
Intermediate Stata

Christopher F Baum

Faculty Micro Resource Center

Academic Technology Services, Boston College

August 2004

baum@bc.edu

http://fmwww.bc.edu/GStat/docs/StataInter.pdf

Thanks to Petia Petrova and Vince Wiggins for their comments
on this draft.

1

File handling

File extensions usually employed (but not required) include:

.ado automatic do-file (defines a Stata command)

.dct data dictionary, optionally used with infile

.do do-file (user program)

.dta Stata binary dataset

.gph graphics output file (binary)

.log text log file

.smcl SMCL (markup) log file, for use with Viewer

.raw ASCII data file

These extensions need not be given (except for .ado). If you use

other extensions, they must be explicitly specified.

2

Loading external data: insheet

Comma-separated (CSV) files or tab-delimited data files may

be read very easily with the insheet command–which despite its

name does not read spreadsheet files. If your file has variable

names in the first row that are valid for Stata, they will be auto-

matically used (rather than default variable names). You usually

need not specify whether the data are tab- or comma-delimited–

but note that insheet cannot read space-delimited data (or char-

acter strings with embedded spaces, unless they are quoted).

3

If the file extension is .raw, you may just use

insheet using filename

to read it. If other file extensions are used, they must be given:

insheet using filename.csv

insheet using filename.txt

4

Loading external data: infile

A free-format ASCII text file with space-, tab-, or comma-delimited

data may be read with the infile command. The missing-data

indicator (.) may be used to specify that values are missing.

The command must specify the variable names. Assuming auto.raw

contains numeric data,

infile price mpg displacement using auto

will read it. If a file contains a combination of string and numeric

values in a variable, it should be read as string, and encode used

to convert it to numeric with string value labels.

5

If some of the data are string variables without embedded spaces,

they must be specified in the command:

infile str3 country price mpg displacement using auto2

would read a three-letter country of origin code, followed by the

numeric variables.

The number of observations will be determined from the avail-

able data.

6

Loading external data: infile

The infile command may also be used with fixed-format data,
including data containing undelimited string variables, by creat-
ing a dictionary file which describes the format of each variable
and specifies where the data are to be found. The dictionary
may also specify that more than one record in the input file
corresponds to a single observation in the data set.

If data fields are not delimited–for instance, if the sequence
‘102’ should actually be considered as three integer variables–
a dictionary must be used to define the variables’ locations.

The byvariable() option allows a variable-wise dataset to be
read, where one specifies the number of observations available
for each series.

7

Loading external data: infix

An alternative to infile with a dictionary is the infix command,

which presents a syntax similar to that used by SAS for the

definition of variables’ data types and locations in a fixed-format

ASCII data set: that is, a data file in which certain columns

contain certain variables. The column() directive allow contents

of a fixed-format data file to be retrieved selectively.

infix may also be used for more complex record layouts where

one individual’s data are contained on several records in an ASCII

file.

8

Loading external data

A logical condition may be used on the infile or infix com-

mands to read only those records for which certain conditions

are satisfied: i.e.

infix using employee if sex=="M"

infile price mpg using auto in 1/20

where the latter will read only the first 20 observations from the

external file. This might be very useful when reading a large

data set, where one can check to see that the formats are being

properly specified on a subset of the file.

9

Loading external data: Stat/Transfer

If your data are already in the internal format of SAS, SPSS,

Excel, GAUSS, MATLAB, or a number of other packages, the

best way to get it into Stata is by using the third-party product

Stat/Transfer. Stat/Transfer, the Swiss Army Knife of data con-

verters, can be acquired for Windows machines from Research

Services. It is available on the ecsa200.bc.edu and econ.bc.edu

systems for Unix, Linux and Macintosh users.

10

Stat/Transfer will preserve variable labels, value labels, and other

aspects of the data, and can be used to convert a Stata binary

file into other packages’ formats. It can also produce subsets of

the data (selecting variables, cases or both) so as to generate

an extract file that is more manageable. This is particularly

important when the 2,047-variable limit on standard Stata data

sets is encountered. Stat/Transfer also supports the Stata/SE

database format.

Stat/Transfer is well documented, with on-line help available in

both Windows, Mac and Unix versions, and an extensive manual.

11

Working with stored data: append and merge

In many empirical research projects, the raw data to be utilized

are stored in a number of separate files: separate “waves” of

panel data, timeseries data extracted from different databases,

and the like. Stata only permits a single data set to be accessed

at one time. How, then, do you work with multiple data sets?

