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Abstract: A program is presented for calculating robust confidence intervals for Hodges–Lehmann median (and other
percentile) differences (and ratios) between values of a variable in two subpopulations. The median difference
is usually the same as that produced by the programs cid and npshift, using the Lehmann method. However,
the confidence limits are typically different, being robust to the possibility that the two population distributions
differ in ways other than location, such as having unequal variances. The program uses the program somersd,
and is part of the somersd package.

Keywords: robust, confidence interval, median, percentile, difference, ratio, rank–sum, sign test, Wilcoxon, Hodges,
Lehmann, paired, two–sample.

1 Syntax

cendif depvar
[
using filename

][
weight

][
if exp

][
in range

]
, by(groupvar)

[
centile(numlist) level(#)

eform ystargenerate(newvarlist) cluster(varname) cfweight(expression funtype(functional type)
tdist transf(transformation name) saving(filename

[
,replace

]
) nohold

]
where transformation name is one of

iden | z | asin

and functional type is one of

wcluster | bcluster | vonmises

fweights, iweights and pweights are allowed; see help for weight. They are treated as described in Methods
and Formulas below.

bootstrap, by, jackknife, and statsby are allowed; see help for prefix.

1.1 Description

cendif calculates confidence intervals for Hodges–Lehmann median differences, and other percentile differences,
between values of a Y –variable in depvar for a pair of observations chosen at random from two groups A and B,
defined by the groupvar in the by option. These confidence intervals are robust to the possibility that the population
distributions in the two groups are different in ways other than location. This might happen if, for example, the
two populations had different variances. For positive–valued variables, cendif can be used to calculate confidence
intervals for median ratios or other percentile ratios. cendif is part of the somersd package (Newson, 2006a), and
requires the program somersd in order to work.

1.2 Options

by(groupvar) is not optional. It specifies the name of the grouping variable. This variable must have exactly two
possible values. The lower value indicates Group A, and the higher value indicates Group B.

centile(numlist) specifies a list of percentile differences to be reported, and defaults to centile(50) (median only)
if not specified. Specifying centile(25 50 75) will produce the 25th, 50th and 75th percentile differences.

level(# ) specifies the confidence level (percent) for confidence intervals; see help for level.

eform specifies that exponentiated percentile differences are to be given. This option is used if depvar is the log of
a positive–valued variable. In this case, confidence intervals are calculated for percentile ratios between values
of the original positive variable, instead of for percentile differences.

ystargenerate(newvarlist) specifies a list of variables to be generated, corresponding to the percentile differences,
containing the differences Y ∗(θ) = Y − group1 ∗ θ, where group1 is a binary variable indicating membership
of Group 1, and θ is the percentile difference. The variable names in the newvarlist are matched to the list of
percentiles specified by the centile() option, sorted in ascending order of percent. If the two lists have different
lengths, then cendif generates a number nmin of new variables equal to the minimum length of the two lists,
matching the first nmin percentiles with the first nmin new variable names. Usually, there is only one percentile
difference (the median difference), and one new ystargenerate() variable.

cluster(varname) specifies the variable which defines sampling clusters. If cluster is defined, then the confidence
intervals are calculated assuming that the data are a sample of clusters from a population of clusters, rather
than a sample of observations from a population of observations.
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cfweight(expression) specifies an expression giving the cluster frequency weights. These cluster frequency weights
must have the same value for all observations in a cluster. If cfweight() and cluster() are both specified, then
each cluster in the dataset is assumed to represent a number of identical clusters equal to the cluster frequency
weight for that cluster. If cfweight() is specified and cluster() is unspecified, then each observation in the
dataset is treated as a cluster, and assumed to represent a number of identical one–observation clusters equal to
the cluster frequency weight. For more details on the interpretation of weights, see Interpretation of weights
in the manual somersd.pdf. Note that the observation frequency weights are used by cendif for tabulating the
group frequencies.

