ki(c, w, z), i = 1, . . . , s

where for every i = 1, . . . , s, hi(·) is a positive function depending only on θ, mi(·) is a vector-valued

invertible function whose image has dimension equal to dim(θ). The functions τi and ki are real-

valued, do not depend on θ and ki is a positive and bounded function. Further, the rank of E (τ ′iτi)

is equal to dim (θ) and the vector τi varies over the entire real line. Then, fθ|W is identified with

respect to the class Fθ|W .

The conditions of this lemma are satisfied in the linear random coefficient model outlined in the

roadmap section as long as g(Z2,W ) has support on the entire real line. Moreover, remark that if

Θ is bounded, then a more limited variation of τi is sufficient to get the result of the lemma. The

12



conditions of the lemma are also satisfied in the classical examples of the additively-closed and the

location-scale one-parameter family of distributions. We detail these classes in the Supplementary

Appendix. In contrast, the conditions are not satisfied in Example 1.

Example 1 (Continued). Suppressing the time subscript, (3.3) can be written as

ϕ(W,Z, θ, ε) = φ1W1 + φ2 (W2 + Z) +m(γ, β) + ε.

This implies that the density of measured consumption is

fC|WZ (c;w, z) =

∫
Θ

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−m(γ,β)

σε

)2
)

√
2πσ2

ε

fγβ|W (γ, β;w) dγdβ. (4.6)

Define δ = m (γ, β) . Denote by D the support of δ and by Γ the support of γ. After a change of

variable, this integral equation can be rewritten

fC|WZ (c;w, z) =

∫
D

∫
Γ

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−δ

σε

)2
)

√
2πσ2

ε

f̃γδ|W (γ, δ;w) dγdδ (4.7)

=

∫
D

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−δ

σε

)2
)

√
2πσ2

ε

f̃δ|W (δ;w)

(∫
Γ

f̃γ|Wδ (γ, δ;w) dγ

)
dδ

=

∫
D

exp

(
−1

2

(
c−φ1w1−φ2(w1+z)−δ

σε

)2
)

√
2πσ2

ε

f̃δ|W (δ;w) dδ

where f̃γδ|W (γ, δ;w) = fγβ|W (γ,m−1 (γ, δ))
∣∣∣∂m−1(γ,δ)

∂δ

∣∣∣ . The joint density of (γ, δ) is not point-

identified because any proper conditional density f̃γ|Wδ (γ; δ, w) is consistent with the data. In fact,

the conditions of Lemma 1 are not satisfied. The marginal density f̃δ|W (δ;w) is point-identified.

The identified set Λ is the set containing all elements of the form

fγβ|W (γ, β;w) = f̃δ|W (m (γ, β) ;w) · f̃γ|Wδ (γ;m (γ, β) , w)

∣∣∣∣∂m∂β
∣∣∣∣

for some conditional density f̃γ|Wδ . In Section 6, we show in simulations that despite this failure

of point identification of fγβ|W , the model has identifying power because our estimate of f̃δ|W (δ;w)

places meaningful bounds on the identified set. For example, Figures 6-7 show that the probability

that γ is between 2 and 2.5 and β is between 0.95 and 0.96 is identified. Joint densities of (β, γ)

that are inconsistent with the estimated probability of this event are ruled out.
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5 Estimation

Our estimation strategy is based on equation (4.3). While the solution of (4.3) need not be unique,

there is a unique solution of minimal norm which we denote by f †cθ|W . This solution takes the form

f †cθ|W = T †Fθ|W fC|WZ (5.1)

where T †Fθ|W denotes the constrained generalized inverse of the restricted operator T |Fθ|W (see e.g.,

?, Definition 2.1). The definition of f †cθ|W differs from the definition of f †θ|W since the latter is not

constrained to belong to Fθ|W . However, in some cases (for instance in the point identified case):

f †cθ|W = f †θ|W . It is important to note that the operator T †Fθ|W is nonlinear and noncontinuous since,

in general, R(T |Fθ|W ) is non closed. As a result, the inverse problem of recovering fθ|W from (4.3)

suffers from ill-posedness. This means that the naive estimator obtained by replacing fC|WZ with a

consistent estimator in (5.1) would be inconsistent and a regularization procedure must be used.7

To implement our estimation procedure we assume that a nonparametric consistent estimator

of fC|WZ is available.

Assumption 7. Let (ci, wi, zi), i = 1, . . . , n be an i.i.d. sample of (C,W,Z) that is used to construct

an estimator f̂C|WZ of fC|WZ such that f̂C|WZ ∈ L2
πcz a.s. and E||f̂C|WZ − fC|WZ ||2 → 0 as n ↑ ∞.

Once an estimator f̂C|WZ has been computed we use a constrained Tikhonov-type estimator for

fθ|W . This is the infinite dimensional counterpart of Ridge regression. The constrained Tikhonov-

type estimator is defined as the minimizer, with respect to h, of

||Th− f̂C|WZ ||2 + α||h||2, h ∈ Fθ|W , (5.2)

where the regularization parameter α > 0 decreases to 0 at a suitable rate.

We develop the classical case where the penalty term ||h||2 is simply based on the L2
πθ

norm.

This penalty has the benefit of being easy to compute and well understood in the literature. From

an economic point of view, since the minimum norm element is closest to the origin, heuristically,

it may have the smallest impact on counterfactual predictions and lead to the smallest variation

in counterfactual predictions across a wide. Alternatively, if a researcher has a prior belief on fθ|W

based on previous research, then the penalty can be replaced by ‖h − f oθ|W‖2 or by the entropy∫
log(h/f oθ|W )h where f oθ|W is the researcher’s prior belief about the density.

Since the norm in (5.2) depends on πθ and πcz, choice of the weighting functions can be important.

As noted after Proposition 1, the weights should be chosen so that the operator T is compact. In

7An alternative estimator could be based on seminonparametric sieve maximum penalised likelihood estimation
of equation (4.1). Three main advantages of the Tikhonov-type estimator are that it is computationally simple, it is
guaranteed to converge, and the eigenvalues and eigenfunctions are computed as part of the estimation procedure.
In contrast, sieve penalised MLE may lack these features. One advantage of the sieve MLE approach is that it is
relatively straightforward to impose the constraints of the model when estimating the density of C. When the model
is correctly specified, this may result in efficiency gains.
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addition, the weights πcz and πθ should be chosen to reflect the researcher’s loss function. For

example, a researcher may choose to place greater weight on some values of C or Z than others

to reflect greater economic importance. Or, they may place greater weights on some values of θ to

reflect prior beliefs about the distribution of θ. In our simulations in Section 6, we use constant

weights that weight all values equally.

We propose two methods to compute the minimizer of (5.2). The first method is a two-step

procedure that first computes the unconstrained Tikhonov regularized estimator and then projects

it onto the closed and convex set Fθ|W . The second method uses numerical methods to directly

solve the constrained minimization problem in (5.2).

The main advantage of the first estimator is that it is simple. The first step has a closed-form

and the second step consists of a simple iterative procedure. As a result, in many cases it will be

very fast to compute. On the other hand, the two-step estimator is only consistent if f †cθ|W = f †θ|W .

The second estimator we propose overcomes this problem. It does not have a closed form but works

regardless of whether f †cθ|W = f †θ|W holds or not.

When point-identification fails, our second estimator converges to the minimum norm element

in the identified set Λ. This particular element of the identified set is easy to compute. Once it is

computed, it can be used to estimate the set Λ using the formula detailed in Proposition 2. The

procedure is straightforward. Estimate f †θ|W , compute the eigenfunctions of T , and then construct

the identified set as described in Proposition 2.

The first step of our two-step estimator has been used in nonparametric instrumental variable

regression estimation and deconvolution problems for instance by ? and ?. In our mixture model

setting the expression for our estimator is somewhat different from the one in ? 8. We provide

asymptotic properties of the two-step estimator and extend previous results by considering the

important case where the problem is severely ill-posed and the pdf fθ|W is not analytic. Therefore,

the rates given in Corollary 1 below, and the asymptotic normality results are new and not provided

in the previous literature. These rates are given for the case where f̂C|WZ is obtained by using kernel

smoothing.

