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1 Introduction

It is widely agreed upon that election competitiveness has decreased signifi-
cantly in recent decades. For example, the re-election rate of the US House of
Representatives has increased from 91.82% in 1950 to 98.25% in 2004 (Fried-
man and Holden 2009). Also, 74 House seats were won by a margin of less
than 55% in 2000, but this number decreased to 24 in 2004 (Fiorina et al.
2011). During the same period, Congress has become quite polarized. In the
1960s, the distribution of the representatives’ political positions was concen-
trated more toward the center of the political spectrum, with considerable
overlap between Republicans’ and Democrats’ positions. By the 2000s, the
positions became sharply twin-peaked with less overlap.! One popular expla-
nation for this phenomenon in US politics is gerrymandering. Fiorina et al.
(2011) argue that gerrymandering biased toward incumbents, i.e., bipartisan
gerrymandering, has an effect on the decrease in competitiveness, since both
parties try to secure their incumbent seats.? They also suggest that this de-
crease in competitiveness may be one of the causes of the recent political
polarization in Congress, since proposing more polarized positions does not
jeopardize secured seats.?

In contrast, partisan gerrymandering is commonly used to increase the
power of a political party, and it may or may not reduce district competitive-
ness, since the party tries to secure their incumbents but at the same time may
create competitive districts to capture the opposing party’s districts. Recently,
there have been many partisan gerrymandering lawsuits against state legisla-
tures to request redistricting of state congressional maps, including Pennsyl-

Tt is now standard to use a one-dimensional scaling score (DW-Nominate procedure
on economic liberal-conservative, Poole and Rosenthal, 1997) to measure representatives’
political positions.

Fiorina et al. (2011) state that “Many (not all) observers believe that the redistricting
that occurred in 2001-2002 had a good bit to do with this more recent decline in competitive
seats—the party behaved conservatively, concentrating on protecting their seats rather than
attempting to capture those of the opposition.” (see Fiorina et al., pp. 214-215).

3Since polarization has complicated causes, this argument has limitations. Citing that
polarization has also been happening in the Senate, Fiorina et al. (2011, pp. 219) suggest
that “redistricting is only a minor part of congressional polarization, or that it is important
only in combination with other factors such as closed primaries.” Alternative explanations
for polarization include voters’ party sorting and geographical sorting. The former says that
voters became sorted into Republican and Democratic parties in the latter half of 1900s due
to party elites’ polarization (Levendusky 2009). See also Gilroux (2001). The latter says that
voters sort themselves into more ideologically homogeneous districts, causing polarization.
The rationale behind this is that districts seem to polarize more between redistricting than
during them (McCarty, Poole, and Rosenthal 2009).



vania, Maryland, Wisconsin, and North Carolina.* In these cases, the courts
rely on a measure of vote misrepresentation, the efficiency gap, and heated de-
bates are going on as to whether or not this is an appropriate measure to use
(Bernstein and Duchin 2017 and Chambers, Miller, and Sobel 2017).5 Since
these two methods loom large in US politics and public debates, we go one
step further to see how different the resulting district maps under partisan and
bipartisan gerrymandering are, and how polarized the elected representatives
are.

In this paper, we will investigate the difference between optimal partisan
and bipartisan gerrymandering and the effects on representative policy posi-
tions in a unified framework. For this purpose, we introduce party leaders who
are not only office-motivated but also policy-motivated, which is also new to
the literature. We set up a two-party political competition model in which
party leaders compete with their candidates’ (unidimensional) political po-
sitions and pork-barrel promises in each electoral district.® We assume that
there are minimum units of indivisible localities with the same population, and
that a gerrymanderer partitions the set of localities freely to create electoral
districts. Each locality has a voter distribution, and we say that the gerryman-
derer has more freedom in redistricting if the distribution is concentrated on
a point on the political spectrum. With pork-barrel politics, the party leader
understands that pork-barrel policies in competitive districts are costly, and
therefore she has strong incentives to collect her supporters in the winning
districts in order to avoid large pork-barrel promises.

Traditionally, the literature on gerrymandering often discusses two tactics
in partisan gerrymandering: one is to concentrate or “pack” those who sup-
port the opponent in losing districts, and the other is to evenly distribute or
“crack” supporters in winning districts. Packing serves to waste the oppos-
ing party’s strong supporters’ votes, while cracking utilizes the votes of party
supporters as effectively as possible. Owen and Grofman (1988) show that

4In February 2018, the Pennsylvania Supreme Court blamed the states’ district map on
partisan gerrymandering, and told state lawmakers to redraw the state’s 18 House districts,
which currently favor Republicans.

5The efficiency gap and the vote-seat curve are measures based on only two numbers,
the vote shares and the seat shares of the two parties, which may not contain sufficient
information to appropriately evaluate partisan gerrymandering. As Chambers et al. (2017)
correctly recognize, the presence of extremists and election uncertainty should be taken into
account. For example, consider the outcome of conservative bipartisan gerrymandering. It is
possible that the resulting redistricting plan generates extremely polarized policy positions
for the elected representatives but is still perfectly desirable under criteria like the efficiency
gap or the seat-vote curve.

SWe assume that party leaders can choose their candidates’ policy positions freely.



a pack-and-crack policy is optimal when a partisan gerrymanderer has lim-
ited freedom in redistricting (a constant-average constraint: see the literature
review). In contrast, Friedman and Holden (2008) argue that advances in com-
puting technologies and the availability of big data sets allow gerrymanderers
higher degrees of freedom in redistricting, and they obtain a very different op-
timal policy from pack-and-crack: the slice-and-miz policy, in which districts
are created by first mixing the strongest opposition group of voters and the
strongest supporter group, then mixing the second strongest opposition and
supporting groups, and so on. This policy wastes opposition groups’ votes,
generating the most one-sided allocation from the most extreme to the most
moderate districts.

Assuming that party leaders are also policy-motivated, we show that the
optimal policies are not the same as the ones in the literature. We show
that the slice-and-mix policy is still optimal for the party leaders in charge
of partisan gerrymandering when they can redistrict with complete freedom.
In contrast, when the freedom on gerrymandering is limited by the constraint
in redistricting imposed by Owen and Grofman (1988), we obtain a differ-
ent result: when voters and party leaders are highly policy-sensitive (roughly
speaking), a consecutive partition of localities is also the optimal policy for
partisan gerrymandering (order-and-partition).” We will also systematically
compare the optimal policies under partisan and bipartisan gerrymandering
when the gerrymanderer(s) face different levels of freedom in redistricting. We
show that when the gerrymanderer can redistrict with complete freedom, the
resulting outcomes in partisan and bipartisan gerrymandering are very dif-
ferent: bipartisan gerrymandering results in the polarized electoral districts
without leaving moderate and competitive ones, while partisan gerrymander-
ing results in a one-sided allocation, leaving some competitive districts. In
contrast, when the gerrymandering freedom is limited, a consecutive partition
of localities is the optimal order-and-partition policy for both partisan and
bipartisan gerrymandering.®

The rest of the paper is organized as follows. Section 2 discusses related
literature. In Section 3, we introduce our model and analyze electoral compe-
tition in each district. In Section 4, we investigate the optimal gerrymandering
strategy when the party leader has complete freedom. In Section 5, we proceed
to cases where the gerrymanderer’s freedom is limited. Section 6 concludes the
study. All proofs are collected in Appendix A.

"The optimal policy is different from pack-and-crack in our model, since party leaders
are assumed to be policy-motivated, unlike in Owen and Grofman (1988).
8See the the Section 2 for an empirical observation in Friedman and Holden (2009).



2 Related Empirical and Theoretical Litera-
ture

Recent empirical studies show that the effects of gerrymandering may be in-
conclusive. Friedman and Holden (2009) investigate whether or not the House-
incumbent re-election rate depends on gerrymandering being partisan or bi-
partisan.? In partisan gerrymandering cases, the majority party may try to
oust the opposing party’s incumbents, and this may be reducing the incumbent
re-election rate. In contrast, in bipartisan gerrymandering cases, both parties
try to secure their incumbents’ re-election, maximizing safe seats.!® Interest-
ingly, Friedman and Holden (2009) study the data up to 2004 and do not
find significant differences between bipartisan and partisan gerrymandering
effects on the rising incumbent re-election rate.!! As they mention, this result
suggests that partisan gerrymandering may not be as effective as popularly
thought. In another interesting paper, Grainger (2010) finds that legislatively
drawn districts have been less competitive with more extreme voting positions
(polarization) than panel-drawn districts by using a quasi-natural experiment
that alternates between legislatively drawn and panel-drawn districts in Cali-
fornia.'? McCarty et al. (2006, 2009) document that the political polarization
of the House of Representatives has increased in recent decades, using data on
roll call votes, but they find only a minimal relation between polarization and
gerrymandering.'3-4

The pioneering paper that laid out the analytical framework of gerryman-
dering problems is Owen and Grofman (1988). They introduce uncertainty
in each district’s median voter’s position and consider the situation where a

9Redistricting in the US is usually conducted by state legislatures (partisan gerryman-
dering), but in Arizona, Hawaii, Idaho, Montana, New Jersey, and Washington it is con-
ducted by bipartisan redistricting commissions. In California and Iowa, redistricting lines
are drawn by nonpartisan redistricting committees.

