{smcl} {* 16apr2004}{...} {hline} help for {hi:cme} {hline} {title:Generalized linear covariate measurement error models} {p 8 12 2}{cmd:cme} {it:depvar} [{it:indepvars}] {cmd:(}{it:label:varlist}{cmd:)} [{it:weight}] [{cmd:if} {it:exp}] [{cmd:in} {it:range}] [{cmd:,} {cmdab:mev:ar}{cmd:(}{it:#}{cmd:)} {cmdab:f:amily}{cmd:(}{it:familyname}{cmd:)} {cmdab:de:nom}{cmd:(}{it:varname}{cmd:)} {cmdab:l:ink}{cmd:(}{it:linkname}{cmd:)} {cmdab:nocon:stant} {cmdab:off:set:(}{it:varname}{cmd:)} {cmdab:tc:ovmod:(}{it:varlist}{cmd:)} {cmdab:si:mple} {cmdab:ni:p}{cmd:(}{it:#}{cmd:)} {cmdab:noad:apt} {cmdab:rob:ust} {cmdab:cl:uster:(}{it:varname}{cmd:)} {cmdab:com:mands} {cmdab:ind:irect} {cmdab:tot:al} {cmdab:ef:orm} {cmdab:le:vel:(}{it:#}{cmd:)} {cmdab:nolo:g} {cmdab:tr:ace} {cmdab:fr:om:(}{it:matrix}{cmd:)} {p 4 4 2} The outcome model is specified by {it:depvar} and [{it:indepvars}], {cmd:family}{cmd:(}{it:familyname}{cmd:)}, {cmd:link}{cmd:(}{it:linkname}{cmd:)}, etc. {p 4 4 2} The classical measurement model for the true covariate is specified by {cmd:(}{it:label:varlist}{cmd:)}, where {it:label} is the name of the true covariate (cannot be the same as an existing variable in the data set) and {it:varlist} are the fallible (continuous) measurements of the true covariate. At least two variables are required unless the {cmd:mevar(}{it:#}{cmd:)} option is used. {p 4 4 2} The true covariate model is a linear regression with explanatory variables (observed covariates) [{it:indepvars}] unless the {cmd:tcovmod}{cmd:(}{it:varlist}{cmd:)} option is used to specify different explanatory variables. {p 4 4 2} {it:familyname} is one of {p 8 8 2}{cmdab:gau:ssian} | {cmdab:bin:omial} | {cmdab:poi:sson} | {cmdab:gam:ma} {p 4 4 2} {it:linkname} is one of {p 8 8 2}{cmdab:i:dentity} | {cmdab:log:} | {cmdab:rec:ip} | {cmdab:logi:t} | {cmdab:pro:bit} | {cmdab:c:ll} | {cmdab:olo:git} | {cmdab:opr:obit} | {cmdab:ocl:l} | {p 4 4 2} {cmd:fweight}s and {cmd:pweight}s are allowed; see help {help weights}. {p 4 4 2} {cmd:cme} shares the features of all estimation commands; see help {help estcom}. {title:Description} {p 4 4 2} {cmd:cme} is a wrapper for {help gllamm} to estimate generalized linear models with covariate measurement error by maximum likelihood using adaptive quadrature. {cmd:cme} interprets a simple syntax, prepares the data for {cmd:gllamm}, calls {cmd:gllamm} and produces tailor-made output. The {cmd:commands} option causes {cmd:cme} to print out all data manipulation commands and the {cmd:gllamm} command. {cmd:gllamm} itself should be used to extend the model and for prediction and simulation using {help gllapred} or {help gllasim). The covariate measurement error model comprises three submodels: the outcome model, the measurement model and the true covariate model. {p 4 4 2} The outcome model is a generalized linear model including both observed covariates and the true, unobserved or latent covariate. {p 4 4 2} The measurement model assumes that the continuous repeated measurements of the true covariate are independently normally distributed with mean equal to the true covariate and constant variance (classical measurement model). {p 4 4 2} The true covariate model is a linear regression of the true covariate on the observed covariates. Use {cmd:tcovmod}{cmd:(}{it:varlit}{cmd:)} to use a different set of observed covariates in the true covariate model than in the outcome model. {p 4 4 2} See Rabe-Hesketh, Skrondal, and Pickles (2003). The Stata Journal 3, 386-411 for full