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Abstract

Lewbel (2012) provides an estimator for linear regression models containing an endoge-

nous regressor, when no outside instruments or other such information is available. The

method works by exploiting model heteroscedasticity to construct instruments using the avail-

able regressors. Some authors have considered the method in empirical applications where an

endogenous regressor is binary (e.g., endogenous Diff-in-Diff or endogenous binary treatment

models), without proving validity of the estimator in that case. The present paper shows that

the assumptions required for Lewbel’s estimator can indeed be satisfied when an endogenous

regressor is binary.
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1 Introduction

Linear regression models containing endogenous regressors are generally identified and estimated us-

ing either outside information, such as exogenous instruments, or by parametric distribution assumptions

(known as identification by functional form). A few papers obtain identification without outside instru-

ments by exploiting heteroscedasticity, including Rigobon (2003), Klein and Vella (2010), Lewbel (2012),

and Prono (2014). Other methods of obtaining identification, such as taking advantage of higher moments

or potential nonlinearities, are discussed in Lewbel’s (2016) survey article.

Some authors have questioned whether these methods can be applied to the case where the endoge-

nous regressor is binary. For example, Diff-in-Diff models contain binary regressors by construction,

and are only valid without instrumenting given exogeneity assumptions. Similarly, endogenous treatment

indicators are often binary.

Examples of authors who questioned whether the Lewbel (2012) estimator can be used with binary en-

dogenous variables include Emran, Robano, and Smith (2014) and Hoang, Pham, and Ulubaşoğlu (2014).

Others have applied the Lewbel (2012) estimator with a binary endogenous variable, though without being

able to verify if all the assumptions hold. See, e.g., Le Moglie, Mencarini, and Rapallini, (2015).

This paper shows that the Lewbel (2012) estimator may sometimes be used in such cases, by providing

one set of conditions that suffice for validity of the estimator when an endogenous regressor is binary.

So, e.g., the estimator might be applied to estimate a (homogeneous) treatment effect when the binary

treatment is not randomly assigned and when exogenous instruments are not available. The advantage of

this result is that it shows that the assumptions of the Lewbel (2012) estimator are not necessarily violated

when an endogenous regressor is binary. The disadvantage is that, unlike the case with a continuous

endogenous regressor, the sufficient conditions given here for a binary endogenous regressor impose a

very strong distribution restriction on the error term of the regression equation. Of course, this result just

shows existence, not uniqueness, of assumptions that work. It does not rule out the possibility that the

estimator’s assumptions could also be satisfied by alternative, less restrictive assumptions in the presence

of a binary endogenous regressor.
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2 The Model

Suppose we observe a sample of observations of endogenous variables Y1 and Y2, and a vector of exoge-

nous covariates X . We wish to estimate the parameter γ and the parameter vector β in the model

Y1 = X ′β + Y2γ + ε1

Y2 = X ′α + ε2

where the errors ε1 and ε2 may be correlated. As in Lewbel (2012), we will also consider the more general

case where Y2 = g (X)+ ε2 for some nonlinear, possibly unknown function g.

The standard instrumental variables solution to estimating β and γ is to find an element of X that

appears in the Y2 equation but not in the Y1 equation, and use that excluded regressor as an instrument

for Y2. The problem for identification and estimation considered here is that that perhaps no element of

X is excluded from the Y1 equation, or equivalently, we’re not sure that any element of β is zero. Lewbel

(2012) provides identification and a corresponding very simple linear two stage least squares estimator for

β and γ , in the case where no element of X is excluded from the Y1 equation, so no element of X can be

used as an instrument for Y2. The method consists of constructing valid instruments for Y2 by exploiting

information contained in heteroscedasticity of ε2.

The Lewbel (2012) estimator can be summarized as the following two steps.

1. Estimate α̂ by an ordinary least squares regression of Y2 on X , and obtain estimated residuals

ε̂2 = Y2 − X ′α̂.

2. Let Z be some or all of the elements of X . Estimate β and γ by an ordinary linear two stage least

squares regression of Y1 on X and Y2, using X and (Z − Z )̂ε2 as instruments, where Z is the sample mean

of Z .

In addition to the standard exogenous X assumptions that E(Xε1) = 0, E(Xε2) = 0, and E(X X ′) is

nonsingular, the key additional assumptions required for applying this estimator are that Cov(Z , ε1ε2) = 0

and Cov(Z , ε2
2) 6= 0, where either Z = X or Z is a subset of the elements of X . Lewbel (2012) shows that

a variety of standard econometric models satisfy these assumptions. For example, the assumptions hold
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when the errors ε1 and ε2 satisfy the factor structure ε1 = cU + V1, and ε2 = U + V2 for some constant

c, where U and V1 are unobserved homoscedastic errors, V2 is an unobserved heteroscedastic error, and

U , V1, and V2 are mutually independent conditional on Z . Examples where these conditions hold are

when Y2 is endogenous due to classical measurement error, or because of the presence of some underlying

unobservable factor U that affects both Y1 and Y2 (e.g., U could be unobserved ability in a model where

Y1 is education and Y2 is a labor market outcome).