10 According to Cain (1985), the goal of bipartisan gerrymanding is to protect incumbents
of both parties, whereas partisan gerrymanding seeks to provide an advantage to one party.

11 After 2008, the incumbent re-election rate went down significantly.

12Grainger (2010) provides a detailed history of Californian redistricting: in 1970s and
1990s, district lines were drawn by independent panels of judges, whereas in the 1960s,
1980s, and 2000s, redistricting was done legislatively. He uses this quasi-natural experiment
to test the hypotheses. Interestingly, the 1960s and 2000s redistrictings were bipartisan,
whereas those in the 1980s were partisan and led by the Democrats.

13Krasa and Polborn (2015) argue that their answer may be incomplete if the political
positions of district candidates are mutually interdependent.

14 As early evidence, Ferejohn (1977) finds little support for gerrymandering being the
cause of the decline in competitiveness of congressional districts in the 1960s.



partisan gerrymanderer redesigns districts in order to maximize the expected
number of seats in a partisan gerrymandering setup. They assume that the
uncertainty in the median voter’s political position is local and independent
across districts when the objective is expected number of seats. Assuming
that the average position of district median voters must stay the same af-
ter redistricting (a constant-average constraint), they show that the optimal
strategy is “packing” the opponents in losing districts, and “cracking” the rest
of voters evenly across the winning districts with substantial margins, so that
the party can win districts even in cases of negative shocks.!®!% Friedman
and Holden (2008), on the other hand, assume that a partisan gerrymanderer
has full freedom in allocating the population over a finite number of districts,
and that she maximizes the expected number of seats when there is only va-
lence uncertainty in median voters’ utilities (thus, there is no uncertainty in
the median voter’s political position). In this idealized situation, they find
that the optimal strategy is “slice-and-mix,” which is similar to our optimal
strategy under a different model. Thus, theoretically, the levels of freedom in
gerrymandering can affect the optimal policy.

In bipartisan gerrymandering, Gul and Pesendorfer (2010) extend Owen
and Grofman (1988) by introducing a continuum of districts and voters’ party
affiliations. Here, bipartisan gerrymandering means that the two parties own
their territories and redistrict exclusively within each territory. They assume
that each party leader can redistrict her party’s territory (the districts with
her party’s seats) independently, maximizing the probability of winning the
majority of seats.!” They show that the optimal policy is again a version of
“pack-and-crack.” However, these papers do not compare the optimal parti-
san and bipartisan gerrymandering policies. They also do not model spatial
competition in policy positions, and the elected representatives’ positions are
implicitly assumed to be the district median voters’ positions (Downsian com-
petition).

Our model is related to vote-buying models like the one in Dekel, Jackson,
and Wolinsky (2008), in which the political competition is deterministic and

They also consider the case where the partisan gerrymanderer maximizes the proba-
bility to win a working majority of seats for her party by assuming that the uncertainty is
global. They again get pack-and-crack policy as the optimal policy.

16The original “cracking” tactics are to create the maximum number of winning districts
with the smallest margins. In the traditional literature, some argue that gerrymandering will
increase political competition for this reason. In this paper, we use the “cracking” tactics
from Owen and Grofman (1988).

"They consider two feasibility constraints. The first is the constant mean of median
voters’ positions which is the same as the one in Owen and Grofman (1988). The second is
that the status quo needs to be a mean-preserved spread of a feasible redistricting plan.



modeled as an auction process with a discrete bidding increment. This paper
adopts the traditional continuous policy proposal and adds a gerrymandering
stage. Although our model seem to be related to the so-called probabilistic
voting model in, for example, Lindbeck and Weibull (1987) and Dixit and
Londregan (1996), the voting decision in our model is deterministic, as in
Dekel et al. (2008). Moreover, we introduce parties’ platform decisions in
addition to pork-barrel politics.'®

Although we take the positive view, researchers also analyze gerryman-
dering from a normative perspective. The focus is on how gerrymandering
affects the relation between seats and the vote shares won by a party, the
so-called “seat-vote curve.” Coate and Knight (2007) identify the socially op-
timal seat-vote curve and the conditions under which the optimal curve can
be implemented by a districting plan. With fixed and extreme parties’ policy
positions, they find that the optimal seat-vote is biased toward the party with
larger partisan population. However, Bracco (2013) shows that when parties
strategically choose their policy positions, the direction of the seat-vote curve
bias should be the opposite. Besley and Preston (2007) construct a model
similar to Coate and Knight’s and show the relation between the bias of the
seat-vote curve and parties’ policy choices. They further empirically test the
theory and the result shows that reducing the electoral bias can make parties’
strategies more moderate.

3 The Model

We consider a two-party (L and R) multidistrict model. There are many
(possibly infinite) localities in the state, each of which is considered the min-
imal unit in redistricting (a locality, e.g., a street block, cannot be divided
into smaller groups in redistricting). Let £ denote the set of those discrete
localities, each of which has population I_él The state has K districts, and
|£| is a multiple of K. To comply with the equal population requirement,
the party in power needs to create those K districts by combining %
localities in each one. Locality ¢ = 1,...,|£] has a voter distribution func-
tion Fy : (—o0,00) — [0, 1], where (—o00,00) is the one-dimensional ideology
(or political) spectrum and Fy(f) is non-decreasing with Fj(—oc) = 0 and

=N

18Dixit and Londregan (1998) propose a pork-barrel model with strategic ideological
policy decision based on their previous work. However, the ideology policy in their paper
is the equality-efficiency concern engendered by parties’ pork-barrel strategies. Therefore,
the ideology decision in their work is a consequence of pork-barrel politics, instead of an
independent policy dimension.



Fy(oc0) = 1. Ideology 6 < 0 is regarded as left, and # > 0 is right. A re-
districting plan = = {D*, ..., DX} with |D*| = n for all k = 1,..., K, is a
partition of £.1 The gerrymandering party’s leader chooses the optimal dis-
trict partition 7 from the set of all possible partitions I1.2° In each district
k, the voter distribution function F* is an average of distribution functions of
n localities: F*(0) = =3, Fu(6). District &’s median voter is denoted by
a% = 2*(D¥) € (—o0,00) with F*(z*) = 1. We assume the uniqueness of z*
in each districting plan. Although z* is solely determined by D*, we can write
2k = 2F(D* (7)) = a¥(x) for all k = 1,..., K with a slight abuse of notation.
Finally, let F(0) = ﬁ >, Fu(0) be the state population distribution, and let

Om, the state median voter, be determined by F(6,,) = %

We will consider two cases later: one with complete freedom in redistricting
as in Friedman and Holden (2008), and another is with limited ability in the
line as in Owen and Grofman (1988). Throughout the paper, we order localities
by the political positions of the median voter.

We also introduce uncertainty in the position of the median voter after
redistricting is done. At each election time, the current economic and social
state and the current party in power affect voters’ political positions in the
same direction: i.e., the voter distribution is shifted by common shocks. For-
mally, let y be a realization of the uncertain shock term. The median voter of
the actual election in district k is denoted by 2% = 2* + y. We assume that y
follows a probabilistic distribution function G : [—y,y] — [0,1], where g > 0
is the largest value of relative economic shock and G(0) = % We assume that
electoral competition occurs after y is realized: the resulting median voter’s
position after the shock realization is &*.

We model pork-barrel elections in a similar manner as Dixit and Londregan
(1996). A type 6 voter in district k evaluates party j according to the util-
ity function with two arguments: one is the policy position of the candidate
representing the corresponding party, 631? € R, and the other is the party’s pork-
barrel transfer tf € R,. We interpret this pork-barrel transfer as a promise of
local public good provision (measured by the amount of monetary spending) in
the case where the party’s candidate is elected. Formally, a voter € in district

Y9 A partition 7 of £ is a collection of subsets of £, {D*, ..., DK}, such that UK D¥ = £
and D* N D¥ = () for any distinct pair k and k'

20Tn reality, there are many restrictions on what can be done in a redistricting plan. For
example, a district is required to be connected geographically. Despite this complication,
our analysis can still be extended to cases with geographic restrictions by introducing the
set of admissible partitions IT* C II (see Puppe and Tasnadi, 2009)



k evaluates party j’s offer by

Us(j) =t — (10 = B51) (1)

where ¢(d) > 0 is a voter’s ideology cost function, which is increasing in the

distance between a candidate’s position and her own position. We assume

that ¢(-) is continuously differentiable, and satisfies ¢(0) = 0, ¢/(0) = 0, and

d(d) > 0 and ¢’(d) > 0 for all d > 0 (strictly increasing and strictly convex).
Therefore, voter 6 votes for party L if and only if

Us(L) = Up(R) = [e(10 — BRl) — (16 = BL])] +t} — t; > 0 (2)

k

Since the (after shock) median voter’s type in district k is 2% = 2 + y,

given 3% A% t% and t%, L wins in district k if and only if

Usr(L) = Up(R) = [c(|2" = BR]) — c(|2® = LN+t —th >0 (3)