Several commands are available, including append, merge, and

joinby. The append command combines two Stata–format data

sets that possess variables in common, adding observations to

the existing variables. The same variables need not be present

in both files, as long as a subset of the variables are common to

the “master” and “using” data sets. It is important to note that

“PRICE” and “price” are different variables, and one will not be

appended to the other.

12

The merge command is very powerful. Like append, it works

on a “master” data set–the current contents of memory–and a

“using” data set. One or more merge variables are specified,

and both master and using data sets must be sorted on those

variables.

The distinction between “master” and “using” is important.

When the same variable is present in each of the files, Stata’s

default behavior is to hold the master data inviolate and discard

the using dataset’s copy of that variable. This may be modified

by the update option, which specifies that non-missing values in

the using dataset should replace missing values in the master,

and update replace, which specifies that non-missing values in

the using dataset should take precedence.

13

Working with stored data: merge

A “one–to–one” merge specifies that each record in the using

data set is to be combined with one record in the master data set.

This would be appropriate if you acquired additional variables for

the same observations. A new variable, merge, takes on integer

values indicating whether an observation appears in the master

only, the using only, or appears in both. This may be used to

determine whether the merge has been successful, or to remove

those observations which remain unmatched (e.g. merging a

set of households from different cities with a comprehensive list

of ZIP codes; one would then discard all the unused ZIP code

records). The merge variable must be dropped before another

merge is performed on this data set.

14

The merge command can also do a “match merge”, or “one–

to–N” merge, in which each record in the using data set is

matched with a number of records in the master data set. If

a number of the households lived in the same ZIP code, then

the match would place variables from the ZIP code file on the

household records, repeating where necessary. This is a very

useful technique to combine aggregate data with disaggregate

data without dealing with the details.

Although “one–to–N” and “N–to–one” merges are common-

place and very useful, you never want to do a “N–to–N” merge,

which will yield seemingly random results. To ensure that one

data set has unique identifiers, specify the uniqmaster or uniqusing

options, or use the isid command to ensure that a dataset has

a unique identifier.

15

Writing external data: outfile, outsheet and file

If you want to transfer data to another package, Stat/Transfer

is very useful. But if you just want to create an ASCII file from

Stata, the outfile command may be used. It takes a varlist, and

the if or in clauses may be used to control the observations to

be exported. Applying sort prior to outfile will control the order

of observations in the external file. You may specify that the

data are to be written in comma–separated format.

16

The outsheet command can write a comma–delimited or tab–

delimited ASCII file, optionally placing the variable names in the

first row. Such a file can be easily read by a spreadsheet program

such as Excel. Note that outsheet does not write spreadsheet

files.

For customized output, the file command can write out in-

formation (including scalars, matrices and macros, text strings,

etc.) in any ASCII or binary format of your choosing.

17

Creating external data: postfile

A very useful capability is provided by the postfile and post com-

mands, which permit a Stata data set to be created in the course

of a program. For instance, you may be simulating the distri-

bution of a statistic, fitting a model over separate samples, or

bootstrapping standard errors. Within the looping structure, you

may post certain numeric values to the postfile. This will create

a separate Stata binary data set, which may then be opened in a

later Stata run and analysed. Note, however, that only numeric

expressions may be written to the postfile, and the parens ()

given in the documentation, surrounding each exp, are required.

18

Reconfiguring data: collapse

Data are often provided in a different orientation than that re-

quired for statistical analysis. The most common example of

this occurs with panel, or longitudinal, data, in which each ob-

servation conceptually has both cross-section (i) and time-series

(t) subscripts. Often one will want to work with a “pure” cross-

section or “pure” time-series. If the microdata themselves are

the objects of analysis, this can be handled with sorting and a

loop structure. If you have data for N firms for T periods per

firm, and want to fit the same model to each firm, one could

use the statsby command, or if more complex processing of each

model’s results was required, a foreach block could be used. If

analysis of a cross-section was desired, a bysort would do the

job.

19

But what if you want to use average values for each time period,

averaged over firms? The resulting dataset of T observations

can be easily created by the collapse command, which permits

you to generate a new data set comprised of summary statistics

of specified variables. More than one summary statistic can be

generated per input variable, so that both the number of firms

per period and the average return on assets could be generated.

collapse can produce counts, means, medians, percentiles, ex-

trema, and standard deviations.

