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1 Introduction

For the past quarter century, and perhaps longer, the Federal Reserve has conducted mone-

tary policy by managing nominal interest rates. While today’s practice of strict federal funds

rate targeting has its origins in the early 1990s, Greenspan (1997), Meulendyke (1998), and

Thornton (2007) all describe Federal Reserve policy as shifting towards tighter interest rate

control beginning sometime in the 1980s. Cook (1989) goes back even further, arguing that

the reserves targeting procedures used from 1979 through 1982 disguised policy actions taken

to manage the funds rate instead.

Academic economists also depict Federal Reserve policy as managing interest rates. Tay-

lor (1993) introduced his now-famous rule, which describes how the Fed adjusts its interest

rate target in response to movements in the output gap and inflation. Taylor (1993) also

demonstrates that the strikingly simple formula tracks actual movements in the federal funds

rate remarkably well over the period from 1987 through 1992. Some variant of the Taylor

rule now appears as the description of monetary policy in textbook New Keynesian models

presented, for example, by Woodford (2003) and Gaĺı (2015).

Preference for interest rate management, in both practice and theory, often is motivated

with reference to Poole’s (1970) classic analysis, demonstrating that in a stochastic IS-LM

model, policies targeting the nominal interest rate insulate output from the effects of money

demand shocks, whereas policies targeting the money stock instead allow these shocks to

contribute to macroeconomic volatility. Poole’s model holds the aggregate price level fixed,

but Ireland (2000), Collard and Dellas (2005), and Gaĺı (2015) demonstrate that these re-

sults extend to modern New Keynesian models as well, in which monetary policies calling

for a constant rate of money growth lead to excess volatility in both output and inflation,

compared to policies targeting interest rates instead, especially when the economy is hit by

recurrent money demand shocks. Furthermore, as emphasized by Ireland (2004b) and Belon-

gia and Ireland (2018b), standard New Keynesian models feature forward-looking variants

of more traditional Keynesian IS and Phillips curve that imply monetary policy affects out-
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put and inflation exclusively through its ability to influence the current and expected future

path for the short-term nominal interest rate. The Taylor rule, therefore, becomes a natural

benchmark for describing monetary policy in these models. And, to the extent that Federal

Reserve officials also believe that monetary policy influences economic activity mainly if not

entirely through the New Keynesian interest rate channel, it makes sense for them to focus

on managing interest rates as well.

Recent events, however, prompt a reconsideration of the prevailing consensus favoring

interest rate rules. First and most obviously, the extended period from 2009 through 2015,

during which the Federal Reserve’s traditional federal funds rate targeting procedures were

constrained by the perceived lower bound on nominal interest rates, raises the question of

whether alternative policy rules focused on managing the money stock might have allowed

the Fed to pursue its stabilization objectives more effectively during and after the financial

crisis and Great Recession of 2007-09. Belongia and Ireland (2017, 2018a) present empirical

evidence suggesting that this may have been the case, but stop short of exploring the pos-

sibility, theoretically, in the standard New Keynesian framework. Second, the Fed’s actual

response to continued weakness in output and inflation while the funds rate remained in a

target range near zero went beyond three waves of large-scale asset purchases. Also required

were other important changes in operating procedures, such as the introduction of interest

payments on bank reserves and the establishment of a reverse repurchase agreement pro-

gram through which the Fed interacted with a wide range of nonbank financial institutions.

Although moving from a policy involving interest rate management to one of targeting the

growth rate of a monetary aggregate might once have seemed prohibitively difficult, this

recent experience shows, to the contrary, that operating procedures and institutional ar-

rangements can be changed significantly, even on short notice, to support any major shift

in policy regime. Finally, while the previous studies by Ireland (2000), Collard and Dellas

(2005), and Gaĺı (2015) all suggest that policy rules calling for constant rates of money

growth will perform poorly, relative to Taylor rules, in stabilizing output and inflation, none
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of these studies considers the possibility that money growth rules might work significantly

better if they allowed policy to adjust to movements in the output gap and inflation in a

manner similar to that of the Taylor rule.

Thus, this paper extends previous work by reconsidering money growth rules in an esti-

mated New Keynesian model. By identifying a parsimonious rule that dictates a systematic

response of money growth to changes in the output gap, it follows in the same style of re-

search presented, for instance, in Taylor (1999) by characterizing rules that remain simple

while still delivering favorable economic outcomes. And by using counterfactual simulations

to assess how the US economy would have performed over a sample period running from

1983 through 2018, it illustrates the satisfactory performance of a money growth rule in

both good times – the period of the Great Moderation – and bad – the Great Recession and

its aftermath.

The particular variant of the New Keynesian model used here takes most of its basic

features from those in Ireland (2004a, 2004b, 2007, 2011), but innovates in four distinct ways.

First, it introduces real money balances into a representative household’s utility function in

a manner that leaves the New Keynesian IS and Phillips curves in their standard forms,

excluding the additional terms involving money growth that appear in Ireland (2004b). This

ensures that the extended model retains the New Keynesian assumption that monetary policy

actions have an impact on output and inflation only through their effects on the current and

expected future path of the short-term nominal interest rate. The intent is to put money

growth rules to a most stringent test, by excluding model features that might specifically

favor stability in the money stock.

Second, the model’s money-in-the-utility function specification is also tailored to imply

that the level of real balances demanded by the non-bank public remains finite even as

nominal interest rates fall to zero, reflecting observations made by Ireland (2009) and Rognlie

(2016) that US money demand did not explode during either episode of very low nominal

interest rates following the last two recessions. Intriguingly, as noted by Roglie (2016), this
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specification implies that short-term interest rates can fall below zero, at least by modest

amounts for short periods of time, in a well-defined equilibrium – a phenomenon that will be

explored in the counterfactual experiments performed with the estimated model.1 Third, the

model includes adjustment costs of real balances in its specification, following Nelson (2002)

and Andrés, López-Salido, and Nelson (2004, 2009), all of which present evidence that New

Keynesian models with money fit the data better when they allow for gradual adjustment

of real balances to shocks that hit the economy.

Fourth and finally, the analysis here employs methods developed by Kulish, Morley, and

Robinson (2017) to account for periods, like that experienced in the US from 2009 through

2015, when short-term nominal interest rates were constrained by the central bank to remain

near zero. According to the New Keynesian model, even after its current policy rate is lowered

to zero, the central bank can use “forward guidance,” in the form of policy announcements

that lengthen private agents’ expectations regarding the duration of the zero interest rate

episode, to deliver additional monetary stimulus. The Bayesian estimation methods used

here exploit survey data to track changes in the expected duration of the zero interest rate

period and the effects these shifts in expectations have on output and inflation. Thus, with

these methods, the model can be estimated over a sample running continuously from 1983

through 2018, accounting for the effects of both zero interest rates and forward guidance

over the 2009-15 period as well as the effects of more traditional interest rate policy before

and after. The estimated model can then be used to explore counterfactual scenarios in

which the central bank systematically adjusts its target for the money growth rate under

both favorable and unfavorable economic conditions.

The results from this exercise reveal that, even in a model that departs minimally from

standard New Keynesian specifications and therefore offers no special role for changes in

1Recently, negative policy rates have been implemented by interest rate targeting central banks in Den-
mark, the Euro Area, Japan, Sweden, and Switzerland. The Swiss National Bank, in particular, has held
its key policy rate at −0.75 percent since 2015. See Jackson (2015) for a discussion of the international
experience with negative policy rates and Dong and Wen (2017) for another theoretical model that allows
for negative nominal interest rates.
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the money stock, a money growth rule nonetheless can deliver performance on par with

that generated by more conventional Taylor rules for the interest rate. The counterfactual

simulations show, in particular, that under a money growth rule that responds modestly

but persistently to changes in the output gap, the US economy would have recovered more

quickly than it actually did from the financial crisis and Great Recession, without requiring a

prolonged period of zero or negative interest rates. Thus, the results suggest that as Federal

Reserve officials search for a new policy framework within which they can more reliably

achieve their stabilization objectives in an environment of low interest rates and inflation

following a series of adverse disturbances, abandoning the traditional practice of managing

the federal funds rate in favor of a rule targeting the money growth rate should be added to

the list of possibilities considered.

2 The Model

2.1 Overview

The model economy consists of a representative household, a representative finished goods-

producing firm, a continuum of intermediate goods-producing firms indexed by i ∈ [0, 1],

and a central bank. During each period t = 0, 1, 2, . . ., each intermediate goods-producing

firm produces a distinct intermediate good. Hence, intermediate goods are also indexed by

i ∈ [0, 1], with good i produced by firm i. The model features enough symmetry, however, to

allow the analysis to focus on the behavior of a representative intermediate goods-producing

firm that manufactures the generic intermediate good i.

Habit formation introduced through the representative household’s preferences and in-

complete indexation of sticky nominal goods prices set by monopolistically competitive in-

termediate goods-producing firms imply that the model’s New Keynesian IS and Phillips

curves include both backward and forward-looking elements. The estimation procedure al-

lows the data to decide on the relative importance of these backward and forward-looking
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terms. The central bank in the estimated model conducts monetary policy according to a

version of the Taylor (1993) rule, reflecting the Federal Reserve’s actual practice of federal

funds rate targeting over most if not all of the 1983-2018 sample period.2 As noted above,

however, the introduction of a money demand curve of a form that is consistent with the

same US data also permits consideration of counterfactual monetary policy rules for money

growth targeting instead.

2.2 The Representative Household

The representative household enters each period t = 0, 1, 2, . . . with Mt−1 units of money

and Bt−1 bonds. At the beginning of period t, the household receives a lump-sum monetary

transfer Tt from the central bank. In addition, the household’s bonds mature, yielding Bt−1

additional units of money. The household uses some of this money to purchase Bt new bonds

at the price of 1/rt units of money per bond; thus, rt denotes the gross nominal interest rate

between t and t+ 1.

During period t, the household supplies ht(i) units of labor to each intermediate goods-

producing firm i ∈ [0, 1]. The household gets paid at the nominal wage rate Wt, earning

Wtht in labor income, where

ht =

∫ 1

0

ht(i) di

denotes total hours worked during the period. Also during period t, the household consumes

Ct units of the finished good, purchased at the nominal price Pt from the representative

finished goods-producing firm.

At the end of period t, the household receives nominal profitsDt(i) from each intermediate

goods-producing frm i ∈ [0, 1]. The household then carries Mt units of money into period

2The Federal Reserve has never announced an explicit rule to guide the setting of its interest rate target.
Nevertheless, the analysis here adopts the assumption made throughout the literature on New Keynesian
economics that, empirically, changes in the federal funds rate target can be described accurately by a rule
of the form originally proposed by Taylor (1993). Belongia and Ireland (2019b) use Greenbook data on the
Fed’s internal forecasts of output and inflation to characterize more sharply the mixture of discretion and
rule-like behavior revealed by changes in the federal funds rate target since the 1980s.
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t+ 1, chosen subject to the budget constraint

Mt−1 + Tt +Bt−1 +Wtht +Dt

Pt
≥ Ct +

Mt +Bt/rt
Pt

(1)

for all t = 0, 1, 2, . . ., where

Dt =

∫ 1

0

Dt(i) di

denotes total profits received for the period.