Another contribution of this section is to provide the rate for the constrained estimator and

discuss how the regularity condition on fθ|W has to be modified in order to obtain the rate in

this case. To the best of our knowledge, these results are available only for deterministic inverse

problems and not for stochastic inverse problems which are relevant in econometrics.

5.1 Estimation of f †cθ|W : a two-step approach

The two-step estimator is computed as follows.

8In our case, the generalized Fourier coefficient 〈fC|WZ , ψj〉, cannot be simplified as in ?. Therefore, fC|WZ must
be estimated nonparametrically and plugged-in. This allows us to obtain a rate of convergence which is in general
faster.
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First step. Compute the solution, denoted by f̂αθ|W , of the unconstrained problem:

min
h∈L2

πθ

{
||Th− f̂C|WZ ||2 + α||h||2

}
. (5.3)

The solution is the classical Tikhonov regularized estimator:

f̂αθ|W (θ;w) = (αI + T ∗T )−1T ∗f̂C|WZ (5.4)

where I denote the identity operator in L2
πθ

. When T is compact, expression (5.4) simplifies to

f̂αθ|W (θ;w) =
∑∞

j=1 λj(α + λ2
j)
−1〈f̂C|WZ , ψj〉ϕj(θ;w) where {λj, ψj, ϕj}j∈N denotes the SVD of T .

Second step. Compute the orthogonal projection, denoted by Pcf̂αθ|W , of f̂αθ|W onto the set Fθ|W :

Pcf̂αθ|W := max

{
0, f̂αθ|W −

c

πθ

}
(5.5)

where c is such that
∫

Θ
Pcf̂αθ|Wdθ = 1.

We call Pcf̂αθ|W the indirect Tikhonov regularized estimator of f †cθ|W . ? shows that the projection

can be computed simply using the following iterative algorithm.

Pc−algorithm:

1. Set f̂
α(0)
θ|W = f̂αθ|W and k = 0.

2. Set f̂
α(k+1)
θ|W = max{0, f̂α(k)

θ|W } and check Ck+1 =
∫

Θ
f̂
α(k+1)
θ|W (θ;w)dθ. If Ck+1 = 1 stop. Otherwise,

3. Set f̂
α(k+2)
θ|W = f̂

α(k+1)
θ|W − (Ck+1−1)

πθ
∫
Θ

1
πθ
dθ

.

4. Set k = k + 2 and repeat 2 - 4 until |Ck+1 − 1| < ε, for ε > 0.

While other projection methods exist, ? shows that this algorithm converges pointwise and in

norm to Pcf̂αθ|W and that Pcf̂αθ|W minimizes the weighted MISE E‖ · ‖2.

5.1.1 Rates of convergence

The two-step estimator is consistent when f †cθ|W = f †θ|W , that is, when f †θ|W ∈ Fθ|W . This is possible

for instance when T is injective, or when T is not injective but T |F θ|W is and f †θ|W ∈ Fθ|W . Theorem

2 below provides the rate of the (weighted) Mean Integrated Square Error (MISE) associated with

the two-step estimator Pcf̂αθ|W . The rate depends on the smoothness of f †cθ|W and on the smoothness

of T . The next assumption (which is a type of source condition9) quantifies the smoothness of

f †cθ|W relative to the smoothness of T . It is only required to derive the rate of convergence of the

estimator.

9We refer to ? for a discussion on different types of source conditions in inverse problems.
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Assumption 8. Let φ : [0,∞)→ [0,∞) be a continuous, strictly increasing function with φ(0) = 0.

Let T : L2
πθ
→ L2

πcz be as defined in (4.2) and bounded. There exists a source ν ∈ L2
πθ

such that for

some 0 < M <∞,

f †cθ|W = φ(T ∗T )ν and ||ν|| ≤M.

When the operator T is finitely smooth (mildly ill-posed case) and f †cθ|W belongs to a Sobolev

class of functions, then an appropriate choice of φ is φ(t) = tβ/2 for some β > 0. For example, in our

intertemporal consumption model, this choice of φ is appropriate if f θ|W is infinitely differentiable.

In contrast, when T is infinitely smooth (severely ill-posed case) and f †cθ|W is not analytic, then an

appropriate choice of φ is φ(t) = (− log(t))−β/2 for some β > 0. In this latter case, the rate of

convergence is much slower.

The following theorem states the rate of convergence:

Theorem 2. Let Assumptions 1-5 and 7-8 be satisfied, and f †cθ|W = f †θ|W ∈ Fθ|W . Assume that there

exists a constant γφ such that

sup
t∈σ(T ∗T )

∣∣φ(t)α(α + t)−1
∣∣ ≤ γφφ(α), α→ 0 (5.6)

where σ(T ∗T ) denotes the spectrum of T ∗T . Then, the weighted MISE associated with Pcf̂αθ|W is

E||Pcf̂αθ|W − f
†c
θ|W ||2 = O(φ2(α) + α−1E||f̂C|WZ − fC|WZ ||2). If φ(t) = tβ/2 with β > 0 then, (5.6) is

satisfied for β ≤ 2 and

inf
α>0

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(

[E||f̂C|WZ − fC|WZ ||2]
β∧2
β∧2+1

)
.

If φ(t) = (− log(t))−β/2 with β > 0 and (5.6) is satisfied then

inf
α>0

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
([
− log

(
E||f̂C|WZ − fC|WZ ||2

)]−β)
.

In the case φ(t) = (− log(t))−β/2, it has been shown in ? that (5.6) holds automatically for

0 < β ≤ 2. The rate given in the theorem is at most of order [E||f̂C|WZ − fC|WZ ||2]
2
3 . This

rate is slower than the minimax rate for estimation of a density function because we use indirect

observations of θ to estimate fθ|W . Let f̂
α(k)
θ|W be the two-step estimator obtained by using the

Pc-algorithm. It is possible to show that E||f̂α(k)
θ|W − f †cθ|W ||2 ≤ E||f̂αθ|W − f †cθ|W ||2. Therefore, this

theorem also provides the rate of convergence for the approximation of Pcf̂αθ|W obtained from the

Pc-algorithm.

The rate of Theorem 2 can be made explicit by replacing the rate of convergence for f̂C|WZ . We

consider here the case where f̂C|WZ is a kernel estimator, i.e.,

f̂C|WZ(c;w, z) =

1

nh1+k+l
n

∑n
i=1Kh(ci − c, c)Kh(wi − w,w)Kh(zi − z, z)

1

nhk+l
d

∑n
l=1Kh(wl − w,w)Kh(zl − z, z)

, (5.7)
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where K(·, ·) is a generalized kernel function10 of order r = 2, and we assume without loss of

generality that C = [0, 1], W = [0, 1]k, Z = [0, 1]l. By standard Taylor series arguments, as in ?, it

is easy to show that E||f̂C|WZ − fC|WZ ||2 = O
(

1
nmin{hn,hd}k+l+1 + max{h4

n, h
4
d}
)

, and if hn = hd = h

is chosen such that 1
nhk+l+1 � h4 then E||f̂C|WZ−fC|WZ ||2 = O(n−4/(k+l+1+4)). By plugging this rate

in the optimal rate of Theorem 2, we obtain for φ(t) = tβ/2

inf
α>0

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
n−

4(β∧2)
(k+l+1+4)(β∧2+1)

)
(5.8)

and for φ(t) = (− log(t))−β/2, infα>0 E||Pcf̂αθ|W − f
†c
θ|W ||2 = O((− log(1/n))−β). We show now that

this rate can be improved and made independent of the dimension of Z. This is possible since

the application of the operator T ∗ to the error term (f̂C|WZ − fC|WZ) has a smoothing effect and

integrates out (C,Z), so that the dimension of (C,Z) does not play any role in the rate. The

following corollary to Theorem 2 gives the new rate.

