
Introduction to Stata

Christopher F Baum

Faculty Micro Resource Center
Boston College

August 2011

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 1 / 157

Strengths of Stata What is Stata?

Overview of the Stata environment

Stata is a full-featured statistical programming language for Windows,
Mac OS X, Unix and Linux. It can be considered a “stat package,” like
SAS, SPSS, RATS, or eViews.

Stata is available in several versions: Stata/IC (the standard version),
Stata/SE (an extended version) and Stata/MP (for multiprocessing).
The major difference between the versions is the number of variables
allowed in memory, which is limited to 2,047 in standard Stata/IC, but
can be much larger in Stata/SE or Stata/MP. The number of
observations in any version is limited only by memory.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 2 / 157

Strengths of Stata What is Stata?

Stata/SE relaxes the Stata/IC constraint on the number of variables,
while Stata/MP is the multiprocessor version, capable of utilizing 2, 4,
8... processors available on a single computer. Stata/IC will meet most
users’ needs; if you have access to Stata/SE or Stata/MP, you can use
that program to create a subset of a large survey dataset with fewer
than 2,047 variables. Stata runs on all 64-bit operating systems, and
can access larger datasets on a 64-bit OS, which can address a larger
memory space.

All versions of Stata provide the full set of features and commands:
there are no special add-ons or ‘toolboxes’. Each copy of Stata
includes a complete set of manuals (over 6,000 pages) in PDF format,
hyperlinked to the on-line help.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 3 / 157

Strengths of Stata What is Stata?

A Stata license may be used on any machine which supports Stata
(Mac OS X, Windows, Linux): there are no machine-specific licenses
for Stata versions 11 or 12. You may install Stata on a home and office
machine, as long as they are not used concurrently. Licenses can be
either annual or perpetual.

Stata works differently than some other packages in requiring that the
entire dataset to be analyzed must reside in memory. This brings a
considerable speed advantage, but implies that you may need more
RAM (memory) on your computer. There are 32-bit and 64-bit versions
of Stata, with the major difference being the amount of memory that
the operating system can allocate to Stata (or any other application).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 4 / 157

Strengths of Stata What is Stata?

In some cases, the memory requirement may be of little concern.
Stata is capable of holding data very efficiently, and even a quite
sizable dataset (e.g., more than one million observations on 20–30
variables) may only require 500 Mb or so. You should take advantage
of the compress command, which will check to see whether each
variable may be held in fewer bytes than its current allocation.

For instance, indicator (dummy) variables and categorical variables
with fewer than 100 levels can be held in a single byte, and integers
less than 32,000 can be held in two bytes: see help datatypes for
details. By default, floating-point numbers are held in four bytes,
providing about seven digits of accuracy. Some other statistical
programs routinely use eight bytes to store all numeric variables.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 5 / 157

Strengths of Stata What is Stata?

The memory available to Stata may be considerably less than the
amount of RAM installed on your computer. If you have a 32-bit
operating system, it does not matter that you might have 4 Gb or more
of RAM installed; Stata will only be able to access about 1 Gb,
depending on other processes’ demands.

To make most effective use of Stata with large datasets, use a
computer with a 64-bit operating system. Stata will automatically install
a 64-bit version of the program if it is supported by the operating
system. All Linux, Unix and Mac OS X computers today come with
64-bit operating systems.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 6 / 157

Strengths of Stata Portability

Stata is eminently portable, and its developers are committed to
cross-platform compatibility. Stata runs the same way on Windows,
Mac OS X, Unix, and Linux systems. The only platform-specific
aspects of using Stata are those related to native operating system
commands: e.g. is the file to be accessed

C:\Stata\StataData\myfile.dta
or
/users/baum/statadata/myfile.dta

Perhaps unique among statistical packages, Stata’s binary data files
may be freely copied from one platform to any other, or even accessed
over the Internet from any machine that runs Stata. You may store
Stata’s binary datafiles on a webserver (HTTP server) and open them
on any machine with access to that server.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 7 / 157

Strengths of Stata Stata’s user interface

Stata’s user interface

Stata has traditionally been a command-line-driven package that
operates in a graphical (windowed) environment. Stata version 11
(released June 2009) and version 12 (released July 2011) contains a
graphical user interface (GUI) for command entry via menus and
dialogs. Stata may also be used in a command-line environment on a
shared system (e.g., a Unix server) if you do not have a graphical
interface to that system.

A major advantage of Stata’s GUI system is that you always have the
option of reviewing the command that has been entered in Stata’s
Review window. Thus, you may examine the syntax, revise it in the
Command window and resubmit it. You may find that this is a more
efficient way of using the program than relying wholly on dialogs.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 8 / 157

Strengths of Stata Stata’s user interface

Stata (version 11): default screen appearance:

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 9 / 157

Strengths of Stata Stata’s user interface

The Toolbar contains icons that allow you to Open and Save files, Print
results, control Logs, and manipulate windows. Some very important
tools allow you to open the Do-File Editor, the Data Editor and the Data
Browser.

The Data Editor and Data Browser present you with a spreadsheet-like
view of the data, no matter how large your dataset may be. The
Do-File editor, as we will discuss, allows you to construct a file of Stata
commands, or “do-file”, and execute it in whole or in part from the
editor.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 10 / 157

Strengths of Stata Stata’s user interface

The Toolbar also contains an important piece of information: the
Current Working Directory, or cwd. In the screenshot, it is listed as
/Users/Baum/Documents/ as I am working on a Mac OS X (Unix)
laptop. The cwd is the directory to which any files created in your Stata
session will be saved. Likewise, if you try to open a file and give its
name alone, it is assumed to reside in the cwd. If it is in another
location, you must change the cwd [File− >Change Working Directory]
or qualify its name with the directory in which it resides.

You generally will not want to locate or save files in the default cwd. A
common strategy is to set up a directory for each project or task in a
convenient location in the filesystem and change the cwd to that
directory when working on that task. This can be automated in a
do-file with the cd command.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 11 / 157

Strengths of Stata Stata’s user interface

There are four windows in the default interface: the Review, Results,
Command and Variables window. You may alter the appearance of any
window in the GUI using the Preferences− >General dialog, and make
those changes on a temporary or permanent basis.

As you might expect, you may type commands in the Command
window. You may only enter one command in that window, so you
should not try pasting a list of several commands. When a command is
executed—with or without error—it appears in the Review window, and
the results of the command (or an error message) appears in the
Results window. You may click on any command in the Review window
and it will reappear in the Command window, where it may be edited
and resubmitted.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 12 / 157

Strengths of Stata Stata’s user interface

Once you have loaded data into the program, the Variables window will
be populated with information on each variable. That information
includes the variable name, its label (if any), its type and its format.
This is a subset of information available from the describe command.

Let’s look at the interface after I have loaded one of the datasets
provided with Stata, uslifeexp, with the sysuse command and
given the describe and summarize commands:

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 13 / 157

Strengths of Stata Stata’s user interface

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 14 / 157

Strengths of Stata Stata’s user interface

Notice that the three commands are listed in the Review window. If any
had failed, the _rc column would contain a nonzero number, in red,
indicating the error code. The Variables window contains the list of
variables and their labels. The Results window shows the effects of
summarize: for each variable, the number of observations, their
mean, standard deviation, minimum and maximum. If there were any
string variables in the dataset, they would be listed as having zero
observations.

Try it out: type the commands

sysuse uslifeexp
describe
summarize

Take note of an important design feature of Stata. If you do not say
what to describe or summarize, Stata assumes you want to perform
those commands for every variable in memory, as shown here. As we
shall see, this design principle holds throughout the program.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 15 / 157

Strengths of Stata Using the Do-File Editor

We may also write a do-file in the do-file editor and execute it. The
Do-File Editor icon on the Toolbar brings up a window in which we may
type those same three commands, as well as a few more:

sysuse uslifeexp
describe
summarize
notes
summarize le if year < 1950
summarize le if year >= 1950

After typing those commands into the window, the rightmost icon, with
tooltip Do, may be used to execute them.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 16 / 157

Strengths of Stata Using the Do-File Editor

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 17 / 157

Strengths of Stata Using the Do-File Editor

In this do-file, I have included the notes command to display the notes
saved with the dataset, and included two comment lines. There are
several styles of comments available. In this style, anything on a line
following a double slash (//) is ignored.

You may use the other icons in the Do-File Editor window to save your
do-file (to the cwd or elsewhere), print it, or edit its contents. You may
also select a portion of the file with the mouse and execute only those
commands. Note that the tooltip changes to Do Selected Lines.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 18 / 157

Strengths of Stata Using the Do-File Editor

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 19 / 157

Strengths of Stata Using the Do-File Editor

Try it out: use the Do-File Editor to open the do-file S1.1.do, and run
the file.

Try selecting only those last four lines and run those commands.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 20 / 157

Strengths of Stata The help system

The rightmost menu on the menu bar is labeled Help. From that menu,
you can search for help on any command or feature. The Help
Browser, which opens in a Viewer window, provides hyperlinks, in blue,
to additional help pages. At the foot of each help screen, there are
hyperlinks to the full manuals, which are accessible in PDF format.
The links will take you directly to the appropriate page of the manual.

You may also search for help at the command line with help
command. But what if you don’t know the exact command name?
Then you may use search or its expanded version, findit, each of
which may be followed by one or several words.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 21 / 157

Strengths of Stata The help system

Results from search are presented in the Results window, while
findit results will appear in a Viewer window. Those commands will
present results from a keyword database and from the Internet: for
instance, FAQs from the Stata website, articles in the Stata Journal
and Stata Technical Bulletin, and downloadable routines from the SSC
Archive (about which more later) and user sites.