20

Reconfiguring data: reshape

Different models applied to longitudinal data require different
orientations of those data. For instance, seemingly unrelated
regressions (sureg) require the data to have T observations, with
separate variables for each cross–sectional unit. Fixed–effects
or random-effects regression models xtreg, on the other hand,
require that the data be stacked or “vec”’d. It is usually much
easier to generate transformations of the data in stacked format,
where a single variable is involved.

The reshape command allows you to transfer the data from the
former format (known as wide) to the latter (known as long) or
vice versa. It is a complicated command, because of the many
variations on this process one might encounter, but it is very
powerful.

21

Reconfiguring data: reshape

As an example, a dataset from the World Bank, provided as
a spreadsheet, has rows labelled by both country (ccode) and
variable (vcode), and columns labelled by years. Two applica-
tions of reshape were needed to transfer the data to the desired
long format, where the observations have both country and year
subscripts, and the columns are variables:

reshape long d, i(ccode vcode) j(year)

reshape wide d, i(ccode year) j(vcode) string

The resulting data set is in the appropriate format for xtreg

modelling. If it were to be used in sureg–type models, a further
reshape wide could be applied to transform it into that format.

22

Repeating commands: foreach and forvalues

One of Stata’s great strengths is the ability to perform repetitive
tasks without spelling out the details (e.g. the by prefix). How-
ever, the by prefix can only execute a single command; so that
while you may run a regression for each country in your sample,
you cannot also save the residuals or predicted values for those
country–specific regressions.

Stata provides two commands that allow construction of a true
block structure or loop: foreach and forvalues. These com-
mands permit a delimited block of commands to be repeated over
elements of a varlist or numlist. Indeed, the target of foreach

may be any list of names, and can be a list of new variables to
be created. The forvalues numlist may include an increment, so
that it could for instance count from 10 to 100 in steps of 10,
or count down from 10 to 1.

23

This code fragment loops over a varlist, calculates (but does not
display) the descriptives of each variable, and then summarizes
the observations of that variable that exceed its mean. Note the
use of ‘var’, in particular the backtick (‘) on the left of the word.
This syntax is mandatory when referring to the placeholder.

foreach var of varlist pri-rep t* {

quietly summarize ‘var’

summarize ‘var’ if ‘var’ > r(mean)

}

Generally a forvalues or foreach loop is the best way to solve any
programming problem that involves repetition. It is usually much
faster, in the long run, to figure out how to place a problem
in this context. Nested loops may also be defined with these
commands.

24

Repeating commands: while and if

A loop structure may also be explicitly defined by the while com-

mand, which is akin to the “do while” construct in other pro-

gramming languages. A while structure often will make use of an

if command—not to be confused with the if clause on other

commands—which will create conditional logic. The if com-

mand may also use an else clause to express conditional logic.

For many purposes, it is more efficient (in terms of your time)

to employ foreach or forvalues, since those commands handle

the logic of repetition without explicit detail. Programs written

with these commands are easier to maintain and modify. We

demonstrate below how a loop could be written in both of these

formats.
25

Local macros, scalars and results

In programming terms, local macros and scalars are the “vari-
ables” of Stata programs (not to be confused with the variables
of the data set). The distinction: a local macro can contain a
string, while a scalar can contain a single number (at maximum
precision). You should use these constructs whenever possible
to avoid creating variables with constant values merely for the
storage of those constants. This is particularly important when
working with large data sets.

When you want to work with a scalar object—such as a counter
in a foreach or forvalues command—it will involve defining and
accessing a local macro. In addition, all Stata commands that
compute results or estimates generate one or more objects to
hold those items, which are scalars (numbers), local macros
(strings) or matrices.

26

This behavior of Stata’s computational commands allows you

to write a do–file that makes use of these quantities. We saw

one example of this above. The command summarize generates

a number of scalars, such as r(N), the number of observations;

r(mean), the mean; r(Var), the variance; etc. The available items

are shown by return list for a “r–class” command. The con-

tents of these scalars may be used in expressions. In the example

above, the mean of a variable was used to govern a following

summarize command:

quietly summarize price

summarize price if price > r(mean)

27

In this example, the scalar r(mean) may be used directly. But
what if you wanted to issue another command that generated
results, which would wipe out all of the r() returns? Then you
use the
tt local statement to preserve the item in a macro of your choos-
ing:

local mu r(mean)

Later in the program, you could use

regress mpg weight length if price > ‘mu’

Note the use of the backtick (‘) on the left of the local macro.
This syntax is mandatory, as it makes it clear that you are refer-
ring to the value of the local macro mu rather than the contents
of the variable mu.