details. {title:Options} {p 4 8 2} {cmd:mevar}{cmd:(}{it:#}{cmd:)} specifies the measurement error variance. This option is required if there are no replicate measurements. {p 4 8 2} {cmd:family}{cmd:(}{it:familyname}{cmd:)} specifies the distribution of {it:depvar}; {cmd:family(gaussian)} is the default. {p 4 8 2} {cmd:denom}{cmd:(}{it:varname}{cmd:)} specifies the binomial denominator for the binomial link when {it:depvar} is the number of successes out of a fixed number of trials. {p 4 8 2} {cmd:link}{cmd:(}{it:linkname}{cmd:)} specifies the link function; the default is the canonical link for the {cmd:family()} specified. {p 4 8 2} {cmd:noconstant} specifies that the linear predictor has no intercept term, thus forcing it through the origin on the scale defined by the link function. {p 4 8 2} {cmd:offset}{cmd:(}{it:varname}{cmd:)} specifies an offset to be added to the linear predictor: g(E(y)) = xB + {it:varname}. {p 4 8 2} {cmd:tcovmod}{cmd:(}{it:varlist}{cmd:)} specifies the observed covariates to be used in the true covariate model; a constant will automatically be estimated. {p 4 8 2} {cmd:simple} specifies that there are no observed covariates in the true covariate model. {p 4 8 2} {cmd:nip}{cmd:(}{it:#}{cmd:)} the number of quadrature points to be used. {p 4 8 2} {cmd:noadapt} use ordinary quadrature instead of the default adaptive quadrature. {p 4 8 2} {cmd:robust} specifies that the Huber/White/sandwich estimator of variance is to be used. If you specify {cmd:pweight}s or {cmd:cluster}{cmd:(}{it:varname}{cmd:)}, {cmd:robust} is implied. {p 4 8 2} {cmd:cluster}{cmd:(}{it:varname}{cmd:)} specifies that the observations are independent across groups (clusters), but not necessarily within groups. {it:varname} specifies to which group each observation belongs; e.g., {cmd:cluster}{cmd:(}{cmd:personid}{cmd:)} in data with repeated observations on individuals. {cmd:cluster}{cmd:(}{cmd:)} affects the estimated standard errors and variance-covariance matrix of the estimators (VCE), but not the estimated coefficients. Specifying {cmd:cluster}{cmd:(}{cmd:)} implies {cmd:robust}. {p 4 8 2} {cmd:commands} displays the commands necessary to prepare the data and estimate the model in {cmd:gllamm} instead of estimating the model. These commands can be copied into a do-file and should work without further editing. Note that the data will be changed by the do-file! {p 4 8 2} {cmd:indirect} displays the indirect effects of observed covariates on the outcome via the true covariate - this is shown for all covariates in the true covariate model. {p 4 8 2} {cmd:total} displays the total effects (indirect effects plus direct effects) of observed covariates on the outcome via the true covariate - this is shown for all covariates in the true covariate model. For observed covariates that have no direct effects, the total effects equal the indirect effects. {p 4 8 2} {cmd:eform} displays the exponentiated coefficients and corresponding standard errors and confidence intervals. For binomial models with the logit link, exponentiation results in odds ratios; for Poisson models with the log link, exponentiated coefficients are rate ratios. {p 4 8 2} {cmd:level}{cmd:(}{it:#}{cmd:)} specifies the confidence level, in percent, for confidence intervals (default 95); see help {help level}. {p 4 8 2} {cmd:nolog} suppresses the iteration log. {p 4 8 2} {cmd:trace} requests that the estimated coefficient vector be printed at each iteration. In addition, all the output produced by {cmd:gllamm} with the {cmd:trace} option is also produced. {p 4 8 2} {cmd:from}{cmd:(}{it:matrix}{cmd:)} specifies a matrix of starting values. {p 4 8 2} {cmd:skip} combined with the {cmd:from}{cmd:(}{it:matrix}{cmd:)} option, allows the matrix of starting values to contain extra parameters. {title:Remarks} {p 4 4 2} The allowed link functions are {center:Link function {cmd:cme} option } {center:{hline 40}} {center:identity {cmd:link(identity)} } {center:log {cmd:link(log)} } {center:reciprocal {cmd:link(recip)} } {center:logit {cmd:link(logit)} } {center:probit {cmd:link(probit)} } {center:complementary log-log {cmd:link(cll)} } {center:ordinal logit {cmd:link(ologit)} } {center:ordinal probit {cmd:link(oprobit)} } {center:ord. compl. log-log {cmd:link(ocll)} } {p 4 4 2} The allowed distribution families are {center:Family {cmd:cme} option } {center:{hline 40}} {center:Gaussian(normal) {cmd:family(gaussian)} } {center:Bernoulli/binomial {cmd:family(binomial)} } {center:Poisson {cmd:family(poisson)} } {center:Gamma {cmd:family(gamma)} } {p 4 4 2} If you specify {cmd:family()} but not {cmd:link()}, you obtain the canonical link for the family: {center:{cmd:family()} default {cmd:link()}} {center:{hline 38}} {center:{cmd:family(gaussian)} {cmd:link(identity)}} {center:{cmd:family(binomial)} {cmd:link(logit)} } {center:{cmd:family(poisson)} {cmd:link(log)} } {center:{cmd:family(gamma)} {cmd:link(recip)} } {title:Examples} {p 4 8 2}{cmd:. * simulate data}{p_end} {p 4 8 2}{cmd:. set obs 100}{p_end} {p 4 8 2}{cmd:. gen true = invnorm(uniform())}{p_end} {p 4 8 2}{cmd:. gen fall1 = true + 0.3*invnorm(uniform())}{p_end} {p 4 8 2}{cmd:. gen fall2 = true + 0.3*invnorm(uniform())}{p_end} {p 4 8 2}{cmd:. gen fall3 = true + 0.3*invnorm(uniform())}{p_end} {p 4 8 2}{cmd:. gen ynorm = 2 + 3*true + invnorm(uniform())}{p_end} {p 4 8 2}{cmd:. gen yord = cond(ynorm<-2,1,cond(ynorm<0,2,cond(ynorm<3,3,4)))}{p_end} {p 4 8 2}{cmd:. * estimate models}{p_end} {p 4 8 2}{cmd:. cme ynorm (true: fall1 fall2 fall3)}{p_end} {p 4 8 2}{cmd:. cme ynorm (true: fall1 fall2 fall3), mevar(.077)}{p_end} {p 4 8 2}{cmd:. cme yord (true: fall1 fall2 fall3), f(binom) l(oprobit)}{p_end} {title:Webpage} {p 4 13 2} http://www.gllamm.org {title:Author} {p 4 13 2} Sophia Rabe-Hesketh (sophiarh@berkeley.edu) as part of joint work with Anders Skrondal and Andrew Pickles. We are very grateful to Stata Corporation for helping us to speed up {cmd:gllamm}. {title:References} (available from sophiarh@berkeley.edu) {p 4 13 2} Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2003). Maximum likelihood estimation of generalized linear models with covariate measurement error. The Stata Journal 3, 386-411. {p 4 13 2} Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal 2, 1-21. {p 4 13 2} Rabe-Hesketh, S., Pickles, A. and Skrondal, S. (2001). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling 3, 215-232. {p 4 13 2} Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, in press. {p 4 13 2} Rabe-Hesketh, S., Pickles, A. and Skrondal, S. (2001). GLLAMM Manual. Technical Report 2001/01, Department of Biostatistics and Computing, Institute of Psychiatry, King's College, London, see http://www.gllamm.org {title:Also see} {p 4 13 2} Manual: {hi:[U] 23 Estimation and post-estimation commands},{break} {hi:[U] 29 Overview of Stata estimation commands},{break} {p 4 13 2} Online: help for {help gllamm}, {help gllapred}, {help gllasim}; {help estcom}, {help postest}; {help cloglog}, {help logistic}, {help poisson}, {help regress}