Try it out: when you are connected to the Internet, type the command
search baum, au
and then try
findit baum

Note the hyperlinks that appear on URLs for the books and journal
articles, and on the individual software packages (e.g., st0030_3,
archlm).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 22 / 157

Strengths of Stata Data Manipulation

Stata is advertised as having three major strengths:
data manipulation
statistics
graphics

Stata is an excellent tool for data manipulation: moving data from
external sources into the program, cleaning it up, generating new
variables, generating summary data sets, merging data sets and
checking for merge errors, collapsing cross–section time-series data
on either of its dimensions, reshaping data sets from “long” to “wide”,
and so on. In this context, Stata is an excellent program for answering
ad hoc questions about any aspect of the data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 23 / 157

Strengths of Stata Statistics

In terms of statistics, Stata provides all of the standard univariate,
bivariate and multivariate statistical tools, from descriptive statistics
and t-tests through one-, two- and N-way ANOVA, regression, principal
components, and the like. Stata’s regression capabilities are
full-featured, including regression diagnostics, prediction, robust
estimation of standard errors, instrumental variables and two-stage
least squares, seemingly unrelated regressions, vector
autoregressions and error correction models, etc. It has a very
powerful set of techniques for the analysis of limited dependent
variables: logit, probit, ordered logit and probit, multinomial logit, and
the like.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 24 / 157

Strengths of Stata Statistics

Stata’s breadth and depth really shines in terms of its specialized
statistical capabilities. These include environments for time-series
econometrics (ARCH, ARIMA, ARFIMA, VAR, VEC), model simulation
and bootstrapping, maximum likelihood estimation, GMM, and
nonlinear least squares. Families of commands provide the leading
techniques utilized in each of several categories:

“xt” commands for cross-section/time-series or panel
(longitudinal) data
“sem” commands for structural equation modeling
“svy” commands for the handling of survey data with complex
sampling designs
“st” commands for the handling of survival-time data with duration
models

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 25 / 157

Strengths of Stata Graphics

Stata graphics are excellent tools for exploratory data analysis, and
can produce high-quality 2-D publication-quality graphics in several
dozen different forms. Every aspect of graphics may be programmed
and customized, and new graph types and graph “schemes” are being
continuously developed. The programmability of graphics implies that
a number of similar graphs may be generated without any “pointing
and clicking” to alter aspects of the graphs. Stata 12 provides support
for contour plots and ‘heatmaps’.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 26 / 157

Strengths of Stata Stata’s update facility

Stata’s update facility

One of Stata’s great strengths is that it can be updated over the
Internet. Stata is actually a web browser, so it may contact Stata’s web
server and enquire whether there are more recent versions of either
Stata’s executable (the kernel) or the ado-files. This enables Stata’s
developers to distribute bug fixes, enhancements to existing
commands, and even entirely new commands during the lifetime of a
given major release (including ‘dot-releases’ such as Stata 11.1).

Updates during the life of the version you own are free. You need only
have a licensed copy of Stata and access to the Internet (which may
be by proxy server) to check for and, if desired, download the updates.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 27 / 157

Strengths of Stata Extensibility

Extensibility of official Stata

Another advantage of the command-line driven environment involves
extensibility: the continual expansion of Stata’s capabilities. A
command, to Stata, is a verb instructing the program to perform some
action.

Commands may be “built in” commands—those elements so
frequently used that they have been coded into the “Stata kernel.” A
relatively small fraction of the total number of official Stata commands
are built in, but they are used very heavily.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 28 / 157

Strengths of Stata Extensibility

The vast majority of Stata commands are written in Stata’s own
programming language–the “ado-file” language. If a command is not
built in to the Stata kernel, Stata searches for it along the adopath.
Like the PATH in Unix, Linux or DOS, the adopath indicates the
several directories in which an ado-file might be located. This implies
that the “official” Stata commands are not limited to those coded into
the kernel. Try it out: give the adopath command in Stata.

If Stata’s developers tomorrow wrote a new command named “foobar”,
they would make two files available on their web site: foobar.ado
(the ado-file code) and foobar.sthlp (the associated help file). Both
are ordinary, readable ASCII text files. These files should be produced
in a text editor, not a word processing program.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 29 / 157

Strengths of Stata Extensibility

The importance of this program design goes far beyond the limits of
official Stata. Since the adopath includes both Stata directories and
other directories on your hard disk (or on a server’s filesystem), you
may acquire new Stata commands from a number of web sites. The
Stata Journal (SJ), a quarterly refereed journal, is the primary method
for distributing user contributions. Between 1991 and 2001, the Stata
Technical Bulletin played this role, and a complete set of issues of the
STB are available on line at the Stata website.

The SJ is a subscription publication (articles more than three years old
freely downloadable), but the ado- and sthlp-files may be freely
downloaded from Stata’s web site. The Stata help command
accesses help on all installed commands; the Stata command findit
will locate commands that have been documented in the STB and the
SJ, and with one click you may install them in your version of Stata.
Help for these commands will then be available in your own copy.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 30 / 157

Strengths of Stata Extensibility

User extensibility: the SSC archive

But this is only the beginning. Stata users worldwide participate in the
StataList listserv, and when a user has written and documented a new
general-purpose command to extend Stata functionality, they
announce it on the StataList listserv (to which you may freely
subscribe: see Stata’s web site).

Since September 1997, all items posted to StataList (over 1,300)
have been placed in the Boston College Statistical Software
Components (SSC) Archive in RePEc (Research Papers in
Economics), available from IDEAS (http://ideas.repec.org) and
EconPapers (http://econpapers.repec.org).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 31 / 157

Strengths of Stata Extensibility

Any component in the SSC archive may be readily inspected with a
web browser, using IDEAS’ or EconPapers’ search functions, and if
desired you may install it with one command from the archive from
within Stata. For instance, if you know there is a module in the archive
named mvsumm, you could use ssc describe mvsumm to learn
more about it, and ssc install mvsumm to install it if you wish.
Anything in the archive can be accessed via Stata’s ssc command:
thus ssc describe mvsumm will locate this module, and make it
possible to install it with one click.

Windows users should not attempt to download the materials from a
web browser; it won’t work.

Try it out: when you are connected to the Internet, type
ssc describe mvsumm
ssc install mvsumm
help mvsumm

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 32 / 157

Strengths of Stata Extensibility

The command ssc new lists, in the Stata Viewer, all SSC packages
that have been added or modified in the last month. You may click on
their names for full details. The command ssc hot reports on the
most popular packages on the SSC Archive.

The Stata command adoupdate checks to see whether all packages
you have downloaded and installed from the SSC archive, the Stata
Journal, or other user-maintained net from... sites are up to date.
adoupdate alone will provide a list of packages that have been
updated. You may then use adoupdate, update to refresh your
copies of those packages, or specify which packages are to be
updated.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 33 / 157

Strengths of Stata Extensibility

The importance of all this is that Stata is infinitely extensible. Any
ado-file on your adopath is a full-fledged Stata command. Stata’s
capabilities thus extend far beyond the official, supported features
described in the Stata manual to a vast array of additional tools.

Since the current directory is on the adopath, if you create an ado-file
hello.ado:

program define hello
display "Stata says hello!"
end
exit

Stata will now respond to the command hello. It’s that easy. Try it out!

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 34 / 157

Strengths of Stata Availability, Cost, and Support

For members of the Boston College community, Stata is available
through ITS’ applications server, http://apps.bc.edu. After
downloading client software from this site, you may connect to the
apps server from any BC-activated computer and run Stata in a
window on your computer. It is actually running the Windows version of
Stata/SE 11.2, but the interface and commands is almost identical to
Stata for Mac OS X or Stata for Linux. Up to 50 users may access
Stata on the apps server simultaneously. Results from your analysis
may be stored on MyFiles, as the m: disk is automatically mapped to
your account on appstorage.bc.edu, accessible from any web
browser with authentication. If you are working from off campus, you
must use set up VPN on your computer; see
http://www.bc.edu/help for details.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 35 / 157

Strengths of Stata Availability, Cost, and Support

If you would like your own copy of Stata, it is quite inexpensive. The
vendor’s GradPlan program makes the full version of Stata version 12
software available to BC faculty and students for $98.00 (one-year
license) or $179.00 (perpetual license). This includes the full set of
manuals in PDF format, hyperlinked to Stata’s help system.

The “Small Stata” version is available to students for $49.00 for a
one-year license. It contains all of Stata’s commands, but can only
handle a limited number of observations and variables (thus not
recommended for Ph.D. students or Senior Honors Thesis students).
GradPlan orders are made direct to Stata, with delivery from
on-campus inventory.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 36 / 157

Strengths of Stata Availability, Cost, and Support

Stata is very well supported by telephone and email technical support,
as well as the more informal support provided by other users on
StataList, the Stata listserv. The manuals are useful—particularly the
User’s Guide—but full details of the command syntax are available
online, and in hypertext form in the GUI environment, with hyperlinks to
the appropriate pages of the full documentation set of over a dozen
manuals. The command findit keyword can also be used to locate
Stata materials, including descriptions of built-in commands, Stata
FAQs, and hundreds of user-written routines.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 37 / 157

Working with the command line

But why should I type commands?

But before we discuss the specifics to back up these claims, let’s
consider a meta-issue: why would you want to learn how to use a
command-line-driven package? Isn’t that ever so 20th century?

Stata may be used in an interactive mode, and those learning the
package may wish to make use of the menu system. But when you
execute a command from a pull-down menu, it records the command
that you could have typed in the Review window, and thus you may
learn that with experience you could type that command (or modify it
and resubmit it) more quickly than by use of the menus.

Let us consider a couple of reasons why a command-line-driven
package makes for an effective and efficient research strategy.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 38 / 157

Working with the command line Advantage: Reproducibility

Reproducibility

First, the important issue of reproducibility. If you are conducting
scientific research, you must be able to reproduce your results. Ideally,
anyone with your programs and data should be able to do so without
your assistance. If you cannot produce such reproducible research
findings, it can be argued that you are not following the scientific
method, nor is your work conforming to ethical standards of research.

A thorough discussion of this issue is covered in the webpage,
http://fmwww.bc.edu/GStat/docs/pointclick.html.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 39 / 157

Working with the command line Advantage: Reproducibility

In a computer program where all actions are point and click, such as a
spreadsheet, who can say how you arrived at a certain set of results?
Unless every step of your transformations of the data can be retraced,
how can you find exactly how the sample you are employing differs
from the raw data? A command-driven program is capable of this level
of reproducibility, we should all instill this level of rigor in our research
practices.