28

Stata commands are either r–class commands like summarize,

that return results, or e–class commands, that return estimates.

You may examine the set of results from a r–class command with

the command return list. For an e-class command, use ereturn

list. An e–class command will return e() scalars, macros and

matrices: for instance, after regress, the local macro e(N) will

contain the number of observations, e(r2) the R2 value, e(depvar)

will contain the name of the dependent variable, and so on.

29

Commands may also return matrices. For instance, regress will

return the matrix e(b), a row vector of point estimates, and the

matrix e(V), the estimated variance–covariance matrix of the

estimated parameters.

Use display to examine the contents of a scalar or local macro.

For the latter, you must use the backtick and apostrophe to indi-

cate that you want to access the contents of the macro: contrast

display r(mean) with display "The mean is ‘mu’ ". The contents

of matrices may be displayed with the matrix list command.

Since items are accessible in local macros, it is very easy to write

a program that makes use of results in directing program flow.

Local macros can be created by the local statement, and used

as counters (e.g. in while).

30

Let us form a “rolling forecast” of volatility from a moving–
window regression, and we had not learned that Baum’s rollreg

command would do this job for us. Assume that we have 120
time-series observations which have been tsset:

gen volfc=.

local win 12

forv i=13/120 {

local first = ‘i’-‘win’+4

quietly regress y L(1/4).y in ‘first’/‘i’

quietly replace volfc = e(rmse) in ‘i’/‘i’

}

This program will generate the series volfc as the RMS error of
an AR(4) model fit to a window of 12 observations for the y

series.
31

Let us redo the example above using the while looping construct:

gen volfc=.

local win 12

local i 13

local iend 120

while ‘i’ <= ‘iend’ {

local first = ‘i’-‘win’+4

quietly regress y L(1/4).y in ‘first’/‘i’

quietly replace volfc = e(rmse) in ‘i’/‘i’

local i = ‘i’ + 1

}

The most common error made with while is to forget the loop
increment–which creates an infinite loop! Hit break (ctrl-C) to
abort a runaway program.

32

The use of local macros and the appropriate loop constructs

make it possible to write a Stata program that is fairly general,

and requires little modification to be reused on different series, or

with different parameters. This makes your work with Stata very

productive, since much of the code is reusable and adaptable

to similar tasks. Let us consider how this approach might be

pursued in the context of the volatility forecast example.

33

We show here a complete Stata program, volfc, which is stored

in the file volfc.ado on the adopath. Since this is a personally-

authored program, it should be placed in the personal subdirec-

tory of the ado directory at the top level of the hard disk (not

the Stata directory’s ado subdirectory!)

This program makes use of Stata’s syntax parsing capabilities

to allow this user–written command to emulate all Stata com-

mands’ syntax. It does not make use of many of the features

that might be useful in such a command: handling if and in

clauses, providing more specific error messages for inappropriate

option values, and so on.

34

The program generalizes the do-file shown above by allowing
the moving–window volatility estimate to be generated from a
specified variable, and placed in a new variable specified in the
vol() option. The window width (option win()) and AR length
(option AR()) take on default values 12 and 4, but may be over-
ridden by the user. The program automatically calculates the
first and last observations to be used in the loop from the data
and specified options. It could readily be generalized to use a dif-
ferent volatility measure from the rolling regression (e.g. mean
absolute error).

To be complete, we should provide a help file for volfc, in the
file volfc.hlp. The help file would specify the syntax of the
command, explain its purpose, define each of the options, and
provide any references to other Stata commands that might be
useful.

35

program define volfc, rclass

version 7.0

syntax varname(numeric) ,Vol(string) [Win(integer 12) AR(integer 4)]

quietly tsset

if ‘win’ < ‘ar’ {

dis "You must have a longer window than AR length!"

error 198

}

quietly gen ‘vol’=.

local start = ‘win’+‘ar’

quietly summ ‘varlist’, meanonly

local last = r(N)

dis _n "‘vol’: volatility forecast for ‘varlist’ with

window=‘win’, AR(‘ar’)"

(continues...)

