
Processing dyad data in Stata

Brendan Halpin

April 2018

1 Processing dyads in Stata

Sometimes when you are working with nested data (such as household surveys, with data
on all individuals in the household), analysis focuses on dyads (such as spouse pairs) rather
than individual cases. This means you need to link data in one observation with that in
another. As long as the data includes information in ego’s record about where alter’s record
is (e.g., by holding alter’s ID as a variable), the simplest way to do this is to create a separate
data file, where the alter ID variable is renamed to ID, and the substantive variables are also
renamed, and to match it back in to the original data. This is not terribly difficult, but it is
messy, so I present here a more convenient method.

First, an example using the standard approach, and the wave 18 BHPS. The BHPS is
a household survey where each record represents an individual, and in theory each adult
member of the household is surveyed. Each individual has a unique ID, pid. For individuals
whose spouse is in the survey (and therefore probably in the data set), their spouse’s ID is
stored in osppid.

use osppid osex ojbstat using /home/data/bhps/oindresp

tempfile spousedata

keep if osppid!=0 // Drop cases where no spouse reported

rename (osppid osex ojbstat) (pid spsex spjbstat)

save `spousedata', replace

use pid osppid osex ojbstat using /home/data/bhps/oindresp

merge 1:1 pid using `spousedata'

keep if _merge!=2 // Drop people reported as alters who are not present as egos

This code first loads alter-ID and two substantive variables, renames them (renaming alter-
ID to the same name as ego-ID), and saves to a temporary file. The file thus contains
information about ego keyed to alter’s ID: if we consider it from alter’s point of view it
consists of information about alter’s alter keyed on ID (for spouse pairs the relationship is
symmetric, but in general it reverses the relationship: if ego is the parent and alter the child,
this file contains information about the individual’s parent). It then loads ego-ID, alter-ID
and the substantive variables again, and does a merge. It drops cases which are present only
in the alter file (these are people whose ID is reported as spouses, who are not present in
the file, due typically to non-response).

Here we see the result, crosstabulating ego and alter sex: nearly (but not quite) everyone
is reporting heterosexual relationships:

. tab osex spsex

sex

sex male female Total

male 40 4,513 4,553

female 4,513 26 4,539

Total 4,553 4,539 9,092

1



My alternative involves using a custom program to find the row number of alter’s record,
and is more concise:

use pid osppid osex ojbstat using /home/data/bhps/oindresp, clear

dyadid pid osppid, gen(idx)

gen spsex2 = osex[idx]

gen spjbstat = ojbstat[idx]

The results are identical.

. tab osex spsex2

spsex2

sex 1 2 Total

male 40 4,513 4,553

female 4,513 26 4,539

Total 4,553 4,539 9,092

2 The program

In the example the main work is obscured, as it takes place in the dyadid command. This
command uses Mata’s associative arrays to create a new variable, which is the case number
of the spouse record. Effectively, the Mata code passes through the data twice, first creating
in an asarray a record of the case number for each observed ego-ID, and then plugging in
each alter-ID into the same array to pull out the corresponding case number.

mata:

real matrix function dyadid (string idvar, string dyadidvar, string genvar) {

st_view(id = ., ., (idvar))

st_view(dyadid = ., ., (dyadidvar))

st_view(gen = ., ., (genvar))

nobs = length(dyadid)

altindex = asarray_create("real")

"Build AS-array"

for (i=1; i<=nobs; i++) {

asarray(altindex,id[i],i)

}

"Read AS-array"

for (i=1; i<=nobs; i++) {

if (asarray_contains(altindex,dyadid[i])) {

gen[i] = asarray(altindex,dyadid[i])

}

else {

gen[i] = .

}

}

"Done"

}

end

2



program dyadid

syntax varlist(min=2 max=2), gen(string)

tokenize `varlist'

/* // Check that alter-ID is unique if not missing */

/* preserve */

/* keep if !missing(`2') */

/* isid `2' */

/* restore */

qui gen `gen' = .

mata dyadid("`1'", "`2'", "`gen'")

end

/*

With dyadic data, given ID (not necessarily unique) and alter-ID

(unique, but potentially missing), where alter-ID is the ID of the

partner, generate an index variable which is the row number of the

partner's record

. dyadid id spid, gen(idx)

. gen spempstat = empstat[idx]

*/

The syntax is

dyadid egoID alterID, gen(indexvar)

The ego-ID does not need to be unique, but the alter-ID should be (though it can be
missing). However, if there are duplicates in alter-ID it won’t provoke an error, but only the
last occurrence will be recorded. Where there is no alter, or where alter’s ID is not present
in the data as an ego-record, the index variable will be missing.

To recap, the sort of data this is intended for includes records for both ego and alter,
keyed on an ID variable, and linked by a variable that contains alter’s ID. We link from ego
to alter by finding the case number of the ego-record corresponding to the alter-ID variable.

3 Implications for SADI

I plan to extend some of my SADI sequence distance measures to use this mechanism to
create dyadic distance variables, rather than square pairwise matrices. This means it is
much more efficient with large data sets, if only dyadic distances are needed. Let me know
if this interests you.

4 Installation

The code is currently available on my site, but I will upload to SSC in due course. For now:

. net from http://teaching.sociology.ul.ie/statacode

. net install dyadid

. net get dyadid

3


	Processing dyads in Stata
	The program
	Implications for SADI
	Installation