funtype(functional type) specifies whether the percentile differences estimated are between–cluster, within–cluster or
Von Mises percentile differences. These three functional types are specified by the options funtype(bcluster),
funtype(wcluster) or funtype(vonmises), respectively, and correspond to the functional types of the same
names used by somersd. If funtype() is not specified, then funtype(bcluster) is assumed, and between–cluster
percentile differences are estimated. If the clusters are pairs of observations, and if the by() option specifies
an indicator variable indicating whether the observation is the first or second member of its pair, then the
within–cluster median difference is the parameter corresponding to the sign test, and the Von Mises median
difference is the conventional Hodges–Lehmann median difference between the group of first members and the
group of second members, with confidence limits adjusted for clustering.

tdist specifies that the standardized Somers’ D estimates are assumed to be sampled from a t–distribution with
n− 1 degrees of freedom, where n is the number of clusters, or the number of observations if cluster() is not
specified. If tdist is not specified, then the standardized Somers’ D estimates are assumed to be sampled from
a standard Normal distribution. Simulation study data suggest that the tdist option should be recommended.

transf(transformation name) specifies that the Somers’ D estimates are to be transformed, defining a standard
error for the transformed population value, from which the confidence limits for the percentile differences are
calculated. z (the default) specifies Fisher’s z (the hyperbolic arctangent), asin specifies Daniels’ arcsine, and
iden specifies identity or untransformed.

saving(filename[, replace]) specifies a dataset, to be created, whose observations correspond to the observed
values of differences between a value of depvar in Group A and a value of depvar in Group B. replace instructs
Stata to replace any existing dataset of the same name. The saved dataset can then be re–used if cendif is
called later, with using, to save the large amounts of processing time used to calculate the set of observed
differences. The saving() option and the using utility are provided mainly for programmers to use, at their
own risk.

nohold indicates that any existing estimation results are to be overwritten with a new set of estimation results, for
the use of programmers. In default, any existing estimation results are restored after execution of cendif.

1.3 Saved results

cendif saves in r():

Scalars

r(N) number of observations r(N clust) number of clusters

r(N 1) first sample size N1 r(N 2) second sample size N2
r(df r) residual degrees of freedom (if tdist present) r(level) confidence level

Macros

r(depvar) name of Y–variable r(by) name of by() variable defining groups

r(clustvar) name of cluster variable r(cfweight) cfweight() expression

r(funtype) funtype() option r(tdist) tdist if specified

r(wtype) weight type r(wexp) weight expression

r(centiles) list of percents for percentiles r(Dslist) list of D∗
–values for percentiles

r(transf) transformation specified by transf() r(tranlab) transformation label in output

r(eform) eform if specified

Matrices

r(cimat) confidence intervals for differences or ratios r(Dsmat) upper and lower limits for D∗(θ)

The mathematical notation is specified in Methods and Formulas below.

2 Methods and Formulas

Suppose that a population contains two disjoint subpopulations A and B, and a random variable Y is defined
for individuals from both subpopulations. For 0 < q < 1, a 100qth percentile difference in Y between Populations A
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and B is defined as a value θ satisfying
D[Y ∗(θ)|X] = 1− 2q, (1)

where X is a binary variable equal to 1 for Population A and 0 for Population B, Y ∗(θ) is defined as Y if X = 1
and Y + θ if X = 0, and D[ · | · ] denotes Somers’ D (Somers, 1962; Newson, 2006a). Somers’ D is defined as

D[V |W ] = E [ sign(V1 − V2) sign(W1 −W2) ] /E
[
sign(W1 −W2)