Reproducibility also makes it very easy to perform an alternate
analysis of a particular model. What would happen if we added this
interaction, or introduced this additional variable, or decided to handle
zero values as missing? Even if many steps have been taken since the
basic model was specified, it is easy to go back and produce a
variation on the analysis if all the work is represented by a series of
programs.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 40 / 157

Working with the command line Advantage: Transportability

Transportability
Stata binary files may be easily transformed into SPSS or SAS files
with the third-party application Stat/Transfer. Stat/Transfer is available
for Windows and Mac OS X systems as well as on various Unix
systems on campus. Personal copies of Stat/Transfer version 11
(which handles Stata versions 6, 7, 8, 9, 10, 11 and 12 datafiles) are
available at a discounted academic rate of $69.00 through the Stata
GradPlan.

Stat/Transfer can also transfer SAS, SPSS and many other file formats
into Stata format, without loss of variable labels, value labels, and the
like. It can also be used to create a manageable subset of a very large
Stata file (such as those produced from survey data) by selecting only
the variables you need. It is a very useful tool.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 41 / 157

Working with the command line Programmability of tasks

Programmability of tasks

Stata may be used in an interactive mode, and those learning the
package may wish to make use of the menu system. But when you
execute a command from a pull-down menu, it records the command
that you could have typed in the Review window, and thus you may
learn that with experience you could type that command (or modify it
and resubmit it) more quickly than by use of the menus.

Stata makes reproducibility very easy through a log facility, the ability
to generate a command log (containing only the commands you have
entered), and the do-file editor which allows you to easily enter,
execute and save sequences of commands, or program fragments.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 42 / 157

Working with the command line Programmability of tasks

Going one step further, if you use the do-file editor to create a
sequence of commands, you may save that do-file and reuse it
tomorrow, or use it as the starting point for a similar set of data
management or statistical operations. Working in this way promotes
reproducibility, which makes it very easy to perform an alternate
analysis of a particular model. Even if many steps have been taken
since the basic model was specified, it is easy to go back and produce
a variation on the analysis if all the work is represented by a series of
programs.

One of the implications of the concern for reproducible work: avoid
altering data in a non-auditable environment such as a spreadsheet.
Rather, you should transfer external data into the Stata environment as
early as possible in the process of analysis, and only make permanent
changes to the data with do-files that can give you an audit trail of
every change made to the data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 43 / 157

Working with the command line Programmability of tasks

Programmable tasks are supported by prefix commands, as we will
soon discuss, that provide implicit loops, as well as explicit looping
constructs such as the forvalues and foreach commands.

To use these commands you must understand Stata’s concepts of
local and global macros. Note that the term macro in Stata bears no
resemblance to the concept of an Excel macro. A macro, in Stata, is
an alias to an object, which may be a number or string.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 44 / 157

Working with the command line Local macros and scalars

Local macros and scalars

In programming terms, local macros and scalars are the “variables” of
Stata programs (not to be confused with the variables of the data set).
The distinction: a local macro can contain a string, while a scalar can
contain a single number (at maximum precision). You should use these
constructs whenever possible to avoid creating variables with constant
values merely for the storage of those constants. This is particularly
important when working with large data sets.

When you want to work with a scalar object—such as a counter in a
foreach or forvalues command—it will involve defining and
accessing a local macro. As we will see, all Stata commands that
compute results or estimates generate one or more objects to hold
those items, which are saved as numeric scalars, local macros (strings
or numbers) or numeric matrices.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 45 / 157

Working with the command line Local macros and scalars

The local macro

The local macro is an invaluable tool for do-file authors. A local macro
is created with the local statement, which serves to name the macro
and provide its content. When you next refer to the macro, you extract
its value by dereferencing it, using the backtick (‘) and apostrophe (’)
on its left and right:

local george 2
local paul = ‘george’ + 2

In this case, I use an equals sign in the second local statement as I
want to evaluate the right-hand side, as an arithmetic expression, and
store it in the macro paul. If I did not use the equals sign in this
context, the macro paul would contain the string 2 + 2.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 46 / 157

Working with the command line forvalues and foreach

forvalues and foreach

In other cases, you want to redefine the macro, not evaluate it, and you
should not use an equals sign. You merely want to take the contents of
the macro (a character string) and alter that string. The two key
programming constructs for repetition, forvalues and foreach,
make use of local macros as their “counter”. For instance:

forvalues i=1/10 {
summarize PRweek‘i’

}

Note that the value of the local macro i is used within the body of the
loop when that counter is to be referenced. Any Stata numlist may
appear in the forvalues statement. Note also the curly braces,
which must appear at the end of their lines.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 47 / 157

Working with the command line forvalues and foreach

In many cases, the forvalues command will allow you to substitute
explicit statements with a single loop construct. By modifying the range
and body of the loop, you can easily rewrite your do-file to handle a
different case.

The foreach command is even more useful. It defines an iteration
over any one of a number of lists:

the contents of a varlist (list of existing variables)
the contents of a newlist (list of new variables)
the contents of a numlist (list of integers)
the separate words of a macro
the elements of an arbitrary list

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 48 / 157

Working with the command line forvalues and foreach

For example, we might want to summarize each of these variables’
detailed statistics from this World Bank data set:

sysuse lifeexp
foreach v of varlist popgrowth lexp gnppc {

summarize ‘v’, detail
}

Or, run a regression on variables for each region, and graph the data
and fitted line:

levelsof region, local(regid)
foreach c of local regid {
local rr : label region ‘c’

regress lexp gnppc if region ==‘c’
twoway (scatter lexp gnppc if region ==‘c’) ///

(lfit lexp gnppc if region ==‘c’, ///
ti(Region: ‘rr’) name(fig‘c’, replace))

}

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 49 / 157

Working with the command line forvalues and foreach

A local macro can be built up by redefinition:

local alleps
foreach c of local regid {
regress lexp gnppc if region ==‘c’
predict double eps‘c’ if e(sample), residual
local alleps "‘alleps’ eps‘c’"
}

Within the loop we redefine the macro alleps (as a double-quoted
string) to contain itself and the name of the residuals from that region’s
regression. We could then use the macro alleps to generate a graph
of all three regions’ residuals:

gen cty = _n
scatter `alleps´ cty, yline(0) scheme(s2mono) legend(rows(1)) ///
ti("Residuals from model of life expectancy vs per capita GDP") ///
t2("Fit separately for each region")

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 50 / 157

Working with the command line forvalues and foreach

-1
5

-1
0

-5
0

5

0 20 40 60 80
cty

Eur & C.Asia N.A. S.A.

Fit separately for each region
Residuals from model of life expectancy vs per capita GDP

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 51 / 157

Working with the command line forvalues and foreach

Global macros

Stata also supports global macros, which are referenced by a different
syntax ($country rather than ‘country’). Global macros are useful
when particular definitions (e.g., the default working directory for a
particular project) are to be referenced in several do-files that are to be
executed. However, the creation of persistent objects of global scope
can be dangerous, as global macro definitions are retained for the
entire Stata session. One of the advantages of local macros is that
they disappear when the do-file or ado-file in which they are defined
finishes execution.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 52 / 157

Working with the command line forvalues and foreach

Stata’s command syntax

We now consider the form of Stata commands. One of Stata’s great
strengths, compared with many statistical packages, is that its
command syntax follows strict rules: in grammatical terms, there are
no irregular verbs. This implies that when you have learned the way a
few key commands work, you will be able to use many more without
extensive study of the manual or even on-line help. The search
command will allow you to find the command you need by entering one
or more keywords, even if you do not know the command’s name.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 53 / 157

Working with the command line forvalues and foreach

The fundamental syntax of all Stata commands follows a template. Not
all elements of the template are used by all commands, and some
elements are only valid for certain commands. But where an element
appears, it will appear in the same place, following the same grammar.
Like Unix or Linux, Stata is case sensitive. Commands must be given
in lower case. For best results, keep all variable names in lower case
to avoid confusion.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 54 / 157

Working with the command line Command template

The general syntax of a Stata command is:

[prefix_cmd:] cmdname [varlist] [=exp]
[if exp] [in range]
[weight] [using...] [,options]

where elements in square brackets are optional for some commands.

In some cases, only the cmdname itself is required. describe without
arguments gives a description of the current contents of memory
(including the identifier and timestamp of the current dataset), while
summarize without arguments provides summary statistics for all
(numeric) variables. Both may be given with a varlist specifying the
variables to be considered.

What are the other elements?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 55 / 157

Working with the command line The varlist

The varlist

varlist is a list of one or more variables on which the command is to
operate: the subject(s) of the verb. Stata works on the concept of a
single set of variables currently defined and contained in memory,
each of which has a name. As desc will show you, each variable has a
data type (various sorts of integers and reals, and string variables of a
specified maximum length). The varlist specifies which of the defined
variables are to be used in the command.

The order of variables in the dataset matters, since you can use
hyphenated lists to include all variables between first and last. (The
order and move commands can alter the order of variables.) You can
also use “wildcards” to refer to all variables with a certain prefix. If you
have variables pop60, pop70, pop80, pop90, you can refer to them in a
varlist as pop* or pop?0.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 56 / 157

Working with the command line The exp clause

The exp clause

The exp clause is used in commands such as generate and
replace where an algebraic expression is used to produce a new (or
updated) variable. In algebraic expressions, the operators ==, &, | and
! are used as equal, AND, OR and NOT, respectively. The

∧
operator

is used to denote exponentiation. The + operator is overloaded to
denote concatenation of character strings.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 57 / 157

Working with the command line The if and in clauses

The if and in clauses
Stata differs from several common programs in that Stata commands
will automatically apply to all observations currently defined. You need
not write explicit loops over the observations. You can, but it is usually
bad programming practice to do so. Of course you may want not to
refer to all observations, but to pick out those that satisfy some
criterion. This is the purpose of the if exp and in range clauses. For
instance, we might:

sort price
list make price in 1/5

to determine the five cheapest cars in auto.dta. The 1/5 is a numlist: in
this case, a list of observation numbers. ` is the last observation, thus
list make price in -5/` will list the five most expensive cars in auto.dta.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 58 / 157

Working with the command line The if and in clauses

Even more commonly, you may employ the if exp clause. This restricts
the set of observations to those for which the “exp”, a Boolean
expression, evaluates to true. Stata’s missing value codes are greater
than the largest positive number, so that the last command would avoid
listing cars for which the price is missing.

list make price if foreign==1

lists only foreign cars, and

list make price if price > 10000 & price <.

lists only expensive cars (in 1978 prices!) Note the double equal in the
exp. A single equal sign, as in the C language, is used for assignment;
double equal for comparison.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 59 / 157

Working with the command line The using clause

The using clause

Some commands access files: reading data from external files, or
writing to files. These commands contain a using clause, in which the
filename appears. If a file is being written, you must specify the
“replace” option to overwrite an existing file of that name.