The household’s preferences are described by the expected utility function

E0

∞∑
t=0

βtat

[
ln(Ct − γCt−1) + v

(
Mt

PtZt
, ut

)
− φm

2

(
Mt/Pt

zMt−1/Pt−1

− 1

)2(
Mt

PtZt

)
− ht

]
.

where both the discount factor and the habit formation parameter lie between zero and one,

with 0 < β < 1 and 0 ≤ γ ≤ 1. The preference shock at follows the stationary autoregressive

process

ln(at) = ρa ln(at−1) + εat (2)

for all t = 0, 1, 2, . . ., with 0 ≤ ρa < 1, where the serially uncorrelated innovation εat

is normally distributed with mean zero and standard deviation σa. Utility is additively

separable across consumption, real balances, and hours worked so as to imply a specification

for the model’s IS curve that does not include terms involving money and employment.

As shown by King, Plosser, and Rebelo (1988), additive separability also implies that a

logarithmic specification over consumption is needed for the model to be consistent with

balanced growth. Also for balanced growth, real balances Mt/Pt enter utility through the

function v after being scaled by the aggregate productivity shock Zt, which follows a random

walk with drift:

ln(Zt) = ln(z) + ln(Zt−1) + εzt (3)

for all t = 0, 1, 2, . . ., with z > 1, where the serially uncorrelated innovation εzt is normally
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distributed with mean zero and standard deviation σz. The shock ut to money demand

follows the stationary autoregressive process

ln(ut) = ρu ln(ut−1) + εut (4)

for all t = 0, 1, 2, . . ., with 0 ≤ ρu < 1, where the serially uncorrelated innovation εut

is normally distributed with mean zero and standard deviation σu. Finally, the parameter

φm ≥ 0 governs the magnitude of the adjustment cost for real balances, adapted from Nelson

(2002) and Andreś, Loṕez-Salido, and Nelson (2004, 2009) to take the quadratic functional

form used here. Since these costs subtract from utility along with hours worked, they have

the interpretation as a time cost, and are scaled by the average growth rate parameter z

from (3) so as to equal zero in the model’s steady state.

Thus, the household chooses Ct, ht, Bt, and Mt for all t = 0, 1, 2, . . . to maximize expected

utility subject to the budget constraint (1) for all t = 0, 1, 2, . . .. The first-order conditions

for this problem can be written as

Λt =
at

Ct − γCt−1

− βγEt
(

at+1

Ct+1 − γCt

)
, (5)

at = Λt(Wt/Pt), (6)

Λt = βrtEt(Λt+1/πt+1), (7)

atv1

(
Mt

PtZt
, ut

)
− at

(
φm
2

)(
Mt/Pt

zMt−1/Pt−1

− 1

)2

− atφm
(

Mt/Pt
zMt−1/Pt−1

− 1

)(
Mt/Pt

zMt−1/Pt−1

)
+ βφmEt

[
at+1

(
Mt+1/Pt+1

zMt/Pt
− 1

)(
Mt+1/Pt+1

zMt/Pt

)2(
zZt
Zt+1

)]

= ZtΛt

(
1− 1

rt

)
,

(8)

and (1) with equality for all t = 0, 1, 2, . . ., where Λt denotes the nonnegative Lagrange
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multiplier on the budget constraint for period t, πt = Pt/Pt−1 denotes the gross inflation

rate between t and t+ 1, and v1 denotes the partial derivative of the function v with respect

to its first argument, scaled real balances.

In the special case where γ = 0 and φm = 0, so that there is no habit formation in

consumption or adjustment costs for real balances, (5) can be substituted into (8) to obtain

v1

(
Mt

PtZt
, ut

)
=
Zt
Ct

(
1− 1

rt

)
.

Adapting a specification suggested by Rognlie (2016), suppose that the utility function over

real balances is such that

v1

(
Mt

PtZt
, ut

)
=

1

δ

[
ln(m∗)− ln

(
Mt

PtZt

)
+ ln(ut)

]
,

where δ > 0 and m∗ is a satiation level of scaled real balances, beyond which additional

money holdings begin to impose marginal costs on, instead of yielding marginal benefits to,

the household. Then

ln

(
Mt

PtZt

)
= ln(m∗)− δ

(
Zt
Ct

)(
1− 1

rt

)
+ ln(ut),

confirming that, along a steady-state growth path, real balances and consumption grow at

the same rate z. Meanwhile, looking across steady-state growth paths, δ > 0 governs the

interest semi-elasticity of money demand. More generally, with this specification for v, (8)
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becomes

at
δ

[
ln(m∗)− ln

(
Mt

PtZt

)
+ ln(ut)

]
− at

(
φm
2

)(
Mt/Pt

zMt−1/Pt−1

− 1

)2

− atφm
(

Mt/Pt
zMt−1/Pt−1

− 1

)(
Mt/Pt

zMt−1/Pt−1

)
+ βφmEt

[
at+1

(
Mt+1/Pt+1

zMt/Pt
− 1

)(
Mt+1/Pt+1

zMt/Pt

)2(
zZt
Zt+1

)]

= ZtΛt

(
1− 1

rt

)
,

(9)

2.3 The Representative Finished Goods-Producing Firm

During each period t = 0, 1, 2, . . ., the representative finished goods-producing firm uses

Yt(i) units of each intermediate good i ∈ [0, 1], purchased at the nominal price Pt(i), to

manufacture Yt units of the finished good according to the technology described by

[∫ 1

0

Yt(i)
(θt−1)/θt di

]θt/(θt−1)

≥ Yt,

where θt translates into a random shock to the intermediate goods-producing firms’ desired

markup of price over marginal cost and therefore acts like a cost push shock of the kind

introduced into the New Keynesian model by Clarida, Gaĺı, and Gertler (1999). Here, this

markup shock follows the stationary autoregressive process

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + εθt (10)

for all t = 0, 1, 2, . . ., with 0 ≤ ρθ < 1 and θ > 1, where the serially uncorrelated innovation

εθt is normally distributed with mean zero and standard deviation σθ.

Thus, during each period t, the finished goods-producing firm chooses Yt(i) for all i ∈ [0, 1]

to maximize its profits, which are given by

Pt

[∫ 1

0

Yt(i)
(θt−1)/θt di

]θt/(θt−1)

−
∫ 1

0

Pt(i)Yt(i) di.
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The first-order conditions for this problem are

Yt(i) = [Pt(i)/Pt]
−θtYt

for all i ∈ [0, 1] and t = 0, 1, 2, . . ..

Competition drives the finished goods-producing firm’s profits to zero in equilibrium,

determining Pt as

Pt =

[∫ 1

0

Pt(i)
1−θt di

]1/(1−θt)

for all t = 0, 1, 2, . . ..

2.4 The Representative Intermediate Goods-Producing Firm

During each period t = 0, 1, 2, . . ., the representative intermediate goods-producing firm

hires ht(i) units of labor from the representative household to manufacture Yt(i) units of

intermediate good i according to the technology described by

Ztht(i) ≥ Yt(i), (11)

where Zt is the aggregate productivity shock introduced in (3).

Since the intermediate goods substitute imperfectly for one another in producing the

finished good, the representative intermediate goods-producing firm sells its output in a mo-

nopolistically competitive market, setting its nominal price Pt(i) subject to the requirement

that it satisfy the representative finished goods-producing firm’s demand at that price. Fol-

lowing Rotemberg (1982), the intermediate goods-producing firm faces a quadratic cost of

adjusting its nominal price between periods, measured in terms of the finished good and

given by

φp
2

[
Pt(i)

παt−1π
1−αPt−1(i)

− 1

]2

Yt,

where φp ≥ 0 governs the magnitude of the price adjustment cost, α is a parameter that
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lies between zero and one, with 0 ≤ α ≤ 1, and π denotes the steady-state rate of inflation.

According to this specification, the extent to which price setting is backward-looking depends

on the magnitude of the parameter α. When, in particular, α = 1, prices are indexed fully to

past inflation, giving price setting an important backward-looking component. At the other

extreme however, when α = 0, there is no indexation of prices to past inflation rates and

price setting is purely forward-looking.

The cost of price adjustment makes the intermediate goods-producing firm’s problem

dynamic: it chooses Pt(i) for all t = 0, 1, 2, . . . to maximize its total real market value,

proportional to

E0

∞∑
t=0

βtΛt[Dt(i)/Pt].

where βtΛt measures the marginal utility value to the representative household of an addi-

tional unit of real profits received in the form of dividends during period t and where

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θt
Yt −

[
Pt(i)

Pt

]−θt (Wt

Pt

)(
Yt
Zt

)
− φ

2

[
Pt(i)

παt−1π
1−αPt−1(i)

− 1

]2

Yt (12)

measures the firm’s real profits during the same period t. The first-order conditions for this

problem are

0 = (1− θt)
[
Pt(i)

Pt

]−θt
+ θt

[
Pt(i)

Pt

]−θt−1(
Wt

Pt

)(
1

Zt

)
− φp

[
Pt(i)

παt−1π
1−αPt−1(i)

− 1

] [
Pt

παt−1π
1−αPt−1(i)

]
+ βφpEt

{(
Λt+1

Λt

)[
Pt+1(i)

παt π
1−αPt(i)

− 1

] [
Pt+1(i)

παt π
1−αPt(i)

] [
Pt
Pt(i)

](
Yt+1

Yt

)} (13)

and (11) with equality for all t = 0, 1, 2, . . ..
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2.5 The Efficient Level of Output and the Output Gap

A social planner for this economy who can overcome the frictions associated with monetary

trade, sluggish price adjustment, and the monopolistically competitive structure of the in-

termediate goods-producing sector chooses Qt and nt(i) for all i ∈ [0, 1] to maximize the

social welfare function

E0

∞∑
t=0

βtat

[
ln(Qt − γQt−1)−

∫ 1

0

nt(i) di

]

subject to the aggregate feasibility constraint

Zt

[∫ 1

0

nt(i)
(θt−1)/θt di

]θt/(θt−1)

≥ Qt

for all t = 0, 1, 2, . . .. The first-order conditions for this problem are

Ξt =
at

Qt − γQt−1

− βγEt
(

at+1

Qt+1 − γQt

)
,

at = ΞtZt(Qt/Zt)
1/θtnt(i)

−1/θt

for all i ∈ [0, 1], and the aggregate feasibility constraint with equality for all t = 0, 1, 2, . . .,

where Ξt denotes the nonnegative Lagrange multiplier on the aggregate feasibility constraint

for period t.

The second optimality condition listed above implies that nt(i) = nt for all i ∈ [0, 1] and

t = 0, 1, 2, . . ., where

nt = (Ξt/at)
θtZθt

t (Qt/Zt).

Substituting this last relationship into the aggregate feasibility constraint yields

Ξt = at/Zt.
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Hence, the efficient level of output Qt must satisfy

1

Zt
=

1

Qt − γQt−1

− βγEt
[(

at+1

at

)(
1

Qt+1 − γQt

)]
(14)

for all t = 0, 1, 2, . . .. This definition of the efficient level of output implies a corresponding

definition of the output gap as

xt = Yt/Qt. (15)

2.6 The Central Bank

The central bank in the estimated model conducts monetary policy according to a variant

of the Taylor (1993) rule

ln(rt/r) = ρr ln(rt−1/r) + ρπ ln(πt−1/π) + ρx ln(xt−1/x) + εrt (16)

for all t = 0, 1, 2, . . ., where r, π and x denote the steady-state values of the interest rate,

inflation rate, and output gap and where response coefficients satisfying 0 ≤ ρr < 1, ρπ ≥ 0,

and ρx ≥ 0 are chosen by the central bank. This policy rule allows the central bank to adjust

the short-term nominal interest rate in response to movements in inflation and the model-

consistent measure of the output gap. It also allows for interest rate smoothing through the

term involving the lagged interest rate. The serially uncorrelated monetary policy shock εt

is normally distributed with mean zero and standard deviation σr.