Corollary 1. Let Assumptions 1-5, 7-8 and (5.6) be satisfied, and f †cθ|W = f †θ|W ∈ Fθ|W . Then,

E||Pcf̂αθ|W −f
†c
θ|W ||2 = O(φ2(α)+α−2

(
max{h4

n, h
4
d}+ n−1(min{hn, hd})−k

)
). Moreover, if hn = hd �

n−1/(4+k) and φ(t) = t(β∧2)/2 we have infα E||Pcf̂αθ|W − f
†c
θ|W ||2 = O

(
n−

4(β∧2)
(4+k)((β∧2)+2)

)
.

The rate in Corollary 1 is faster than the rate in (5.8) if (l + 1)(β ∧ 2 + 1) > 4 + k. It is

clear that, under the conditions of the corollary, if we have no W and if hn = hd � n−1/4 then

E||T ∗(f̂C|WZ − fC|WZ)||2 = O(n−1). Our rate is increasing in β and decreasing in the dimension k

of W . So, we have a curse of dimensionality only in the dimension of the endogenous variables W

and not in the dimension of the instruments Z. This is due to the action of the operator T ∗ that

integrates out (C,Z).

5.1.2 Asymptotic Normality.

We now study pointwise asymptotic normality of the two-step estimator Pcf̂αθ|W in the case where

f̂C|WZ is computed by using kernel smoothing as in (5.7). For that we introduce the following

technical assumption which uses the SVD of T .

Assumption 9. Let EWZ denote the conditional expectation given (W,Z) and f̂WZ denote the
kernel estimator of the joint pdf of (W,Z). We assume that for every θ ∈ Θ and w ∈ W: (i)

E

∣∣∣∣∣∣
∞∑
j=1

λj
α+ λ2j

〈
(Kh(ci − c, c)− EWZ(Kh(ci − c, c)))

Kh(zi − z, z)Kh(wi − w,w)

hk+l+1
n f̂WZ

, ψj

〉
ϕj(θ;w)

∣∣∣∣∣∣
3

= O
(
α−3/2h−2kn

)
10We refer to ?, ? and references therein for an explicit definition of K(·, ·)). By abuse of notation, we use the

same second order kernel K for all the variables and the same bandwidth hn (resp. hd) for the different bandwidths,
though they could in principle be distinct.
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and (ii) there exists a constant κ > 0 such that

V ar

 ∞∑
j=1

λj
α+ λ2j

〈
(Kh(ci − c, c)− EWZ(Kh(ci − c, c)))

Kh(zi − z, z)Kh(wi − w,w)

hk+l+1
n f̂WZ

, ψj

〉
ϕj(θ;w)

 > κα−2h−kn .

In the following lemma we use the notation ‘⇒’ to denote pointwise convergence in distribution.

Lemma 2. Let Assumptions 1-9 and (5.6) hold, f †cθ|W = f †θ|W ∈ Fθ|W and Pcf̂αθ|W be the two-

step estimator computed by using f̂C|WZ(c;w, z) defined in (5.7). Let EWZ denote the conditional

expectation given (W,Z) and f̂WZ denote the kernel estimator of the joint pdf of (W,Z). If nαhk+4
n →

0, α3/(hknn)→ 0 and if nα2hknφ
2(α)→ 0, then for every θ ∈ Θ and w ∈ W:

Pcf̂αθ|W (θ;w)− f †cθ|W (θ;w)√
Vc(θ, w)

⇒ N (0, 1)

where

Vc(θ, w) =
1

n
V ar

P†c ∞∑
j=1

λj
(α+ λ2j )

〈
(Kh(ci − c, c)− EWZ(Kh(ci − c, c)))

Kh,i(z, w)

hk+l+1f̂WZ

, ψj

〉
ϕj(θ;w)

 ,

Kh,i(z, w) = Kh(zi− z, z)Kh(wi−w,w) and P†c denotes the projection on the tangent cone of Fθ|W
at f †cθ|W defined as {λ(f − f †cθ|W ); λ ≥ 0, f ∈ Fθ|W}.

In order to obtain this asymptotic normality result, we require a regularization parameter α that

converges to 0 at a faster rate than the asymptotically optimal one. This guarantees that the bias

of Pcf̂αθ|W (θ;w) is asymptotically negligible.

5.2 Estimation of f †cθ|W : constrained Tikhonov regularization

When f †cθ|W 6= f †θ|W the two-step procedure can no longer be applied. Instead, we have to compute

the constrained Tikhonov regularized solution by directly solving the minimization problem

min
h∈Fθ|W

{
||Th− f̂C|WZ ||2 + α||h||2

}
. (5.9)

The existence of a unique solution to problem (5.9) is proved in ?. A closed-form solution of this

problem does not exist and numerical methods must be used to compute a solution. We denote

by f̌α,cθ|W the estimator obtained by solving (5.9) and by PFθ|W the orthogonal projector of L2
πθ

onto

Fθ|W . The next theorem states consistency of the estimator f̌α,cθ|W .

Theorem 3. Let Assumptions 1-5 and 7 hold, T be a bounded operator from L2
πθ

to L2
πcz defined in

(4.2) and f †cθ|W ∈ R(PFθ|WT
∗). Then, if α → 0 and α−1E||f̂C|WZ − fC|WZ ||2 → 0 then: E||f̌α,cθ|W −

f †cθ|W ||2 → 0.

Under a smoothness assumption about f †cθ|W , it is possible to extend the result of Theorem 3

and recover the convergence rate for the constrained estimator. To derive this rate, a regularity
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N (T )⊥

N (T )

Fθ|W
f †cθ|W = PFθ|W f

Lf

L̃f

f

Figure 1: Representation of (part of) the set Fθ|W (grey area), the supporting hyperplane Lf :=

{h ∈ L2
πθ

; 〈f †cθ|W − f, h− f
†c
θ|W 〉 = 0} of Fθ|W in f †cθ|W , the hyperplane L̃f and an element f of M .

condition for f †cθ|W different from Assumption 8 is required. This regularity condition is stated in

terms of a set of functions defined as follows.

Define: M := {f ∈ N (T )⊥
∣∣PFθ|W f = f †cθ|W} and, ∀f ∈ M , L̃f := {h ∈ L2

πθ
; 〈f †cθ|W − f, h〉 = 0}.

Define P̃f to be the orthogonal projector of L2
πθ

onto L̃f . Because we are in Hilbert spaces, P̃f is

a linear operator. Finally, for β > 0 define Nβ := {f ∈ M ; P̃ff
†c
θ|W ∈ R

(
(P̃fT

∗T P̃f )
β/2
)
}. The

regularity condition is stated in terms of the set Nβ.

Theorem 4. Let Assumptions 1-5 and 7 hold and let T be a bounded operator. Suppose f †cθ|W 6= f †θ|W

and Nβ 6= ∅. Then, E||f̌α,cθ|W−f
†c
θ|W ||2 = O

(
αβ∧2 + α−1E||f̂C|WZ − fC|WZ ||2

)
and if α � (E||f̂C|WZ−

fC|WZ ||2)
1

(β∧2)+1 : E||f̌α,cθ|W − f
†c
θ|W ||2 = O

(
[E||f̂C|WZ − fC|WZ ||2]

β∧2
β∧2+1

)
.

In order to understand this result, consider Figure 1, adapted from ?. From the figure, it is

clear that Nβ is the set of all functions f ∈ N (T )⊥ such that the orthogonal projection onto Fθ|W
equals f †cθ|W and such that the orthogonal projection of f †cθ|W onto the hyperplane L̃f is “smooth”.

The regularity condition on f †cθ|W is imposed via the smoothness of its projection P̃ff
†c
θ|W . Such

smoothness is measured in terms of smoothness of the operator (P̃fT
∗T P̃f )

β/2, which is a projection

of an integral operator. The new regularity condition required for Theorem is that Nβ 6= ∅. In

words, there exists at least one f ∈ M such that the projection of f †cθ|W on the corresponding

hyperplane L̃f has a degree of smoothness β.