36

forv i=‘start’/‘last’ {

local first = ‘i’-‘win’+1

quietly regress ‘varlist’ L(1/‘ar’).‘varlist’ in ‘first’/‘i’

quietly replace ‘vol’ = e(rmse) in ‘i’/‘i’

}

exit

end

37

This program defines the volfc command, which will appear like

any other Stata command on your machine. It may be executed

as

use http://fmwww.bc.edu/ec-p/data/macro/bdh, clear

volfc pcrude, vol(vv)

volfc pcrude, vol(vv24) win(24)

volfc pcrude, vol(vv126) ar(6)

volfc pcrude, vol(vv248) win(24) ar(8)

The volatility series might then be graphed (presuming a time

variable date which is the variable that has been tsset) with

tsline vv vv24 vv126 vv248

38

This illustrates the relative simplicity of developing a quite gen-

eral tool in Stata’s programming language. Although you may

use Stata without ever authoring an “ado–file”, much of the

productivity enhancement that a Stata user may enjoy is likely

to be tied to this sort of development. Many research tasks

are quite repetitive in some context, and developing a general–

purpose tool to implement that repetition is likely to be a very

good investment in terms of time and effort. Many of the mod-

ules available from the SSC Archive were first conceived by in-

dividuals looking to ease the burden of their own work. Stata’s

unique extensibility makes it trivial to incorporate user-written

additions—including those which you author—into your copy of

Stata, and to share it with collaborators or the Stata user com-

munity if desired.

39

As should be evident from this programming example, the program

define command is used to declare a program. The program

name must match the name of the ado–file in which it is stored.

Most user-written programs are r–class. This program could be

modified to return its parameters to the calling program with

the return statement:

return local vol ‘vol’

return local win ‘win’

return local ar ‘ar’

return local first ‘start’

return local last ‘last’

With these statements added to the end of the routine, the local

macros are defined, and their values stored.

40

The second element to be noted is the syntax statement, which

defines the allowable syntax for a user-written command. One

may specify that the command allows a single variable, with

varname; a set of variables, with varlist, optionally specifying

how many are allowed. For instance, a statistical technique that

operates on a pair of variables could specify that exactly two

existing variables are to be provided. Likewise, one may specify

that a new variable (or set of variables) are the newvarlist of

the command, and syntax will check that they are indeed new

variables.

Although not illustrated above, the syntax command will often

specify that if and in clauses are optional elements. Optional

elements of syntax (such as the options Win and AR above) are

placed in brackets ([]).

41

This programming example illustrates a “required option”—the

vol option, which must be used on this command to specify

the output of the command. The other two options are indeed

optional, and take on default values if they are not specified. The

argument of the vol option is meant to be a new variable name;

that will be trapped when the generate statement attempts to

create the variable if it is already in use, or is not a valid variable

name.

Most user–written programs could be improved by adding code to

trap errors in users’ input. If the program is primarily for your own

use, you may eschew extensive development of error trapping:

for instance, checking the options for sensibility (although one

test is applied here to prevent nonsensical results).

42

Local macros are exactly that: objects with local scope, defined
within the program in which they are used, disappearing when
that program terminates. This is generally the desired outcome,
preventing a clutter of objects from being retained when a pro-
gram calls numerous others in the course of execution. At times,
though, it is necessary to have objects that can be passed from
one subprogram to another. The return logic above would not
really serve, since although it passes local macros from a program
to its caller, they would then have to be passed as arguments to
a second program.

To deal with the need for persistent objects, Stata contains
global macros. These objects, once defined, live for the du-
ration of your Stata session, and may be read or written within
any Stata program. They are defined with the global command,
rather than local, and referred to as $macroname. Global macros
should only be used where they are required.

43

We now present an example of a Stata program that operates on

panel, or longitudinal data. When you use panel data, you must

use the panel data form of tsset in which both a unit variable

and a time variable are specified.

Assume that you have a panel data set, properly identified as

such, containing several time series for each unit in the panel:

for instance, investment or population measures for several coun-

tries. We would like to generate a new series containing the

deviations from a constant growth path (exponential trend) or,

alternatively, the constant growth values themselves (the pre-

dicted values from the exponential trend line).

44

This program, pangrodev, performs this task for each unit of a

panel, automatically identifying the observations belonging to

each unit, taking the logarithm of the specified variable, run-

ning the appropriate regression and prediction commands, and

assembling the results in the specified new variable.