Lewbel (2012) doesn’t explicitly assume that Y2 is continuous. However, that paper doesn’t show that

its identifying assumptions can be satisfied when Y2 is not continuous. For example, if Y2 was binary then

U could not be independent of V2 in the above factor structure example. What the next section shows is

that the identifying assumptions can be satisfied when Y2 is binary.

3 A Binary Endogenous Regressor

Suppose that Y2 is binary. Then Y2 = X ′α + ε2 is a linear probability model. But we also wish to

allow for more general models, so let Y2 = g (X) + ε2 where g (X) = E (Y2 | X). Here g (X) is some

possibly nonlinear and possibly unknown function. For example, if Y2 satisfies a probit or logit model,

then g (X) = F
(
X ′α

)
where F is the cumulative normal or logistic distribution function. Also included

are nonparametric models, where g (X) is estimated by a nonparametric regression of Y2 on X . Note in

particular that Y2 could be an indicator of treatment that might not be randomly assigned. In that case

estimation of γ corresponds to estimation of a (homogeneous) treatment effect.

Regardless of whether we estimate a linear probability model regression where the estimate is ĝ (X) =

X ′α̂, or let ĝ (X) = F
(
X ′α̂

)
where α̂ is obtained by a logit, probit, or other threshold crossing model esti-

mator, or estimate ĝ (X) nonparametrically by, e.g., a kernel or sieve estimator, once we obtain estimates

of the residuals ε̂2 = Y2 − ĝ (X), step 2 of the estimator described above remains the same.

We maintain the usual linear model assumptions for the exogenous regressors X , i.e., that X is un-

correlated with ε1 and ε2, and that E(X X ′) is nonsingular. If g is nonlinear (as in a logit, probit, or

nonparametric regression model) then assume whatever is needed for consistent estimation of g. We now

4



show how the key additional assumptions required for the Lewbel (2012) estimator can be satisfied with

Y2 binary. For simplicity, the result is derived taking Z = X , which then implies that the restrictions can

also hold when Z is any subset of X .

ASSUMPTION A1: Let g (X) = E (Y2 | X) and define ε2 = Y2 − g (X). Assume g (X) is finite and

that Cov
[
X, g (X) (1− g (X))

]
6= 0.

ASSUMPTION A2: Assume Y1 = X ′β + Y2γ + ε1 with ε1 = Y2U + V for some unobserved

random errors U and V , where Y2, U , and V are conditionally mutually independent, conditioning on X .

Assume E (U | X) = c (X) / (g (X) (1− g (X))) and E (V | X) = −c (X) / (1− g (X)), where c (X) is

any function such that Cov (X, c (X)) = 0.

Assumption A1 imposes minimal restrictions on Y2 and X , and hence on the error ε2. The covariance

condition in Assumption A1 is testable, since it can be estimated as the sample covariance between X and

ĝ (X) (1− ĝ (X)). In contrast, Assumption A2 places strong distributional restrictions on ε1, specifically,

on the conditional means of the component latent errors U and V . Again it should be stressed that these

are not necessary conditions. Rather, they’re just one possible set of assumptions that can be shown to

work.

Note that the covariance condition in Assumption A2 will automatically hold if c (X) is constant.

However, it’s also easy to find functions c (X) that can work. For example if Z is any symmetrically dis-

tributed element of X that is independent of the other elements of X , then c (X) could equal (Z − E (Z))k

for any even integer k.

THEOREM 1: Let Assumptions A1 and A2 hold. Then E (ε1 | X) = 0, E (ε2 | X) = 0, Cov(X, ε1ε2) =

0 and Cov(X, ε2
2) 6= 0.

PROOF: Verifying each of the conditions in turn, we have

E (ε1 | X) = E (Y2U + V | X) = g (X) E (U | X)+ E (V | X)

= g (X)
c (X)

g (X) (1− g (X))
+
−c (X)

(1− g (X))
= 0.
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E (ε2 | X) = E (Y2 − g (X) | X) = g (X)− g (X) = 0.