5.3 Case with non-random parameters

Suppose that some components of θ are deterministic, that is, θ = (θ′1, θ
′
2)′, where θ1 is the vector

of deterministic components of θ, assumed to belong to a compact subset Θ1 ⊂ Rd1 , and θ2 is

the vector of random components of θ (with dimension d2) distributed according to a probability

distribution Pθ2|W satisfying Assumptions 4 and 5. In this case, we can use either of the two

estimation procedures we have proposed, after some minor modifications.
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Here, we focus on the constrained Tikhonov regularization procedure.11 The minimization prob-

lem (5.9) should be replaced by

min
θ1∈Θ1, h∈Fθ2|W

{
||Tθ1h− f̂C|WZ ||2 + α||h||2

}
(5.10)

where we write Tθ1 to make explicit the dependence of the operator on θ1. The kernel of Tθ1 is (up

to the factor 1
πθ

) equal to fC|WZθ (c;w, z, θ1, θ2) which has the same expression as in (4.2).

Let the parameter space be G = Θ1×Fθ2|W . Denote by g = (θ1, h) a generic element of G, with

θ1 ∈ Θ1 and h ∈ Fθ2|W . Let g0 = (θ0
1, f

0
θ2|W ) the true value of g. Moreover, denote Q̂n(θ1, h) =

||Tθ1h − f̂C|WZ ||2 and Q(θ1, h) = ||Tθ1h − fC|WZ ||2. The estimator computed by solving (5.10) will

be denoted by ĝ := (θ̂1, f̌
α,c
θ2|W ) and belongs to G. Define ‖ĝ − g0‖ := ‖θ̂1 − θ0

1‖E + ‖f̌α,cθ2|W − f
0
θ|W‖,

where ‖ · ‖E denotes the Euclidean norm induced by the scalar product 〈·, ·〉E in Rd1 . Theorem 5

below states consistency of ĝ. We introduce the following assumption.

Assumption 9. Let the following statements hold:

1.

i. The subset Θ1 ⊂ Rd1 is compact.

ii. The family of functions {Q̂n(·, h) + α‖h‖2}h∈Fθ2|W is equidifferentiable at every θ1 ∈ Θ1.

iii. Let Q̂n,1(θ1, h) denote the first derivative of Q̂n(θ1, h) with respect to θ1 evaluated at θ1. We

assume that suph∈Fθ2|W
|Q̂n,1(θ1, h)| <∞ for every θ1 ∈ Θ1.

iv. Q(g0) = 0 and any (θ1, h) ∈ G that satisfies Q(θ1, h) = 0 also satisfies θ1 = θ0
1 and h = f 0

θ2|W

almost everywhere.

v. The function fC|WZθ(c;w, z, θ1, θ2) is continuous in θ1.

vi. The criterion Q̂n satisfies: |Q̂n(g0)−Q(g0)| = Op(δn), where δn = o(1).

Theorem 5. Let Assumptions 1-5, 7 and 9 hold. Then: (i) a solution to (5.10) exists and (ii), if

δn = O(α): ‖ĝ − g0‖ → 0 in probability.

6 Monte Carlo simulation

6.1 Simulation 1: Linear endogenous random coefficient model

Consider model (2.1). Assume that g (Z2,W ) = Z2W . Then equation (2.1) becomes

C = θ1Z1 + θ2Z2W + ε. (6.1)

Assume that ε ∼ N (0, 0.1) , W ∼ U [1, 2] , and Z ∼ N (0,Σz) with Σz equal to the identity matrix.

Finally, assume that θ|W ∼ N (µθ,Σθ) with µθ = β0 + β1W, (β0, β1) = (1, 1) and Σθ equal to 0.1

times the identity matrix.

11The two-step procedure is described in Appendix ??.
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We simulate 1500 Monte Carlo datasets from this model, 500 for each sample size (N = 500,

N = 100, and N = 2500). For each dataset, we first estimate f̂C|WZ using a Gaussian product

kernel with bandwidth chosen as discussed below. Then we compute f̂αθ|W using (5.4). Finally, we

compute Pcf̂αθ|W as in (5.5) , at the 30th, 50th, and 70th percentiles of the distribution of W.

To facilitate accurate numerical integration, we first make a change of variable, mapping (C,Z1, Z2)

into the region [−1, 1]3 . Specifically, we define Uc = 2Φ
(
C−µc
σc

)
− 1, U1 = 2Φ

(
Z1−µz1
σz1

)
− 1, U2 =

2Φ
(
Z2−µz2
σz2

)
− 1, where Φ is the standard normal CDF and (µc, σc), (µzi , σzi), i = 1, 2 are the em-

pirical mean and standard deviation of C, Z1 and Z2. Substituting these new variables into (6.1) ,

and solving for ε, the structural function ε = ϕ−1 (W,Z, θ, ε) can be written as

ε = µc + σcΦ
−1

(
Uc + 1

2

)
− θ1

(
µz1 + σz1Φ−1

(
Uz1 + 1

2

))
− θ2

(
µz2 + σz2Φ−1

(
Uz2 + 1

2

))
W.

Next, let w30, w50, w70 denote the 30th, 50th and 70th percentile of W , resp.. Using the weight

functions πcz = 1 and πθ = 1, for each w ∈ {w30, w50, w70} , we then compute f̂αθ|W to solve

min
{h}

{∫ (
f̂Uc|WUz1Uz2

− Th
)2

dcdz1dz2 + α

∫
h (θ)2 dθ

}
. (6.2)

The solution is given in equation (5.4) . We approximated the integral over [−1, 1]3 with the tensor

product of three unidimensional Gauss-Legendre quadrature rules with 20 quadrature nodes in each

dimension, and analogously over Θ.

Figure 2 displays contour plots of the true density and of the estimated density for the three

different quantiles of W obtained from one of our Monte Carlo datasets (with n = 1000). In each

panel of the figure, the top panel shows the true density and the bottom panel shows the estimate.

In all cases both the shape and location of the estimate track the true density quite closely. In

particular, the unimodality of the density is well covered, and the location of the mode almost

exactly coincides with the true mode. Moreover, the spread also very much coincides in every

dimension with the true spread of the density of random coefficients.

Results are obtained using bandwidths hn = hd = 0.05 and the Tikhonov regularization param-

eter α = 0.01. Bandwidths are chosen to minimize the average of the square root of the density

weighted mean squared error:

AMSE = E

[
1

3

∑
q

(∫ [
Pcf̂αθ|W (θ;wq)− fθ|W (θ;wq)

]2

fθ|W (θ;wq) dθ

)0.5
]

= E [MSE] (6.3)

wq ∈ {w30, w50, w70} and where the average is calculated as the empirical average across 100 Monte

Carlo replications and the pointwise average across three quantiles of the distribution of W.

For sample size of 1000, Figure 3 shows the densities of the square root of the weighted MSE

(WMSE) for the Tikhonov estimator and the oracle estimator (i.e., the infeasible kernel density

estimator). In each case, the distribution is the distribution across 500 Monte Carlo replications
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and across five different values of W. As was to be expected, the oracle estimator performs better,

yet there is significant overlap in the distributions of results. Table 1 shows the AMSE (calculated

as the average across 500 Monte Carlo replications) of both estimators:

Table 1: AMSE as a function of sample size

Sample size

500 1000 2500

Tikhonov estimator 0.423 0.350 0.280

Oracle estimator 0.219 0.172 0.140

Ratio 1.93 2.03 2.00

Several features are noteworthy: First, observe that the ratio is approximately twofold, which is

not very large if one considers the small sample size and the complexity of the procedure. Second,

note the absolute value decreases, showing consistency. Third, note also that the ratio of the two

averages increases slightly from 1.93 to 2.03. This is to be expected given the fact that the unfeasible

oracle estimator converges faster. Nevertheless, the ratio is almost constant, suggesting that the

theoretical large sample differences may slightly overstate the small sample differences.

6.2 Simulation 2: Intertemporal consumption model

To analyse the CARA model, we simulated n = 1000 agents starting at age t = 21, working for 45

periods and then obtaining a terminal retirement utility. Income grows until retirement. In addition,

in each period each agent faces a permanent i.i.d. income shock ηt distributed as ηt ∼ N (0, 0.01668).