Although the central bank itself makes no direct reference to the growth rate of money

under an interest rate rule of this form, the money demand relationship (9) serves to de-

termine the equilibrium level of real balances Mt/Pt. The growth rate of nominal money

µt = Mt/Mt−1 is then determined by

µt =

(
Mt/Pt

Mt−1/Pt−1

)
πt (17)
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for all t = 0, 1, 2, . . .. To help keep track of the model’s observable variables, it is useful to

let

gt = Yt/Yt−1 (18)

denote the growth rate of output for all t = 0, 1, 2, . . ..

2.7 Symmetric Equilibrium

In a symmetric equilibrium, all intermediate goods-producing firms make identical decisions,

so that Yt(i) = Yt, ht(i) = ht, Dt(i) = Dt, and Pt(i) = Pt for all i ∈ [0, 1] and t = 0, 1, 2, . . ..

In addition, the market clearing conditions Mt = Mt−1 + Tt and Bt = Bt−1 = 0 for money

and bonds must hold for all t = 0, 1, 2, . . .. After imposing these equilibrium conditions and

using (6), (11), and (12) to solve out for Wt/Pt, ht, and Dt, section 1 of the appendix uses

(1)-(5), (7), (9), (10), and (13)-(18) to form a system of 14 equations in the 14 variables

Yt, Ct, πt, rt, Mt/Pt, Qt, xt, µt, gt, Λt, at, Zt, ut, and θt. Some of the real variables in this

system inherit unit roots from the random walk (3) in the technology shock. However, the

variables yt = Yt/Zt, ct = Ct/Zt, mt = (Mt/Pt)/Zt, qt = Qt/Zt, λt = ZtΛt, and zt = Zt/Zt−1

remain stationary and, in the absence of shocks, the economy converges to a steady-state

growth path, along which all of the stationary variables are constant, with yt = y, ct = c,

πt = π, rt = r, mt = m, qt = q, xt = x, µt = µ, gt = g, λt = λ, at = 1, zt = z, ut = 1, and

θt = θ for all t = 0, 1, 2, . . ..

Equations (6) and (13), in particular, can be combined with (9) to obtain the steady-state

relationship

ln(m) = ln(m∗)− δr(r − 1),

where

δr =

(
δ

r

)(
θ

θ − 1

)
.

Since r − 1 is the steady-state value of the net nominal interest rate, this new parameter δr

measures the long-run interest semi-elasticity of money demand.
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Section 1 of the appendix also shows that the system consisting of (1)-(5), (7), (9), (10),

and (13)-(18) can be log-linearized around the steady-state to describe how the economy

responds to shocks. Let ŷt = ln(yt/y), ĉt = ln(ct/c), π̂t = ln(πt/π), r̂t = ln(rt/r), m̂t =

ln(mt/m), q̂t = ln(qt/q), x̂t = ln(xt/x), µ̂t = ln(µt/µ), ĝt = ln(gt/g), λ̂t = ln(λt/λ), ât =

ln(at), ẑt = ln(zt/z), ût = ln(ut), and θ̂t = ln(θt/θ) denote the percentage deviation of each

variable from its steady-state level. A first-order Taylor approximation to (1) implies that

ĉt = ŷt. First-order approximations to the remaining 13 equations then imply

(z − βγ)(z − γ)λ̂t = γzŷt−1 − (z2 + βγ2)ŷt + βγzEtŷt+1 + (z − βγρa)(z − γ)ât − γzẑt, (19)

λ̂t = r̂t + Etλ̂t+1 − Etπ̂t+1, (20)

0 = γzq̂t−1 − (z2 + βγ2)q̂t + βγzEtq̂t+1 + βγ(z − γ)(1− ρa)ât − γzẑt, (21)

x̂t = ŷt − q̂t, (22)

(1 + βα)π̂t = απ̂t−1 + βEtπ̂t+1 − ψλ̂t + ψât + êt, (23)

r̂t = ρrr̂t−1 + ρππ̂t−1 + ρxx̂t−1 + εrt, (24)

δr(r − 1)λ̂t − δr(r − 1)ât − ût + φẑt = φm̂t−1 − [1 + (1 + β)φ]m̂t + βφm̂t+1 − δrr̂t, (25)

µ̂t = ẑt + m̂t − m̂t−1 + π̂t, (26)

ĝt = ŷt − ŷt−1 + ẑt, (27)

ât = ρaât−1 + εat, (28)

ẑt = εzt, (29)

ût = ρuût−1 + εut, (30)

and

êt = ρeêt−1 + εet (31)
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for all t = 0, 1, 2, . . ..

Equations (19)-(22), which are log-linearized versions of (5), (7), (14), and (15), define the

model’s New Keynesian IS relationship linking movements in the output gap x̂t to the real

interest rate r̂t−Etπ̂t+1, with backward-looking elements introduced through habit formation

in the representative household’s utility function. In the special case where γ = 0, so that

habit formation is absent, these equations combine to yield the simpler, purely-forward

looking specification

x̂t = Etx̂t+1 − (r̂t − Etπ̂t+1) + (1− ρa)ât.

Meanwhile (23), the linearized form of (13), is the New Keynesian Phillips curve, again

with a backward-looking component entering when α > 0, so that sticky individual goods

prices are indexed to past inflation. In (23), the cost push shock has been renormalized as

êt = −(1/φp)θ̂t and the new parameters ρe = ρθ and ψ = (θ − 1)/φp have been defined so

that εet is normally distributed with mean zero and standard deviation σe = σθ/φp. Together

with the Taylor rule (24) for monetary policy, derived directly from (16), this first block of

equations works, exactly as in textbook New Keynesian models, to determine the dynamic

behavior of inflation, output and the output gap, and the short-term nominal interest rate

without reference to the behavior of the money stock, whether real or nominal.

The addition of the money demand relationship (25) implied by (9), however, serves to

determine the level of real balances in equilibrium under the Taylor rule (24). In (25), the

adjustment cost parameter for real balances is renormalized as φ = δφm. Focusing again on

the special case where γ = 0 and φm = 0, so that there is no habit formation in consumption

or adjustment costs for real balances, (19) and (25) imply that

m̂t = δr(r − 1)ŷt − δrr̂t + ût.

The coefficient on ŷt in this last relationship will be small for modest levels of the steady-state

nominal interest rate; hence, in this economy, real money demand depends on the permanent
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component of income, captured by Zt, more than the transitory component ŷt. Once again,

δr is the interest semi-elasticity of money demand and ut acts like a money demand shock.

Finally, in this linearized system, (26) and (27) follow from (17) and (18) to determine the

growth rate of the nominal money stock and aggregate output, and (28)-(31), which restate

(2)-(4) and (10), govern the dynamics of the preference, productivity, money demand, and

cost push shocks.

During the period from 2009 through 2015, when the Federal Reserve held the federal

funds rate in a range close to zero, the Taylor rule (24) is replaced in the estimated model

by the zero interest rate condition

r̂t = − ln(r). (32)

Similarly, to generate counterfactual outcomes under which monetary policy is described by

a rule for the money growth rate, (24) is replaced by

µ̂t = ρmmµ̂t−1 + ρmππ̂t−1 + ρmxx̂t−1. (33)

When ρmm = ρmπ = ρmx = 0, (33) reduces to the same constant money growth rule studied

earlier by Ireland (2000), Collard and Dellas (2005), and Gaĺı (2015) and advocated most

famously of course, by Friedman (1968). When, by contrast, ρmx < 0 and ρmπ < 0, this

more general money growth rate rule allows monetary policy to stabilize the output gap

and inflation actively in response to other shocks that hit the economy. When, in addition,

ρmm > 0, the rule prescribes a gradual response of money growth to movements in inflation

and the output gap, in much the same way that the Taylor rule (24) with interest rate

smoothing does.
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3 Data, Priors, and Estimation Methods

Kulish, Morley, and Robinson (2017) develop the methods used to solve and estimate the

New Keynesian model described above while accounting for the period of zero nominal

interest rates from 2009 through 2015. These methods, summarized as they are applied

here in sections 2-5 of the appendix, solve the model using an algorithm similar to Guerrieri

and Iacoviello’s (2015), but treat agents’ expectations of the duration of the zero interest

rate episode as a time-varying parameter that can be estimated jointly with the structural

parameters that enter directly into (19)-(31).

All data used to estimate the model are quarterly and run from 1983:1 through 2018:3.

For the periods from 1983:1 through 2008:4 and from 2016:1 through 2018:3 during which

the Federal Reserve was targeting the federal funds rate at levels bounded away from zero,

the estimation procedure treats four of the model’s variables as observable. Output growth

is measured by quarterly changes in the natural log of real GDP, converted to per capita

terms using the civilian noninstitutional population, age 16 and over.3 Inflation is measured

by quarterly changes in the log of the GDP deflator, and the short-term nominal interest

rate is measured by the effective federal funds rate, divided by 400 to convert the annualized

figures in the data to quarterly rates as they appear in the model. Finally, nominal money

growth is measured by quarterly changes in the Divisia M2 index of monetary services, again

converted to per capita terms. Serletis and Gogas (2014) and Belongia and Ireland (2019a)

find evidence of stable long-run money demand relationships for Divisia M2, motiviating the

choice of that monetary aggregate here.4

For the period from 2009:1 through 2015:4 during which the Federal Reserve held short-

term interest rates close to zero, (32) replaces (24) in the estimated model, and the federal

3In light of the erratic behavior, noted by Edge and Gurkaynak (2010, p.218) and caused by periodic
rebasings of the Census Bureau series for the US population, the trend values for this series, extracted using
the Hodrick-Prescott filter with smoothing parameter 1600, are used in place of the raw data in constructing
per-capita measures here.

4All data series are drawn from the Federal Reserve Bank of St. Louis’ FRED database, except that
for Divisia M2, which is available through the Center for Financial Stability’s website. For details on the
construction of the CFS Divisia monetary series, see Barnett, Liu, Mattson, and van den Noort (2013).
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funds rate is dropped from the list of observable variables. For this interval, the model’s

solution depends not only on the structural parameters that enter into the New Keynesian

model, but also on the duration, denoted by τt, of the zero interest rate episode expected by

private agents in the model during each period t. Here, as in Kulish, Morley, and Robinson

(2017), these expected durations are treated as parameters that can be estimated based on

the forward-looking New Keynesian model’s implications for the effects that expected future

interest rates have on the remaining observables: output growth, inflation, and the nominal

money growth rate.

Prior to estimation, values for z, π and β are fixed at values that match the model’s

steady-state output growth, inflation, and short-term nominal interest rates to the average

values of those same variables in the pre-crisis subsample of data running from 1983:1 through

2008:4. Likewise, the steady-state money growth rate µ is treated as another free parameter,

fixed to match the average growth rate of Divisia M2 over the same 1983:1-2008:4 period.

Thus, in the estimation, all four observable series are re-expressed as deviations from their

pre-crisis mean values. This approach is intended, in particular, to force the estimated model

to attribute the Great Recession of 2007-09 and the subsequent sluggish recovery to one or

more large and highly persistent shocks instead of to downward shifts in the steady-state

rates of output growth and inflation. Bayesian priors must then be specified and calibrated

for two vectors of parameters: the remaining structural parameters from the New Keynesian

model (19)-(31) and the time-varying expected durations of the zero nominal interest rate

episode over the 28 quarters from 2009:1 through 2015:4.