Stata’s own binary file format, the .dta file, is cross-platform
compatible, even between machines with different byte orderings
(low-endian and high-endian). A .dta file may be moved from one
computer to another using ftp (in binary transfer mode).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 60 / 157

Working with the command line The using clause

To bring the contents of an existing Stata file into memory, the
command:

use file [,clear]

is employed (clear will empty the current contents of memory). You
must make sufficient memory available to Stata to load the entire file,
since Stata’s speed is largely derived from holding the entire data set in
memory. Consult Getting Started... for details on adjusting the memory
allocation on your computer, since it differs by operating system.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 61 / 157

Working with the command line The using clause

Reading and writing binary (.dta) files is much faster than dealing with
text (ASCII) files (with the insheet or infile commands), and
permits variable labels, value labels, and other characteristics of the
file to be saved along with the file. To write a Stata binary file, the
command

save file [,replace]

is employed. The compress command can be used to economize on
the disk space (and memory) required to store variables.

Stata’s version 10 and 11 datasets cannot be read by version 8 or 9; to
create a compatible dataset, use saveold.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 62 / 157

Working with the command line Accessing data over the Web

The amazing thing about “use filename” is that it is by no means
limited to the files on your hard disk. Since Stata is a web browser,

webuse klein

or

use http://fmwww.bc.edu/ec-p/data/Wooldridge/crime1.dta

will read these datasets into Stata’s memory over the web.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 63 / 157

Working with the command line Accessing data over the Web

The type command can display any text file, whether on your hard
disk or over the Web; thus

type http://fmwww.bc.edu/ec-p/data/Wooldridge/crime1.des

will display the codebook for this file, and

copy http://fmwww.bc.edu/ec-p/data/Wooldridge/crime1.des crime.codebook

will make a copy of the codebook on your own hard disk.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 64 / 157

Working with the command line Accessing data over the Web

When you have used a dataset over the Web, you have loaded it into
memory in your desktop Stata. You cannot save it to the Web, but can
save the data to your own hard disk. The advantages of this feature for
instructional and collaborative research should be clear. Students may
be given a URL from which their assigned data are to be accessed; it
matters not whether they are using Stata for Windows, Macintosh,
Linux, or Unix.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 65 / 157

Working with the command line The options clause

The options clause

Many commands make use of options (such as clear on use, or
replace on save). All options are given following a single comma,
and may be given in any order. Options, like commands, may generally
be abbreviated (with the notable exception of replace).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 66 / 157

Working with the command line Prefix commands

Prefix commands
A number of Stata commands can be used as prefix commands,
preceding a Stata command and modifying its behavior. The most
commonly employed is the by prefix, which repeats a command over a
set of categories. The statsby: prefix repeats the command, but
collects statistics from each category. The rolling: prefix runs the
command on moving subsets of the data (usually time series).

Several other command prefixes: simulate:, which simulates a
statistical model; bootstrap:, allowing the computation of bootstrap
statistics from resampled data; and jackknife:, which runs a command
over jackknife subsets of the data. The svy: prefix can be used with
many statistical commands to allow for survey sample design. See my
separate slideshow on Monte Carlo Simulation in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 67 / 157

Working with the command line Prefix commands

The by prefix
You can often save time and effort by using the by prefix. When a
command is prefixed with a bylist, it is performed repeatedly for each
element of the variable or variables in that list, each of which must be
categorical. For instance,

by foreign: summ price

will provide descriptive statistics for both foreign and domestic cars. If
the data are not already sorted by the bylist variables, the prefix
bysort should be used. The option ,total will add the overall
summary.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 68 / 157

Working with the command line Prefix commands

What about a classification with several levels, or a combination of
values?

bysort rep78: summ price

bysort rep78 foreign: summ price

This is a very handy tool, which often replaces explicit loops that must
be used in other programs to achieve the same end.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 69 / 157

Working with the command line Prefix commands

The by prefix should not be confused with the by option available on
some commands, which allows for specification of a grouping variable:
for instance

ttest price, by(foreign)

will run a t-test for the difference of sample means across domestic
and foreign cars.

Another useful aspect of by is the way in which it modifies the
meanings of the observation number symbol. Usually _n refers to the
current observation number, which varies from 1 to _N, the maximum
defined observation. Under a bylist, _n refers to the observation within
the bylist, and _N to the total number of observations for that category.
This is often useful in creating new variables.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 70 / 157

Working with the command line Prefix commands

For instance, if you have individual data with a family identifier, these
commands might be useful:

sort famid age
by famid: gen famsize = _N
by famid: gen birthorder = _N - _n +1

Here the famsize variable is set to _N, the total number of records for
that family, while the birthorder variable is generated by sorting the
family members’ ages within each family.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 71 / 157

Working with the command line Missing values

Missing values

Missing value codes in Stata appear as the dot (.) in printed output
(and a string missing value code as well: “”, the null string). It takes on
the largest possible positive value, so in the presence of missing data
you do not want to say

generate hiprice = (price > 10000), but rather

generate hiprice = (price > 10000 & price <.)

which then generates a “dummy variable” for high-priced cars (for
which price data are complete, with prices “less than missing”).

As of version 8, Stata allows for multiple missing value codes (.a,
.b, .c, ..., .z).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 72 / 157

Working with the command line Display formats

Display formats

Each variable may have its own default display format. This does not
alter the contents of the variable, but affects how it is displayed. For
instance, %9.2f would display a two-decimal-place real number. The
command

format varname %9.2f

will save that format as the default format of the variable, and

format date %tm

will format a Stata date variable into a monthly format (e.g., 1998m10).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 73 / 157

Working with the command line Variable labels

Variable labels

Each variable may have its own variable label. The variable label is a
character string (maximum 80 characters) which describes the
variable, associated with the variable via

label variable varname "text"

Variable labels, where defined, will be used to identify the variable in
printed output, space permitting.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 74 / 157

Working with the command line Value labels

Value labels

Value labels associate numeric values with character strings. They
exist separately from variables, so that the same mapping of numerics
to their definitions can be defined once and applied to a set of
variables (e.g. 1=very satisfied...5=not satisfied may be applied to all
responses to questions about consumer satisfaction). Value labels are
saved in the dataset. For example:

label define sexlbl 0 male 1 female
label values sex sexlbl

If value labels are defined, they will be displayed in printed output
instead of the numeric values.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 75 / 157

Generating new variables

Generating new variables

The command generate is used to produce new variables in the
dataset, whereas replace must be used to revise an existing variable
(and replace must be spelled out). The syntax just demonstrated is
often useful if you are trying to generate indicator variables, or
dummies, since it combines a generate and replace in a single
command.

A full set of functions are available for use in the generate command,
including the standard mathematical functions, recode functions, string
functions, date and time functions, and specialized functions (help
functions for details). Note that generate’s sum() function is a
running sum.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 76 / 157

Generating new variables The egen command

The egen command

Stata is not limited to using the set of defined functions. The egen
(extended generate) command makes use of functions written in the
Stata ado-file language, so that _gzap.ado would define the extended
generate function zap(). This would then be invoked as

egen newvar = zap(oldvar)

which would do whatever zap does on the contents of oldvar, creating
the new variable newvar.

A number of egen functions provide row-wise operations similar to
those available in a spreadsheet: row sum, row average, row standard
deviation, etc.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 77 / 157

Generating new variables Time series operators

Time series operators

The D., L., and F. operators may be used under a timeseries
calendar (including in the context of panel data) to specify first
differences, lags, and leads, respectively. These operators understand
missing data, and numlists: e.g. L(1/4).x is the first through fourth
lags of x, while L2D.x is the second lag of the first difference of the x
variable.

It is important to use the time series operators to refer to lagged or led
values, rather than referring to the observation number (e.g., _n-1).
The time series operators respect the time series calendar, and will not
mistakenly compute a lag or difference from a prior period if it is
missing. This is particularly important when working with panel data to
ensure that references to one individual do not reach back into the
prior individual’s data.

In Stata 12, you may define a custom business-daily calendar that
takes account of weekends, holidays, etc.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 78 / 157

Generating new variables Mata: Matrix programming language

Mata: Matrix programming language

As of version 9, Stata contains a full-fledged matrix programming
language, Mata, with all of the capabilities of MATLAB, Ox or GAUSS.
Mata can be used interactively, or Mata functions can be developed to
be called from Stata. A large library of mathematical and matrix
functions is provided in Mata, including equation solvers,
decompositions, eigensystem routines and probability density
functions. Mata functions can access Stata’s variables and can work
with virtual matrices (“views”) of a subset of the data in memory. Mata
also supports file input/output.

Mata code is automatically compiled into bytecode, like Java, and can
be stored in object form or included in-line in a Stata do-file or ado-file.
Mata code runs many times faster than the interpreted ado-file
language, providing significant speed enhancements to many
computationally burdensome tasks. See my separate slideshow
Mata in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 79 / 157

Estimation commands Common syntax

Estimation commands

All estimation commands share the same syntax. Multiple equation
estimation commands use a list of equations, rather than a varlist,
where equations are defined in parenthesized varlists. Most estimation
commands allow the use of various kinds of weights.

Estimation commands display confidence intervals for the coefficients,
and tests of the most common hypotheses. More complex hypotheses
may be analyzed with the test and lincom commands; for nonlinear
hypothesis, testnl and nlcom may be applied, making use of the
delta method.

Robust (Huber/White) estimates of the covariance matrix are available
for almost all estimation commands by employing the robust option.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 80 / 157

Estimation commands Post-estimation commands

Predicted values and residuals may be obtained after any estimation
command with the predict command. For nonlinear estimators,
predict will produce other statistics as well (e.g. the log of the odds
ratio from logistic regression). The mfx command may be used to
generate marginal effects, including elasticities and semi–elasticities,
for any estimation command.