The initial value of income is set to 0.2 (scaled so that 0.2 equals $20,000) and the initial permanent

shock is set to zero. The interest rate is set to R = 1 + r = 1.05 and the random parameters γ and

β have support on (0.5, 4.0) and (0.700, 0.999) respectively, covering a range of values suggested in

the literature. The joint distribution of (γ, β) is generated as follows. We define x ∼ N (µx, I) with

µx = (1, 0)′ and generate γ = 0.5 + 3.5 Φ (x1) , and β = 0.7 + 0.299 Φ (x2) , where Φ is the standard

normal CDF. In addition, measurement error in consumption is εt ∼ N (0, σ2
ε) with σ2

ε set equal to

25% of the the cross-sectional variance of consumption.

While the data are simulated for 45 periods of life, we select one cross section at age 31 to be

used for our estimator. We obtained similar results for other values of t. The dependence between

δ and W (where δ is defined below) varies with t as does the distribution of the data. However, the

quality of the estimation results does not.

In this CARA example, the joint distribution of (γ, β) is not identified because the variables

enter the kernel of the operator only through a single index. Instead we estimate the distribution

of

δ = 0.5φ5γ + φ3
ln (Rβ)

γ
(6.4)

where φ3 and φ5 are parameters that depend only on the interest rate R and the time period t.
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For the estimation, we use a Gaussian kernel with bandwidths hn = hd = 0.3 and with Tikhonov

regularization parameter α = 0.01. For the infeasible kernel density estimator we set the bandwidth

to hθ = 0.3. While tuning parameters may be chosen using least-squares cross-validation, for the

purposes of illustration, we chose tuning parameters to minimize the square root of density weighted

mean squared error computed across the 1000 Monte Carlo replications.

The true distribution of δ conditional on W is difficult to compute because it is endogenously

determined from the structural model. Therefore we compute the following square root of the

density weighted mean squared error averaged across quantiles of the W distribution:

AMSE = E

[
1

2

∑
q

(∫ ([
Pcf̂αδ|W (δ;wq)− f̂Kerδ|W (δ;wq)

]2
)(

f̂Kerδ|W (δ;wq)
)
dδ

)0.5
]
. (6.5)

To compute the AMSE, we replace the expected values in (6.5) with the average across the 1000

Monte Carlo replications and compute the integral across δ using Gauss-Legendre quadrature nodes

with 301 points of support. The average across W is computed as the pointwise average across

vectors w with each coordinate of w equal to either its 25th or 75th percentile.

In Figures 4- 5 we show an (infeasible) kernel density estimator of the pdf of δ (in solid black

line) together with our Tikhonov estimator (in dashed green line) and pointwise 95% confidence

intervals obtained using the bootstrap. In each figure, the estimate is conditional on fixed levels of

assets and income. “Low” levels of each variable correspond to the 25th percentile and “high” levels

correspond to the 75th percentile. To estimate the confidence intervals, we created 1000 bootstrap

samples from the data, each a sample of 1000 observations drawn with replacement. We then use

the pointwise 0.025 and 0.975 percentiles of the bootstrap estimates as our confidence bands. As

the results reveal, the unfeasible oracle estimator which we take in place of the true density is, for

every value w of W we consider, within the confidence intervals. This suggests that our estimator

is reasonable accurate, in spite of the only moderate sample size of n = 1000.

To provide an economic interpretation of these results, note that while they characterize the

density of δ conditional on W , these results also place constraints on the joint distribution of (β, γ)

given W. For each quantile of the distribution of δ, we can draw a curve representing the values of

(β, γ) satisfying (6.4) . This is a quantile level set. Suppose we draw such a curve for δ = δq the

q’th quantile of the δ distribution. Since (6.4) is monotonic in β, it must be the case that with

probability q, (β, γ) lie below this level set and with probability 1− q they lie above this level set.

Figures 6-7 show these level set curves conditional on various values of Wt = (At=31, Yt=30).

For example, the blue solid line in Figure 6 shows the 0.1 quantile level set. With probability 0.1,

(β, γ) lie below this curve. In each case, the quantile-level-sets partition the (β, γ) space into convex

regions. The convex region in Figure 6 bounded by the 0.1 and 0.9 quantile level sets shows that

people with low assets and low income are likely to be very impatient (β < 0.9) if they are risk

averse (γ > 3.5) but are likely to be patient if they have low risk aversion. The other figures show

that this convex region shifts upward for people with higher assets or income. As theory predicts,
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individuals with higher asset holdings are on average more patient and risk averse, but there is some

evidence of trade off between patience and risk aversion.

A Proofs

A.1 Proof of Theorem 1

By Assumption 1, there exists a unique c = ϕ(w, z, θ, ε) that satisfies (3.1). Thus, using the transformation

ϕ(w, z, θ, ·) mapping ε to c, the density of ε, fε|WZθ, specified in Assumption 3, and fθ|W specified in

Assumption 4, we can characterize the pdf of fCθ|WZ . Let E1, . . . , Es be a partition of R such that

ϕ(w, z, θ, ·) : Ei → R is one-to-one for each i = 1, . . . , s, for given (w, z, θ) and s ∈ N+. Let ϕ−1
i (w, z, θ, ·) :

Im (Ei |w, z, θ )→ Ei be the corresponding inverse mapping for given (w, z, θ). Then,

fC|WZθ(c;w, z, θ) =

s∑
i=1

fε|WZθ(ϕ
−1
i (w, z, θ, c);w, z, θ) ·

∣∣∂cϕ−1
i (w, z, θ, c)

∣∣ 1Ci(c). (A.1)

Further, using Assumption 5 we have fCθ|WZ = fC|WZθ fθ|W . This implies that

fC|WZ(c;w, z) =

∫
Θ
fC|WZθ(c;w, z, θ)fθ|W (θ;w)dθ. (A.2)

Finally, since a unique solution in C to (3.1) exists, the chain rule implies that: ∂εΨ(c, w, z, θ, ε) =

∂cΨ(c, w, z, θ, ε)∂εc + ∂εΨ(c, w, z, θ, ε) = 0, by abuse of notation. Therefore, ∂εc = ∂εϕ(w, z, θ, ε) and

∂εϕ(w, z, θ, ε) = −∂εΨ(c,w,z,θ,ε)
∂cΨ(c,w,z,θ,ε) . We conclude that

∂cϕ
−1
i (w, z, θ, c) =

1

∂εϕ(w, z, θ, ε)|ε=ϕ−1
i (w,z,θ,c)

= −
[
∂εΨ(c, w, z, θ, ε)

∂cΨ(c, w, z, θ, ε)

]−1 ∣∣∣
ε=ϕ−1

i (w,z,θ,c)

= −
[
∂cΨ(c, w, z, θ, ϕ−1

i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

]
. (A.3)

By replacing (A.3) in (A.1) and (A.1) in (A.2) we get the result.

A.2 Proof of Proposition 2

The first characterization of Λ follows trivially from (4.3) since every element obtained as the sum of f †θ|W
and an element of N (T ) is solution of the unconstrained inverse problem. Then, to obtain the set of

solutions to the constrained problem, we only have to take the intersection with Fθ|W .

To obtain the second characterization of Λ remark that we can always write a generic element of

f †θ|W ⊕N (T ) in terms of the o.n.b. {{ϕj}j∈N, {ϕ̃l}l∈J0} which exists under Assumption 6. Then, we impose

the following constraints to every h ∈ {f †θ|W ⊕N (T )}: (i)
∫

Θ h(θ;w)dθ = 1, a.s., (ii)
∫

Θ h
2(θ;w)πθ(θ)dθ <

∞, a.s. and (iii) h(θ;w) ≥ 0, a.s. The first constraint is automatically verified since for every (w, z, θ),∫
C fC|WZθ(c;w, z, θ)dc = 1 and, by using Fubini’s theorem:

∫
Θ h(θ;w)dθ =

∫
C
∫

Θ fC|WZθdθh(θ;w)dc =∫
C fC|WZdc = 1 (where we have used the fact that fC|WZθ integrates to 1 and Th = fC|WZ). Constraint

25



(ii) is equivalent to ||f †θ|W ||
2 +

∑
l∈J0

ζ2
l < ∞ for some ζl ∈ R and, by definition of f †θ|W , ||f †θ|W ||

2 < ∞.