Priors for the 16 structural parameters are summarized in table 1 and described in more

detail by the red lines in figure 1. As the table shows, these parameters are divided into

three groups. The habit formation and price indexation parameters γ and α, the interest rate

smoothing parameter ρr, and the autoregressive parameters ρa, ρu, and ρe all lie between

zero and one. Independent beta prior distributions are therefore assigned to these parame-

ters, each with its two shape coefficients calibrated to match the prior mean and standard
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deviation listed in table 1. In particular, prior distributions for γ and α are centered at 0.5,

with standard deviations large enough to allow for values closer to zero or one. The prior

distributions for ρr, ρa, ρu, and ρe reflect more confidence in the beliefs, first, that Federal

Reserve policy over the sample period is characterized by substantial interest rate smoothing

and, second, that while the preference and money demand shocks hitting the economy are

highly persistent, the cost push shocks are less so.

The Phillips curve slope parameter ψ, the interest semi-elasticity of money demand δr, the

adjustment cost parameter for real balances φ, and the monetary policy response coefficients

ρπ and ρx are all nonnegative. Independent gamma prior distributions are assigned to these

parameters, with shape and scale coefficients chosen to match the means and standard

deviations listed, again, in table 1. The prior mean for ψ is set equal to 0.1, the calibrated

value used by Ireland (2000, 2004a, 2004b, 2007, 2011). Prior means of 5 for δr and 10 for

φ are chosen somewhat arbitrarily, but large standard deviations reflect the considerable

uncertainty regarding the magnitudes of these parameters before estimation. Prior means of

0.4 for ρπ and 0.2 for ρx imply a policy response to changes in inflation twice the size of the

response to changes in the output gap. Coupled with the prior mean of 0.75 for the interest

rate smoothing parameter ρr, these settings translate into long-run responses ρπ/(1 − ρr)

and ρx/(1 − ρr) of the interest rate to changes in inflation and the output gap equal to 1.6

and 0.8.

Finally, the parameters σa, σz, σu, σe, and σr measuring the standard deviations of the

New Keynesian model’s five structural shocks are assigned prior distributions implied by the

assumption that each of the associated variances has an inverse chi-squared distribution with

four degrees of freedom.5 The scale coefficient for the inverse chi-squared distribution is set

to 0.012 for the preference, productivity, and money demand shocks and 0.00252 for the cost

push and monetary policy shocks. These settings give σa, σz, and σu priors means equal to

0.0125 and σe and σr prior means of 0.0031. The implied standard deviations, meanwhile,

5Adjemian (2016) refers to this induced distribution as the “inverted gamma distribution of type I.”
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leave considerable leeway for the data to push the posterior distributions towards larger or

smaller values of each of these volatility parameters.

Priors for the time-varying expected duration of the zero nominal interest rate episode

are formed, as described by Kulish, Morley, and Robinson (2017, p.40), with the help of data

from the Blue Chip Financial Forecasts from 2009:1 through 2010:4 and the Federal Reserve

Bank of New York Primary Dealers Survey from 2011:1 through 2015:4. The Blue Chip

survey records the expected date of funds rate liftoff from zero reported by approximately 40

forecasting firms; the cross-sectional distribution of these forecasts is interpreted as reflecting

the probabilities of various durations of the zero interest rate episode. The Primary Dealers

Survey, meanwhile, asks each individual respondent to assign probabilities to different liftoff

dates; the average probabilities, as reported by the New York Fed, are used, similarly, as

measures of the probabilities of different durations. Kulish, Morley, and Robinson (2017)

form their prior as an equally-weighted average of the probabilities implied by these surveys

and a uniform distribution over all durations ranging from 1 to 23 quarters.6 Their estimation

exercise, however, uses data on the term structure of interest rates as well as macroeconomic

variables to glean additional information about expected durations of the zero interest rate

episode using Smets and Wouters’ (2007) medium-scale New Keynesian model, augmented

with a model of the yield curve based on the expectations hypothesis. Here, where only

macroeconomic data are used for estimation, a larger weight of 80 percent is assigned to

the survey evidence, with the remaining 20 percent attached to a uniform distribution over

durations from 1 to 23 quarters. The resulting independent prior distributions for all of

the 28 expected durations prevailing from 2009:1 through 2015:4 are plotted as red lines in

figures 2 and 3.

6The upper bound of 23 quarters imposed by the prior on the expected duration of the zero interest
rate episode reflects the observation that, in the survey data, zero probabilities are assigned to all durations
longer than 23 quarters.
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4 Results

4.1 Bayesian Estimates

Table 2 summarizes the posterior distributions of the New Keynesian model’s 16 structural

parameters, while figure 1 displays more fully the posterior densities using blue bars, com-

paring them to the priors, described above and outlined in red. These posterior distributions

assign more weight to higher values for the habit formation parameter γ and lower values for

the price indexation parameter α, compared to the priors. The posterior density for ψ implies

a much flatter Phillips curve than does the prior, perhaps reflecting the muted response of in-

flation to more dramatic movements in real variables during and since the Great Recession.7

At first glance, the estimated money demand semi-elasticity appears quite large. However,

with interest rates measured here in quarterly terms, δr has to be divided by 4 to obtain

the semi-elasticity with respect to the interest rate quoted, more conventionally, in annual

terms. Thus, in fact, the posterior median of δr = 13.4 is quite similar to the semi-elasticity

estimates, ranging from 3.17 to 3.66, obtained by Belongia and Ireland (2019a) from cointe-

grating money demand relationships for Divisia M2. Estimates of φ centered near 12 point

to the importance of adjustment costs for real balances, confirming conclusions from Nelson

(2002) and Andrés, López-Salido, and Nelson (2004, 2009).

Posterior estimates of the parameters ρr, ρπ and ρx from the Taylor rule (24) imply

an even larger degree of interest rate smoothing and a more balanced response of policy

to changes in the output gap and inflation than suggested by the prior. Estimates of ρa

and σa suggest that non-monetary aggregate demand disturbances have been large and

persistent over the sample period. Estimates of ρu and σu, meanwhile, show that even

7The formula displayed by Del Negro, Giannoni, and Schorfheide (2015, p.174) can be used together
with information displayed in table A-2 of the appendix to that same paper to compute the Phillips curve
slope coefficient (labeled κ) implied by the posterior mode from estimating both Smets and Wouters’ (2007)
medium-scale New Keynesian DSGE model and an extended version featuring additional financial frictions
developed specifically to explain the behavior of inflation over the post-crisis period. The posterior mode at
ψ = 0.0169 found here is comparable to the modal value of κ = 0.0120 from the Smets-Wouters model but
substantially larger than the modal value of κ = 0.0018 from the extended model with financial frictions.
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more highly persistent money demand shocks have been important, too. Earlier results from

Ireland (2000), Collard and Dellas (2005), and Gaĺı (2015) strongly suggest that these money

demand shocks will become an important source of additional macroeconomic volatility when

the estimated Taylor rule is replaced by one calling for a constant rate of money growth.

Less certain, however, is whether a money growth rule of the more general form (33) can

cope more successfully with these disturbances. Finally, in figure 2, the posterior density for

σz, measuring the volatility of productivity shocks, tightens but remains centered near its

prior mean, while the volatility parameters σe and σr for the cost push and monetary policy

shocks appear smaller, relative to values initially suggested by the prior.

Figures 2 and 3 show that the posterior distributions for the expected durations of the zero

nominal interest rate episode overlap heavily with the corresponding priors, reflecting the

absence of the additional term structure data that Kulish, Morley, and Robinson (2017) use to

sharpen their estimates of these parameters. While the macroeconomic data do contribute

modestly to determining the shape of these posterior distributions, to a large extent the

expected durations here are essentially calibrated based on the survey data used to formulate

the priors. Even by themselves, however, these survey data are useful in incorporating into

the estimated model the shift in expectations towards much longer durations of the zero

nominal interest rate episode that Swanson and Williams (2014) observe in late 2010, as well

as the gradual reduction in expected durations as the economy continued to recover in 2014

and 2015.

Figure 4 plots the median paths from the posterior distributions of the New Keynesian

model’s five structural disturbances.8 Not surprisingly, the estimated model attributes the

Great Recession, with its accompanying declines in inflation and interest rates, to a series of

large, adverse preference shocks. Unfavorable productivity shocks also appear throughout

the post-2008 period, contributing to weakness in real GDP growth but also explaining why

8These paths are constructed from draws from the posterior distribution for each shock, taken using
Durbin and Koopman’s (2002) simulation-smoother for the unobservable states, as described in part 6 of the
appendix.
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inflation did not fall even further.

Since the previous results presented by Ireland (2000), Collard and Dellas (2005), and

Gaĺı (2015) suggest that money demand shocks pose the biggest challenge to the success of

monetary policies that focus on targeting money growth instead of interest rates, the middle

row of figure 4 plots the median paths for both the money demand shock ût in levels and

the serially uncorrelated innovation εut to this highly persistent shock. The sharp decline

in ût during the early 1990s that is estimated here coincides with the period of “missing

M2” analyzed by Duca (2000), which as noted by Orphanides and Porter (2000) worked to

throw off track the predictions of Hallman, Porter, and Small’s (1991) “P-star” model, given

its assumption that M2 velocity would converge more quickly back to a constant long-run

mean.9 The estimated path for ût remains stable over a period extending from the mid-1990s

through 2008, before moving sharply higher during and after the Great Recession of 2007-

09. Anderson, Bordo, and Duca (2017) detect a similar increase in post 2008 M2 demand,

relative to what would be expected based on movements in income and interest rates, which

they attribute to flight-to-quality portfolio dynamics triggered by the financial crisis. With

specific focus on repairing the P-star model, however, Belongia and Ireland (2015, 2017)

show that these shifting but highly persistent trends in money demand need not present an

obstacle to effective policymaking via money growth targeting. Precisely because the trends

are so persistent, they can be recognized by policymakers in real time, and successfully

accommodated by gradual shifts in the target for money growth so as to stabilize output

growth, inflation, and nominal GDP growth as their product.

More problematic are the innovations εut to the money demand shock, which are unpre-

dictable from past data and therefore more likely to contribute to volatility in output and

inflation, not only under constant money growth, but also under more general rules of the

9The first footnote in Hallman, Porter, and Small (1991) credits Federal Reserve Chair Alan Greenspan
for suggesting the idea behind the P-star model. Thus, that model is of historical interest as one of the last
quantity-theoretic models consulted regularly by high-level officials at the Federal Reserve Board. Similarly,
the paper itself remains noteworthy as one of the last quantity-theoretic studies to be published in a leading,
general-interest economics journal.
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form in (33). Consistent with the estimates of σu reported earlier, figure 4 confirms that

these innovations have been large, frequently exceeding 2 percent in both directions, positive

and negative. But while, for the sake of consistency, all of the model’s estimated innovations

are interpreted as unpredictable in the counterfactual scenarios discussed below, it should

be noted that at least some of the apparent high-frequency volatility in money demand that

shows up in the estimated time path for εut in figure 4 reflects institutional changes that, to

the contrary, the Fed might have anticipated in advance. Most notably, the large positive

innovation εut estimated to have occurred in the third quarter of 2011, more than three stan-

dard deviations in magnitude, coincides with two regulatory changes discussed by Judson,

Schlusche, and Wong (2014, pp.11-12): first, changes in FDIC insurance rates that helped

banks bring offshore deposits back to the US and, second, the lifting of the longstanding

prohibition against paying interest on demand deposits which triggered additional portfolio

shifts back into M2. Even in real time, therefore, the rapid growth in Divisia M2, exceed-

ing 17 percent on an annualized basis for 2011:3, would not have been a true surprise even

though, in the estimated model, it appears as such.