Each party leader in the state (composed of these K districts) cares about
(i) the influence or status within her party based on the number of winning dis-
tricts in her state, (ii) the candidate’s policy position in each district, and (iii)
the district-specific pork-barrel spending. We assume that the party leader
prefers to win a district with a candidate whose position is closer to her own
ideal ideological position and with a smaller pork-barrel promise. The for-
mer is regarded as the “policy-motivation” in the literature. By formulating
the latter, we consider a situation where the leader bears some costs when
implementing the promised local public spending, as in the example of the
bargaining efforts needed to push for federal funding. To simplify the anal-
ysis, we assume that the negative utility by pork-barrel is measured by the
amount of money promised. We denote the ideal political positions of the
leaders of party L and R by 65 and g, respectively, with 0, < 0. Without
loss of generality, we set 8, = —0g, but we will stick to notations 6, and 0g
until the gerrymandering analysis starts to help the reader comprehend the
model more easily. Formally, by winning in district k, party j’s leader gets
utility

Vi=Q; =17 = C(|87 = 0y]),

where ; > 0 is the fixed payoff that party j’s leader obtains from each winning
district, and C(d) is a party leader’s ideology cost function with C(0) = 0,
C'(0) =0, C'(d) > 0 and C"(d) > 0 (strictly increasing and strictly convex).
This cost function C' can be different from the voter’s cost function ¢. Thus,



in general, party j’s payoff under policy position vector (a* t’?)JKE (LR} and

AN
winning districts being W; C {1, ..., K} is

ST@ -t (s —o))+ Y o (—c(|8F - o)) (4)

keW; k¢W;

where o € [0,1] is a parameter that discounts party j’s policy disutilities
from losing districts (policies are determined by the opponent party). Since
the performance of electoral equilibrium is not sensitive to o, we will assume
for the sake of simplicity that ¢ = 0 throughout the paper except for our
robustness discussion in the conclusion, where we show that all of our results
hold if o is small enough.?!

Assumption 1. (No Disutility from Losing Districts) o = 0.

An implicit assumption is that all districts are equal for party leaders.
This is justified because the national party elites are ultimately interested in
the number of seats their party gets, so the number of seats a state party
leader wins is important in recognizing her contribution to the national party.
Also, since we are considering a state’s gerrymandering problem, it may be
reasonable to assume that the benefit from winning a district does not depend
on which district is won.

We impose a simple sufficient condition that assures interior solutions for
both parties.

Assumption 2. (Relatively Strong Office Motivation) For all feasible
#, Q; 2 min{C(10; — B]) + (15 — 3¥))} holds for j = L, R.

Notice that if the party leader gets 0 (or some fixed) utility, she must offer a
pork-barrel promise equal to Q; —C(]6; —f|). Therefore, the median voter gets
utility Uzr = Q; — C(|60; — B|) — (|8 — 2*|) if party j wins. This assumption
means that the payoff from winning a district, @);, is large enough so that
for any ¥, both parties can offer the median voter positive utility, which is
a sufficient condition for the candidate selection problem to have an interior
solution. Note that the set of feasible 2* is not the entire real line. The model
only allows bounded finite median voters’ positions and a finite y. Therefore,
there must exist a (); to satisfy this assumption. Moreover, the implication of
this assumption is that it guarantees that in equilibrium both parties promise
positive pork-barrels. We will see this more clearly in the next section.

21In Appendix C, we relax this assumption by assuming the losing payoff is Vj’“ =

—oC(|BF —0;]) where o € [0,1] is a preference parameter for the policy implemented by the
other party. Our main results hold if ¢ is not too large. See details in Appendix C.

10



The state redistricting may be decided by one or both parties. It is straight-
forward that, in the first case, one party leader chooses 7. In the later one, we
assume that K, districts belong to L and the remaining Kz = K — K, districts
belong to R. Without loss of generality, we assume L chooses {D*, ..., DXt}
and R chooses { DXLl . DX} Stage 0 applies only to bipartisan gerryman-
dering. We will discuss the bipartisan case in more detail in a later section.

The timing of the game is as follows:??

0. Two parties L and R swap localities in their territories if they can agree

(bipartisan case only).

1. One party, say L, (or each party in the bipartisan case) chooses a redis-
tricting plan m = (D), (or m, = (D*)4 and mp = (D*)I . ), and
thus a median voter vector (z?, ..., 2%, ..., 2

2. The common shock y* € [—7, 7] is realized.

3. Given the districting plan in stage 1 and the realized median voter £¥ =

¥ + y in stage 2, party leaders L and R simultaneously choose local
policy positions and pork-barrel promises (8%, t5)E | and (8%, th)K |,
respectively.

4. All voters vote sincerely. The winning party is committed to its policy
position and its pork-barrel promise in each district £ = 1,..., K. All
payoffs are realized.

We will employ weakly undominated subgame perfect Nash equi-
librium as the solution concept. We require that in stage 3, party leaders
play weakly undominated strategies so that the losing party leader does not
make cheap promises to the district median voters.?> We will call a weakly
undominated subgame perfect Nash equilibrium simply an equilibrium.

22We can separate stage 3 into two substages: policy position choices followed by pork-
barrel promises. If we do, the loser of a district k will get zero payoff in every subgame,
and thus the loser becomes indifferent among policy positions. Thus, we need equilibrium
refinement to predict the same allocation. By assuming that the loser party chooses the
policy position that minimizes the opponent party leader’s payoff, we can obtain exactly
the same allocation in SPNE.

23This game is the first price auction under complete information. In general, there is a
continuum of pure strategy equilibria. The losing party does not suffer from cheap promises,
since she gets zero utility in losing districts anyway. The winning party needs to match the
offer as long as she can get a positive payoff by doing so. By demanding that players play
weakly undominated strategies, we can eliminate these unreasonable equilibria. We can
also justify our equilibrium refinement by a mixed strategy equilibrium concept. There is a

11



3.1 Stage 3: Electoral Competition with Pork-Barrel
Politics

We solve the equilibria of the game by backward induction. We start with stage
3, knowing that voters vote sincerely in stage 4. Notice that the key player is
the median voter in the voting stage. Given that the median voter is decisive,
the median voter is indifferent between two candidates’ policy positions in any
equilibrium of stage 3. However, the median voter always chooses the deeper
pocket candidate, i.e., the candidate with higher payoff. This is because the
candidate with the higher payoff can pay more to change the voter’s mind if
the voter does not vote for him with probability 1.

Thus, when the leader of winning party j makes her policy decisions in
district k& in equilibrium, she needs to match i’s offer in terms of median
voter’s utility. Without loss of generality, we consider the case where party L
wins. Formally, the party leader L’s problem is described by

max{Qr —tj, — C(|0r — B[|)}
BEtE
subject to t§ — c(|2* — B5|) > UE, t§ >0, and (5)
Qu—t, = C(|0 = Bi[) 2 0,

where UF is the median voter’s utility level from R’s offer. Notice that t¥ >0
and Q; —t§ — C(|6, — B%|) = 0 may or may not be binding while t§ — c(|&* —
B%]) > U% must be binding. The solution for this maximization problem is
straightforward. Define Bj (2*,6;) by the following equation

(2% — B;(a%,0;))) = C'(|0; — B; (3, 0;))). (6)

Notice that (5) is simply the first-order condition of optimization problem (4)
after substituting t¥ = ¢(|2* — B¥]) + UL into the objective function. Also, the
optimal policy is 85" = BL(#%,0,) when —c(|2F — B.(2%,0,)]) < UE. That is,
it is not enough for the winning party to win just by using the policy platform.
In this case, it is clear that the optimal pork-barrel promise is

ti (Ug) = Uk + e(|2* — Br(2",60))).

Although it may appear unclear at first whether —c(|2* — 8L, (2%, 60.)|) < UE
holds or not, it turns out this condition always holds. This is because a similar

unique mixed strategy equilibrium in which the winning party plays a pure strategy while
the losing party plays a mixed strategy equilibrium. The outcome of this mixed strategy
equilibrium coincides with the weakly undominated Nash equilibrium in pure strategies.

12



optimization problem applies for the losing party (and Assumption 2 assures
that the winning party’s budget is not binding).

It is obvious that the winning party’s pork-barrel promise is related to what
the losing party proposes in equilibrium. The following lemma shows that the
losing party cannot lose with a nonzero surplus.

Lemma 1. Suppose R is the losing party in district k. In equilibrium, (1) the
median voter is indifferent between L and R and votes for L with probability 1.
(2) R proposes the policy pair (8% ,t%), which is the solution to the following
problem

max Uzr (R) = th, — c(|2% — )

Btk

subject to t% > 0 and Qp — % — C(‘@R — BH) > 0.

That 1is, the losing party leader offers a policy position and a pork-barrel
promise that leaves herself zero surplus in equilibrium, and

Z* = BR('@ka QR)

tk* = QR - C( Or — BR(:%]{’HR) )

Moreover, this policy pair is the best she can offer for the realized median voter
k.

The intuition of this lemma is straightforward. If the losing party R does
not offer the median voter (35, t%), then the winning party L will provide the
median voter the same utility level, and the losing party R can always offer the
median voter something better than her original offer to win the district. This
cannot happen in equilibrium. Therefore, the equilibrium strategy is 8% =
Br(i*,0r) and th = Qr — C(|0g — BY|) for the losing party R. The policy
pair provides the median voter with the utility UX" = Qr — C’(‘HR - B8] -
c(|zF — BE]). Using this UE", one can solve the winning party’s equilibrium
pork-barrel promise t§ = Qr — C(|0r — B |) — c(|2* — BE|) + c(|* — B5)).