2
]
, (2)

where (W1, V1) and (W2, V2) are bivariate data points sampled independently from the same population, and E[ · ]
denotes expectation. In the case of (1), where W = X and V = Y ∗(θ), Somers’ D is the difference between
two conditional probabilities. Given an individual sampled from Population A and an individual sampled from
Population B, these are the probability that the individual from Population A has the higher Y ∗–value and the
probability that the individual from Population B has the higher Y ∗–value. Somers’ D is therefore the parameter
equal to zero under the null hypothesis tested by the “non–parametric” Wilcoxon rank–sum test on Y ∗(θ). In the
case where q = 0.5 (and therefore 1− 2q = 0), a 100qth percentile difference is known as a Hodges–Lehmann median
percentile difference, and is zero under the null hypothesis tested by a Wilcoxon rank–sum test on Y . The median
percentile difference was introduced explicitly by Hodges and Lehmann (1963). However, it is also a special case
of the Theil median slope, introduced by Theil (1950) and discussed by Sen (1968). The Hodges–Lehmann median
difference is simply a Theil–Sen median slope where the X–variable is binary.

Note that a value of θ satisfying (1) is not always unique. If Y has a discrete distribution, then there may be no
solution, or a wide interval of solutions. However, the method used here is intended to produce a confidence interval
containing any given θ satisfying (1), with a probability at least equal to the confidence level, if such a θ exists.

We will assume that there are N1 observations sampled from Population A and N2 observations sampled from
Population B, giving a total of N1+N2 = N observations. These observations will be identified by double subscripts,
so that Yij is the Y –value for the jth observation sampled from the ith population (where i=1 for Population A and
i = 2 for Population B). The corresponding X–values (ones and zeros) will be denoted Xij . The observations will be
assumed to have importance weights (iweights or pweights) denoted wij , and cluster sequence numbers denoted
cij . cendif follows the usual Stata practice of assuming an fweight to stand for multiple observations, with the
same values for all other variables. The clusters may be nested within the two groups or contain observations from
each of the two groups. If clusters are present, then the confidence intervals will be calculated assuming that the
sample was generated by sampling clusters independently from a population of clusters, rather than by sampling N
observations independently from the total population of observations, or by sampling N1 and N2 observations from
Populations A and B, respectively. (In default, all the wij will be ones, and the cij will be in sequence from 1 to
N , so the difference between these three alternatives will not matter.) We will denote by M the number of distinct
values of a difference Y1j −Y2k observed between Y –values in the two samples. The difference values themselves will
be denoted t1, . . . , tM . For each h from 1 to M, we define the sum of product weights of differences equal to th as

Wh =
∑

j,k:Y1j−Y2k=th

δ(cj , ck)w1jw2k, (3)

where δ(·, ·) is a function specified by the funtype() option. If funtype(bcluster) is specified (or if funtype() is
unspecified), then δ(a, b) is 0 if a = b and 1 if a ̸= b. If funtype(wcluster) is specified, then δ(a, b) is 1 if a = b and 0
if a ̸= b. If funtype(vonmises) is specified, then δ(a, b) is 1 for all a and b. Therefore, Wh is a sum of between–cluster
product weights if funtype(bcluster) is specified, a sum of within–cluster product weights funtype(wcluster) is
specified, and a total sum of product weights if funtype(vonmises) is specified.

Given a value of θ expressed in units of Y , we can define Y ∗
ij(θ) to be Yij if i = 1, and Yij + θ if i = 2. The

sample Somers’ D of Y ∗(θ) with respect to X is defined as

D∗(θ) = D̂[Y ∗(θ)|X] =

∑N1

j=1

∑N2

k=1 δ(c1j , c2k)w1jw2k sign(Y1j − Y2k − θ)∑N1

j=1

∑N2

k=1 δ(c1j , c2k)w1jw2k

=

∑
h: th>θ Wh −

∑
h: th<θ Wh∑M

h=1 Wh

, (4)

where D̂[ · | · ] denotes the sample Somers’ D, defined by the methods of Newson (2006a). Clearly, given a sample,
D∗(θ) is a nonincreasing function of θ. Figure 1 showsD∗(θ) as a function of θ for differences between trunk capacities
of US and non–US cars (expressed in cubic feet) in the auto data. The squares represent the values D∗(th) for the
observed differences th. Note that D∗(θ) is discontinuous at the observed differences, and constant in each open
interval between two successive observed differences.
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We aim to include θ in a confidence interval for a 100qth percentile difference if, and only if, the sample D∗(θ)
is compatible with a population D[Y ∗(θ)|X] equal to 1− 2q. The methods of Newson (2006a), used by the program
somersd and described in the manual somersd.pdf, typically use a transformation ζ( · ), which, for present purposes,
may either be the identity, the arscine or Fishers’ z (the hyperbolic arctangent). The transformed sample statistic