4.2 A Flexible Money Growth Rule

Table 3 begins to compare the US economy’s actual performance under the estimated Taylor

rule to its hypothetical performance under counterfactual money growth rules. In the esti-

mated model, output growth, inflation, the nominal interest rate, and the money growth rate

are all observable. Hence, the Bayesian estimation procedure treats the historical standard

deviations of those same variables as observable as well; therefore, these are constant across

the first three columns of the table’s first four rows. The New Keynesian model’s output gap

x̂t, however, remains unobservable: even its historical behavior must be estimated together

with the model’s other parameters.10

Although the earlier studies by Ireland (2000), Collard and Dellas (200) and Gaĺı (2015)

10Again, paths for the output gap are constructed from draws taken using Durbin and Koopman’s (2002)
simulation-smoother for the model’s unobservable states.
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all found that a constant money growth rule produced excess volatility after money demand

shocks relative to an interest rate rule, none of them considered the alternative of a money

growth rule that adapted flexibly to changing macroeconomic conditions in the same manner

as the Taylor rule. Relative to the Taylor rule, in fact, one potential advantage to more flex-

ible money growth rules of the form shown in (33) is that they do not require the aggressive

response to inflation needed by interest rate rules to ensure the stability of a unique ratio-

nal expectations equilibrium. Instead, money growth rules can stabilize long-run inflation

simply by pinning down the average rate of money growth and focusing more directly on

stabilizing the output gap over shorter time horizons.

Though no exhaustive attempt has been made here to identify the optimal money growth

rule, search over a grid of values for the parameters reveals that setting ρmm = 1, ρmπ =

0, and ρmx = −0.125 delivers impressive performance in response to the array of shocks

estimated to have hit the US economy over the 1983:1-2018:3 sample period, while minimizing

the duration and importance of the episode, during and following the financial crisis and

Great Recession, over which the short-term nominal interest rate fluctuates in a range near

zero. This rule, which specializes (33) as

µ̂t = µ̂t−1 − 0.125x̂t−1, (34)

generates modest but highly persistent adjustments in money growth. These adjustments

work, directly, to stabilize the output gap and, indirectly, to stabilize inflation as well.

The middle columns of table 3 summarize the posterior distributions of output growth,

inflation, the nominal interest rate, the money growth rate, and the output gap after the

estimated Taylor rule (24) is replaced by the flexible money growth rule (34), holding all other

parameters and disturbances fixed at their estimated values. Thus, these counterfactual

simulations confront the central bank with the same patterns of preference, productivity,

money demand, and cost push shocks estimated to have hit the US economy over the 1983:1-
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2018:3 sample period, but replace the Federal Reserve’s historical policy of interest rate

management, including the forward guidance used to lengthen the expected duration of the

zero nominal interest rate episode, with the policy dictated by the flexible money growth

rule instead.

As noted above, the form of the model’s money demand relationship, implied by (9) and

(25), allows the nominal interest rate to fall below zero in a well-defined rational expectations

equilibrium. If the counterfactual path for the interest rate were to fall far below zero for

an extended period of time, a concern might arise that the private financial system would

adapt to profit from the spread between the zero interest rate on currency and the negative

nominal interest rate on bonds. It will be confirmed below, however, that in each of the

counterfactual scenarios considered here, the episode of negative nominal interest rates is

moderate and, in fact, considerably shorter than the seven-year period during which the

Federal Reserve kept its federal funds rate target in a range close to zero.

Table 3 reveals that the flexible money growth rule (34) holds the volatility of output

growth, inflation, and the output gap at levels closely approximating those achieved under

the estimated rule. Figures 5-8 add detail, by illustrating how that rule allows the output gap

and inflation to respond to shocks in ways that resemble how they behave under the estimated

interest rate rule. These figures compare the impulse responses under the estimated interest

rate rule and the flexible money growth rule of output growth, inflation, the nominal interest

rate, the money growth rate, and the output gap to one-standard-deviation preference,

productivity, money demand, and cost push shocks, when the parameters of the structural

model are set equal to their posterior modes shown in table 2.11

Figure 5, in particular, reveals that both the estimated interest rate rule and the flexible

money growth rule produce a monetary tightening that virtually eliminates the inflationary

effects of an expansionary preference shock; the same monetary tightening helps stabilize

output growth and the output gap as well. In figure 6, meanwhile, the estimated interest

11Under the estimated rule, these impulse responses are generated from the solution to (19)-(31), assuming
that monetary policy remains unconstrained by the perceived zero lower interest rate bound.
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rate rule stabilizes inflation following a productivity shock; to do so, it produces the increase

in money growth that Ireland (1996) shows is necessary to generate, under sticky prices,

the efficient increase in output that keeps the output gap unchanged. Likewise, the flexible

money growth rule (34) calls for a monetary expansion after a favorable productivity shock

that allows output to adjust more efficiently and minimizes the response in inflation.

Figure 7 confirms that here, as in Poole’s (1970) classic Keynesian analysis, the estimated

interest rate rule, by holding the short-term nominal rate fixed, insulates output growth,

inflation, and the output gap by fully accommodating a shock to money demand. The

flexible money growth rule falls a bit short of achieving this ideal, but nevertheless generates

a persistent increase in money supply growth that largely accommodates the increase in

money demand. It is noteworthy that these stabilizing effects appear even though, under

the flexible money growth rule, the central bank responds to the output gap with a one-

quarter lag. To the extent that the central bank could detect money demand shocks within

the quarter and respond to them directly, the rule’s performance could be improved still

further. Finally, figure 8 shows impulse responses to cost push shocks under (34) that come

close to replicating those that appear under the estimated interest rate rule.

4.3 Constant Money Growth

Consistent with the earlier results from Ireland (2000), Collard and Dellas (2005), and Gaĺı

(2015), the results in last three columns of table 3 suggest strongly that macroeconomic

volatility would have been amplified greatly if the Federal Reserve had followed a policy

directed at holding the growth rate of Divisia M2 perfectly fixed by setting ρmm = ρmπ =

ρmx = 0 in (33), again holding all other parameters and disturbances fixed at their estimated

values. Median estimates of the standard deviations of output growth and inflation under

the constant money growth rate rule are more than 50 percent larger than those under the

estimated policy rule. Volatility in the output gap, meanwhile, increases by a factor of three.

Figures 5-8 again add detail. In figure 5, the monetary tightening prescribed by both
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the estimated interest rate rule and the flexible money growth rule does not occur under the

constant money growth rule. Hence, under constant money growth, output growth, inflation,

and the output gap all display considerably more volatility in response to preference shocks.

Similarly, in figure 6, the increase in money growth that helps the economy respond more

efficiently to a productivity shock under both the estimated interest rate rule and the flexible

money growth rule is not generated by the constant money growth rule. Hence, conditional

on the productivity shock, output growth is perversely more stable under the constant money

growth rate rule, even as inflation and the output gap become more volatile. As expected,

figure 7 shows that the constant money growth rule, quite unlike the flexible money growth

rule, allows money demand shocks to contribute greatly to macroeconomic volatility. Finally,

in figure 8, the constant money growth rule does a slightly better job than the estimated

interest rate rule and the flexible money growth rule of stabilizing inflation in response to an

unfavorable cost push shock, at the cost of allowing for much greater variability in output

growth and the output gap. Overall, therefore, the performance of the constant money

growth rule appears quite poor, relative to both the estimated interest rate rule and the

more flexible money growth rule (34).

4.4 Counterfactual Simulations

Figure 9 completes the analysis by plotting the median paths for output growth, inflation,

the nominal interest rate, the money growth rate, and the output gap from the posterior

distributions implied by the estimated model and the two counterfactual money growth

rules. Its right-hand panels confirm that measured by output growth or the output gap,

the Great Recession would have been considerably more severe under the constant money

growth rule. Inflation would not only have been more volatile, but the US economy would

have experienced recurring, though brief, episodes of deflation even before the financial crisis

in 2008. Under constant money growth, however, the short-term nominal interest rate would

have fallen below zero for only four quarters, between 2009:2 and 2010:1, reaching a low of
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−0.80, similar the to target maintained by the Swiss National Bank over the entire period

since 2015, in 2009:3.

The flexible money growth rule (34), again by sharp contrast, delivers additional stimulus

that would have closed the negative output gap by the end of 2009. The large money demand

shock in 2011:3 temporarily pushes output back below its efficient level. As noted above,

however, this estimated disturbance to money demand, though interpreted by the model as

an exogenous and unpredictable shock, reflects legal and institutional developments known to

policymakers in advance; it might have been anticipated and at least partially accommodated

in actual practice. The flexible rule still produces a smoother time path for money growth

than that observed historically. Most importantly, like the constant money growth rule,

it requires only four quarters of negative interest rates. Along the counterfactual path, the

short-term interest rate drops to −1.06 percent in 2010:1 before rebounding to −0.33 percent

in 2010:2, −0.59 percent in 2010:3, −0.24 in 2010:4, and zero in 2011:2; then, through the

end of the sample period, interest rates return to levels similar to those prevailing through

much of the 1990s and 2000s. Additionally, under (34), inflation remains positive, before,

during, and after the financial crisis.

Results from counterfactual simulations in Belongia and Ireland (2018a) suggest that

the US economy would have recovered more quickly from the Great Recession even under

a constant money growth rule. There are two explanations for the differences between

those previous results and ones presented here. First, Belongia and Ireland (2018a) use a

structural vector autoregressive time series model with more flexible dynamics that allow

changes in money growth to have effects on output and inflation even after controlling for

movements in the short-term nominal interest rate. Thus, in the VAR, stability in money

growth contributes to stability in output and inflation as well. Here, by contrast and as noted

above, the New Keynesian model puts constant money growth rules at a disadvantage, by

assuming that monetary policy actions have an impact on output and inflation exclusively

through their effects on the current and expected future path of interest rates. To the

31



extent that changes in money growth do play a separate role in the monetary transmission

mechanism, as suggested by the empirical results in Belongia and Ireland (2018a, 2018b),

the case for money growth rules grows stronger. Second, the simulations in Belongia and

Ireland (2018a) hold money growth constant during and after 2008, but at rates that are

higher than full-sample historical average. Therefore, though they call for constant money

growth over the post-2008 period, the policy rules considered previously share with the

flexible money growth rule (34) considered here the implication that money growth should

respond, countercyclically, to movements in the output gap.

Even better counterfactual performance appears under policy rules of the same form as

(34), but with larger weights on the lagged output gap. These alternative rules, however, also

cause interest rates to fall more deeply below zero, for longer periods of time, during and after

the Great Recession. For a central bank worried about the effects of an extended period of

negative interest rates on the financial system, another possibility would be to adopt, in times

of normal economic growth and inflation, a money growth rule like (34) that responds more

aggressively to changes in the output gap, but then to moderate that output gap response

when interest rates approach or fall below zero, in the same way that the Federal Reserve

declined to push its federal funds rate target below zero after 2008. What is particularly

impressive here, however, is that the simple rule (34) delivers satisfactory macroeconomic

performance throughout the entire 1983:1-2018:3 sample period, while promoting a strong

recovery with a much shorter episode of exceptionally low interest rates following the financial

crisis and Great Recession of 2007-09.

Finally, one perennial criticism of a monetary policy strategy based on money growth is

that it would produce excessive volatility in interest rates. In figure 9, the nominal interest

rate does exhibit a modest degree of variability at high frequencies under the flexible and

constant money growth rules that gets smoothed out by the estimated interest rate rule. The

graphs in figure 9 suggest and the statistics in table 3 confirm, however, that the short-term

interest rate actually has a lower standard deviation under the money growth rules than it
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did, historically, under the estimated interest rate rule.

