-------------------------------------------------------------------------------
help for hcnbreg                                                 (Joseph Hilbe)
-------------------------------------------------------------------------------

Heterogeneous canonical negative binomial regression

hcnbreg depvar [varlist] [if exp] [in range] [, lnalpha(varlist) offset(varname) exposure(varname) cluster(varname) level(#) from(asis) irr eform robust nolog maximize_options survey_options]

aweights, fweights, iweights, and pweights are allowed; see help weights.

hcnbreg provides access to all maximize options; see help maximize.

hcnbreg provides access to all survey options; see help svy.

Description

hcnbreg fits a maximum-likelihood negative binomial regression model, with a heterogeneous (Stata: -generalized-) canonical parameterization, of depvar on indepvars, where depvar is a non-negative count variable.

hcnbreg acccepts all of the help maximize options, the constraint() option, and all survey options and capabilities documented in [SVY]; including multi-level surveys; poststratification; and BRR, jackknife, and linearization VCE estimators.

The lnalpha() option parameterizes the natural log of alpha, the negative binomial heterogeniety or ancillary parameter. When parameterized, the displayed value of alpha is the exponential of the parameterized constant, and has little value for understanding predictor contributions to the parameter.

This program uses ml lf method.

Options

+-------+ ----+ Model +------------------------------------------------------------

lnalpha(varlist) in which ancillary parameter alpha is parameterized by listed variables.

offset(varname) specifies a varname in model with coefficient constrained to 1.

exposure(varname) specifies a ln(varname) in model with coefficient constrained to 1.

constraints(constraints) apply specified linear constraints.

+-----------+ ----+ SE/Robust +--------------------------------------------------------

cluster(varname)

robust specifies that the Huber/White/sandwich estimator of variance is to be used in place of the traditional calculation. robust combined with cluster() allows observations which are not independent within cluster (although they must be independent between clusters). If you specify pweights, robust is implied.

vce(options) allowed. vce() supports robust, opg, and native. vce does not support options bootstrap or jacknife, However, cnbreg does support the bootstrap and jacknife commands, so these modeling capabilities are allowed.

+-----------+ ----+ Reporting +-------------------------------------------------------- level(#) specifies the confidence level, in percent, for confidence intervals of the coefficients; see help level.

nolog suppresses the iteration log.

+-------------+ ----+ max options +------------------------------------------------------

maximize_options: technique(algorithm_spec), [no]log, trace, hessian, gradient, showstep, shownrtolerance, difficult, iterate(#), tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance, from(init_specs); see maximize.

+-------------+ ----+ svy options +------------------------------------------------------

survey_options are all available. See help svy

Author and support

Joseph Hilbe, Arizona State University: Hilbe@asu.edu

Remarks

hcnbreg is a user authored program. Support is by author. NOTE: The canonical parameterization of the negative binomial derives directly from the exponential family form negative binomial probability function; not a Poisson-gamma mixture model. Unlike NB-1 and NB-2, the heterogeniety or ancillary parameter is a term of the mean and variance functions.

hcnbreg requires a nonnegative response.

Examples

. hcnbreg los hmo white type2 type3, nolog irr

. hcnbreg los hmo white type2 type3, nolog lnalpha(hmo white)

. hcnbreg los hmo white type2 type3, nolog exposure(pop) cluster(state)

. bootstrap: hcnbreg los hmo white type2 type3, nolog lnalpha(hmo white) eform

Reference

Hilbe, J. (2007), Negative Binomial Regression, Cambridge, UK: Cambridge University Press.

Hardin, J. & J. Hilbe (2007), Generalized Linear Models and Extensions, 2nd ed., Stata Press.

Also see

Online: help gnbreg