{smcl}
{* *! version 1.1.0 20jun2019}{...}
{cmd:help geodist}
{hline}
{title:Title}
{phang}
{bf:geodist} {hline 2} Calculates geographical distances.
{marker syntax}{...}
{title:Syntax}
{phang}
If one or more lat/lon coordinates are numeric variables
{p 8 16 2}
{cmd:geodist}
{it:lat1 lon1 lat2 lon2}
{ifin}
{cmd:,}
{opt g:enerate(new_dist_var)}
[{it:options}]
{phang}
If all lat/lon coordinates are numeric scalars or numbers
{p 8 16 2}
{cmd:geodist}
{it:lat1 lon1 lat2 lon2}
{cmd:,}
[{it:options}]
{synoptset 20 tabbed}{...}
{synopthdr}
{synoptline}
{syntab:Main}
{synopt:{opt mi:les}}report distances in miles{p_end}
{syntab:Ellipsoid}
{synopt:{opt e:llipsoid(#1,#2)}}custom ellipsoid parameters {it:(a,f)}{p_end}
{syntab:Sphere}
{synopt:{opt s:phere}}calculate great-circle distances{p_end}
{synopt:{opt rad:ius(#)}}custom radius {it:#} (in km){p_end}
{synoptline}
{p2colreset}{...}
{marker description}{...}
{title:Description}
{pstd}
{cmd:geodist} calculates
{browse "https://en.wikipedia.org/wiki/Geographical_distance":geographical distances }
by measuring the length of
the shortest path between two points along
the surface of a mathematical model of the earth.
{pstd}
By default, {cmd:geodist} implements
{browse "https://en.wikipedia.org/wiki/Vincenty%27s_formulae":Vincenty's (1975) formula}
to calculate distances on a
{browse "https://en.wikipedia.org/wiki/Reference_ellipsoid":reference ellipsoid}.
If the {opt sphere} option is specified,
{cmd:geodist} calculates
{browse "https://en.wikipedia.org/wiki/Great-circle_distance":great-circle distances}
using the
{browse "https://en.wikipedia.org/wiki/Haversine_formula":haversine formula}.
Distances on an ellipsoid are more accurate but note that Vincenty's formula may
fail to find a solution for
{browse "https://en.wikipedia.org/wiki/Antipodes":near-antipodal}
points.
The haversine formula is much simpler and runs fast.
{pstd}
Geographical coordinates must be in signed decimal degrees,
positive for north and east, and negative for south and west.
{browse "https://en.wikipedia.org/wiki/Latitude":Latitudes}
range from -90 to 90 and
{browse "https://en.wikipedia.org/wiki/Longitude":longitudes}
from -180 to 180.
You may specify each {it:lat1 lon1 lat2 lon2} independently using either a numeric variable,
a numeric scalar, or simply a number.
If {it:lat1 lon1 lat2 lon2} include one or more variables,
{cmd:geodist} will calculate a distance for each observation in the sample
and store these in {help newvar:{it:new_dist_var}}.
{marker options}{...}
{title:Options}
{dlgtab:Main}
{phang}
{opt mi:les} indicates that distances are to be reported in miles; if omitted,
distances are in kilometers.
{dlgtab:Ellipsoid}
{phang}
{opt e:llipsoid(#1,#2)} is used to specify an alternate
{browse "https://en.wikipedia.org/wiki/Reference_ellipsoid":reference ellipsoid}.
#1 is the length of the
semi-major axis in meters (equatorial radius) and
#2 is the flattening ratio.
For example, the
{browse "https://en.wikipedia.org/wiki/Earth_ellipsoid#Historical_Earth_ellipsoids":Airy 1830}
reference ellipsoid
can be specified with {opt ellipsoid(6377563.396,299.3249646)}.
If omitted, {cmd:geodist} uses the
{browse "https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84":WGS 1984}
reference ellipsoid, the same used by
{browse "https://en.wikipedia.org/wiki/Global_Positioning_System":GPS}
devices.
{dlgtab:Sphere}
{phang}
{opt s:phere} requests great-circle distances.
{phang}
{opt r:adius(#)} specifies that great-circle distances be computed on
a sphere with a radius of {bind:{it:#} km.}
The default is 6371 ({browse "https://en.wikipedia.org/wiki/Earth_radius#Mean_radius":Earth's mean radius}).
{marker examples}{...}
{title:Examples}
{pstd}
You can use {cmd:geodist} to calculate the distance between two points
if you know the latitude/longitude for each.
For instance, the Michigan Stadium is located at
{browse "https://www.google.com/maps/search/?api=1&query=42.265837,-83.748696":42.265837,-83.748696}
and the North Terminal of the Detroit Metro Airport is located at
{browse "https://www.google.com/maps/search/?api=1&query=42.207667,-83.356022":42.207667,-83.356022}.
The following example calculates the distance in miles between these two
points. The first command calculates the distance on an ellipsoid and the
second on a sphere.