5 Conclusion

Historically, the Federal Reserve has conducted monetary policy by managing interest rates.

New Keynesian models like the one estimated here justify this approach. Within these

models, simple interest rate rules of the form proposed by Taylor (1993) capture well the

Fed’s actual interest rate decisions, work effectively to insulate the economy from the effects

of money demand disturbances, and help the economy adjust more efficiently to other, non-

monetary shocks. In these same models, constant money growth rules like those proposed

by Friedman (1968) perform quite poorly. Consistent with Poole’s (1970) more traditional

Keynesian analysis, holding money growth constant in New Keynesian models allows money

demand shocks to contribute significantly to additional macroeconomic volatility. Constant

money growth rules fail, as well, to deliver the appropriate monetary response to other

disturbances that require output and inflation to adjust.

The limitations of interest rate rules, however, are highlighted by more recent experi-

ence during and since the financial crisis and Great Recession of 2007-09. After lowering

its federal funds rate target to a range close to zero, the Fed employed other, less conven-

tional strategies such as forward guidance about the future interest rate path and large scale

purchases of longer-term Treasury bonds and mortgage-backed securities in an attempt to

deliver additional monetary stimulus and help the economy recover. These strategies led to

a five-fold increase in the monetary base that now must be unwound, and also required the

introduction of interest payments on reserves, a practice which must continue until the Fed’s

balance sheet reverts to pre-crisis levels.

This paper suggests an alternative approach that would have avoided these complica-

tions, and that works well in good times and in bad. Departing from the strict confines

of Friedman’s constant money growth rule, it identifies a simple but slightly more flexible
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alternative that, in the same spirit of the Taylor rule, adjusts the rate of money growth,

modestly and gradually, in response to movements in the output gap. Even without a di-

rect response to money demand shocks, this rule helps the central bank accommodate those

disturbances and, more generally, allows monetary policy to pursue short-run stabilization

objectives even as it maintains an environment of nominal stability through its choice of the

long-run money growth rate.

Counterfactual simulations reveal that this flexible money growth rule would have pro-

duced macroeconomic stability over the 1983:1-2018:3 sample period comparable to that

observed, historically, under the estimated interest rate rule. Moreover, by targeting the

rate of money growth and allowing interest rates to adjust, as needed, to maintain equilib-

rium in the market for bonds, the simulations show that this rule would have generated a

more rapid recovery in both output and inflation after 2009, without resorting to forward

guidance and with exceptionally low interest rates prevailing for only one year.

Notably, these beneficial effects appear even in a standard New Keynesian model in

which, by assumption, monetary policy actions are transmitted to the economy through their

impact on interest rates and the stability of the money growth rate itself offers no additional

advantage. To the extent that other channels of monetary transmission, like those identified

empirically by Belongia and Ireland (2018a, 2018b), operate in the US economy, policy rules

focusing on money growth instead of interest rates may offer further advantages not captured

here. And to the extent that the money demand disturbances interpreted as exogenous and

unpredictable here reflect legal and institutional changes known in advance to the Fed, they

could be accommodated even under a money growth rule, improving policy still further.

The Fed’s recent experiments with forward guidance, large-scale asset purchases, interest

on reserves, and reverse repurchase agreements show that institutional arrangements can

be changed, dramatically and on short notice, whenever circumstances demand more from

monetary policy. In the wake of these experiments, shifting away from interest rate man-

agement and towards targeting money growth instead offers a simpler alternative, worthy of
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more serious consideration.
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Table 1. Prior Distributions for Structural Parameters

Standard

Parameter Distribution Mean Deviation

Habit Formation γ Beta 0.5 0.2
Price Indexation α Beta 0.5 0.2
Phillips Curve Slope ψ Gamma 0.1 0.03
Money Demand Semi-Elasticity δr Gamma 5 5
Money Demand Adjustment Cost φ Gamma 10 10
Interest Rate Smoothing ρr Beta 0.75 0.1
Policy Response to Inflation ρπ Gamma 0.4 0.1
Policy Response to Output Gap ρx Gamma 0.2 0.1
Preference Shock Persistence ρa Beta 0.75 0.1
Money Demand Shock Persistence ρu Beta 0.75 0.1
Cost Push Shock Persistence ρe Beta 0.5 0.1
Preference Shock Volatility σa Inverse Chi-squared 0.0125 0.0066
Productivity Shock Volatility σz Inverse Chi-squared 0.0125 0.0066
Money Demand Shock Volatility σu Inverse Chi-squared 0.0125 0.0066
Cost Push Shock Volatility σe Inverse Chi-squared 0.0031 0.0016
Monetary Policy Shock Volatility σr Inverse Chi-squared 0.0031 0.0016

Note: Prior distributions for the standard deviations σi, i = a, z, u, e, r, are those induced
by assuming that the associated variance σ2

i has the inverse chi-squared distribution with
scale parameter 0.012 for i = a, z, u or 0.00252 for i = e, r and 4 degrees of freedom.



Table 2. Posterior Distributions for Structural Parameters

Percentile

Parameter Mean Mode Median 16 84

Habit Formation γ 0.6779 0.6770 0.6798 0.6269 0.7285
Price Indexation α 0.2380 0.2295 0.2332 0.1420 0.3339
Phillips Curve Slope ψ 0.0191 0.0169 0.0183 0.0133 0.0249
Money Demand Semi-Elasticity δr 13.5990 13.0500 13.3850 10.6580 16.5332
Money Demand Adjustment Cost φ 13.7459 11.1000 12.8717 9.1899 18.1903
Interest Rate Smoothing ρr 0.8335 0.8375 0.8354 0.7963 0.8706
Policy Response to Inflation ρπ 0.2335 0.2270 0.2306 0.1906 0.2765
Policy Response to Output Gap ρx 0.2394 0.2150 0.2322 0.1805 0.2984
Preference Shock Persistence ρa 0.9235 0.9292 0.9246 0.9052 0.9417
Money Demand Shock Persistence ρu 0.9731 0.9778 0.9751 0.9617 0.9847
Cost Push Shock Persistence ρe 0.3295 0.3370 0.3300 0.2607 0.3981
Preference Shock Volatility σa 0.0402 0.0379 0.0394 0.0338 0.0466
Productivity Shock Volatility σz 0.0117 0.0112 0.0116 0.0101 0.0134
Money Demand Shock Volatility σu 0.0237 0.0209 0.0226 0.0186 0.0285
Cost Push Shock Volatility σe 0.0013 0.0013 0.0013 0.0012 0.0015
Monetary Policy Shock Volatility σr 0.0010 0.0010 0.0010 0.0009 0.0011



Table 3. Counterfactual Simulations

Estimated Money Growth Rule Constant Money Growth

Standard Deviation of Median 16 84 Median 16 84 Median 16 84

Output Growth 0.6032 0.6032 0.6032 0.6496 0.6259 0.6826 0.9194 0.8386 1.0253
Inflation 0.2451 0.2451 0.2451 0.2572 0.2336 0.2919 0.4132 0.3703 0.4600
Nominal Interest Rate 0.7131 0.7131 0.7131 0.6149 0.5667 0.6690 0.5006 0.4452 0.5716
Money Growth Rate 0.7479 0.7479 0.7479 0.5489 0.5156 0.5841 0.0000 0.0000 0.0000
Output Gap 0.7311 0.5716 0.9192 0.7967 0.7056 0.8989 2.4659 2.0456 2.9700

Note: The table shows the median and the 16th and 84th percentiles of the posterior distribution for the historical standard
deviation of the indicated variable under the estimated policy rule, the flexible money growth rule (34) described in the text,
and constant money growth



Figure 1. Prior and Posterior Densities, Structural Parameters. Each panel shows the prior (red line) and posterior (blue bars)
density of the indicated structural parameter.



Figure 2. Prior and Posterior Densities, Expected Zero Nominal Interest Rate Episode. Each panel shows the prior (red line)
and posterior (blue bars) density of the expected duration of the zero nominal interest rate episode at the indicated date.



Figure 3. Prior and Posterior Densities, Expected Zero Nominal Interest Rate Episode. Each panel shows the prior (red line)
and posterior (blue bars) density of the expected duration of the zero nominal interest rate episode at the indicated date.



Figure 4. Estimated Structural Shocks. Each panel shows the median path from the posterior distribution of the indicated
structural shock.



Figure 5. Impulse Responses to a Preference Shock. Each panel shows the percentage-point
response of the indicated variable to a one-standard-deviation preference shock under the
estimated policy rule, the flexible money growth rule (34) described in the text, and constant
money growth, when the parameters of the structural model are set equal to their posterior
modes.



Figure 6. Impulse Responses to a Productivity Shock. Each panel shows the percentage-point
response of the indicated variable to a one-standard-deviation productivity shock under the
estimated policy rule, the flexible money growth rule (34) described in the text, and constant
money growth, when the parameters of the structural model are set equal to their posterior
modes.



Figure 7. Impulse Responses to a Money Demand Shock. Each panel shows the percentage-
point response of the indicated variable to a one-standard-deviation productivity shock under
the estimated policy rule, the flexible money growth rule (34) described in the text, and
constant money growth, when the parameters of the structural model are set equal to their
posterior modes.



Figure 8. Impulse Responses to a Cost Push Shock. Each panel shows the percentage-
point response of the indicated variable to a one-standard-deviation cost push shock under
the estimated policy rule, the flexible money growth rule (34) described in the text, and
constant money growth, when the parameters of the structural model are set equal to their
posterior modes.



Figure 9. Counterfactual Simulations. Panels in the first column show the actual path
for output growth, inflation, the nominal interest rate, and the money growth rate, all in
annualized terms, and the median path from the estimated posterior distribution of the
output gap. Panels in the second and third columns show median counterfactual paths from
the estimated posterior distribution of the same variables under the flexible money growth
rule (34) described in the text and constant money growth.



7 Appendix

7.1 Deriving the Log-Linearized Model

After imposing the symmetry and market clearing conditions Yt(i) = Yt, ht(i) = ht, Dt(i) =
Dt, and Pt(i) = Pt for all i ∈ [0, 1] and t = 0, 1, 2, . . . and Mt = Mt−1 +Tt and Bt = Bt−1 = 0
for all t = 0, 1, 2, . . ., (6), (11), and (12) can be used to solve out for Wt/Pt, ht, and Dt. The
system implied by (1)-(5), (7), (9), (10), and (13)-(18) then becomes

Yt = Ct +
φp
2

(
πt

παt−1π
1−α − 1

)2

Yt, (1)

ln(at) = ρa ln(at−1) + εat, (2)

ln(Zt) = ln(z) + ln(Zt−1) + εzt, (3)

ln(ut) = ρu ln(ut−1) + εut, (4)
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at

Ct − γCt−1

− βγEt
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)
, (5)
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(
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(9)

ln(θt) = (1− ρθ) ln(θ) + ρθ ln(θt−1) + εθt, (10)

θt − 1 = θt

(
at
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1
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Qt − γQt−1

− βγEt
[(

at+1
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)(
1
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)]
, (14)

xt = Yt/Qt, (15)

ln(rt/r) = ρr ln(rt−1/r) + ρπ ln(πt−1/π) + ρx ln(xt−1/x) + εrt, (16)

µt =

(
Mt/Pt

Mt−1/Pt−1

)
πt, (17)
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and
gt = Yt/Yt−1 (18)

for all t = 0, 1, 2, . . ..
In terms of the stationary variables yt = Yt/Zt, ct = Ct/Zt, πt, rt, mt = (Mt/Pt)/Zt,

qt = Qt/Zt, xt, µt, gt, λt = ZtΛt, at, zt = Zt/Zt−1, ut, and θt, the system of symmetric
equilibrium conditions can be rewritten as
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[(
λt+1yt+1

λtyt

)(
πt+1

παt π
1−α − 1

)(
πt+1

παt π
1−α

)]
,

(13)

1 =
zt

ztqt − γqt−1

− βγEt
[(

at+1

at

)(
1

zt+1qt+1 − γqt

)]
, (14)

xt = yt/qt, (15)

ln(rt/r) = ρr ln(rt−1/r) + ρπ ln(πt−1/π) + ρx ln(xt−1/x) + εrt, (16)

µt = zt(mt/mt−1)πt, (17)

and
gt = (yt/yt−1)zt (18)
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for all t = 0, 1, 2, . . ..
The stationary system pins down the steady-state values yt = y, ct = c, πt = π, rt = r,

mt = m, qt = q, xt = x, µt = µ, gt = g, λt = λ, at = a = 1, zt = z, ut = u = 1, and θt = θ.
In particular, a = 1, z, u = 1, and θ are determined exogenously by (2)-(4) and (10), and π
is chosen by the central bank through (16). Equations (1), (17), and (18) then imply that
c = y, g = z, and µ = zπ. Equation (13) implies that

λ = θ/(θ − 1).