Finally, constraint (iii) is equivalent to require that the negative part of every function in Λ is equal to 0.

A.3 Proof of Proposition 3

Suppose that Fθ|CWZ is T -complete and that for f1
θ|W , f

2
θ|W ∈ Fθ|W , T |Fθ|W (f1

θ|W ) = T |Fθ|W (f2
θ|W ) holds.

By using the decomposition fC|WZθ = fθ|CWZfC|WZ/fθ|W this equality can be rewritten as

0 = T |Fθ|W (f1
θ|W )− T |Fθ|W (f2

θ|W ) =

∫
Θ
fC|WZθ(c;w, z, θ)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]
dθ

=

∫
Θ
fθ|CWZ(θ; c, w, z)

fC|WZ(c;w, z)

fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]
dθ (A.4)

which is equivalent to

0 =

∫
Θ
fθ|CWZ(θ; c, w, z)

1

fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]
dθ (A.5)

because, by Assumptions 2 and 3, 0 < fC|WZ < ∞. Moreover, 1
fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]
∈ T so

that (A.5) implies 1
fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]

= 0 which in turns implies f1
θ|W (θ;w) = f2

θ|W (θ;w)

under assumption 4.

On the other hand, if (4.5) holds, then 0 =
∫

Θ fθ|CWZ(θ; c, w, z) 1
fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]
dθ

implies that 1
fθ|W (θ;w)

[
f1
θ|W (θ;w)− f2

θ|W (θ;w)
]

= 0 because, by Assumptions 2, 3 and 4, 0 < fC|WZ < ∞
and 0 < fθ|W <∞. This concludes the proof.

A.4 Proof of Lemma 1

For simplicity we consider the case where θ is one-dimensional (the multi-dimensional case can be recovered

in a similar way). Let us suppose that Tφ(θ;w) = 0, a.s. for some function φ ∈ D. Then, ∀(c, z) ∈ C × Z

Tφ =

∫
Θ

s∑
i=1

fε|θWZ

(
ϕ−1
i (w, z, θ, c) ; θ, w, z

)
·
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣ 1Ci(c)φ(θ;w)dθ = 0 a.s.

implies that ∀(c, z) ∈ Ci ×Z∫
Θ
fε|θWZ

(
ϕ−1
i (w, z, θ, c); θ, w, z

)
·
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣φ(θ;w)dθ = 0 a.s. ∀i = 1, . . . , s.

Then, ∀(c, z) ∈ Ci ×Z and ∀i = 1, . . . , s, we have:

0 =

∫
Θ

exp {τi(c, w, z)mi(θ)}hi(θ)ki(c, w, z)φ(θ;w)
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣ dθ

=

∫
Θ

exp{τi(c, w, z)µi}hi
(
m−1
i (µi)

)
ki(c, w, z)φ̃i

(
m−1
i (µi);w, z, c

)
dm−1

i (µi) a.s.
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where we have used the notation φ̃i(θ;w, z, c) := φ(θ;w)
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣ and the change of variable

mi(θ) = µi. Moreover, since dm−1
i (µi) and hi are positive functions, we can define a measure νi(dµi) =

hi
(
m−1
i (µi)

)
dm−1

i (µi). Thus, ∀(c, z) ∈ Ci ×Z and ∀i = 1, . . . , s,

0 = ki(c, w, z)

∫
Θ

exp{τi(c, w, z)µi}φ̃i
(
m−1
i (µi);w, z, c

)
νi(dµi)

= ki(c, w, z)

∫
Θ

exp{τi(c, w, z)µi}ζi(µi;w, z, c)νi(dµi)

= ki(c, w, z)

∫
Θ

exp{τi(c, w, z)µi}
[
ζ+
i (µi;w, z, c)− ζ−i (µi;w, z, c)

]
νi(dµi)

= ki(c, w, z)

(∫
Θ

exp{τi(c, w, z)µi}Fi(dµi;w, z, c)−
∫

Θ
exp{τi(c, w, z)µi}Gi(dµi;w, z, c)

)
a.s. where ζi(µi;w, z, c) = φ̃i◦m−1

i , Fi(dµi;w, z, c) = ζ+
i (µi;w, z, c)νi(dµi), Gi(dµi;w, z, c) = ζ−i (µi;w, z, c)νi(dµi)

and, for a function h, h+ and h− denote the positive and negative part of it, respectively. It follows that∫
Θ

exp{τi(c, w, z)µi}Fi(dµi;w, z, c) =

∫
Θ

exp{τi(c, w, z)µi}Gi(dµi;w, z, c),

that is, Fi and Gi are two measures with the same Laplace transform. Then, they are equal since τi(c, w, z)

vary over R. This implies that ζi(µi;w, z, c) = 0 and then φi(θ;w) = 0, a.s. since ∂cϕ
−1
i (w, z, θ, c) is

bounded away from 0 and ∞ by Assumption 2, ∀(c, w, θ, z) ∈ C ×W ×Θ×Z.

A.5 Proof of Theorem 2

First, since ||Pc|| ≤ 1 we have: E||Pcf̂αθ|W − f
†c
θ|W ||

2 = E||Pc(f̂αθ|W − f
†
θ|W )||2 ≤ ||Pc||2E||f̂αθ|W − f

†
θ|W ||

2 ≤
E||f̂αθ|W − f

†
θ|W ||

2. Let fαθ|W := (αI + T ∗T )−1T ∗fC|WZ , then

E||f̂αθ|W − f
†
θ|W ||

2 ≤ 2E||f̂αθ|W − f
α
θ|W ||

2 + 2E||fαθ|W − f
†
θ|W ||

2 := 2(A1 +A2). (A.6)

By the Halmos’spectral theorem (see, for instance, ?) the operator T ∗T admits a spectrum σ(T ∗T ). Hence

we can analyze the two terms A1 and A2 as follows. Term A1 is

A1 = E||(αI + T ∗T )−1T ∗(f̂C|WZ − fC|WZ)||2 ≤ ||(αI + T ∗T )−1T ∗||2E||(f̂C|WZ − fC|WZ)||2

≤ sup
t∈σ(T ∗T )

|(α+ t)−1
√
t|2E||(f̂C|WZ − fC|WZ)||2 = O

(
1

α
E||(f̂C|WZ − fC|WZ)||2

)
. (A.7)

Next, we develop term A2:

A2 = E||(αI + T ∗T )−1T ∗fC|WZ − f
†
θ|W ||

2 = ||[I − (αI + T ∗T )−1T ∗T ]f †θ|W ||
2

= ||α(αI + T ∗T )−1f †θ|W ||
2 = ||α(αI + T ∗T )−1φ(T ∗T )ν||2

≤ sup
t∈σ(T ∗T )

|φ(t)α(α+ t)−1|2ν2 = O(φ2(α)) (A.8)

where the last inequality follows from (5.6). This shows that E||f̂αθ|W−f
†
θ|W ||

2 = O
(
φ2(α) + 1

αE||(f̂C|WZ − fC|WZ)||2
)

.
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Next, consider the case φ(t) = tβ/2. Then, supt∈σ(T ∗T ) |tβ/2α(α+t)−1| = 1
2α

β/2 if β < 2 and supt∈σ(T ∗T ) |φ(t)α(α+

t)−1| = α if β = 2. Hence, (5.6) is satisfied and we choose α � (E||(f̂C|WZ − fC|WZ)||2)1/(β∧2+1) we get

the result. Finally, consider the case φ(t) = (− log(t))−β/2. If we choose α � (E||(f̂C|WZ − fC|WZ)||2)ε for

0 < ε < 1 we get the final result of the theorem.