ζ̂(θ) = ζ[D∗(θ)] is assumed to be Normally distributed around the population parameter ζ{D[Y ∗(θ)|X]}. In the
present application, we assume that, if D[Y ∗(θ)|X] = 1− 2q, then the quantity

[ ζ̂(θ)− ζ(1− 2q) ] /SE[ζ̂(θ)] (5)

has a standard Normal distribution, where SE[ζ̂(θ)] is the sampling standard deviation (or standard error) of ζ[D∗(θ)].

If we knew the value of SE[ζ̂(θ)], then a 100(1− α)% confidence interval for a 100qth percentile difference might be
the interval of values of θ for which

ζ−1
{
ζ(1− 2q)− zα SE[ζ̂(θ)]

}
≤ D∗(θ) ≤ ζ−1

{
ζ(1− 2q) + zα SE[ζ̂(θ)]

}
, (6)

where zα is the 100(1− 1

2
α)th percentile of the standard Normal distribution.

−1

−.75

−.5

−.25

0

.25

.5

.75

1

D
−

st
ar

 fo
r 

di
ffe

re
nc

e

−
10

−
5

0 5 10 15 20

Difference in trunk space (cubic feet)

Figure 1. D∗(θ) plotted against the difference θ in trunk space between US and non–US cars

To construct such a confidence interval, we proceed as follows. Given a value of D such that −1 < D < 1,
define

BL(D) = inf {θ : D∗(θ) ≤ D} , BR(D) = sup {θ : D∗(θ) ≥ D} ,

BC(D) =

BL(D), if BR(D) = ∞
BR(D), if BL(D) = −∞
[BL(D) +BR(D) ] /2, otherwise.

(7)

(By convention, the supremum (or infimum) of a set unbounded to the right (or left) are defined as ∞ (or −∞),
respectively.) Clearly, BL(D) ≤ BC(D) ≤ BR(D), and the values of BL(D) and BR(D) (if finite) can be either the
same th, or two successive ones. The confidence interval for a 100qth percentile difference is centered on the sample
100qth percentile difference, defined as

ξ̂q = BC(1− 2q). (8)
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cendif then calls somersd, with the Xij as the predictor variable, and the Y ∗
ij(ξ̂q), for the values of q implied by

the centile() option, as the predicted variables. The standard errors generated by somersd are used as estimates

ŜE[ζ̂(ξ̂q)] of the standard error of ζ̂(θ) where θ satisfies (1). The lower and upper confidence limits for a 100qth
percentile difference are, respectively,

ξ̂(min)
q = BL

(
ζ−1

{
ζ(1− 2q)− zα ŜE[ζ̂(ξ̂q)]

})
, ξ̂(max)

q = BR

(
ζ−1

{
ζ(1− 2q) + zα ŜE[ζ̂(ξ̂q)]

})
. (9)

If tdist is specified, then cendif uses the t–distribution with ν = N−1 degrees of freedom (or ν = Nclust−1 degrees
of freedom if there are Nclust clusters) instead of the Normal distribution, so tν,α replaces zα in (9). Note that the
upper and lower confidence limits may occasionally be infinite, in the case of extreme percentiles and/or very small
sample numbers. cendif codes these infinite limits as plus or minus the Stata creturn value c(maxdouble), which
is the system maximim double precision value (see on–line help for creturn). Figure 1 shows the median difference
in trunk capacity, and its confidence limits, as reference lines on the horizontal axis. The estimated median difference
is 3 cubic feet, with 95% confidence limits from 1 to 5 cubic feet. The reference lines on the vertical axis are the
optimum, minimum and maximum values of D∗(θ) required for θ to be in the confidence interval. These values of
D∗(θ) are saved by cendif in the matrix r(Dsmat). If the option saving() is specified, then cendif also saves an
output dataset with M observations, corresponding to the ordered differences th. The variables are diff (containing
the th), weight (containing the Wh), Dstar (containing the D∗(th)), and Dstar r, which contains the right–hand
limiting value of D∗(θ),