One thing left to decide is which party should be the winning party. Notice
that, by Lemma 1, the losing party always proposes the best offer by depleting
all of her surplus. Therefore, the party that can potentially provide the median
voter with a higher utility level is the winner. Notice that j party’s pork-
barrel promise is bounded above by the party leader’s payoff evaluated at B]’-“*
(otherwise, the leader gets a negative utility):

Q; — C(|0; — B;(3*,0)))).
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Substituting this into the median voter’s utility, we obtain

Wk = Qr = C(|6r — Brli*, 0)|) - (1" = Bali", 0m))).

Similarly, for party L, we obtain
Wf = QL — C(‘GL - BL(@k, 0L)‘> - C(lfck - BL(fk, 0r)l),

where Wk and WF are the (potential) maximum utilities that the median voter
gets from the corresponding party’s offer. Therefore, party L wins in the third
stage if and only if

Qr—Qr>
e[ = Bul) + C([6n = Bu])] = [e13" = ) + C(|9r = Be])] (7
If Qr = Qr, then L wins if and only if

‘GL — Li'k| < ‘GR — ZCk

(8)
Summarizing the above, we have the following results in stages 3 and 4.

Lemma 2. Suppose that Assumption 2 is satisfied. Define Bj(i:k,Q) by (5).
We have

1. For the losing party 7, the optimal choice is ﬁk B (z*,6,) which lies
in the interval (i*,0;) (or (6;,3%)) and t§" = Q; — C(|6; —ﬁk )

2. For the winning party i, the optimal choice is (¥ = Bi(:)ek,el-), which
lies in the interval (&%,0;) (or (0;,2%)), and tF" = Q; — C(|0; — BY'|) —
c(|z® = Bf7[) + e(|2* = B]).

dBi e ko

3. Irrespective of @* 2 0;, we have g5 = ol where ¢ = (|2

Bi(2*.6,)]) and C7 = C"(|6;, — B;(&*,0,)]).

4. Party © wins in the kth district if and only if

)7
)+ (| = Bi(@*,6:)).

Qi — Q; > C(|0; — 2*|) — C(|g; — 2"

92 - Bz(j;k7 0%)

where C(|9i — ik

) = C(
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The above lemma directly implies that if party ¢ wins, party i’s leader’s
realized payoff from district k given 2% = 2% + y is written as:

VE(E,0,,05) = (Qi — Q;) — (C(|6; — )

Using Vk( % 0;,0;), when party ¢ wins in district & the expected payoff from
district k£ for the party leader is written as:

) —c(lo; — &

~ Y ~
BV (a*,0,,0;) = / max {Vzk(ﬂck +9,0:,0;), 0} 9(y)dy
-y
Note that due to the additive separability of the payoff function, party leader
i’s expected payoff under partition 7 (district median voters’ profile (:z:"C (W))szl))

1s written as

B (v, 0, 6;) /Zmafﬂ £(7) + 1,6:,65),0 f g y)dy

ykl

I
M

/_mam{f/( ()+y,9i,9j)>0}9(y)dy

k=1

Evk(xk(ﬂ-)a 917 03)

(2

[
[M] >

i

1

Since we assume that 6, = —0r without loss of generality, we can prove the
following properties.?*

Lemma 3. The following properties are satisfied for Vk( k0;,0;):

1. The realized winning payoff for party L (R), f/Lk ( \N/]g ) is decreasing

(increasing) in "

2. The realized winning payoff for party 1, \N/Z»k, is strictly convex in &, if
C"(-) >0 and "(:) >0, and Qr = Qrg.
The next lemma is presented in preparation for the Stage 2 analysis.

Lemma 4. The following properties are satisfied for E‘Zk(xk, 0;,0;):

24The readers may feel the assumption that the third derivatives of the cost functions
are positive is rather strong. We use this assumption in some of our formal results, but we
show that it can be relaxed in some situations (see Example 1 below).
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1. The expected winning payoff for party L (R), in location k, EV} (Ef/}éf)

is decreasing (increasing) in x*.

2. The expected winning payoff for party L (R) in location k, EVF (EVE)
is decreasing (increasing) and strictly conver in x*, if C"(-) > 0 and

¢"(-) > 0, and Q1 = Q.

3. The expected winning payoff for party L (R), EV;, (EVg ) is decreasing
(increasing) and strictly convez, if C"(-) >0 and () >0, and Qr =

Qr-

We are now ready to discuss the setup of partisan and bipartisan gerry-
mandering problems.

3.2 The Partisan Gerrymandering Problem

Without loss of generality, we formalize the partisan gerrymandering party
leader’s optimization problem as the case where K; = K and L is in charge
of redistricting. Lemma 2 shows that 2% = 2*(7) is the sufficient statistic
to determine the outcome of the kth district. Notice that the indirect utility
of L, VF(i*,6,,05), is relevant only when party L wins in district k. The
choice of m = (Dl, ...,DK) affects the party leader L’s payoff EV, through
(z1(DY), ...,a®(DX)) represented by its indirect utility VF(z*(7) + y,01,0r)
conditional on L winning.

From now on, we suppress #;, and 6 in indirect utilities f/f, EYN/L’“7 and
EV;. We can rewrite the party leader L’s gerrymandering choice to be the
result of the following maximization problem

T € arg max EVy(r)
The SPNE of this game is (7*, (85 ) K (B8 ), (5K |, (5K ).

3.3 The Bipartisan Gerrymandering Problem

Since bipartisan gerrymandering requires negotiation between the two parties,
there can be many possible formulations. As mentioned before, one way is to
assume that each party has preexisting “territory” as in Gul and Pesendorfer
(2010).

In this paper, we will take this slightly further. We will assume that,
before redistricting, parties L and R can rearrange localities that belong to
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{1,..., K} and {K} +1,..., K} by negotiating which localities belong to their
own territory. This is because it may be beneficial for both parties to swap
some of the localities in their territories, if the original allocation of localities
in each district is arbitrary.

We will model these negotiations in the simplest manner. If both parties
can (strictly) Pareto-improve their payoffs by swapping localities, then they
will agree to do so in order to achieve the maximal improvement. With this
formulation, we can show that bipartisan gerrymandering generates the most
polarized districts under reasonably mild assumptions (Propositions 2 and 3)
when party leaders have complete freedom in gerrymandering, and that bipar-
tisan gerrymandering always generates exactly the same “order-and-partition”
allocation as partisan gerrymandering does (Proposition 5) when it is subject
to the “constant-average-constraint,” as in the spirit of Owen and Grofman

(1988).

4 Gerrymandering with Complete Freedom

As alimit case, let us consider the ideal situation for the gerrymanderer (Fried-
man and Holden, 2008). This situation occurs when there is a large num-
ber of infinitesimal localities with politically homogeneous population: for
all position x € (—o00,00), there are localities ¢s with Fy(z — §) = 0 and
Fy(x +6) = 1/|L] for a small § > 0.2 That is, the gerrymanderer can freely
create any kind of population distributions for K districts as long as they
sum up to the total population distribution. We ask what strategy the ger-
rymanderer should take. By Lemma 4-1, she is better off by making the (ex
ante) median voter’s allocation as far from the other party leader’s position
as possible. This strategy increases the winning payoff and the probability
of winning the district. Thus, the gerrymanderer tries to create the furthest
district structure from the opponent party leader’s position.

4.1 Partisan Gerrymandering

In partisan gerrymandering cases, the party leader in charge of gerrymander-
ing will try to make district medians as far away as possible from the other

25To be exact, we can assume that there is a finite number of political positions © =
{61, ...,0M} such that for all £, Fy(0) = ﬁ for some 6 € ©: i.e., population is homogenous

in each locality, and that n = % is an odd number. Then, we will have well defined z*

for any D*. We use a continuous approach in order to make the comparison with Friedman
and Holden (2008) easier.
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party leader’s position.?> Without loss of generality, we assume that party

L is in charge of gerrymandering. To create the most extreme district, its
median voter position z} should satisfy F(z}) = 55 (the most extreme dis-
trict achievable with population %) Although the remaining half population
to the right of #1 can be anything in district 1, it would be a good idea to
waste the other party’s strong supporters by combining them. Thus, party
L’s leader will create district 1 by combining sets {# <z} : F(z}) = 5= } and
{6 >z} :1—F(z) = 5z} Strictly speaking, in this case the median voter
can be anyone in the set [z}, 2}], but by making the measure of the former
set slightly higher than the latter, we can pin down the median voter’s posi-
tion at xl. Of course, this is not exactly an optimal policy, but we use this
approach in order to compare our results with those in Friedman and Holden
(2008).%" Similarly, we create districts 2, ..., K sequentially. Let z¥ be such
that F(2f) = 5 for all k =1,..., K, and let 2§ be such that 1 — F(z}) = 5.
We have

—oco=2 <ol <. <aF =K< <2l <2 =00

We call this redistricting plan a party-L-slice-and-mix policy, which is pro-
posed in Friedman and Holden (2008). Under the slice-and-mix policy, the
resulting district median voter allocation is z; = (z},...,2%) with 2% is such
that F(z}) = S for each k = 1,..., K. We will show that this is the optimal
policy for the leader of party L. Figure 1 is an example of party-L-slice-and-
mix strategy when K = 4. District £ = 1,...,4 is composed of two slices
numbered by k. District median voter allocation is z; = (21, ..., 21).