A.6 Proof of Corollary 1

Following the decomposition (A.6) in the proof of Theorem 2, the upper bound for A2 remains unchanged

while term A1 is now bounded above by A1 ≤ ||(αI + T ∗T )−1||2E||T ∗(f̂C|WZ − fC|WZ)||2 so that A1 =

O
(
α−2E||T ∗(f̂C|WZ − fC|WZ)||2

)
. We have to compute the rate of E||T ∗(f̂C|WZ−fC|WZ)||2. Remark that

E||T ∗(f̂C|WZ − fC|WZ)||2 =
∫

Θ

(
V ar(T ∗f̂C|WZ) + (E(T ∗f̂C|WZ)− T ∗fC|WZ)2

)
πθ(θ)dθ. By using standard

Taylor series approximations, it is easy to show (see Lemma ?? in the Supplementary Appendix) that

the squared bias term is of order
(
E(T ∗f̂C|WZ − T ∗fC|WZ)

)2
= O

(
max{h4

n, h
4
d}
)

and the variance term is

V ar(T ∗f̂C|WZ) = O
(
n−1(min{hn, hd})−k

)
. Therefore, the rate of the MISE is:

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
φ2(α) +

1

α2

(
max{h4n, h4d}+

1

n(min{hn, hd})k

))
.

A.7 Proof of Lemma 2

Denote by EWZ the conditional expectation given (W,Z). Let us consider the decomposition (f̂αθ|W −
f †cθ|W )(θ;w) = [f̂αθ|W − (αI+T ∗T )−1T ∗EWZ(f̂C|WZ)](θ;w) + [(αI+T ∗T )−1T ∗EWZ(f̂C|WZ)− f †θ|W ](θ;w) =:

A + B. The result of Lemma 2 follows from proving that PcA√
Vc(θ;w)

→d N (0, 1) and PcB√
Vc(θ;w)

= op(1). We

start by proving that A√
V (A)

→d N (0, 1) where V (A) = V ar(A). Let {λj , ϕj , ψj}j∈N denote the SVD of T ,

f̂WZ denote the kernel estimator of the joint pdf of (W,Z) and Kh,i(z, w) = Kh(zi − z, z)Kh(wi − w,w),

then

A =
1

n

n∑
i=1

∞∑
j=1

1

α+ λ2
j

〈
T ∗ (Kh(ci − c, c)− EWZ(Kh(ci − c, c)))

Kh,i(z, w)

hk+l+1
n f̂WZ

, ϕj

〉
ϕj(θ;w)

=
1

n

n∑
i=1

∞∑
j=1

λj
α+ λ2

j

〈
(Kh(ci − c, c)− EWZ(Kh(ci − c, c)))

Kh,i(z, w)

hk+l+1
n f̂WZ

, ψj

〉
ϕj(θ;w) =:

1

n

n∑
i=1

Zni.

By a triangular array version of the Liapounov’s central limit theorem it follows that

A√
V (A)

=
1

n

n∑
i=1

Zni/
√
n−1V ar(Zni)→d N (0, 1)

if
∑n

i=1 E
∣∣∣Zni/√nV ar(Zni)∣∣∣3 → 0 as n→∞. Lemma ?? in the Supplementary Appendix shows that this

latter convergence holds if α3/(nhkn)→ 0. To prove PcA√
Vc(θ;w)

→d N (0, 1) we use the functional delta method

(see e.g. ? Theorem 20.8). This requires that the projection operator Pc is Hadamard differentiable. The

(one-sided) Hadamard derivative of Pc in f †cθ|W is a projection as well, denoted by P†c , that projects on the
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tangent cone of Fθ|W at f †cθ|W defined as in the statement of Lemma 2. Moreover, Vc(θ;w) = V ar(P†cA)

and V (A) and Vc(θ;w) have the same rate.

To prove the second result we follow the strategy in the proof of Proposition 6 in ? and prove that
B2

V (A) → 0. Let us decompose B as

B = (αI + T ∗T )−1T ∗
(
E(f̂C|WZ)− fC|WZ

)
(θ;w)−

(
(αI + T ∗T )−1T ∗fC|WZ − f

†
θ|W

)
(θ;w),

thenB2 ≤ 2
∣∣∣(αI + T ∗T )−1T ∗

(
EWZ(f̂C|WZ)− fC|WZ

)
(θ;w)

∣∣∣2+2
∣∣∣((αI + T ∗T )−1T ∗fC|WZ − f

†
θ|W

)
(θ;w)

∣∣∣2 .
Note that EWZ(f̂C|WZ) = fC|WZ + O(h2

n). Then, by using (A.7) and (A.8), under Assumption 8 we

conclude that B2

V (A) = Op
(
nαhk+4

n + nα2φ2(α)hkn
)

which converges to zero under the conditions of the

theorem. Since Pc is a nonexpansive map, these rates are not affected by replacing B with PcB and V (A)

with Vc(θ;w) since V (A) and Vc(θ;w) have the same rate.

A.8 Proof of Theorem 3

The functional Jα(h) := ||Th− f̂C|WZ ||2 + α||h||2 is a strictly convex and Fréchet differentiable functional

with Fréchet derivative 2
(

(T ∗T + αI)h− T ∗f̂C|WZ

)
. Hence, the convex problem (5.9) has a unique solu-

tion f̌α,cθ|W that is characterized as the unique element in FC|WZ such that the following variational inequality

holds:

〈(αI + T ∗T )f̌α,cθ|W − T
∗f̂C|WZ , f − f̌

α,c
θ|W 〉 ≥ 0, ∀f ∈ Fθ|W . (A.9)

For every α > 0 define the inner product 〈f1, f2〉α = 〈(αI + T ∗T )f1, f2〉 on L2
πθ

. Then (A.9) is equivalent

to

〈f̌α,cθ|W − (αI + T ∗T )−1T ∗f̂C|WZ , f − f̌
α,c
θ|W 〉α ≥ 0, ∀f ∈ Fθ|W . (A.10)

Thus, f̌α,cθ|W = Pαc (αI + T ∗T )−1T ∗f̂C|WZ where Pαc denotes the projector onto Fθ|W with respect to 〈·, ·〉α.

By denoting fα,cθ|W = Pαc (αI + T ∗T )−1T ∗fC|WZ we can write

E||f̌α,cθ|W − f
†c
θ|W ||

2 ≤ 2E‖Pαc (αI + T ∗T )−1T ∗(f̂C|WZ − fC|WZ)‖2 + 2||fα,cθ|W − f
†c
θ|W ||

2

= O
(
α−1E||f̂C|WZ − fC|WZ ||2

)
+ 2||fα,cθ|W − f

†c
θ|W ||

2. (A.11)

It remains to show that ||fα,cθ|W − f
†c
θ|W || converges to 0. By definition of fα,cθ|W :

〈(αI + T ∗T )fα,cθ|W − T
∗fC|WZ , f

†c
θ|W − f

α,c
θ|W 〉 ≥ 0. (A.12)

Define the closed and convex set U := {u ∈ R(T );PFθ|W T
∗u = f †cθ|W } and let ū be the element of U with

minimal norm. It follows that 〈f †cθ|W − T
∗ū, fα,cθ|W − f

†c
θ|W 〉 ≥ 0 or, equivalently,

〈T ∗ū− f †cθ|W , f
†c
θ|W − f

α,c
θ|W 〉 ≥ 0. (A.13)
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By summing (A.12), with fC|WZ replaced by Tf †cθ|W , and (A.13), multiplied by α > 0, we obtain:

〈(αI + T ∗T )(fα,cθ|W − f
†c
θ|W ) + αT ∗ū, f †cθ|W − f

α,c
θ|W 〉 ≥ 0

which is equivalent to ||T (fα,cθ|W−f
†c
θ|W )||2+α||fα,cθ|W−f

†c
θ|W ||

2 ≤ α〈T ∗ū, f †cθ|W−f
α,c
θ|W 〉. Then, since α〈T ∗ū, f †cθ|W−

fα,cθ|W 〉 ≤ α||ū|| ||T (fα,cθ|W − f
†c
θ|W )||, it follows that ||T (fα,cθ|W − f

†c
θ|W )|| ≤ α||ū|| and hence, ||fα,cθ|W − f

†c
θ|W ||

2 ≤
α2||ū||2 which converges to 0. From (A.11) and this result, we conclude that: E||f̌α,cθ|W − f

†c
θ|W ||

2 → 0.