All estimation commands “leave behind” results of estimation in the
e() array, where they may be inspected with ereturn list. Any
item here, including scalars such as R2 and RMSE, the coefficient
vector, and the estimated variance-covariance matrix, may be saved
for use in later calculations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 81 / 157

Estimation commands Storing and retrieving estimates

The estimates suite of commands allow you to store the results of a
particular estimation for later use in a Stata session. For instance, after
the commands

regress price mpg length turn
estimates store model1
regress price weight length displacement
estimates store model2
regress price weight length gear_ratio foreign
estimates store model3

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 82 / 157

Estimation commands Storing and retrieving estimates

the command

estimates table model1 model2 model3

will produce a nicely-formatted table of results. Options on
estimates table allow you to control precision, whether standard
errors or t-values are given, significance stars, summary statistics, etc.

For example:
estimates table model1 model2 model3, b(%10.3f)
se(%7.2f) stats(r2 rmse N) title(Some models of auto
price)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 83 / 157

Estimation commands Publication-quality tables

Although estimates table can produce a summary table quite
useful for evaluating a number of specifications, we often want to
produce a publication-quality table for inclusion in a word processing
document. Ben Jann’s estout command processes stored
estimates and provides a great deal of flexibility in generating such a
table.

Programs in the estout suite can produce tab-delimited tables for MS
Word, HTML tables for the web, and—my favorite—LATEX tables for
professional papers. In the LATEX output format, estout can generate
Greek letters, sub- and superscripts, and the like. estout is available
from SSC, with extensive on-line help, and was described in the Stata
Journal, 5(3), 2005 and 7(2), 2007. It has its own website at
http://repec.org/bocode/e/estout.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 84 / 157

Estimation commands Publication-quality tables

From the example above, rather than using estimates save and
estimates table we use Jann’s eststo (store) and esttab
(table) commands:

eststo clear
eststo: reg price mpg length turn
eststo: reg price weight length displacement
eststo: reg price weight length gear_ratio foreign
esttab using auto1.tex, stats(r2 bic N) ///
subst(r2 \R^2) title(Models of auto price) ///
replace

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 85 / 157

Estimation commands Publication-quality tables

Table 1: Models of auto price

(1) (2) (3)
price price price

mpg -186.7∗

(-2.13)

length 52.58 -97.63∗ -88.03∗

(1.67) (-2.47) (-2.65)

turn -199.0
(-1.44)

weight 4.613∗∗ 5.479∗∗∗

(3.30) (5.24)

displacement 0.727
(0.10)

gear ratio -669.1
(-0.72)

foreign 3837.9∗∗∗

(5.19)

cons 8148.0 10440.6∗ 7041.5
(1.35) (2.39) (1.46)

R2 0.251 0.348 0.552
bic 1387.2 1377.0 1353.5
N 74 74 74

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 86 / 157

File handling

File handling
File extensions usually employed (but not required) include:

.ado automatic do-file (defines a Stata command)

.dct data dictionary, optionally used with infile

.do do-file (user program)

.dta Stata binary dataset

.gph graphics output file (binary)

.log text log file

.smcl SMCL (markup) log file, for use with Viewer

.raw ASCII data file

.sthlp Stata help file

These extensions need not be given (except for .ado). If you use
other extensions, they must be explicitly specified.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 87 / 157

File handling Loading external data: insheet

Comma-separated (CSV) files or tab-delimited data files may be read
very easily with the insheet command—which despite its name does
not read spreadsheet files. If your file has variable names in the first
row that are valid for Stata, they will be automatically used (rather than
default variable names). You usually need not specify whether the data
are tab- or comma-delimited. Note that insheet cannot read
space-delimited data (or character strings with embedded spaces,
unless they are quoted).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 88 / 157

File handling Loading external data: insheet

If the file extension is .raw, you may just use

insheet using filename

to read it. If other file extensions are used, they must be given:

insheet using filename.csv
insheet using filename.txt

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 89 / 157

File handling Loading external data: import excel

In Stata version 12, Excel spreadsheets (either .xls or .xlsx can be
imported into Stata directly, either as entire worksheets or as cell
ranges. As with insheet, if valid Stata variable names appear in the
first row of a worksheet, you may specify that they should be used
when the worksheet is imported.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 90 / 157

File handling Loading external data: infile

A free-format ASCII text file with space-, tab-, or comma-delimited data
may be read with the infile command. The missing-data indicator
(.) may be used to specify that values are missing.
The command must specify the variable names. Assuming auto.raw
contains numeric data,

infile price mpg displacement using auto

will read it. If a file contains a combination of string and numeric values
in a variable, it should be read as string, and encode used to convert it
to numeric with string value labels.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 91 / 157

File handling Loading external data: infile

If some of the data are string variables without embedded spaces, they
must be specified in the command:

infile str3 country price mpg displacement using auto2

would read a three-letter country of origin code, followed by the
numeric variables. The number of observations will be determined
from the available data.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 92 / 157

File handling Loading external data: infile

The infile command may also be used with fixed-format data,
including data containing undelimited string variables, by creating a
dictionary file which describes the format of each variable and
specifies where the data are to be found. The dictionary may also
specify that more than one record in the input file corresponds to a
single observation in the data set.

If data fields are not delimited—for instance, if the sequence ‘102’
should actually be considered as three integer variables. A
dictionary must be used to define the variables’ locations.
The byvariable() option allows a variable-wise dataset to be read,
where one specifies the number of observations available for each
series.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 93 / 157

File handling Loading external data: infix

An alternative to infile with a dictionary is the infix command, which
presents a syntax similar to that used by SAS for the definition of
variables’ data types and locations in a fixed-format ASCII data set:
that is, a data file in which certain columns contain certain variables.
The _column() directive allow contents of a fixed-format data file to
be retrieved selectively.

infix may also be used for more complex record layouts where one
individual’s data are contained on several records in an ASCII file.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 94 / 157

File handling Loading external data: infix

A logical condition may be used on the infile or infix commands
to read only those records for which certain conditions are satisfied:
i.e.

infix using employee if sex=="M"
infile price mpg using auto in 1/20

where the latter will read only the first 20 observations from the
external file. This might be very useful when reading a large data set,
where one can check to see that the formats are being properly
specified on a subset of the file.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 95 / 157

File handling Loading external data: Stat/Transfer

If your data are already in the internal format of SAS, SPSS, Excel,
GAUSS, MATLAB, or a number of other packages, the best way to get
it into Stata is by using the third-party product Stat/Transfer.
Stat/Transfer will preserve variable labels, value labels, and other
aspects of the data, and can be used to convert a Stata binary file into
other packages’ formats. It can also produce subsets of the data
(selecting variables, cases or both) so as to generate an extract file
that is more manageable. This is particularly important when the
2,047-variable limit on standard Stata data sets is encountered.
Stat/Transfer is well documented, with on-line help available in both
Windows, Mac OS X and Unix versions, and an extensive manual.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 96 / 157

Combining data sets append

Combining data sets
In many empirical research projects, the raw data to be utilized are
stored in a number of separate files: separate “waves” of panel data,
timeseries data extracted from different databases, and the like. Stata
only permits a single data set to be accessed at one time. How, then,
do you work with multiple data sets? Several commands are available,
including append, merge, and joinby.

The append command combines two Stata-format data sets that
possess variables in common, adding observations to the existing
variables. The same variables need not be present in both files, as
long as a subset of the variables are common to the “master” and
“using” data sets. It is important to note that “PRICE" and “price” are
different variables, and one will not be appended to the other.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 97 / 157

Combining data sets merge

The merge command

We now describe the merge command, which is Stata’s basic tool for
working with more than one dataset. Its syntax changed considerably
in Stata version 11.

The merge command takes a first argument indicating whether you are
performing a one-to-one, many-to-one, one-to-many or many-to-many
merge using specified key variables. It can also perform a one-to-one
merge by observation.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 98 / 157

Combining data sets merge

Like the append command, the merge works on a “master”
dataset—the current contents of memory—and a single “using”
dataset (prior to Stata 11, you could specify multiple using datasets).
One or more key variables are specified, and you need not sort either
dataset prior to merging.

The distinction between “master” and “using” is important. When the
same variable is present in each of the files, Stata’s default behavior is
to hold the master data inviolate and discard the using dataset’s copy
of that variable. This may be modified by the update option, which
specifies that non-missing values in the using dataset should replace
missing values in the master, and the even stronger update
replace, which specifies that non-missing values in the using dataset
should take precedence.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 99 / 157

Combining data sets merge

A “one-to-one” merge (written merge 1:1) specifies that each record
in the using data set is to be combined with one record in the master
data set. This would be appropriate if you acquired additional variables
for the same observations.

In any use of merge, a new variable, _merge, takes on integer values
indicating whether an observation appears in the master only, the
using only, or appears in both. This may be used to determine whether
the merge has been successful, or to remove those observations
which remain unmatched (e.g. merging a set of households from
different cities with a comprehensive list of postal codes; one would
then discard all the unused postal code records). The _merge variable
must be dropped before another merge is performed on this data set.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 100 / 157

Combining data sets merge

Consider these two stylized datasets:

dataset1 :

id var1 var2

112
...

...

216
...

...

449
...

...

dataset3 :

id var22 var44 var46

112
...

...
...

216
...

...
...

449
...

...
...

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 101 / 157

Combining data sets merge

We may merge these datasets on the common merge key: in this
case, the id variable.

combined :

id var1 var2 var22 var44 var46

112
...

...
...

...
...

216
...

...
...

...
...

449
...

...
...

...
...

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 102 / 157

Combining data sets merge

The rule for merge, then, is that if datasets are to be combined on one
or more merge keys, they each must have one or more variables with a
common name and datatype (string vs. numeric). In the example
above, each dataset must have a variable named id. That variable can
be numeric or string, but that characteristic of the merge key variables
must match across the datasets to be merged. Of course, we need not
have exactly the same observations in each dataset: if dataset3
contained observations with additional id values, those observations
would be merged with missing values for var1 and var2.

This is the simplest kind of merge: the one-to-one merge. Stata
supports several other types of merges. But the key concept should be
clear: the merge command combines datasets “horizontally”, adding
variables’ values to existing observations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 103 / 157

Combining data sets Match merge

The merge command can also do a “many-to-one"’ or “one-to-many”
merge. For instance, you might have a dataset named hospitals
and a dataset named discharges, both of which contain a hospital
ID variable hospid. If you had the hospitals dataset in memory,
you could merge 1:m hospid using discharges to match each
hospital with its prior patients. If you had the discharges dataset in
memory, you could merge m:1 hospid using hospitals to add
the hospital characteristics to each discharge record. This is a very
useful technique to combine aggregate data with disaggregate data
without dealing with the details.