The following result is straightforward: in order for z* to be the median
voter in district k = 1, ..., K, ¥ must satisfy F(z*) > ;& and 1 — F(2¥) > k.
(We define 2 = (zk, ..., %) in a perfectly symmetric way.)

Lemma 5. There is no (ex ante) median voter allocation x = (x!, ..., ™) with
vl < 2% < < 2F such that o* < 2% for any k = 1,..., K. Symmetrically,
there is no median voter allocation x = (xl, ,xK) with > 22 > ... > X

such that x* > x% for any k=1, ..., K.

26 As long as there are positive winning probabilities in all districts (if ¢ is large enough),
this is true. If not, party L’s leader may need to create unwinnable districts, but she would
be indifferent as to how to draw lines for these districts. Even in this case, however, the
slice-and-mix below is one of the optimal strategies.

27Tf we use the exactly finite setup described in footnote 25, then we can have a perfectly
consistent model with a well-behaved optimal strategy with exact district median voters.
We thank the associate editor for pointing this out. We decided to stick to a continuum
approximation, just to make the comparison with Friedman and Holden (2008) easier.
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Figure 1: Party-L-slice-and-mix when K = 4.

Clearly, these district median voter allocations x; and xp are the most
biased district median voter allocations toward the left and the right, respec-
tively. Under z, redistricting the first and the second districts does not make
two districts with intermediate medians. With this lemma and Lemma 4-1,
we derive the following result.

Proposition 1. Suppose that the gerrymanderer can create districts with
complete freedom and that party L (R) is in charge of gerrymandering. Then
the party-L ( R )-slice-and-mix policy is an optimal gerrymandering policy. The
resulting district median voter allocation in district k is approximately z%
(%),

Another interesting observation from this proposition is that even when
Q. = Qg, if party L is the majority party in terms of the state population
(that is 6,, < 0 where F(6,,) = 3 ), then it can win all seats with a probability
of 50% or higher (z% < 0). Also, one can observe that the median of z%’s is
around 01 where F (9i> = 1. Therefore, complete freedom in gerrymandering
means the minority’s impact on the election will be completely diluted. How-
ever, it is rare in US politics for one party to monopolize all districts, partly
because of the presence of majority-minority district requirements (see Shotts,
2001).2® The majority-minority requirement forces the gerrymanderer to seek
the second-best districting plan as a result even when she has complete free-

281n fact, even though either one of the two parties must be the majority in a state, the
majority party usually does not win all districts. This can be attributed to Section 2 of
the Voting Rights Act (accompanied by other United States Supreme Court cases), which
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dom. It is worthwhile to note that the slice-and-mix strategy is identical to the
optimal policy analyzed in Friedman and Holden (2008), although Friedman
and Holden do not include competition with political positions nor pork-barrel
politics.

4.2 Bipartisan Gerrymandering

The preexisting territories of parties L and R are the districts they won in
the previous election, described by K and Kr = K — K, respectively, and
their territory-wise population distributions are described by F(6) and F r(0),
respectively, with (i) F'(0) = F1(6)+Fr(0) for all 6, (ii) FiL(co) = Ky X 1, and
(iii) Fr(oo) = Kg x %% Through minor abuse of notation, let 29 = oo and

2R
0z} be such that Fy(zf) = &, and let z} be such that Fy(co) — Fp(2§) = =
for k =1, ..., K, by applying the same method for territories as in the previous
section. Similarly, let z% = —oco and 2§, be such that Fp(2f) = 5L and let
%, be such that Fr(oo) — Fr(azh) = 55 for k= K, +1,..., K.

We call this bipartisan policy a (K L, K r)-territory-wise-slice-and-mix

policy, and the resulting median voter profile is (x},... xf%xﬁ”l, LB,
By Lemma 5 again, (ngH, ..., 78) is the K right-most median voter profile,

and (x}, ..., x5 ") is the K, left-most median voter profile given their territories.
Figure 3 is an example of (K, Kg)-bipartisan-slice-and-mix policy when K =
Kp = 2 and @ = 6,,. In this case, both parties use slice-and-mix to create
(z},2%) and (2%, xR) Thus, this is one of the most polarized district median
voter allocations, and is very different from a partisan gerrymandering median
voter allocation, which has some more competitive districts. Thus, by the same
logic as in Proposition 1, we have the following proposition since territorial
redistricting is done independently.

Proposition 2. Suppose that the both parties can create districts indepen-
dently and with complete freedom for their territories. Then the (K, Kg)-
territory—wise-slice-and-mix policy is an optimal gerrymandering policy. The

resulting district median voter allocation is (x%)1r, and (TR Ak, 11

Note that if party R has some significantly left-oriented population in its
territory in the sense of Fgr(xh?) > 0, party L may benefit by getting this
group of voters in its territory, since it can move at least one of its districts’
median voters to the left. Recall that party L is better off making the me-
dian voter’s allocation as far from party R’s position as possible by Lemmas

essentially prevents the minority votes from being diluted in the voting process in a manner
similar as our slice-and-mix strategy.
29This is the setup adopted by Gul and Pesendorfer (2010).
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Figure 2: fr(0) and fr(f) are territory-wise locality distribution densities.
Given these distributions, L applies slice-and-mix strategy, and x} and z% are
the median voters in district 1 and 2. Notice that Fr(x%) (represented by the
shadowed area) allows L to create more extreme median voters in districts 1
and 2. The same incentive exists for R in this example. So, swapping localities
is Pareto-improving.

3-1 and 4-1. See Figure 2 for an example. The same is true for party R if
Fr(00) — Fr(zp**) > 0.3° If uncertainty § is small, then there is no un-
certainty in district elections, and bipartisan gerrymandering benefits from
swapping these localities. The following proposition illustrates this mutually
beneficial negotiation between the two parties since party leaders do not care
about the opponent party’s policy positions in losing districts.

Proposition 3. Suppose that the resulting district median voter allocation

is approzimately (z%)r and (2R 1k, 11 under the (K, Kg)-territory-wise-

slice-and-miz policy. Suppose that (i) Fr(zh") > 0 and Fy(co0)— Fp(zk"™") >
0 hold, and (ii) § satisfies § < min{‘xfﬂ, x§L+1|}. Then, the two parties

benefit from swapping these localities in a bipartisan negotiation between them.

Condition (ii) says that party L wins in districts k& = 1, ..., K, and party
R wins in districts & = Kpq,..., K with certainty. Then, both parties are
better off having more extreme polarizations in their winning districts, as
long as parties do not care about policies in losing districts. If this swapping
incentive exists, both parties would continue to do so until Fr(zh*) = 0 and

30Note that the median voters in created districts are determined only by Fy, in interval
(=00, zE%) and Fj in interval (xg’“"’l, 00). The rest of the Fy, and Fg distributions do not
make any difference under slice-and-mix.
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Figure 3: (Kp, Kg)-slice-and-mix when K = Kp = 2.

Fr(00) — Fr(xh*™) = 0. Figure 3 depicts an example of the equilibrium
bipartisan gerrymandering in this situation.

5 Gerrymandering with Limited Freedom

In this section, we will explore how the “slice-and-mix” result would be mod-
ified if we drop the “complete freedom” in gerrymandering. In the spirit of
Owen and Grofman (1988) and Gul and Pesendorfer (2010), we say a gerry-
mandering problem is subject to a constant-average-constraint if the resulting
(x1(7), ..., 2 (7)) must satisfy

Zle ‘rk(,ﬂ) — ﬂ (9)
K

for some fixed fi. Owen and Grofman (1988) analyzed the optimal partisan
gerrymandering policy by imposing the same constraint. They obtained the fa-
mous pack-and-crack result when the office-motivated party leader maximizes

the number of seats under this constraint.
To apply the above constraint to our locality setup, we will focus on the
case where the political position is normally distributed in all localities. With
normality, any feasible redistricting plan satisfies exactly this constraint (8)
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(the proof is obvious when we note that the median is equivalent to the mean
under normality).

Lemma 6. Suppose that the voter distribution in each locality is normally
distributed, i.e., Fy ~ N(pg, 04) for each £ € L. Then, the median of district

k 1is I
k —
¥ (m) = - Z Lp-
e Dk ()
K l'k s —
Moreover, for all w € 11, % =0, = [

With this lemma, we can identify the optimal gerrymandering strategy for
a special case. Starting from a district partition 7 with h, k € {1,..., K} and
2*(m) < 2" (), consider swapping a pair of localities £ € D*(x) and £ € D"(r)
with p; < 2¥(7) < 2(7) < pe. Let the outcome of this redistricting be 7: i.e.
D¥(x') = D¥(m) U {{}\{¢}, D*(x') = D"(x) U {{}\{{}, and D*(x) = D*(n
for all k # k,h. From the above formula, it is clear that z*(x) < z*(r)
o(m) < 2"(7').