A.9 Proof of Theorem 4

The first part of the proof is the same as the proof of Theorem 3. Thus, (A.11) still holds and we only

have to determine the rate of ||fα,cθ|W − f
†c
θ|W ||. To do this we slightly modify the proof of Lemma 3.9 in ?.

For every f ∈ N (T )⊥, let f
α,Lf
θ|W be the solution of (5.9) with f̂C|WZ replaced by fC|WZ and Fθ|W replaced

by Lf := {h ∈ L2
πθ

; 〈f †cθ|W − f, h− f
†c
θ|W 〉 = 0}. Note that Lf is the supporting hyperplane of Fθ|W in f †cθ|W .

By the triangular inequality:

||fα,cθ|W − f
†c
θ|W || ≤ ||f

α,c
θ|W − f

α,Lf
θ|W ||+ ||f

α,Lf
θ|W − f †cθ|W ||. (A.14)

We start by analyzing the second term in (A.14). Since f
α,Lf
θ|W , f †cθ|W ∈ Lf then P̃f (f †cθ|W − f

α,Lf
θ|W ) =

f †cθ|W − f
α,Lf
θ|W . Therefore, the rate of the second term can be easily determined if we show that P̃ff

α,Lf
θ|W is

an unconstrained Tikhonov-regularized solution of the form P̃ff
α,Lf
θ|W = (P̃fT

∗T P̃f + αI)−1P̃fT
∗T P̃ff

†c
θ|W .

In order to show this, we start by showing that

P̃f

(
T ∗Tf

α,Lf
θ|W + αf

α,Lf
θ|W − T ∗fC|WZ

)
= 0. (A.15)

This is equivalent to show that 〈T ∗Tfα,Lfθ|W +αf
α,Lf
θ|W − T ∗fC|WZ , h〉 = 0 for every h ∈ L̃f . Let h ∈ L̃f , then

h+ f †cθ|W ∈ Lf . By definition of f
α,Lf
θ|W , the variational inequality

〈(αI + T ∗T )f
α,Lf
θ|W − T ∗fC|WZ , h

′ − fα,Lfθ|W 〉 ≥ 0, ∀h′ ∈ Lf (A.16)

holds with equality (remark that Lf is a linear manifold). Therefore, for h ∈ L̃f ,

〈(αI + T ∗T )f
α,Lf
θ|W − T ∗fC|WZ , h〉+ 〈(αI + T ∗T )f

α,Lf
θ|W − T ∗fC|WZ , f

†c
θ|W − f

α,Lf
θ|W 〉 = 0 (A.17)

where the second term is equal to 0 by applying (A.16) with equality and since f †cθ|W ∈ Lf . We conclude

that 〈(αI + T ∗T )f
α,Lf
θ|W − T ∗fC|WZ , h〉 = 0 for every h ∈ L̃f . This proves (A.15).

By using the result of Lemma ?? in the Supplementary Appendix and by rearranging terms we get:

P̃ff
α,Lf
θ|W = (P̃fT

∗T P̃f + αI)−1P̃fT
∗T P̃ff

†c
θ|W . By Lemma 3.5 (a) in ?: f †cθ|W = f

†Lf
θ|W , where f

†Lf
θ|W satisfies:

‖Tf †Lfθ|W − fC|WZ‖ = inf
{
‖Th− fC|WZ‖;h ∈ Lf

}
‖f †Lfθ|W ‖ = min

{
‖h‖;h ∈ Lf and ‖Th− fC|WZ‖ = ‖Tf †Lfθ|W − fC|WZ‖

}
.
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Finally, by using the regularity condition Nβ 6= ∅ we conclude that

||fα,Lfθ|W − f †cθ|W ||
2 = ||P̃f (f

α,Lf
θ|W − f †cθ|W )||2 = ||(P̃fT ∗T P̃f + αI)−1P̃fT

∗T P̃ff
†c
θ|W − P̃ff

†c
θ|W ||

2

= ||α(P̃fT
∗T P̃f + αI)−1P̃ff

†c
θ|W ||

2 = O(αβ∧2). (A.18)

We now consider the first term of (A.14). By Lemma 3.6 (b) in ? the following inequality holds for α > 0

sufficiently small and f ∈ M : ||T (fα,cθ|W − f
α,Lf
θ|W )||2 + α||fα,cθ|W − f

α,Lf
θ|W ||

2 ≤ ||T (f †cθ|W − f
α,Lf
θ|W )||2 + α||f †cθ|W −

f
α,Lf
θ|W ||

2. This implies that ||fα,cθ|W − f
α,Lf
θ|W ||

2 ≤ 1
α ||T (f †cθ|W − f

α,Lf
θ|W )||2 + ||f †cθ|W − f

α,Lf
θ|W ||

2. From (A.18) and

the fact that ||T (f †cθ|W − f
†Lf
θ|W )||2 = O(αβ∧2+1) we conclude that ||fα,cθ|W − f

α,Lf
θ|W ||

2 = O(αβ∧2). By putting

all these results together we have proved the results of the theorem.

A.10 Proof of Theorem 5

Part (i) follows from Lemma ?? in the Supplementary Appendix. Hence, we prove (ii) Let Uw(g0) denote

an open neighborhood in G in the weak topology around g0 and Uw(θ0
1) denote its projection onto Θ1, that

is, Uw(θ0
1) =

{
θ1 ∈ Θ1;∃h ∈ Fθ2|W such that (θ1, h) ∈ Uw(g0)

}
. Hence, because Θ1 ⊂ Rd and because the

weak and norm topologies coincides on finite dimensional spaces, then ‖θ̂1‖E → 0 in probability if and only

if P (θ̂1 ∈ Uw(θ0
1)) → 1. This last result follows from Lemma ?? in the Supplementary Appendix and the

inequality P (θ̂1 ∈ Uw(θ0
1)) ≥ P (ĝ ∈ Uw(g0)).

Next, we show ‖f̂θ2|W − f0
θ2|W ‖ → 0 in probability. Lemma ?? shows consistency under the weak

topology which implies 〈g̃, f̂θ2|W − f0
θ2|W 〉 for every g̃ ∈ Θ1 ×Fθ|W . From Lemma ??

‖f̂θ2|W ‖
2 − ‖f0

θ2|W ‖
2 ≥ 〈f0

θ2|W , f̂θ2|W − f
0
θ2|W 〉+ c‖f̂θ2|W − f

0
θ2|W ‖

2

= 〈g0, ĝ − g0〉 − 〈θ0
1, θ̂1 − θ0

1〉+ c‖f̂θ2|W − f
0
θ2|W ‖

2.

The first two terms of the right hand side converge to zero in probability by Lemma ?? and the left hand

side converges to zero in probability by Lemma ?? (i). Hence, ‖f̂θ|W − f0
θ|W ‖

2 → 0 in probability.
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B Figures

Figure 2:
Log linear demand example
Pcf̂θ|W vs. true fθ|W

(lower panel) (upper panel).

figures/RC_Density7-eps-converted-to.pdf

(a) w = 1.2839

figures/RC_Density8-eps-converted-to.pdf

(b) w = 1.4849

figures/RC_Density9-eps-converted-to.pdf

(c) w = 1.673

Figure 3: Log linear demand example
Oracle vs. Tikhonov estimator

(kernel density of WMSE)

figures/WMSE_1000-eps-converted-to.pdf
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Figure 4:
CARA example

density of δ

figures/ThetaDensity1-eps-converted-to.pdf

(a) (low assets, low income)

figures/ThetaDensity2-eps-converted-to.pdf

(b) (low assets, high income)

Figure 5:
CARA example

density of δ

figures/ThetaDensity3-eps-converted-to.pdf

(a) (high assets, low income)

figures/ThetaDensity4-eps-converted-to.pdf

(b) (high assets, high income)
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Figure 6:
CARA example 1

quantile level sets of δ

figures/levelsets5-eps-converted-to.pdf

(a) (low assets, low income)

figures/levelsets6-eps-converted-to.pdf

(b) (low assets, high income)

Figure 7:
CARA example

quantile level sets of δ

figures/levelsets7-eps-converted-to.pdf

(a) (high assets, low income)

figures/levelsets8-eps-converted-to.pdf

(b) (high assets, high income)

34