Although “many-to-one"’ or “one-to-many” merges are commonplace
and very useful, you should rarely want to do a “many-to-many” (m:m)
merge, which will yield seemingly random results.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 104 / 157

Combining data sets Match merge

The long-form dataset is very useful if you want to add aggregate-level
information to individual records. For instance, we may have panel
data for a number of companies for several years. We may want to
attach various macro indicators (interest rate, GDP growth rate, etc.)
that vary by year but not by company. We would place those macro
variables into a dataset, indexed by year, and sort it by year.

We could then use the firm-level panel dataset and sort it by year. A
merge command can then add the appropriate macro variables to
each instance of year. This use of merge is known as a one-to-many
match merge, where the year variable is the merge key.

Note that the merge key may contain several variables: we might have
information specific to industry and year that should be merged onto
each firm’s observations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 105 / 157

Writing external data outfile, outsheet, export excel and file

Writing external data
If you want to transfer data to another package, Stat/Transfer is very
useful. But if you just want to create an ASCII file from Stata, the
outfile command may be used. It takes a varlist, and the if or in
clauses may be used to control the observations to be exported.
Applying sort prior to outfile will control the order of observations in
the external file. You may specify that the data are to be written in
comma-separated format.

The outsheet command can write a comma-delimited or
tab-delimited ASCII file, optionally placing the variable names in the
first row. Such a file can be easily read by a spreadsheet program
such as Excel. Note that outsheet does not write spreadsheet files.

For customized output, the file command can write out information
(including scalars, matrices and macros, text strings, etc.) in any
ASCII or binary format of your choosing.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 106 / 157

Writing external data outfile, outsheet, export excel and file

The export excel command may be used to create an Excel
spreadsheet from the contents of memory. You may specify the
variables and observations to be exported, and can actually modify an
existing Excel worksheet or create a new worksheet.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 107 / 157

Writing external data postfile and post

A very useful capability is provided by the postfile and post
commands, which permit a Stata data set to be created in the course
of a program. For instance, you may be simulating the distribution of a
statistic, fitting a model over separate samples, or bootstrapping
standard errors. Within the looping structure, you may post certain
numeric values to the postfile. This will create a separate Stata
binary data set, which may then be opened in a later Stata run and
analysed. Note, however, that only numeric expressions may be
written to the postfile, and the parens () given in the
documentation, surrounding each exp, are required.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 108 / 157

Reconfiguring data

Reconfiguring data
Data are often provided in a different orientation than that required for
statistical analysis. The most common example of this occurs with
panel, or longitudinal, data, in which each observation conceptually
has both cross-section (i) and time-series (t) subscripts. Often one will
want to work with a “pure” cross-section or “pure” time-series. If the
microdata themselves are the objects of analysis, this can be handled
with sorting and a loop structure. If you have data for N firms for T
periods per firm, and want to fit the same model to each firm, one
could use the statsby command, or if more complex processing of
each model’s results was required, a foreach block could be used. If
analysis of a cross-section was desired, a bysort would do the job.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 109 / 157

Reconfiguring data collapse

But what if you want to use average values for each time period,
averaged over firms? The resulting dataset of T observations can be
easily created by the collapse command, which permits you to
generate a new data set comprised of summary statistics of specified
variables. More than one summary statistic can be generated per input
variable, so that both the number of firms per period and the average
return on assets could be generated. collapse can produce counts,
means, medians, percentiles, extrema, and standard deviations.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 110 / 157

Reconfiguring data reshape

Different models applied to longitudinal data require different
orientations of those data. For instance, seemingly unrelated
regressions (sureg) require the data to have T observations (“wide”),
with separate variables for each cross–sectional unit. Fixed–effects or
random-effects regression models xtreg, on the other hand, require
that the data be stacked or “vec”’d in the “long” format. It is usually
much easier to generate transformations of the data in stacked format,
where a single variable is involved.

The reshape command allows you to transfer the data from the
former (“wide”) format to the latter (“long”) format or vice versa. It is a
complicated command, because of the many variations on this
process one might encounter, but it is very powerful.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 111 / 157

Reconfiguring data reshape

As an example, a dataset from the World Bank, provided as a
spreadsheet, has rows labelled by both country (ccode) and variable
(vcode), and columns labelled by years. Two applications of reshape
were needed to transfer the data to the desired long format, where
the observations have both country and year subscripts, and the
columns are variables:

reshape long d, i(ccode vcode) j(year)
reshape wide d, i(ccode year) j(vcode) string

The resulting data set is in the appropriate format for xtreg modelling.
If it were to be used in sureg–type models, a further reshape wide
could be applied to transform it into that format.

See Stata Tip 45, Baum and Cox, Stata Journal 7:2, 2007.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 112 / 157

Returned results return list, ereturn list

Returned results
Stata commands are either r-class commands like summarize, that
return results, or e-class commands, that return estimates. You may
examine the set of results from a r-class command with the command
return list. For an e-class command, use ereturn list. An
e–class command will return e() scalars, macros and matrices: for
instance, after regress, the local macro e(N) will contain the number
of observations, e(r2) the R2 value, e(depvar) will contain the
name of the dependent variable, and so on.

Commands may also return matrices. For instance, regress (like all
estimation commands) will return the matrix e(b), a row vector of
point estimates, and the matrix e(V), the estimated
variance–covariance matrix of the estimated parameters.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 113 / 157

Returned results return list, ereturn list

Use display to examine the contents of a scalar or local macro. For
the latter, you must use the backtick and apostrophe to indicate that
you want to access the contents of the macro: contrast display
r(mean) with display "The mean is ` mu’ ". The contents of
matrices may be displayed with the matrix list command.

Since items are accessible in local macros, it is very easy to write a
program that makes use of results in directing program flow. Local
macros can be created by the local statement, and used as counters
(e.g. in foreach).

For more information, see my separate slideshow Why should you
become a Stata programmer?

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 114 / 157

Useful commands and Stata examples Useful commands

Some useful Stata commands

help : online help on a specific command
findit : online references on a keyword or topic
ssc : access routines from the SSC Archive
log : log output to an external file
tsset : define the time indicator for timeseries or panel data
compress : economize on space used by variables
pwd : print the working directory
cd : change the working directory
clear : clear memory
quietly : do not show the results of a command
update query : see if Stata is up to date
adoupdate : see if user-written commands are up to date
exit : exit the program (,clear if dataset is not saved)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 115 / 157

Useful commands and Stata examples Data manipulation

Data manipulation commands

generate : create a new variable
replace : modify an existing variable
rename : rename variable
renvars : rename a set of variables
sort : change the sort order of the dataset
drop : drop certain variables and/or observations
keep : keep only certain variables and/or observations
append : combine datasets by stacking
merge : merge datasets (one-to-one or match merge)
encode : generate numeric variable from categorical variable
recode : recode categorical variable
destring : convert string variables to numeric
foreach : loop over elements of a list, performing a block of code
forvalues : loop over a numlist, performing a block of code
local : define or modify a local macro (scalar variable)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 116 / 157

Useful commands and Stata examples Data manipulation

describe : describe a data set or current contents of memory
use : load a Stata data set
save : write the contents of memory to a Stata data set
insheet : load a text file in tab- or comma-delimited format
infile : load a text file in space-delimited format or as defined in a
dictionary
outfile : write a text file in space- or comma-delimited format
outsheet : write a text file in tab- or comma-delimited format
contract : make a dataset of frequencies
collapse : make a dataset of summary statistics
tab : abbreviation for tabulate: 1- and 2-way tables
table : tables of summary statistics

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 117 / 157

Useful commands and Stata examples Statistics

Statistical commands

summarize : descriptive statistics
correlate : correlation matrices
ttest : perform 1-, 2-sample and paired t-tests
anova : 1-, 2-, n-way analysis of variance
regress : least squares regression
predict : generate fitted values, residuals, etc.
test : test linear hypotheses on parameters
lincom : linear combinations of parameters
cnsreg : regression with linear constraints
testnl : test nonlinear hypothesis on parameters
margins : marginal effects (elasticities, etc.)
ivregress : instrumental variables regression
prais : regression with AR(1) errors
sureg : seemingly unrelated regressions
reg3 : three-stage least squares
qreg : quantile regression
sem : structural equation modelingChristopher F Baum (Boston College FMRC) Introduction to Stata August 2011 118 / 157

Useful commands and Stata examples Limited dependent variable estimation

Limited dependent variable estimation commands

logit, logistic : logit model, logistic regression
probit : binomial probit model
tobit : one- and two-limit Tobit model
cnsreg : Censored normal regression (generalized Tobit)
ologit, oprobit : ordered logit and probit models
mlogit : multinomial logit model
poisson : Poisson regression
heckman : selection model

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 119 / 157

Useful commands and Stata examples Time series estimation

Time series estimation commands

arima : Box–Jenkins models, regressions with ARMA errors
arfima : Box–Jenkins models with long memory errors
arch : models of autoregressive conditional heteroskedasticity
dfgls : unit root tests
corrgram : correlogram estimation
var : vector autoregressions (basic and structural)
irf : impulse response functions, variance decompositions
vec : vector error–correction models (cointegration)
sspace : state-space models
dfactor : dynamic factor models
ucm : unobserved-components models

rolling: prefix permitting rolling or recursive estimation over subsets

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 120 / 157

Useful commands and Stata examples Panel data estimation

Panel data estimation commands

xtreg,fe : fixed effects estimator
xtreg,re : random effects estimator
xtgls : panel-data models using generalized least squares
xtivreg : instrumental variables panel data estimator
xtlogit : panel-data logit models
xtprobit : panel-data probit models
xtpois : panel-data Poisson regression
xtgee : panel-data models using generalized estimating equations
xtmixed : linear mixed (multi-level) models
xtabond : Arellano-Bond dynamic panel data estimator

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 121 / 157

Useful commands and Stata examples Nonlinear estimation

Nonlinear estimation commands

The nl command may be used to estimate a nonlinear model, while
ml supports maximum likelihood estimation with a user-specified
likelihood function. See my separate slideshow on Maximum
Likelihood Estimation and Nonlinear Least Squares in Stata.

