{smcl}
{* 14dec2006}{...}
{hline}
help for {hi:invgausscf}
{hline}

{title:Fitting a two-parameter inverse Gaussian distribution by maximum likelihood (closed form)}

{p 8 17 2}
{cmd:invgausscf} 
{it:varname} 
[{it:weight}] 
[{cmd:if} {it:exp}]
[{cmd:in} {it:range}] 

{p 4 4 2}{cmd:by} {it:...} {cmd::} may be used with 
{cmd:invgausscf}; see help {help by}. 

{p 4 4 2}{cmd:fweight}s and {cmd:aweight}s are allowed; 
see help {help weights}.


{title:Description}

{p 4 4 2} {cmd:invgausscf} fits by maximum likelihood a two-parameter
inverse Gaussian distribution to a distribution of a variable
{it:varname}. The distribution has probability density function for
variable x > 0, location parameter m > 0 and scale parameter
l > 0 of {bind:(l / 2 pi x^3)^(1/2) exp((-l (x - m)^2 / 2 m^2 x))}. 
For a distribution without covariates the maximum likelihood solution
can be obtained directly from closed form solutions. 


{title:Remarks}

{p 4 4 2}This program is provided in case it is interesting or useful. 
{help invgaussfit} provides a fuller version, including fitting with 
covariates and inferential results. Its help file also comments on
other commands available that use inverse Gaussian distributions in 
some way. 


{title:Saved results}

{p 4 4 2}{cmd:r(mu)} and {cmd:r(lambda)} are the estimated inverse 
Gaussian parameters.

	
{title:Examples}

{p 4 8 2}{cmd:. invgausscf mpg}


{title:Author}

{p 4 4 2}Nicholas J. Cox, Durham University{break}n.j.cox@durham.ac.uk


{title:References}

{p 4 8 2}
Evans, M., Hastings, N. and Peacock, B. 2000. {it:Statistical distributions.}
New York: John Wiley.

{p 4 8 2} 
Johnson, N.L., Kotz, S. and Balakrishnan, N. 1994. 
{it:Continuous univariate distributions: Volume 1.} New York: John Wiley.


{title:Also see}

{p 4 13 2}
Online: help for 
{help pinvgauss} (if installed), 
{help qinvgauss} (if installed) 
{help invgaussfit} (if installed)