Equation (5) then implies that

y =

(
θ − 1

θ

)(
z − βγ
z − γ

)
.

Equation (14) implies that

q =
z − βγ
z − γ

,

so that (15) implies

x =
θ − 1

θ
.

Equation (7) implies
r = (z/β)π.

Finally, (9) implies
ln(m) = ln(m∗)− δr(r − 1),

where

δr =

(
δ

r

)(
θ

θ − 1

)
.

A log-linear approximation to (1) yields ĉt = ŷt. Log-linear approximations to the re-
maining 13 equations in the stationary system produce (19)-(31) in the text.

7.2 Solving the Log-Linearized Model

Let
s0,t =

[
ŷt π̂t r̂t m̂t ĝt µ̂t q̂t x̂t λ̂t

]′
and

ξt =
[
ât ẑt ût êt εrt

]′
.

Then (20)-(27) can be written as

A0s0,t = A1s0,t−1 +B0Ets0,t+1 + C0ξt, (A.1)

where A0, A1, and B0 are 9× 9 matrices and C0 is a 9× 5 matrix, with elements determined
by the model’s structural parameters. After inverting A0, (A.1) can be written in the slightly
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simpler form
s0,t = As0,t−1 +BEts0,t+1 + Cξt, (A.2)

where A = A−1
0 A1, B = A−1

0 B0, and C = A−1
0 C0. Meanwhile, (28)-(31) can be written as

ξt = Pξt−1 + εt, (A.3)

P =


ρa 0 0 0 0
0 0 0 0 0
0 0 ρu 0 0
0 0 0 ρe 0
0 0 0 0 0


and

εt =
[
εat εzt εut εet εrt

]′
.

Following Binder and Pesaran (1985), decompose s0,t into “backward” and “forward”
looking components:

s0,t = sb,t + sf,t = Ds0,t−1 + sf,t, (A.4)

where D is a 9×9 matrix to be determined. Substitute (A.4) into the left-hand side of (A.2)
and

Ets0,t+1 = Ds0,t + Etsf,t+1 = D2s0,t−1 +Dsf,t + Etsf,t+1

into the right-hand side of (A.2) to obtain

[I(9×9) −BD]sf,t = (BD2 −D + A)s0,t−1 +BEtsf,t+1 + Cξt. (A.5)

Equation (A.5) reveals that for sf,t to be purely forward looking, D must solve the
second-order matrix polynomial equation

BD2 −D + A = 0(9×9). (A.6)

Once the solution for D is in hand, (A.5) can be written more simply as

sf,t = FEtsf,t+1 +Gξt, (A.7)

where F = [I(9×9) −BD]−1B and G = [I(9×9) −BD]−1C. Assuming all the eigenvalues of F
are inside the unit circle and using (A.3), (A.7) can be solved forward to obtain

sf,t = Hξt, (A.8)

where the 9× 5 matrix H is determined by

vec(H) =
[
I(45×45) − (P ′ ⊗ F )

]−1
vec(G).

Substituting (A.8) into (A.4) now provides the solution

s0,t = Ds0,t+1 +Hξt. (A.9)
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Finally, combining (A.4) and (A.9) yields

st+1 = Πst +Wεt+1, (A.10)

where

st =
[
s′0,t ξ′t

]′
=
[
ŷt π̂t r̂t m̂t ĝt µ̂t q̂t x̂t λ̂t ât ẑt ût êt εrt

]′
,

Π =

[
D HP

0(5×9) P

]
,

and

W =

[
H

I(5×5)

]
.

It only remains to find the matrix D that solves (A.6). To accomplish this task, start by
rewriting (A.2) as

KEts1,t+1 = Ls1,t +Mξt, (A.11)

where
s1,t =

[
s′0,t−1 s′0,t

]′
,

K =

[
I(9×9) 0(9×9)

0(9×9) B

]
,

L =

[
0(9×9) I(9×9)

−A I(9×9)

]
,

and

M =

[
0(9×5)

−C

]
.

Higham and Kim (2000) and Lan and Meyer-Godhe (2012) show that D can be found using
the generalized Schur, or QZ, decomposition, which identifies unitary matrices Q and Z
such that

QKZ = S

and
QLZ = T

are both upper triangular, where the generalized eigenvalues of L and K can be recovered
as the ratios of the diagonal elements on T and S:

λ(L,K) = {tii/sii | i = 1, 2, . . . , 18}.

The matrices Q, Z, S, and T can always be arranged so that the generalized eigenvalues
appear in ascending order in absolute value. Note that, by design, there are nine “prede-
termined” or lagged values in the vector s1,t. Thus, if nine of the generalized eigenvalues
in λ(L,K) lie inside the unit circle and nine of the generalized eigenvalues lie outside the
unit circle, the system has a unique dynamically stable solution. If more than nine of the
generalized eigenvalues in λ(L,K) lie outside the unit circle, then the system has no stable
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solution; and if less than nine of the generalized eigenvalues lie outside the unit circle, then
the system has multiple stable solutions. For details, see Blanchard and Kahn (1980) and
Klein (2000).

Assuming that there are exactly nine generalized eigenvalues that lie outside the unit
circle, partition the matrix Z into 9× 9 blocks:

Z =

[
Z11 Z12

Z21 Z22

]
.

Then, according to Higham and Kim (2000) and Lan and Meyer-Godhe (2012),

D = Z21Z
−1
11 (A.12)

will be the unique solution to (A.6) with all of its eigenvalues inside the unit circle, and the
matrix F appearing in (A.7 ) will also have all of its eigenvalues inside the unit circle.

7.3 Imposing Zero Nominal Interest Rates

Kulish, Morley, and Robinson (2017) outline methods to solve and estimate the model over
samples including the period from 2009:1 through 2015:4 when the Federal Reserve held
short-term nominal interest rates in the US in a range near zero. Prior to and after the
zero nominal interest rate period, the log-linearized model’s solution is given by (A.10), as
derived above. Let t = T1 denote the start of the zero interest rate period, when the central
bank replaces the Taylor rule (24) with the zero nominal interest rate condition (32). Then
(32) can be combined with the remaining equilibrium conditions (19)-(23) and (24)-(31) to
obtain

Ā0s0,t = J̄0 + Ā1s0,t−1 + B̄0Ets0,t+1 + C̄0ξt, (A.13)

where the 9 × 9 matrices Ā0, Ā1, and B̄0 and the 9 × 5 matrix C̄0 coincide with A0, A1,
B0, and C0 in (A.1), except that they replace with zeros the elements corresponding to the
parameters of the Taylor rule (24), and the 9 × 1 vector J̄0 consists of zeros except for the
term − ln(r) appearing in the row corresponding to the zero interest rate condition (32).
After inverting Ā0, (A.13) can be written in the slightly simpler form

s0,t = J̄ + Ās0,t−1 + B̄Ets0,t+1 + C̄ξt, (A.14)

where J̄ = Ā−1
0 J̄0, Ā = Ā−1

0 Ā1, B̄ = Ā−1
0 B̄0, and C̄ = Ā−1

0 C̄0.
During periods t = T1, T1 + 1, . . . , T2 = T1 + τ − 1, while interest rates are held at zero,

the solution for s0,t will follow the time-varying coefficient VAR

s0,t = Jt +Dts0,t−1 +Htξt, (A.15)

which implies that
Ets0,t+1 = Jt+1 +Dt+1s0,t +Ht+1Pξt. (A.16)
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Substitute (A.16) into (A.14) to obtain

s0,t = J̄ + Ās0,t−1 + B̄Jt+1 + B̄Dt+1s0,t + B̄Ht+1Pξt + C̄ξt. (A.17)

Matching coefficients across (A.15) and (A.16) then yields

Dt = [I(9×9) − B̄Dt+1]−1Ā, (A.18)

Ht = [I(9×9) − B̄Dt+1]−1(C̄ + B̄Ht+1P ), (A.19)

and
Jt = [I(9×9) − B̄Dt+1]−1(J̄ + B̄Jt+1). (A.20)

Starting from the terminal conditions DT2+1 = D and HT2+1 = H, where D is determined
by (A.12) and H by (A.8), and JT2+1 = 0(9×1), (A.18)-(A.20) can be solved via backward
recursion for the sequences {DT1+j}τ−1

j=0 , {HT1+j}τ−1
j=0 , and {JT1+j}τ−1

j=0 , that appear in (A.15).
Still following Kulish, Morley, and Robinson (2017), assume more generally that the

central bank re-evaluates the timing of its return to conventional policymaking via the Taylor
rule (24) each period, announcing at the beginning of each time period t that the zero nominal
interest rate episode will continue for τt more periods. To keep track of outcomes in this case,
let τ̄ be an arbitrarily large upper bound on the length of the zero interest rate episode, and
re-label the subscripts on the matrices that solve (A.18)-(A.20) to that {Dk}τ̄k=1, {Hk}τ̄k=1,
and {Jk}τ̄k=1 are those that apply during any period when the zero interest rate episode is
expected to last for k more periods. Now, the matrices that appear in the solution (A.15) for
the zero interest rate episode are given by Dt = Dτt , Ht = Hτt , and Jt = Jτt . And, as noted
above, the model’s solution before and after the zero interest rate episode can be written in
the same form, where Dt = D, Ht = H, and Jt = 0(9×1). Therefore, the solution for the
model with the zero interest rate episode takes the form

st+1 = νt+1 + Πt+1st +Wt+1εt+1, (A.21)

where

νt+1 =

[
Jt+1

0(5×1)

]
,

Πt+1 =

[
Dt+1 Ht+1P
0(5×9) P

]
,

and

Wt+1 =

[
Ht+1

I(5×5)

]
.