D∗
R(th) = lim

θ→th+
D∗(θ), (10)

which is the value of D∗(θ) in the open interval (th, th+1) for h < M .

Lehmann (1963) presents a method which, for large samples, is essentially equivalent to (6), in the special
case where q = 0.5 and ζ(D) = D. (This is the method for calculating confidence intervals for median differences
popularized by Conover (1999), Campbell and Gardner (1988) and Gardner and Altman et al. (2000), and available
in Stata using Duolao Wang’s npshift routine (Wang, 1999) or Patrick Royston’s cid routine, downloadable from
SSC (Royston, 1998).) However, Lehmann’s method uses the assumption that the two population distributions are

different only in location. This assumption (essentially) enables the calculation of SE[ζ̂(θ)] for large samples, and
of the exact distribution of D∗(θ) for small samples. It also implies that the median difference is the difference
between medians. In the present case, we are not making this assumption, as the confidence interval is intended to
be robust to the possibility that the two populations are different in ways other than location. (For instance, the two
populations might be unequally variable.) The median difference is therefore not necessarily the difference between

medians. Also, we have to estimate SE[ζ̂(θ)], and this estimate is itself subject to some amount of sampling error.
The method of cendif contrasts to Lehmann’s method as the unequal–variance t–test contrasts to the equal–variance
t–test. Lehmann’s method, like the equal–variance t–test, assumes that you can use data from the larger of two
samples to estimate the population variability of the smaller sample.

I have been carrying out some simulations of sampling from two Normal populations, with a view to finding the
coverage probabilities and median lengths of the confidence intervals for the median difference generated by npshift
and by cendif with the tdist option. So far, I find that, even with small sample sizes, the cendif method usually
gives coverage probabilities closer to the nominal value than the Lehmann method when variances are unequal, in
which case npshift produces confidence intervals either too wide or too narrow, depending on whether the larger
or smaller sample has the greater population variance. Usually, the difference in coverage probability is small (1%
or 2%), so the Lehmann method performs fairly well, in spite of false assumptions. However, if a sample of 20 is
compared to a sample of 10, and the population standard deviation of the smaller sample is three times that of
the larger sample, then the nominal 95% confidence interval has a true coverage probability of only 90% under the
Lehmann method, compared to 94% under the cendif method. I plan to report the results of these simulations in
detail elsewhere.

3 Examples

3.1 Car weights in the auto data

In the auto data, we compare weights of US cars and non–US cars. We use cid and cendif to estimate the
median difference:

. cid weight, by(foreign) median unpaired
Rank-based confidence interval for difference in medians by foreign
Variable | Obs Estimate K [95% Conf. Interval]
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---------+-------------------------------------------------------------
weight | 74 1095 406 720 1350

. cendif weight, tdist by(foreign)
Y-variable: weight (Weight (lbs.))
Grouped by: foreign (Car type)
Group numbers:

Car type | Freq. Percent Cum.
------------+-----------------------------------

Domestic | 52 70.27 70.27
Foreign | 22 29.73 100.00

------------+-----------------------------------
Total | 74 100.00

Transformation: Fisher’s z
Degrees of freedom: 73
95% confidence interval(s) for percentile difference(s)
between values of weight in first and second groups:

Percent Pctl_Dif Minimum Maximum
50 1095 750 1330

We note that the median difference in weight is 1095 pounds, according to both cid and cendif. However,
the confidence limits given by cendif are 750 and 1330 pounds, whereas the confidence limits given by cid are
720 and 1350 pounds. This is because non–US cars are fewer in number, and less variable in weight, than US cars,
and cid assumes equal variances, whereas cendif allows for unequal variances. If we carry out equal–variance and
unequal–variance t–tests (not shown), then we find a similar difference in the width of the confidence limits for the
mean difference.

cendif can also calculate confidence intervals for percentiles other than medians. These contain information
about the degree of overlap between the two populations. Here, we estimate the 0th, 25th, 50th, 75th and 100th
percentile differences, using the centile option:

. cendif weight, tdist by(foreign) ce(0(25)100)
Y-variable: weight (Weight (lbs.))
Grouped by: foreign (Car type)
Group numbers:

Car type | Freq. Percent Cum.
------------+-----------------------------------

Domestic | 52 70.27 70.27
Foreign | 22 29.73 100.00

------------+-----------------------------------
Total | 74 100.00

Transformation: Fisher’s z
Degrees of freedom: 73
95% confidence interval(s) for percentile difference(s)
between values of weight in first and second groups:

Percent Pctl_Dif Minimum Maximum
0 -1620 -8.99e+307 -1620
25 485 90 820
50 1095 750 1330
75 1555 1320 1790

100 3080 3080 8.99e+307

The 0th and 100th percentile differences are the minimum and maximum differences, respectively, and their
confidence limits extend from their respective sample values to the system limits c(mindouble) and c(maxdouble),
representing true values of −∞ and +∞, respectively.

If we want to estimate percentile ratios of weight, rather than percentile differences, then we simply take logs
and use the eform option:

. gene logwt=log(weight)

. cendif logwt, tdist by(foreign) ce(0(25)100) eform
Y-variable: logwt
Grouped by: foreign (Car type)
Group numbers:

Car type | Freq. Percent Cum.
------------+-----------------------------------

Domestic | 52 70.27 70.27
Foreign | 22 29.73 100.00

------------+-----------------------------------
Total | 74 100.00



Post-publication update 7

Transformation: Fisher’s z
Degrees of freedom: 73
95% confidence interval(s) for percentile ratio(s)
between values of exp(logwt) in first and second groups:

Percent Pctl_Rat Minimum Maximum
0 .52631583 0 .52631583
25 1.1935375 1.0328637 1.358491
50 1.4806389 1.3090908 1.6323524
75 1.744916 1.6071432 1.8774505

100 2.7499989 2.7499989 8.99e+307

We note that, typically, US cars are 148% as heavy as non–US cars, with confidence limits ranging from 131%
to 163% as heavy. The 25th percentile ratio (103% to 136%) shows that the two car types do not overlap to a great
extent. The 0th and 100th percentile differences have confidence intervals extending from their sample values to 0
and “+∞”, respectively.

3.2 Paired blood pressures in the bplong data

The bplong dataset is distributed with Stata. It has one observation per blood pressure measurement per patient
in a fictional medical study in which the blood pressure of each patient is measured twice, once before treatment
and once after treatment. It can be accessed by the sysuse command as follows:

. sysuse bplong, clear
(fictional blood-pressure data)
. describe, simple
patient sex agegrp when bp

The variable patient identifies the patient, the variable when is 1 for before–treatment measurements and
2 for after–treatment measurements, and the variable bp contains the blood pressure, presumably expressed in
millimetres of mercury (mm Hg). Note that the dataset bpwide, also distributed with Stata, contains the same data
in wide format, with one observation per patient and two blood pressure variables, representing the patient’s blood
pressure before and after treatment, respectively. However, cendif can only use these data in long format, with one
observation per blood pressure per patient.