Mata now contains a full-featured set of optimization commands as
optimize(). These commands are now the preferred method to
implement optimization in Stata.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 122 / 157

Useful commands and Stata examples Graphics

Graphics commands:

twoway produces a variety of graphs, depending on options listed
histogram rep78 histogram of this categorical variable
twoway scatter price mpg a Y vs X scatterplot
twoway line price mpg a Y vs X line plot
tsline GDP a Y vs time time-series plot
twoway area price mpg an Y vs X area plot
twoway rline price mpg a Y vs X range plot (hi-lo) with lines
The command twoway may be omitted in most cases.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 123 / 157

Useful commands and Stata examples Graphics

The flexibility of Stata graphics allows any of these plot types (including
many more that are available) to be easily combined on the same
graph. For instance, using the auto.dta dataset,

twoway (scatter price mpg) (lfit price mpg)

will generate a scatterplot, overlaid with the linear regression fit, and

twoway (lfitci price mpg) (scatter price mpg)

will do the same with the confidence interval displayed.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 124 / 157

Useful commands and Stata examples Graphics

0
5,

00
0

10
,0

00
15

,0
00

10 20 30 40
Mileage (mpg)

Price Fitted values

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 125 / 157

Useful commands and Stata examples Graphics

0
50

00
10

00
0

15
00

0

10 20 30 40
Mileage (mpg)

95% CI Fitted values
Price

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 126 / 157

Useful commands and Stata examples Graphics

A nonparametric fit of a bivariate relationship can be readily overlaid
on a graph via

twoway (lowess price mpg) (scatter price mpg)

Twoway graphs may also represent mathematical functions, without
explicit data:

twoway (function y=log(x)*sin(x)) (function y=x*cos(x))

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 127 / 157

Useful commands and Stata examples Graphics

0
50

00
10

00
0

15
00

0

10 20 30 40
Mileage (mpg)

lowess price mpg Price

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 128 / 157

Useful commands and Stata examples Graphics

-1
-.5

0
.5

1
y

0 .2 .4 .6 .8 1
x

y y
y

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 129 / 157

Useful commands and Stata examples Graphics

Graphs may also be readily combined into a single graphic for
presentation. For instance,

twoway (scatter price mpg) (lfit price mpg), name(auto1)

gen gpm = 1/mpg

label var gpm "Gallons per mile"

twoway (lowess price gpm) (scatter price gpm),

name(auto2)

graph combine auto1 auto2, saving(myauto, replace) ///

ti("Some exploratory aspects of auto.dta")

where the “///” is a continuation of the line.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 130 / 157

Useful commands and Stata examples Graphics

0
5,

00
0

10
,0

00
15

,0
00

10 20 30 40
Mileage (mpg)

Price Fitted values

0
50

00
10

00
0

15
00

0

.02 .04 .06 .08
Gallons per mile

lowess price gpm Price

Some exploratory aspects of auto.dta

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 131 / 157

Useful commands and Stata examples Instructional data sets

Instructional data sets

A list of over 100 datasets suitable for instructional use is available on
the economics web pages as

http://fmwww.bc.edu/ec-p/data/ecfindata.html#teach

Sample Stata do-files
Consider the data Zvi Griliches used in his 1976 article on the wages
of young men (Journal of Political Economy, 84, S69-S85). These are
cross-sectional data on 758 individuals collected over several survey
years.

do http://fmwww.bc.edu/ec-p/software/stata/stataintro1

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 132 / 157

Useful commands and Stata examples Cross-section example

* StataIntro: cross-section example
log using intro1, replace
use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76
describe
summarize
label define ur 0 rural 1 urban
label values smsa ur
tab smsa
tab mrt smsa, chi2
ttest med,by(smsa)
anova lw mrt smsa
anova lw mrt smsa mrt*smsa
anova,regress
regress lw tenure kww smsa
predict lweps,resid
scatter lweps kww
bysort year: regress lw tenure kww smsa
graph matrix iq kww age s expr lw, msize(tiny)
gen medrural = med*(smsa==0)
gen medurban = med*(smsa==1)
regress lw tenure kww medurban medrural
test medurban=medrural
log close

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 133 / 157

Useful commands and Stata examples Cross-section example

iq

iq

score

score

score on

score on

knowledge

knowledge

in world of

in world of

work test

work test

age

age

completed

completed

years of

years of

schooling

schooling

experience,

experience,

years

years

log

log

wage

wage

50

50

100

100

150

150

50

50

100

100

150

150

20

20

40

40

60

60

20

20

40

40

60

60

15

15

20

20

25

25

30

30

15

15

20

20

25

25

30

30

10

10

15

15

20

20

10

10

15

15

20

20

0

0

5

5

10

10

0

0

5

5

10

10

5

5

6

6

7

7

5

5

6

6

7

7

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 134 / 157

Useful commands and Stata examples Time series example

The following example reads some daily Dow-Jones Averages data,
graphs daily returns, then performs Dickey-Fuller tests for unit roots on
the DJIA, its log, and its returns (log price relatives), and on their first
differences. AR(3) models are then estimated on the series, and the
Box–Pierce portmanteau test is then performed on the residuals.

In this example, we make use of “local macros” (with values ‘v’),
which enable us to perform the same operations on several named
variables without having to write out the commands for each variable.
This facility may be used with varlists of any length, and makes it
very easy to generate parallel analyses, produce graphs, etc. for an
arbitrary set of variables or time periods.

do http://fmwww.bc.edu/ec-p/software/stata/stataintro2

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 135 / 157

Useful commands and Stata examples Time series example

* StataIntro: time-series example
log using intro2,replace
use http://fmwww.bc.edu/ec-p/data/micro/ddjia.dta
desc
summ
tsset
tsline ret
foreach v of varlist djia ldjia ret {

dfgls `v´, maxlag(12)
dfgls D.`v´, maxlag(12)
regress `v´ L(1/3).`v´, robust
predict eps_`v´,resid
wntestq eps_`v´
}

log close

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 136 / 157

Useful commands and Stata examples Time series example

-30

-3
0

-20

-2
0

-10

-1
0

0

0

10

10

Returns on daily DJIA

Re
tu

rn
s

on
 d

ai
ly

 D
JI

A

0

0

1000

1000

2000

2000

3000

3000

4000

4000

5000

5000

day

day

Dow Jones Industrial Average, 4Jan1982-31Dec1999

Dow Jones Industrial Average, 4Jan1982-31Dec1999

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 137 / 157

Examples of Stata programming Writing a do-file

Examples of Stata programming
Let us form a “rolling forecast” of volatility from a moving-window
regression (we had not learned that Baum’s rollreg command or
Stata’s rolling: prefix could do this job for us). Assume that we
have 120 time-series observations which have been tsset:

gen volfc=.
local win 12
forv i=13/120 {

local first = `i´-`win´+4
quietly regress y L(1/4).y in `first´/`i´
quietly replace volfc = e(rmse) in `i´/`i´

}

This program will generate the series volfc as the RMS error of
an AR(4) model fit to a window of 12 observations for the y series.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 138 / 157

Examples of Stata programming Writing a do-file

The use of local macros and the appropriate loop constructs make it
possible to write a Stata program that is fairly general, and requires
little modification to be reused on different series, or with different
parameters. This makes your work with Stata very productive, since
much of the code is reusable and adaptable to similar tasks. Let us
consider how this approach might be pursued in the context of the
volatility forecast example.

For more information, see my separate slideshow Why should you
become a Stata programmer? and my 2009 book An Introduction to
Stata Programming, available in O’Neill Library.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 139 / 157

Examples of Stata programming Writing an ado-file

Writing an ado-file

We show here a complete Stata program, volfc, which is stored in
the file volfc.ado on the adopath. Since this is a
personally-authored program, it should be placed in the personal
subdirectory of the ado directory (not the Stata directory’s ado
subdirectory!) For more information, see adopath.

This program makes use of Stata’s syntax parsing capabilities to allow
this user-written command to emulate all Stata commands’ syntax. It
does not make use of many of the features that might be useful in such
a command: handling if and in clauses, providing more specific error
messages for inappropriate option values, and so on.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 140 / 157

Examples of Stata programming Writing an ado-file

The program generalizes the do-file shown above by allowing the
moving–window volatility estimate to be generated from a specified
variable, and placed in a new variable specified in the vol() option.
The window width (option win()) and AR length (option AR()) take on
default values 12 and 4, but may be overridden by the user. The
program automatically calculates the first and last observations to be
used in the loop from the data and specified options. It could readily be
generalized to use a different volatility measure from the rolling
regression (e.g. mean absolute error).

To be complete, we should provide a help file for volfc in the file
volfc.sthlp. The help file would specify the syntax of the
command, explain its purpose, define each of the options, and provide
any references to other Stata commands that might be useful.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 141 / 157

Examples of Stata programming Writing an ado-file

program define volfc, rclass
version 10.0
syntax varname(numeric) ,Vol(string) [Win(integer 12) AR(integer 4)]
quietly tsset
if `win´ < `ar´ {

di "You must have a longer window than AR length!"
error 198

}
quietly gen `vol´=.
local start = `win´+`ar´
quietly summ `varlist´, meanonly
local last = r(N)
dis _n "`vol´: volatility forecast for `varlist´ with window=`win´, AR(`ar´)"
forv i=`start´/`last´ {

local first = `i´-`win´+1
quietly regress `varlist´ L(1/`ar´).`varlist´ ///

in `first´/`i´
quietly replace `vol´ = e(rmse) in `i´/`i´

}
exit
end

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 142 / 157

Examples of Stata programming Writing an ado-file

This program defines the volfc command, which will appear like any
other Stata command on your machine. It may be executed as

use http://fmwww.bc.edu/ec-p/data/macro/bdh, clear
volfc pcrude, vol(vv)
volfc pcrude, vol(vv24) win(24)
volfc pcrude, vol(vv126) ar(6)
volfc pcrude, vol(vv248) win(24) ar(8)

The volatility series might then be graphed (presuming a time variable
date which is the variable that has been tsset) with

tsline vv vv24 vv126 vv248 if tin(1983q1,), ti(Volatility forecasts for Pcrude)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 143 / 157

Examples of Stata programming Writing an ado-file

1

1

2

2

3

3

4

4

5

5

6

6

1983q3

1983q3

1987q3

1987q3

1991q3

1991q3

1995q3

1995q3

1999q3

1999q3

date

date

vv

vv

vv24

vv24

vv126

vv126

vv248

vv248

Volatility forecasts for Pcrude

Volatility forecasts for Pcrude

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 144 / 157

Examples of Stata programming Writing an ado-file

This illustrates the relative simplicity of developing a quite general tool
in Stata’s programming language. Although you may use Stata without
ever authoring an “ado-file”, much of the productivity enhancement that
a Stata user may enjoy is likely to be tied to this sort of development.
Many research tasks are quite repetitive in some context, and
developing a general-purpose tool to implement that repetition is likely
to be a very good investment in terms of time and effort.