7.4 The Likelihood Function

Evaluating the likelihood function and simulating the posterior distribution for the model,
when estimated over a sample period that includes the zero nominal interest rate episode, is
complicated by three factors. First, in addition to the structural parameters that enter into
the New Keynesian model’s equilibrium conditions (19)-(31), which can be collected into a
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vector Θ, there is now a second set of parameters

∆ = {τT1 , τT1+1, . . . , τT2}

for the expected duration of the zero interest rate episode at each period during that episode,
starting at date T1 and ending at T2. This first complication will be dealt with as suggested by
Kulish, Morley, and Robinson (2017) and described in more detail below. Second, because
the short-term nominal interest rate has zero variance according to the zero interest rate
condition (32), it must be removed from the list of observables during the zero interest rate
episode. Thus, if dt denotes the vector of observable variables at each date t = 1, 2, . . . , T in
the sample period,

dt = Utst, (A.22)

where, outside the zero interest rate episode, Ut is 4 × 16 and formed from the selection
vectors that pick out ĝt, π̂t, r̂t, and µ̂t from the state vector st and, during the zero interest
rate episode, Ut is 3 × 16 and formed from the selection vectors that pick out just ĝt, π̂t,
and µ̂t instead. Third, the matrices entering into the state-space model formed by (A.21)
and (A.22) are time-varying. These last two complications can be accommodated within the
standard Kalman filtering framework, as shown by Harvey (1989, Ch.3) and Anderson and
Moore (2005, Ch.3), to evaluate the model’s likelihood function L({dt}Tt=1|Θ,∆).

In particular, let
ŝt = E(st|dt−1, dt−2, . . . , d1)

and
Σt = E(st − ŝt)(st − ŝt)′.

Then, starting from the initial conditions implied by (A.10),

ŝ1 = 0(14×1)

and
vec(Σ1) = [I(196×196) − Π⊗ Π]−1vec(WVW ′),

generate recursively the sequences

υt = dt − Utŝt,

Kt = Πt+1ΣtU
′
t(UtΣtU

′
t)
−1,

ŝt+1 = νt+1 + Πt+1ŝt +Ktυt,

and
Σt+1 = Wt+1VW

′
t+1 + Πt+1ΣtΠ

′
t+1 − Πt+1ΣtU

′
t(UtΣtU

′
t)
−1UtΣtΠ

′
t+1,

where

V = Eεt+1ε
′
t+1 =


σ2
a 0 0 0 0

0 σ2
z 0 0 0

0 0 σ2
u 0 0

0 0 0 σ2
e 0

0 0 0 0 σ2
r


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is the covariance matrix of the New Keynesian model’s structural shocks.
The innovations {υt}Tt=1 can then be used to evaluate likelihood function as

ln(L({dt}Tt=1|Θ,∆) = −
[

4(T − T2 + T1 − 1) + 3(T2 − T1 + 1)

2

]
ln(2π)

−1

2

T∑
t=1

ln (|UtΣtU
′
t|)−

1

2

T∑
t=1

υ′t(UtΣtU
′
t)
−1υt.

7.5 Simulating the Posterior Distribution

The log posterior kernel can be evaluated as

lnL({dt}Tt=1|Θ,∆) + ln(P (Θ,∆)),

where P (Θ,∆) is the prior density over both sets of parameters. Kulish, Morley, and Robin-
son’s (2017) modification of the randomized block Metropolis-Hastings algorithm of Chib
and Ramamurthy (2010) is used to simulate draws from this posterior distribution. The
algorithm treats Θ and ∆ as separate blocks of parameters; this is natural, as Θ consists of
continuously-valued structural parameters where as the durations in ∆ are restricted to the
positive integers.

The algorithm is initialized by finding the mode Θ̂0 of the log posterior kernel, evaluated
using data running from 1983:1 through 2008:4, that is, before the zero nominal interest
rate episode, and ΣΘ, minus one times the inverse of the matrix of second derivatives of the
log posterior kernel, evaluated at this initial maximizer. Similarly, the mode of the prior
distributions for each of the duration parameters is used to initialize ∆̂0.

A random number nθ of the 16 parameters in Θ get updated in each iteration of the al-
gorithm. First, nΘ itself is chosen from a discrete uniform distribution over [1, 16]. Next, the
specific nΘ parameters to be updated are randomly chosen without replacement, again from
a discrete uniform distribution over [1, 16]. Using Θ(1) to denote the vector of parameters
to be updated and Θ(2) the vector of parameters that are not being updated, and given the
previous draw Θ̂i = (Θ̂

(1)
i , Θ̂

(2)
i ), a new proposal Θ

(1)
i+1 is drawn using a multivariate Student

t distribution with location Θ̂
(1)
i , scale matrix based on a re-arrangement of ΣΘ reflecting

the partition Θ = (Θ(1),Θ(2)), ν degrees of freedom, and tuning parameter ω̄. In particular,
Ding (2016) shows that if[

Θ
(1)
i+1

Θ
(2)
i+1

]
∼ t

([
Θ

(1)
i

Θ
(2)
i

]
, ω̄

[
ΣΘ,11 ΣΘ,12

ΣΘ,21 ΣΘ,22

]
, ν

)
,

then

Θ
(1)
i+1|Θ

(2)
i+1 = Θ

(2)
i ∼ t

(
Θ

(1)
i , ω̄

(
ν

ν + p2

)
(ΣΘ,11 − ΣΘ,12Σ−1

Θ,22ΣΘ,21), ν + p2

)
,

where p2 = 16− nθ is the number of elements not being updated.
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With Θ
(1)
i+1 drawn from this conditional distribution and with

ω = min

{
L({dt}Tt=1|Θ

(1)
i+1,Θ

(2)
i+1, ∆̂i)P (Θ

(1)
i+1)

L({dt}Tt=1|Θ̂
(1)
i , Θ̂

(2)
i , ∆̂i)P (Θ̂

(1)
i )

, 1

}
,

ϕ is drawn from a continuous uniform distribution on (0, 1). If ϕ > ω, the new draw is
rejected by setting Θ̂i+1 = Θ̂i. If ϕ ≤ ω, the new draw is accepted by setting Θ̂i+1 =

(Θ
(1)
i+1, Θ̂

(2)
i ). Draws for the vector of structural parameters inconsistent with the existence

of a unique dynamically stable solution to the New Keynesian model during periods outside
of the zero nominal interest rate episode are automatically rejected, effectively truncating
the prior distribution for these parameters at the boundary of the equilibrium determinacy
region. In practice, ν = 12 degrees of freedom is chosen for the Student t proposal distribution
and the tuning parameter ω̄ = 0.66 is set to achieve an acceptance rate of 0.30 for the draws
of Θ

(1)
i+1.

Likewise, a random number n∆ of the 28 duration parameters in ∆ get updated in each
iteration. First, n∆ is chosen from a discrete uniform distribution over [1, l∆], where l∆ ≤ 28
is the maximum number of durations to be updated. Then, the specific n∆ durations to be
updated are randomly chosen without replacement from a uniform distribution over [1, 28],
since the zero nominal interest rate episode lasted 28 quarters from 2009:1 through 2015:4.

Let ∆(1) denote the vector of durations to be updated and let ∆(2) be the vector of
durations that are not being updated. Given the previous draw ∆̂i = (∆̂

(1)
i , ∆̂

(2)
i ), a new

proposal ∆
(1)
i+1 is drawn from a mixture q(∆

(1)
i+1) assigning weight 0.60 to the probabilities

implied by survey data used to calibrate the prior and weight 0.40 to a uniform distribution
over durations ranging from one through 23 quarters. In practice, this mixture is chosen,
together with a setting of l∆ = 6, to achieve an acceptance rate of 0.27 for the draws of ∆

(1)
i+1.

With ∆
(1)
i+1 drawn from this distribution and with

ω = min

{
L({dt}Tt=1|Θ̂i+1,∆

(1)
i+1,∆

(2)
i+1)P (∆

(1)
i+1)q(∆̂

(1)
1 )

L({dt}Tt=1|Θ̂i+1, ∆̂
(1)
i , ∆̂

(2)
i )P (Θ̂

(1)
i )q(∆

(1)
i+1)

, 1

}
,

ϕ is drawn from a continuous uniform distribution on (0, 1). If ϕ > ω, the new draw is
rejected by setting ∆̂i+1 = ∆̂i. If ϕ ≤ ω, the new draw is accepted by setting ∆̂i+1 =

(∆
(1)
i+1, ∆̂

(2)
i ).

All results in the paper are based on 1 million draws taken from a simulation consisting
of 11 million iterations of this algorithm. The first 1 million draws are discarded to allow for
burn-in, and one out of every ten of the remaining 10 million draws are stored to generate
the final results.

7.6 Draws for the Unobservable States and Innovations

The Metropolis-within-Gibbs algorithm described above can be extended to obtain draws for
the unobservable states and innovations using the simulation-smoothing method developed
by Durbin and Koopman (2002) and outlined in Durbin and Koopman (2012, pp.107-108).
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From the state-space formulation derived earlier as

st+1 = νt+1 + Πt+1st +Wt+1εt+1 (A.21)

and
dt = Utst, (A.22)

Kalman filter recursions starting from

ŝ1 = 0(14×1)

and
vec(Σ1) = [I(196×196) − Π⊗ Π]−1vec(WVW ′),

can be used to generate recursively the sequences

υt = dt − Utŝt,

Ωt = UtΣtU
′
t ,

Kt = Πt+1ΣtU
′
tΩ
−1
t ,

Lt = Πt+1 −KtUt,

ŝt+1 = νt+1 + Πt+1ŝt +Ktυt,

and
Σt+1 = Wt+1VW

′
t+1 + Πt+1ΣtL

′
t

for t = 1, 2, . . . , T . From this filtering stage, the sequences for υt, Ωt, and Kt are stored.
Next, a value sa1 is drawn from the distribution N(0(14×1),Σ1) for the initial state and a

series of artificial shocks {εt}Tt=1 drawn from N(0(5×1), V ) for all t = 1, 2, . . . , T . When fed
through (A.21) and (A.22), these draws create an artificial data series {dat }Tt=1 that can also
be run through the Kalman filter to generate sequences υat , Ωa

t , and Ka
t .

For both the actual and artificial series, the terminal value nT = 0(14×1) gets used to
perform the backwards recursion

nt−1 = U ′tΩ
−1
t υt + L′tnt,

where Lt is again given by
Lt = Πt+1 −KtUt,

yielding the sequences {nt}Tt=0 for the actual and {nat }Tt=0 for the artificial data series. These
sequences are, in turn, used to generate {ε̃t}T+1

t=1 using

ε̃t+1 = VW ′
t+1nt

and the series {ε̃at }T+1
t=1 using

ε̃at+1 = VW ′
t+1n

a
t .
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Durbin and Koopman show that the sequence {ε̂t}T+1
t=1 constructed using

ε̂t+1 = εat+1 − ε̃at+1 + ε̃t+1

are draws from the posterior distribution of the vector {εt}T+1
t=1 of innovations to the New

Keynesian model’s structural shocks, conditional on the entire series of observed data {dt}Tt=1.
Similarly, draws from the posterior distribution of the unobservable state vector {st}T+1

t=1

can be taken by first drawing sa1 from the distributionN(0(14×1),Σ1) and {εat }Tt=1 fromN(0, V )
for all t = 0, 1, . . . , T , and using these to generate a series of artificial states {sat }T+1

t=1 using
(A.21). Then, with {nt}Tt=0 and {nat }Tt=0 obtained from the backward recursions above, the
sequence {s̃t}T+1

t=1 is generated from

s̃t+1 = νt+1 + Πt+1s̃t +Wt+1ε̃t+1

starting from s̃1 = Σ1n0 and the sequence {s̃at }T+1
t=1 is generated from

s̃at+1 = νt+1 + Πt+1s̃
a
t +Wt+1ε̃

a
t+1

starting from s̃a1 = Σ1n
a
0. Durbin and Koopman show that the sequence {ŝt}T+1

t=1 constructed
using

ŝt+1 = sat+1 − s̃at+1 + s̃t+1

are draws from the distribution of {st}T+1
t=1 conditional on {dt}Tt=1.
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