We might wish to compare untreated and treated blood pressures. One way to do this is to estimate the median
of all paired differences between untreated and treated blood pressures from the same patient. We can do this using
cendif, with the options cluster(patient) and funtype(wcluster):

. cendif bp, by(when) tdist cluster(patient) funtype(wcluster)
Y-variable: bp (Blood pressure)
Grouped by: when (Status)
Group numbers:

Status | Freq. Percent Cum.
------------+-----------------------------------

Before | 120 50.00 50.00
After | 120 50.00 100.00

------------+-----------------------------------
Total | 240 100.00

Transformation: Fisher’s z
Degrees of freedom: 119
Number of clusters (patient) = 120
95% confidence interval(s) for within-cluster percentile difference(s)
between values of bp in first and second groups:

Percent Pctl_Dif Minimum Maximum
50 3.5 1 8

The dataset contains 240 measurements on 120 patients, of which 120 measurements were taken before treatment,
and 120measurements were taken from the same patients after treatment. The sample within–cluster median difference
between untreated and treated blood pressures is 3.5 mmHg, with 95% confidence limits from 1 to 8 mmHg. Therefore,
a typical patient in the population experiences a lowering of blood pressure between 1 mm Hg and 8 mm Hg after
treatment. This within–cluster median difference is a rank–based parameter, whose value is zero under the null
hypothesis tested by signtest (see [R] signrank). Note that signtest can only be used on wide–format data, and
produces a P–value, whereas cendif can only be used on long–format data, and produces a confidence interval.

The sign test may have low power to detect a difference, compared to alternatives such as the signed–rank test
and the paired t–test. Another possibly more powerful alternative, which is rank–based and produces a confidence
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interval, is to estimate the median difference between all pairs of untreated and treated measurements, whether or not
they belong to the same patient. cendif can do this, using the options cluster(patient) and funtype(vonmises),
as follows:

. cendif bp, by(when) tdist cluster(patient) funtype(vonmises)
Y-variable: bp (Blood pressure)
Grouped by: when (Status)
Group numbers:

Status | Freq. Percent Cum.
------------+-----------------------------------

Before | 120 50.00 50.00
After | 120 50.00 100.00

------------+-----------------------------------
Total | 240 100.00

Transformation: Fisher’s z
Degrees of freedom: 119
Number of clusters (patient) = 120
95% confidence interval(s) for Von Mises percentile difference(s)
between values of bp in first and second groups:

Percent Pctl_Dif Minimum Maximum
50 6 2 9

This time, the median difference is 6 mm Hg, with 95% confidence limits from 2 to 9 mm Hg. Therefore, the
confidence interval for the Von Mises percentile difference (for all pairs of untreated and treated blood pressures)
is as wide as the confidence interval for the within–cluster median difference (between untreated and treated blood
pressures from the same patient). However, Rosner et al. (2006) report the results of a simulation study, in which
the power of a clustered rank–sum test was greater than that of the alternative signed–rank test when testing for
non–zero median differences between sets of paired data comparable to bplong. The Von Mises median difference is
based on the equivalent of a clustered rank–sum test, and the signed–rank test is usually more powerful than the
sign test. We might therefore expect the confidence interval for the Von Mises median difference to be narrower than
that for the within–cluster median difference in most samples. However, more work is required to assess the relative
power of these methods.
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5 Historical note

This document is a post–publication update of an article which appeared in the Stata Technical Bulletin (STB)
as Newson (2000d). The somersd package appeared in Newson (2000a), and a post–publication update of that STB
article is distributed with this document as part of the documentation of the somersd package. The somersd package
was later revised in Newson (2000b), Newson (2000c), Newson (2000d), Newson (2001a), Newson (2001b) and Newson
(2006a). After 2001, STB was replaced by The Stata Journal (SJ), and most subsequent updates to the somersd
package only appeared on SSC and on Roger Newson’s homepage at http://www.rogernewsonresources.org.uk/,
which is accessible from within net–aware Stata as of 16 April 2020. However, Newson (2002) gives a comprehensive
review of Somers’ D, Kendall’s τa, median differences, and their estimation in Stata using the somersd package, and
Newson (2006a) and Newson (2006b) describe the update of somersd to Version 9 of Stata.
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