Many of the modules available from the SSC Archive were first
conceived by individuals looking to ease the burden of their own work.
Stata’s unique extensibility makes it trivial to incorporate user-written
additions—including those which you author—into your copy of Stata,
and to share it with collaborators or the Stata user community if
desired.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 145 / 157

Examples of Stata programming Details of program construction

Details of program construction

As should be evident from this programming example, the program
define command is used to declare a program. The program name
must match the name of the ado-file in which it is stored. Most
user-written programs are r-class. This program could be modified to
return its parameters to the calling program with the return statement:

return local vol `vol´
return local win `win´
return local ar `ar´
return local first `start´
return local last `last´

With these statements added to the end of the routine, the local
macros are defined, and their values stored.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 146 / 157

Examples of Stata programming Details of program construction

The second element to be noted is the syntax statement, which
defines the allowable syntax for a user-written command. One may
specify that the command allows a single variable, with varname; a
set of variables, with varlist, optionally specifying how many are
allowed. For instance, a statistical technique that operates on a pair of
variables could specify that exactly two existing variables are to be
provided. Likewise, one may specify that a new variable (or set of
variables) are the newvarlist of the command, and syntax will check
that they are indeed new variables.

Although not illustrated above, the syntax command will often specify
that if and in clauses are optional elements. Optional elements of
syntax (such as the options Win and AR above) are placed in brackets
([]).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 147 / 157

Examples of Stata programming Details of program construction

This programming example illustrates a “required option”—the vol
option, which must be used on this command to specify the output of
the command. The other two options are indeed optional, and take on
default values if they are not specified. The argument of the vol option
is meant to be a new variable name; that will be trapped when the
generate statement attempts to create the variable if it is already in
use, or is not a valid variable name.

Most user-written programs could be improved by adding code to trap
errors in users’ input. If the program is primarily for your own use, you
may eschew extensive development of error trapping: for instance,
checking the options for sensibility (although one test is applied here to
prevent nonsensical results).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 148 / 157

Examples of Stata programming Details of program construction

Local macros are exactly that: objects with local scope, defined within
the program in which they are used, disappearing when that program
terminates. This is generally the desired outcome, preventing a clutter
of objects from being retained when a program calls numerous others
in the course of execution. At times, though, it is necessary to have
objects that can be passed from one subprogram to another. The
return logic above would not really serve, since although it passes
local macros from a program to its caller, they would then have to be
passed as arguments to a second program.

To deal with the need for persistent objects, Stata contains global
macros. These objects, once defined, live for the duration of your Stata
session, and may be read or written within any Stata program. They
are defined with the global command, rather than local, and
referred to as $macroname. Global macros should only be used
where they are required.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 149 / 157

Examples of Stata programming Example of programming for panel data

Example of programming for panel data

We now present an example of a Stata program that operates on
panel, or longitudinal data. When you use panel data, you must use
the panel data form of tsset in which both a unit variable and a time
variable are specified.

Assume that you have a panel data set, properly identified as such,
containing several time series for each unit in the panel: for instance,
investment or population measures for several countries. We would
like to generate a new series containing the deviations from a constant
growth path (exponential trend) or, alternatively, the constant growth
values themselves (the predicted values from the exponential trend
line).

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 150 / 157

Examples of Stata programming Example of programming for panel data

This program, pangrodev, performs this task for each unit of a panel,
automatically identifying the observations belonging to each unit,
taking the logarithm of the specified variable, running the appropriate
regression and prediction commands, and assembling the results in
the specified new variable.

The program makes use of Stata’s tempname and tempvar
commands to create non-scalar objects (in this case the matrix VV and
variables lvar and pvar which, like local macros, will exist only for
the duration of the ado-file). These temporary facilities, like the
associated tempfile which allows temporary files to be specified,
help reduce clutter and guarantee that objects’ names will not conflict
with other items in the user’s namespace.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 151 / 157

Examples of Stata programming Example of programming for panel data

*! pangrodev 1.1.0 CFBaum 21Jan2006

* generate deviations from constant growth in panel

* 1.1.0: promote to v9, use levelsof
program define pangrodev, rclass
version 10.0
syntax varname, Gen(string) [xb]
local togens "deviations from constant growth"
if "`xb´" != "" {
local togens "predicted growth"
}
qui tsset
local ivar = r(panelvar)
local timevar = r(timevar)
tempname VV
tempvar lvar pvar
qui gen double `lvar´ = log(`varlist´)
* get list of units
qui levelsof `ivar´, local(vals)
local nvals: word count `vals´
qui gen double `gen´=.
local xc 0
local tbar 0
local rsqr 0

(continues...)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 152 / 157

Examples of Stata programming Example of programming for panel data

foreach v of local vals {
summ `lvar´ if `ivar´==`v´,meanonly
if r(N)>2 {
qui regress `lvar´ `timevar´ if `ivar´==`v´
capt drop `pvar´
qui predict double `pvar´ if e(sample),xb
qui replace `gen´ = exp(`pvar´) if e(sample)
if "`xb´" =="" {
qui replace `gen´ = `varlist´-`gen´ if e(sample)
}
local xc = `xc´ + 1
local tbar = `tbar´ + e(N)
local rsqr = `rsqr´ + e(r2)
}
}
local tbar = int(100*`tbar´ / `xc´)/100.0
local rsqr = int(1000*`rsqr´ / `xc´)/1000.0
di in gr _n "`gen´ : `togens´ for `xc´ of `nvals´ units"
di in gr "tbar = `tbar´ rsq-bar = `rsqr´"
exit
end

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 153 / 157

Examples of Stata programming Example of programming for panel data

This program defines the pangrodev command, which will appear like
any other Stata command on your machine. It may be executed as

. use http://fmwww.bc.edu/ec-p/data/macro/cap797wa
(World Bank Database for Sectoral Investment, 1948-1992)
. pangrodev TotSECap, g(totcapdev)

totcapdev : deviations from constant growth for
57 of 63 units

tbar = 25.94 rsq-bar = .673

. pangrodev TotSECap, g(totcaphat) xb
(output omitted)

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 154 / 157

Examples of Stata programming Example of programming for panel data

Selected series computed by pangrodev can now be graphed by the
tsline command, which accepts a by(varlist) option:

replace totcapdev = totcapdev/10^9
keep if (ccode==ÄRG¨ ccode==C̈HL¨ ccode==C̈OL¨ ///

ccode==P̈ER¨ ccode==ÜRY¨ ccode==V̈EN)̈
label var totcapdev "Deviations from capital accum"
label var ccode "South American country"
tsline totcapdev if year>1969, by(ccode)

will demonstrate how many countries followed the same pattern of
below-trend growth of the capital stock (curtailed investment) during
the 1980s.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 155 / 157

Examples of Stata programming Example of programming for panel data

-2
00

-1
00

0
10

0
-2

00
-1

00
0

10
0

1970 1975 1980 1985 1990 1970 1975 1980 1985 1990 1970 1975 1980 1985 1990

ARG CHL COL

PER URY VEN

De
vi

at
io

ns
 f

ro
m

 c
ap

ita
l a

cc
um

ul
at

io
n

year
Graphs by South American country

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 156 / 157

Examples of Stata programming Concluding remarks

Concluding remarks

Whether or not you use Stata’s programming facilities to write your
own ado-files, a “reading knowledge” of the programming language is
very useful in case you want to adapt an existing Stata command
(official or user-contributed) in a do-file you are writing.

Since the code for all Stata commands that are implemented as
ado-files (as the command which... will show) are available on your
hard disk, Stata itself is a fertile source of programming techniques
that may be adapted to solve any programming problem.

For a thorough treatment of the subject, see my book An Introduction
to Stata Programming (2009) in O’Neill Library.

Christopher F Baum (Boston College FMRC) Introduction to Stata August 2011 157 / 157

	Strengths of Stata
	What is Stata?
	Portability
	Stata's user interface
	Using the Do-File Editor
	The help system
	Data Manipulation
	Statistics
	Graphics
	Stata's update facility
	Extensibility
	Availability, Cost, and Support

	Working with the command line
	Advantage: Reproducibility
	Advantage: Transportability
	Programmability of tasks
	Local macros and scalars
	forvalues and foreach
	Command template
	The varlist
	The exp clause
	The if and in clauses
	The using clause
	Accessing data over the Web
	The options clause
	Prefix commands
	Missing values
	Display formats
	Variable labels
	Value labels

	Generating new variables
	The egen command
	Time series operators
	Mata: Matrix programming language

	Estimation commands
	Common syntax
	Post-estimation commands
	Storing and retrieving estimates
	Publication-quality tables

	File handling
	 Loading external data: insheet
	 Loading external data: import excel
	 Loading external data: infile
	Loading external data: infix
	Loading external data: Stat/Transfer

	Combining data sets
	append
	merge
	Match merge

	 Writing external data
	outfile, outsheet, export excel and file
	postfile and post

	Reconfiguring data
	 collapse
	reshape

	Returned results
	return list, ereturn list

	Useful commands and Stata examples
	Useful commands
	Data manipulation
	Statistics
	Limited dependent variable estimation
	Time series estimation
	Panel data estimation
	Nonlinear estimation
	Graphics
	Instructional data sets
	Cross-section example
	Time series example

	Examples of Stata programming
	Writing a do-file
	Writing an ado-file
	Details of program construction
	Example of programming for panel data
	Concluding remarks