Which plan should the party leader (say, party L’s leader) choose between
7 and 7?7 The answer depends on the shape of EV;. It is obvious that if
EV; is a convex function in the ex ante median voter’s position z*, the party
leader would prefer 7’ to 7 as long as k € K. As we have seen in Lemma
4-3, if the third derivatives of cost functions are positive, party leaders have
convex expected payoff functions, and they prefer more heterogenous districts
in median voters’ positions to homogenous districts.3!

In this case, it is easy to characterize the optimal partisan gerrymandering
policy with limited freedom. Let a district partition 7 = {D(rx), ..., DX (m)}
such that forallk = 1,..., K’ and all h = 2, ..., K with k < h, all £ € D*(r) and
{ € D"(x), iy < pz holds, where K’ is such that for all districts k > K’, there
is absolutely no chance for party L to win: %" (7) =7 < 0 but 2*(7) —g > 0 for
all k > K’. We call this allocation 7 an order-and-partition gerrymandering
policy. This policy packs the most opposing localities in unwinnable districts,
and partitions the rest of the localities into consecutive locality districts. By
Lemma 4-2, we have the following result.

~—

IN

Proposition 4. Suppose that the voter distribution is normal in each locality
and Qr, = Qr. In addition, suppose that C"'(-) > 0 and "(-) > 0 hold. Then,

the optimal partisan gerrymandering policy is order-and-partition (:Z‘k),llel with

packing in the unwinnable districts. In particular, (z¥)5_, is one of the optimal

31The relevant case is h € K. If h ¢ K[, it is obvious that party L prefers 7’ to .
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partisan gerrymandering policies. If K' = K, the unique optimal policy is

order-and-partition (z*)K_ .

Thus, cracking is not necessarily a good strategy here, unlike in Owen and
Grofman (1988). The difference between the current paper and theirs is that
our party leaders are also policy-motivated.?> What about the case where
C"(-) > 0 and ¢”(-) > 0 do not hold? Actually, we can show that V* is
concave if C"(-) < 0 and ¢”(-) < 0, so it appears that pack-and-crack is the
way to go. Indeed, it is true for the deterministic case (g = 0) or for cases
where g is small enough. However, even if the third derivatives are negative,
EVL’“ can be convex, as is seen in the following example (see also Appendix B).

Example 1. We introduce a convenient special ideology cost function such
that both voters’ and party leaders’ cost functions have common constant
elasticity. Let C(d) = a®d” and ¢(d) = a°d”, where v > 1, a® > 0, and a > 0
are parameters. In this case, both party leaders and voters have the same
elasticity that is constant «. This conveniently yields the following folrmula.
Denote A = A(a®, a®) = a“ (1%)7 +af (lj%a)ﬂ{ > 0 where a = (‘Z—C> T We
can choose a® and a® to set A = 1 for each 7: then we have C(d) = Ad" = d".
In this case, V} is concave (convex) in &% if v < 2 (y > 2). Suppose that
Or = —1, 0g = 1 (thus L wins if and only if ¥ < 0), and g(y) = 5 if and
only if y € [~%, %] (uniform distribution). Also, suppose that all possible z*

1
are in [—1,1] and (%) 7 > 2+ 7 holds to satisfy Assumption 2. If § > 1, there
is always a chance to win the election: we have z*¥ —j < 0 and 2* +4 > 0. In
this case,

EV} = 2lg[(1 —aF g o (—1—2F ) > 0.

Forally > 1, (1—2*+y)"'—(=1—2%+g)"~! > 0 holds. Thus, the expected
utility is convex in x*, even if v < 2 or C”(d) < 0. This example shows
that even without positive third derivatives, the order-and-partition strategy
is optimal for the constrained case with the constant average constraint.[]

We now set our sights on bipartisan gerrymandering. In Section 4.2, we
argue that when ¢ is not large enough to change the district winners, parties

32Without the policy motivation, the payoff function is only related to winning prob-
ability, and pack-and-crack is optimal under a mild assumption on g. See also Gul and
Pesendorfer (2010).
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have incentives to swap localities as long as the swap can increase the ability
of both parties to create extreme districts in the redistricting stage. A similar
idea applies to the constrained gerrymandering case. Suppose that EV* is
convex (it is assured if the third derivatives of cost functions are positive).
Suppose also that there exist ¢ and ¢ with ¢ € D¥, ¢ € D", and e > figr, and
that districts £ and h belong to parties L and R, respectively. By swapping ¢
and ¢, parties L and R can make z* and 2" decrease and increase by the same
magnitude, respectively. This is strictly Pareto-improving for both parties.
Therefore, the two parties should agree to form consecutive territories in stage
0.

Then, in stage 1, both party leaders adopt order-and-partition in their own
consecutive territory; it does not matter whether redistricting is conducted by
a partisan or bipartisan committee. This observation shows that for the ger-
rymandering problem with limited freedom, bipartisan gerrymandering does
not create a more polarized allocation than partisan gerrymandering, and in-
cumbents’ re-election rates would be the same.

Proposition 5. Suppose that the voter distribution is normal in each locality

and Qr = Qr. In addition, suppose that C"'(-) > 0 and ¢"'(-) > 0 hold. Then,
the optimal bipartisan gerrymandering policy is order-and-partition (zF)E_

which 1s identical to the partisan policy.

The constant average constraint forbids a gerrymanderer from diluting sup-
porters of the other party by mixing in his own supporters. Notice that while
gerrymanderer L can pull the median of district medians to 1 in the complete
freedom case, the median of medians has to remain as 6,,, the population me-
dian, when the constant average constraint applies. Propositions 4 and 5 echo
Friedman and Holden (2009), in which the insignificant difference between par-
tisan and bipartisan gerrymandering is a possible consequence of the Voting
Rights Act of 1982, which significantly limits the gerrymanderer’s ability to
dilute votes.

6 Conclusion

In this paper, we propose a gerrymandering model in which candidates com-
pete with their policy positions and pork-barrel politics, and analyze the rela-
tionship between gerrymandering and policy polarizations. In the context of
gerrymandering, this is the first paper to introduce policy motivations as well
as office motivations. The model’s tractability allows us to compare the perfor-
mance of partisan and bipartisan gerrymandering under different constraints.
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We show that gerrymandering may play some role in polarizing candidates’
policy positions.

In the main text, we assumed that party leaders do not care about policies
chosen by the opponent in their losing districts. Although this assumption
may make sense in the context of gerrymandering, it would be interesting to
see how our results are affected by weakening this assumption, since many
models in electoral competition assume that losing candidates also care about
policy realizations, as in a seminal paper by Wittman (1983). In Appendix
C, we conduct a robustness check for analyzing the case of o > 0 in (4).
Although election equilibria are affected by this modification, the modifications
are just parallel reductions of equilibrium winning payoffs. This is because
losing payoffs are changed from zero to the disutility levels from the opponent
parties’ policy choices. When o is large, both Lemma 4.1 and Lemmas 4.2
and 4.3 can be violated, which can cause problems for our results. However,
if o is not large, then all the results including Example 1 hold. In numerical
calculations, it seems safe to say that our results hold for significantly wide
range of o (see Appendix C).

There are some potentially interesting yet difficult avenues for further re-
search. First, one may want to introduce uncertainty in election results (e.g.,
uncertainty in the median voter’s position after policy proposal) into our
model. If uncertainty is infinitesimal (e.g., if the gerrymander can only observe
that the median voter’s position belongs to the interval [#F — €, 2% + €] for ¢
being a (small) preference perturbation) and if the gerrymanderer has com-
plete freedom in redistricting, the slice-and-mix strategy may still be optimal,
a la Friedman and Holden (2008). However, with significant uncertainty in
median voters’ positions, as in Gul and Pesendorfer (2010), we cannot predict
what will happen.

Second, in this paper we concentrated on one type of pork-barrel politics:
candidates’ “promise” transfers contingent on their winning of the districts.
These kinds of promises are different from campaign expenditures. In the lat-
ter case, even if a candidate loses in a district, the spent campaign expenditure
will not come back (an all-pay auction). In some circumstances, such a model
may be more realistic if there is uncertainty in the election results. How-
ever, introducing uncertainty in election results is not trivial, as we mentioned
before. These issues are left for future research.
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Appendix A: Proofs

Proof of Lemma 1. First, by Assumption 2, the non-negativity constraint
of t% is not needed. Second, in any equilibrium, the median voter is indifferent
to L and R’s proposals and votes for the candidate who yields higher payoffs.
Suppose not, without loss of generality, let Q; — th — C(|8% — 0L|) > Qr —
th, — C(|B% — Or|) = 0 and the median voter votes for L with probability less
than 1. Then, L can win for sure by promise t¥ + e. Then, voting for L with
probability less than 1 cannot be an equilibrium.