{space 8}{hline 27} {it:example do-file content} {hline 27}
{cmd}{...}
{* example_start - example1}{...}
geodist 42.265837 -83.748696 42.207667 -83.356022, miles
geodist 42.265837 -83.748696 42.207667 -83.356022, miles sphere
{* example_end}{...}
{txt}{...}
{space 8}{hline 80}
{space 8}{it:({stata geodist_run example1 using geodist.hlp:click to run})}
{pstd}
Note that these are "as the crow flies" distances.
Compare these results with
{browse "https://www.google.com/maps/dir/?api=1&origin=42.265837,-83.748696&destination=42.207667,-83.356022&travelmode=driving":Google Maps driving directions}.
{pstd}
If you have a dataset of points, you can calculate the distance between each
point and a fixed location.
In the following example, we create a dataset with the location of
four parks near the University of Michigan and then calculate the distance in kilometers
(the default) between each park and the Michigan Stadium.
Note that Stata's {hi:float} data type holds at most 7 digits of accuracy
so coordinates should always be stored as {hi:double}s.
{space 8}{hline 27} {it:example do-file content} {hline 27}
{cmd}{...}
{* example_start - example2}{...}
version 9.2
clear
input long parkid str17 parkname double(lat lon)
1 "Gallup Park" 42.273170 -83.694174
2 "Argo Park" 42.291516 -83.744604
3 "Hudson Mills" 42.382194 -83.911197
4 "Nichols Arboretum" 42.281123 -83.725575
end
save "geodist_example.dta"
geodist 42.265837 -83.748696 lat lon, gen(d)
list
{* erase "geodist_example.dta"}{...}
{* example_end}{...}
{txt}{...}
{space 8}{hline 80}
{space 8}{it:({stata geodist_run example2 using geodist.hlp:click to run})}
{pstd}
If you have two datasets of points and want to calculate the distance between
each pair of points, you will have to find a way to combine the observations.
Usually, this will involve using {help cross} or {help joinby} to form
all pairwise combinations of points.
You can use the same technique if you have a single dataset of points and
want to calculate the distance to every other point.
For example, here is how to find the nearest neighbor park:
{space 8}{hline 27} {it:example do-file content} {hline 27}
{cmd}{...}
{* example_start - example3}{...}
version 9.2
clear
input long parkid str17 parkname double(lat lon)
1 "Gallup Park" 42.273170 -83.694174
2 "Argo Park" 42.291516 -83.744604
3 "Hudson Mills" 42.382194 -83.911197
4 "Nichols Arboretum" 42.281123 -83.725575
end
save "geodist_example.dta"
* rename all variables and form all pairwise combinations
rename parkid parkid0
rename parkname parkname0
rename lat lat0
rename lon lon0
cross using "geodist_example.dta"
* calculate distances and order by distance
geodist lat0 lon0 lat lon, gen(d)
sort parkid0 d parkid
list, sepby(parkid0)
* drop distance to self and keep the nearest neighbor
drop if parkid0 == parkid
by parkid0: keep if _n == 1
list
{* erase "geodist_example.dta"}{...}
{* example_end}{...}
{txt}{...}
{space 8}{hline 80}
{space 8}{it:({stata geodist_run example3 using geodist.hlp:click to run})}
{pstd}
The above works well for small datasets but you should use
{stata ssc des geonear:geonear} (from SSC) if you have more than
a few thousand observations.
{title:Saved results}
{pstd}
{cmd:geodist} saves the following in {cmd:r() } when no variable is specified:
{synoptset 15 tabbed}{...}
{p2col 5 15 19 2: Scalars}{p_end}
{synopt:{cmd:r(iterations)}}number of iterations (only for ellipsoidal distances){p_end}
{synopt:{cmd:r(distance)}}distance{p_end}
{p2colreset}{...}
{title:References}
{pstd}
Sinnott, R. W., "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
{pstd}
Veness, Chris,
"Vincenty solutions of geodesics on the ellipsoid",
{browse "http://www.movable-type.co.uk/scripts/latlong-vincenty.html"}
{pstd}
Veness, Chris,
"Calculate distance, bearing and more between Latitude/Longitude points",
{browse "http://www.movable-type.co.uk/scripts/latlong.html"}
{pstd}
Vincenty, T. (1975) Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations, Survey Review 22(176): 88-93.
{browse "http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf"}
{title:Author}
{pstd}
Robert Picard
{marker alsosee}{...}
{title:Also see}
{psee}
Stata:
{help cross},
{help joinby}
{p_end}
{psee}
Stata 15 or higher:
{help sp},
{help spdistance}
{p_end}
{psee}
SSC:
{stata "ssc desc geonear":geonear},
{stata "ssc desc runby":runby},
{stata "ssc desc shp2dta":shp2dta},
{stata "ssc desc geo2xy":geo2xy},
{stata "ssc desc geoinpoly":geoinpoly},
{stata "ssc desc mergepoly":mergepoly},
{stata "ssc desc geocircles":geocircles}
{p_end}