The program makes use of Stata’s tempname and tempvar com-

mands to create non-scalar objects (in this case the matrix VV

and variables lvar and pvar which, like local macros, will exist

only for the duration of the ado–file). These temporary facilities,

like the associated tempfile which allows temporary files to be

specified, help reduce clutter and guarantee that objects’ names

will not conflict with other items in the user’s namespace.

45

*! pangrodev 1.0.0 CFBaum 28May2001

* generate deviations from constant growth in panel context

program define pangrodev, rclass

version 7.0

syntax varname, Gen(string) [xb]

local togens "deviations from constant growth"

if "‘xb’" != "" {

local togens "predicted growth"

}

qui tsset

local ivar = r(panelvar)

local timevar = r(timevar)

tempname VV

tempvar lvar pvar

(continues...)

46

qui gen ‘lvar’ = log(‘varlist’)

qui tab ‘ivar’,matrow(‘VV’)

local nvals=r(r)

local j = 1

while ‘j’<=‘nvals’ {

local val = ‘VV’[‘j’,1]

local vals "‘vals’ ‘val’"

local j=‘j’+1

}

qui gen double ‘gen’=.

local xc 0

local tbar 0

local rsqr 0

(continues...)

47

foreach v of local vals {

summ ‘lvar’ if ‘ivar’==‘v’,meanonly

if r(N)>2 {

qui regress ‘lvar’ ‘timevar’ if ‘ivar’==‘v’

capt drop ‘pvar’

qui predict double ‘pvar’ if e(sample),xb

qui replace ‘gen’ = exp(‘pvar’) if e(sample)

if "‘xb’" =="" {

qui replace ‘gen’ = ‘varlist’-‘gen’ if e(sample)

}

local xc = ‘xc’ + 1

local tbar = ‘tbar’ + e(N)

local rsqr = ‘rsqr’ + e(r2)

}

}

(continues...)

48

local tbar = int(100*‘tbar’ / ‘xc’)/100.0

local rsqr = int(1000*‘rsqr’ / ‘xc’)/1000.0

di in gr _n "‘gen’ : ‘togens’ for ‘xc’ of ‘nvals’ units"

di in gr "tbar = ‘tbar’ rsq-bar = ‘rsqr’"

exit

end

49

This program defines the pangrodev command, which will appear

like any other Stata command on your machine. It may be

executed as

. use http://fmwww.bc.edu/ec-p/data/macro/cap797wa

(World Bank Database for Sectoral Investment, 1948-1992)

. pangrodev TotSECap, g(totcapdev)

totcapdev : deviations from constant growth for 57 of 63 units

tbar = 25.94 rsq-bar = .673

. pangrodev TotSECap, g(totcaphat) xb

(output omitted)

50

Selected series computed by pangrodev can now be graphed by

the tsline command, which accepts a by(varlist) option:

replace totcapdev=totcapdev/10^9

keep if (ccode=="ARG" | ccode=="CHL" | ccode=="COL" | ///

ccode=="PER" | ccode=="URY" | ccode=="VEN")

label var totcapdev "Deviations from capital accumulation"

label var ccode "South American country"

tsline totcapdev if year>1969, by(ccode)

will demonstrate how many countries followed the same pattern

of below–trend growth of the capital stock (curtailed investment)

during the 1980s.

51

-2
00

-1
00

0
10

0
-2

00
-1

00
0

10
0

1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 1970 1975 1980 1985 1990

ARG CHL COL

PER URY VEN

De
vi

at
io

ns
 f

ro
m

 c
ap

ita
l a

cc
um

ul
at

io
n

year
Graphs by South American country

52

Whether or not you use Stata’s programming facilities to write
your own ado–files, a “reading knowledge” of the programming
language is very useful in case you want to adapt an existing
Stata command (official or user–contributed) in a do–file you
are writing. For instance, the program listed above has a useful
code fragment that places the unique i-values into a local macro.
There may be many instances where you want to assemble a list
of the unique IDs in a panel that satisfy a certain condition.
This code fragment (which builds the local macro vals) can be
extracted from pangrodev.ado and reused in your own do–files.

Since the code for all Stata commands that are implemented
as ado-files (as the command which... will show) are available
on your hard disk, Stata itself is a fertile source of program-
ming techniques that may be adapted to solve any programming
problem.

53