Then, there are three cases: if R loses with Qr — th, — C(|0r — B |) > 0
and its offer gives the median voter utility equal to U in equilibrium, it must
be that L wins with positive indirect utility and also provides the median voter
with the utility level U. However, this means that R can win the election by
providing, say, ¢ more pork-barrel promises. This contradicts the equilibrium
condition. The second case is that @ — t§; — C(|0r — 8% |) = 0 but U« (R) is
not maximized. In this case, there must exist some points (¢', 5') that satisfy
Q—t —C(|0gr — p'|) = 0, but the pair provides the median voter strictly
higher utility. In this case, any point on the segment connecting (¢, 5') and
(th, B%) is strictly better off for both R and the median voter z* by the strict
convexity of the preferences. Again, this contradicts the equilibrium condition.
The third case, Q —t% — C’(|QR — B ‘) < 0, cannot happen, since the strategy
that generates a negative payoff is a weakly dominated strategy for R’s leader.
O

Proof of Lemma 2. We only need to prove Lemma 2-3. We consider two

cases: (Case-1) 2* > 6;, and (Case-2) % < 0;.
(Case-1): In this case, 5; = 3(2*,6;) is determined implicitly by the first-
order condition

C/(Bi —0;) = C,(fk - Bz)

Totally differentiating with respect to ¥ and B:, we obtain
(C// + C//)dBi _ C”d!i’k

(Case-2): In this case, B, =2 (2%, 0;) is determined implicitly by the first-
order condition

C'(0; — Bz) = C’(Bi - i’k)

Totally differentiating with respect to ¥ and Bi, we obtain

(C// + C//)dBi _ c’/dik
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Thus, we get the same condition either way. We have completed the proof.[]

Proof of Lemma 3. We will focus on the case of i = L. When i = R, we
can apply the same procedure. We will first show the following claim.

C// C//

Claim. C! = ¢, when §; < &%, C/ = —c} when 6; > &* and C' = T where
Ci=C(|* = b)), e = e (|#* = B (#%,0:)|), and € = € (| (@ ,i)—ei).
Proof of Claim. So, there are two cases: (Case-a) 6; < #*, and (Case-b)
81' > ",

(Case-a): Taking the first derivative, we have

C'(iF —0,) = C"(B; — ei)% + (& - By - %) = (" = By),

Here, we used the first-order condition C’ = ¢/, which must hold at the opti-
mum. Taking the second-order derivative, we have

C" (3% —0;) = (2% — B;) (1 — Sg;)
= @ - ) (1 (b ) )
(= )+ O~ 6)
(& — 5)C" (5 — 6,)
(= 3) + C"(B; — 0,)
(Case-b): Taking the first-order derivative, we have

az az /A ~
e R )

C'(0; — &%) = —C'(6; Bz)
Taking the second-order derivative, we have

0B
ik

R ' (3k 2
— C”(ﬁi o :i“k) (1 . ( 51) )
(& — Bi) + C"(0; — Bi)
(B — *)C" (6 — ﬁz‘)
¢(B; — &%) + C"(6; — By)
We have completed the proof of the Claim.H

C"(6, — %) = —" (B — #*) (o — 1)

28



We start with Lemma 3-1. First, we consider (Case-1): % € (6;,0R),

then V} = (Q — Qg) — (C(zF +y—0,) —C(6r — z* — y)). Thus, we have
d~k
d—g,f; (€@ — 0,) + C'(0r — i) <.

This implies that V}/* is decreasing in Z*. In the case of VR, d £ >0 and VE is
increasing in 2.

There are two more cases: (Case-2) 2% < 0, and (Case-3) 2% > 0.
(Case-2): ﬁ =C'(0, — &%) — C'(0r — #*) < 0, since C"(d) > 0. Thus, V} is
decreasing 1n~xk
(Case-3): %L: — —C'(2% — 01) 4 C'(&* — ) < 0, since C"(d) > 0. Thus, V£
is decreasing in 2*.

For the convexity, again we have three cases: (Case-1) #* € (0,0R),
(Case-2) i* < 0, and (Case-3) &% > fg. In each case, we have the same
second-order derivatives:

(Case-1): LYL — —¢"(3% — ;) + C"(0p — Ak)

d(:pk )

(Case-2): dxg = /(0 — %) —C'(Or—2*) and 3k = —C"(0, — %) +C" (O —
k). ]
(Case-3): Z‘g = —C'(* — 0r) + C'(2* — OR) and xk; —C"(z* — 0r) +
C"(2% — 0R). ~
Therefore, in all cases, dd(2v —C] + C}, so we have:

>V}

Y ny =—C} +Cf,

e RCh

40yt C,
—c1.CL (¢ + Cp) + CrCh (¢, + CF)
(7 +C) (cg + C)
_ CLCR(cp — ) + g (Cp = C)
(7 +C7) (g + Cg)

27k
Thus, if ¢, > ¢} and C} > C7 then % > (. Since Qr = Qg, if L wins,

then 2% — 0, < Or — %, Thus, if ¢” > 0 and C"” > 0 then we have ¢}, >
and C%, > C7.0

Proof of Lemma 4. We will focus on the case of i = L. When i = R, we
can apply the same procedure. Let’s start with Lemma 4-1. Consider the case
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where 2% + 4 € (0;, 0r). There are two subcases: (Case 1) is the case where
L wins with certainty (V}(z"+7,0L,0r) > 0), and (Case 2) is the one where
L may lose depending on the realization of y (VF(2* + ¢, 01,0r) < 0).

(Case 1): In this case, EV} = f;ﬂg VE(a* +1y,00,08)9(y)dy. Thus,

dEVE [V -
D= [ o gty <0
-y

N\
where Vi = -k = .

(Case 2): In this case, EV} = ffg_xk VE(a* 4y, 01, 08)g(y)dy, where VF(Z,0,,05) =

0. That is, if z¥ +y > Z, then party L loses. (Note that 7 is solely determined

by the value of QQ;, — Qr: m > 0. If Qp = Qr, then £ = 0 holds, since

01, = —0r.) Differentiating this with respect to 2*, we have

T—xk

= Vf(07eLa0R)g(_$k) + / VLk/(xk +y>6‘La9R)g(y)dy

-y

dEV}
dx*

T—ak
[t 0y <0
-y
Thus, we have completed the proof of Lemma 4-1.

For Lemma 4-2, we classify four cases: . o
(Case a: 2 —§ > 0 and 2 + 5 < z): In this case, EV} = f_yg VEF(h +
y,01,0r)g(y)dy. Thus,

PEVE (7
= [ V(" +y,00,0 d
d(l’k)2 /—gj L ('CE +y,0rL, R)g(y) Y

(Case b: zF — 7 > 0, and ¥ 4+ 7 > 7): In this case, EV} = f:;k ViE(ah +
v,0r,0r)g(y)dy. That is, if 2* +y > T = 0, then party L loses. Differentiating
this with respect to 2, we have

k

fol(‘xk +, QL’ 0R)9<y>dy

dEVF - -
— = 0,0

Ak Vi (0,0, R)+/y
k

=/ VF (* 4+ y,0r,08)9(y)dy

Y
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Thus, the second-order derivative is
BV - -
d(l,k)g = - If,(ovelneR) + / VLk”(‘Tk +ya0L70R)g(y)dy

-7
From Lemma 3-2, we know VE(0,0.,0r) < 0 and V(2% + y,01,08) > 0.
Thus, EV/} is convex.

- gk~
(Case c: 2" —jj < ‘9} and z* + § < 7): In this case, EV} = ff; VE 2k +
y,01,0r)9(y)dy + fe‘yLﬂ:k VE(@k 4+ y,01,0R)9(y)dy. Differentiating this with
respect to ¥, we obtain

dEf/l’f Ot ~kl sk v 7kt k
= V(" + 4,05, 08)9(y)dy + Vi (2" 4y, 01, 0R)9(y)dy
ua 7@ Gfok
The second-order derivative is
dQEVk Or—a* Y ~
e = / (" +y,9L,03)g(y)dy+/ (" +y,0L,0R)9(y)dy
d(ZL‘ ) ,g 9L7Ik

From Lemma 3-2, we know V}(0,6;,0R) < 0 and V¥ (z* 4+ y,0,,05) > 0.
Thus, EV} is convex.

(Case d: ¥ —§ < 6 and 2" + § > Z): In this case, EV} = ffg_xk VE(ak +
y,0r,0r)g(y)dy + fa_LI_kxk VE(@* 4+ ,60.,0R)g(y)dy. Differentiating this with
respect to ¥, we obtain

dEVE o=t ek
- :/ VE (x +y,eL,eR)g(y)dy+/ Vi (2% 4+ y,01,0r)9(y)dy

-7 QL_xk

- VLIC((L eLa 9R)9<_3:k>

k gk

0, —x 5 B
= / V(2" +y,0r,08)9(y)dy + / VE(a® +y,00,08)9(y)dy

—-v 9L—Cck
The second-order derivative is
CEVE [ -t
d(xk)g —/ 2" (2" 4y, 01, 0r)g(y)dy + / 2 (2" .01, 0r)9(y)dy

-7 9L—Q?k

_‘N/Lk/(oa 9L7 9R)9<_$k>

From Lemma 3-2, we know V;"(0, 0r,0r) < 0and VF (2% +y,0,0R) > 0 when
"(d) > 0 and C"(d) > 0. Thus, EV} is convex. We have completed the proof
of Lemma 4-2.
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For Lemma 4-3, first observe that,

- 7 K .
BV (m) = [ Y man{ V() +.6.6).0}g(w)idy
Y k=1
For any k # K/, 831%3};, — 0. The Hessian matrix of EV, has zeros on non-

diagonal parts and negative terms on the diagonal due to Lemma 4-2. There-

fore, the Hessian matrix is negative semidefinite and E'V' are convex function
in (zM)K . O