E (ε1ε2 | X) = E (Y2Uε2 + V ε2 | X) = E (Y2Uε2 | X)+ E (V | X) E (ε2 | X)

= E (Y2U (Y2 − g (X)) | X) = E (U (Y2 − Y2g (X)) | X)

= E (U | X) g (X) (1− g (X)) =
c (X)

g (X) (1− g (X))
g (X) (1− g (X)) = c (X)

so

Cov(X, ε1ε2) = Cov (X, E (ε1ε2 | X)) = Cov (X, c (X)) = 0.

and

E

(
ε2

2 | X

)
= E

(
(Y2 − g (X))2 | X

)
= E

((
Y2 − 2Y2g (X)+ g (X)2

)
| X

)
= g (X)− 2g (X)2 + g (X)2 = g (X) (1− g (X))

so

Cov(X, ε2
2) = Cov

(
X, E

(
ε2

2 | X

))
= Cov

[
X, g (X) (1− g (X))

]
6= 0.

Using the same types of derivations as in the above proof, one can also readily verify that E (ε1Y2) =

E (c (X)) so Y2 is indeed an endogenous regressor as long as E (c (X)) 6= 0. Theorem 1, along with the

results in Lewbel (2012), establishes that the constructed instruments (X − X )̂ε2, are valid, and so the

estimator of regressing of Y1 on X and Y2, using X and (X − X )̂ε2 as instruments (or any subset of the

elements of (X − X )̂ε2 as instruments) can be applied.

4 Extensions and Conclusions

A common problem in empirical work is the presence of binary regressors that might be endogenous.

For example, Diff-in-Diff models contain binary regressors by construction, and are only valid without

instrumenting given exogeneity assumptions. Similarly, endogenous treatment indicators are often binary.
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When instruments are not available, alternative methods for obtaining identification may be desired. Theo-

rem 1 in this paper shows that the assumptions required for the estimator in Lewbel (2012) can be satisfied

in the presence of a binary endogenous regressor Y2.

A drawback of this result is that, unlike the case for continuous Y2, there is no obvious behavioral

model that would imply that Assumption A2 and hence Theorem 1 holds. When Y2 is binary, the estimator

might not perform well under more standard assumptions. However, Theorem 1 is only meant to show

that it’s possible for the estimator to work, i.e., that the required assumptions can be satisfied. There may

well exist more plausible or better motivated alternative constructions to Theorem 1 that would also work.

Searching for such alternatives would be a useful direction for future research. To apply the estimator, one

must only assume that the general conditions given in Lewbel (2012) hold, not that the specific necessary

conditions used for Theorem 1 are satisfied. Given these assumptions, existing implementations of the

estimator, such as the STATA module IVREG2H, can be applied with a binary Y2.

Theorem 1 assumed a binary Y2, but similar constructions would be possible for alternative distribu-

tions, such as when Y2 is discrete with more support points, or is a censored variable, or more generally

may be both continuous over some regions and contain mass points.

Theorem 1 applies regardless of the specification of the function g (X), and so in particular can be

used with the linear probability model Y2 = X ′α + ε2, if one is willing to assume that E (Y2 | X) = X ′α.

See, however, Lewbel, Dong, and Yang (2012) for warnings regarding the linear probability model. When

g (X) is nonlinear (e.g., if it’s given by a logit or probit model), then alternative estimators exist. For

example, in that case one could use ĝ (X), an estimate of g (X), as an instrument for Y2. See, e.g., Dong

(2012) and Escanciano, Jacho-Chávez, and Lewbel (2016).

Finally, there are some general caveats regarding the application of any of these methods. Identification

based on constructed instruments depends on strong modeling assumptions. So, when they’re available, it

is usually better to instead use ’true’ outside instruments, that is, instruments that are known or believed

to be excluded and exogenously determined based on randomization or on strong economic theory.

However, in practice one is often not sure if a candidate outside instrument is a valid instrument. A
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candidate instrument might be invalid because the economic theory leading to its exclusion restriction is

wrong. Even with randomization in a causal or experimental setting, assumptions like SUTVA (the stable

unit treatment value assumption), or the assumption of no measurement error and no endogenous attrition

could be violated, potentially making an instrument invalid despite randomization.

In these cases, constructed instruments can be used to provide overidentifying information for model

tests and for robustness checks. In particular, one might estimate the model using both outside instruments

and constructed instruments, and then test jointly for validity of all the instruments, using e.g., a Sargan

(1958) and Hansen (1982) J-test. If validity is rejected, then either the model is misspecified or at least one

of these instruments is invalid. If validity is not rejected, it’s still possible that the model is wrong or the

instruments are invalid, but one would at least have increased confidence in both the outside instrument

and the constructed instrument. Both might then be used in estimation to maximize efficiency.

One could also just estimate the model separately using outside instruments and constructed instru-

ments. If the estimates are similar across these different sets of identifying assumptions, then that provides

support for the model and evidence that the results are not just artifacts of one particular set of identifying

assumptions. More generally, identification based on functional form or constructed instruments is prefer-

ably not used in isolation, but rather is ideally employed in conjunction with other means of obtaining

identification, both as a way to check robustness of results to alternative identifying assumptions and to

increase efficiency of estimation.
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