Proof of Lemma 5. Note that F(z§) = ;&. Thus, to achieve z¥ as the
median voter of the kth district, we need to use all voters to the left of 2% . This
is true for all k£ = 1,..., K. Thus, x is the leftmost median voter allocation
in lexicographic order. We can prove the statement for xx by a symmetric

argument.[]

Proof of Proposition 4. Suppose that a district structure 7 is not “order-
and-partition.” We will show that 7 is not an optimal partisan gerrymandering
policy when the third derivatives of cost functions are positive. Since 7 is not
order-and-partition, there exist districts £ and h such that there exist ¢ € D¥
and { € D" with p, > p;z, in which one of the following holds: (Case-I)
k,h < K" and 2*(r) < aP(r), or (Case-II) k < K’ and h > K'. Let 7’
be a district structure that is generated by swapping localities ¢ and ¢ of .
Let’s start with (Case-I). In this case, 2*(7’) < 2%(7) < 2(7) < 2"(7’) holds.
Thus, by Lemma 4-3, EVy(7) < EVy (). (Case-1I) is simpler. In this case, it
is obvious that *(7') < z*(7) holds. Thus, by Lemma 4-1, EVy (1) < EV (')
holds. We conclude that the optimal partisan gerrymandering policy is order-
and-partition.[]

Appendix B: Constant Elasticity Example

In this appendix, we elaborate on the calculation involved in Example 1. Let
C(d) = a®d" and ¢(d) = a°d”, where v > 1, a® > 0, and a® > 0 are parameters.
In this case both party leaders and voters have the same constant elasticity
7. Thus, we have the following convenient formula. Denote A = A(a®, a¢) =
25 1
a® (QLO‘)7 + a‘ (p%a)7 > 0 where a@ = (Z—f) " Suppose that (%)W >2+4+79y
holds to satisfy Assumption 2. Normalizing A = 1, we have C(d) = Ad” = d”.
In this case, VF is concave (convex) in 2% if v < 2 (y > 2).
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/ o (C"(0r — 2* —y) = C" (0L — 2" — y)) g(y)dy

+

+(C'(0r) +C'(=01))g(—2")

Suppose that C(d) =d” (y > 1), 0, = —1, g = 1 (thus z = 0), and ¢(y) = 2%
if and only if y € [—7,y]. If § > 2 and 2* € [~1, 1] for all possible z*, Case-d
in the proof of Lemma 4 applies. In this case, we have

2EVFE _ -2k
d(a:k)g = (Op — 2 =yt — (@ +y —0,) 1]9L_wk

[—(

%[ (O — 2 — )1 4 (0, — 2* — )7~ }eLyz 20]{1
[—(0r)"" = (=0L) ' = (—(0r — 0L) " —0)

(—(Or = 0L) 1 +0) = (—(0p — 2" + )" + (0, — 2" + 7)) + 203 ']
=

+(1—a"+y) 7 = (-1 -2+ ) +2

2_37
_|._
0
27
_I._
e
27
e
2

y[(l — "+ = (-1 =2+ )]

Since ¥ — gy < 0, we conclude (1 — 2 + )"t — (=1 —2F +4)"1 > 0 for
any v > 1. Thus, EVL’“” > 0 holds as long as Case 4 holds (y > 1: there is
a chance to win district & for any z*). That is, the expected utility is convex
in %, although C”(d) < 0 holds. So, even without positive third derivatives,
the order-and-partition strategy is the optimal gerrymandering policy in the
constant average constraint case.[]
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Appendix C

In the benchmark model, we assume that the losing payoft of a candidate is 0.
In this section, we extend our model to a general setup a la Wittman (1983).
Formally, by losing in district k, party j’s leader gets utility
Vi = —oC(I8f - 0)])

where o € [0,1] naturally (candidate cares about her own policy more than
her opponent’s policy). Supposing that the winning party is L, the winner’s
maximization problem (5) is not changed. Therefore, the optimal strategy
combination is still A (2*,6;) and t5" (Uk) = Uk + ¢(|&* — B(2*,6L)]). From
Lemma 1, the losing R chooses an equilibrium strategy combination as if he
tried to maximize the median voter’s payoff given its utility of no less than
—oC(|8% — 0gl). Formally, R solves the following problem

max Uy (R) = th — of|d* — BY))

BE

subject to t}, > 0 and Qp — t}, — C(|0r — BE|) = —oC(|B} — Orl).

Notice that, since the losing payoff is negative, the losing party promises more
aggressively to the median voter to maximize her chance of winning in a weakly
undominated strategy. When the second constraint is binding, the problem
becomes

D%%XQR — C(|0r — Br|) — c(|2* — BE]) + aC(|BE — Orl).

Thus, R again chooses BE, which is a function of ¥ and @z minimizing
C(|0r — BE|) + c(|&* — BE]). On the other hand, since the winning candidate
L tries to maximize her payoff Q7 — C’(‘@L - Bﬂ) —t) = Qr— C(‘@L - Bﬂ) -
Usr(R) — ¢(|2* — B¥]) by providing the median voter exactly the same utility
Uzx(R) that candidate R assures, the equilibrium strategies are

B = Bu(@", 0r)
' = Q= Qu— (|01 = Bu|) = el = Bul) + (16 — Bal) + (| — )
— aC(1B1 — O))
and
i = Br(@*,6r) and t = Qr — C(|0r — Brl) + 0C(|51 — Orl)
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where (. (2*,6,) = argmﬂin C(|0r — B|) + c(]2* — B]). Since this is a simulta-

neous move game, candidate L does not take the externality to candidate R
into account when she chooses 3. Focusing on the case where (), = Qg and
01| = O, candidate L’s winning payoff is

Cr —Cr — oC(|BL — Or))

and L wins if and only if |, — #*| < | — &*|. Therefore,

o :{ Cr—Cp — oC(|By — Orl) it |0, — 3| < |6 — 2*
ol —oC(1Br — ) it |6, — %] > |05 — 2*

We argue that Lemma 4 continues to hold if ¢ is small enough. We focus
on case (d) in the proof of Lemma 4, i.e., 2¥ — j < 6, and z* + 3 > 0. For
other cases, the proofs are similar. First,

k k

BVt = [ len—Claay—o [ cllé - onbatu)dy

Y / C(1Bn — 0uDg(y)dy

Therefore,

= el —Ctulgt=a) ¢ [ [ @) - i
+0C(bn — 0,09~ + o [ Con- 50 2% g0y
~ 0C(Br(0,60) ~ 0o~ o [ G 00) T g o)y

— /_x [—c}z(BR — (@ +y) = (2" +y) — BL)] 9(y)dy

[ i Desty - [ 002y <y>dy]

Yy —l’

This may fail to be negative for 2* around zero when o is large, especially when
—a* and 3 are close (the second term in the last bracket is small); i.e., L wins
district k£ with high probability. When o is large, the negative first line can be
dominated by the first term of the second line, which is the payoff suppression
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effect caused by the loser’s payoff in electoral competition. Therefore, Lemma
4.1 may fail to hold locally for z¥ around —y when o is large enough (the
second line has higher weight, and payoff suppression effect is large).
For the second derivative, we have
CEVf ; ;
T = [ On(0.0)) + ¢ (~hu(0.00))] o(~r)

_ /_;k % (ch(BR — (" + ) + (2" +y) — BL)) 9(y)dy

o€ O~ (0,60 225(0, )9~
—a/z C"(0g — Br) (%) — C'(0r — 1) 8(53 9(y)dy
— 0C(al0.68)  0) 2220, )g( "

gk

] ) 2
- 0/ O”(BR —0r) (gﬁ@f) + C/(ﬁR - QL)(;(ﬁI; 9(y)dy

The first two terms are the same as the case where 0 = 0 and are (strictly)
positive. However, the signs of the third and fifth terms are negatlve and the

signs of all other terms are undetermined (the signs of % and kRQ are

unknown), and it is impossible to determine the sign of the second der1vat1ve
when o is large. However, as long as o is not large, Lemma 4.2 and 4.3 prevail.

Example 1 (continuation). In this case, we can write 3, (%,0,) = ik 4
1+a9L and BR(x Or) = T @k + l-l—_aeR Thus, we have
PP PBr 0

(k)2 ~ 9(i*)?

and

d($k>2 = 21@ [(1 - xk + g)’Y*l - (_1 - xk + y)’y*l]
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From Example 1, the first term is positive. However, all other terms are
negative ones multiplied by o € [0,1]. Thus, the expected utility is convex
in 2*, when ¢ > 0 is small enough. This is especially true, if we adopt the
wildly-used quadratic cost functions; i.e. v = 2, % is linear, and the above
equation is simplified:

PEV} oo 1 Q
L= 1+ - J
d(x*) ] 1+« l+a 14«
Therefore, readers can easily see the parameter space where our results hold.
For example, when §j = 1.5, a = 1, -y < 2¥ < ¢, and 0 < %, EV}F is convex.
This example shows that even if candidates’ losing payoffs are negative, the

order-and-partition strategy can be optimal for the constrained case with the
constant average constraint.[]
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