
The Stata Journal (yyyy) vv, Number ii, pp. 1–48

Updates to the ipfraking ecosystem

Stanislav Kolenikov
Abt Associates

stas kolenikov@abtassoc.com

Abstract. Kolenikov (2014) introduced the package ipfraking for iterative pro-
portional fitting (raking) weight calibration procedures for complex survey designs.
This article briefly describes the original package and updates to the core program,
and documents additional programs that are used to support the process of creat-
ing survey weights in the authors’ production code.

Keywords: st0001, survey, calibration, weights, raking

1 Introduction and background

Large scale social, behavioral and health data are often collected via complex sur-
vey designs that may involve stratification, multiple stages of selection and/or unequal
probabilities of selection (Korn and Graubard 1995, 1999). In an ideal setting, varying
probabilities of selection are accounted for by using the Horvitz-Thompson estimator of
the totals (Horvitz and Thompson 1952; Thompson 1997), and the remaining sampling
fluctuations can be further ironed out by post-stratification (Holt and Smith 1979).
However, on top of the planned differences in probabilities of obtaining a response from
a sampled unit, non-response is a practical problem that has been growing more acute in
recent years (Groves et al. 2001; Pew Research Center 2012). The analysis weights that
are provided along with the public use microdata by data collecting agencies are de-
signed to account for unequal probabilities of selection, non-response, and other factors
affecting imbalance between the population and the sample, thus making the analyses
conducted on such microdata generalizable to the target population.

Earlier work (Kolenikov 2014) introduced a Stata package called ipfraking that
implements calibration of survey weights to known control totals to ensure that the
resulting weighted data are representative of the population of interest. The process of
calibration is aimed at aligning the sample totals of the key variables with those known
for the population as a whole. The remainder of this section provides a condensed
treatment of estimation with survey data using calibrated weights; a full description
was provided in the previous paper.

For a given finite population U of units indexed i = 1, . . . , N , the interests of survey
statisticians often lie in estimating the population total of a variable Y

T [Y] =
∑
i∈U

Yi (1)

A sample S of n units indexed by j = 1, . . . , n is taken from U . If the probability to
select the i-th unit is known to be πi, then the probability weights, or design weights,

c© yyyy StataCorp LP st0001

2 Raking survey data: updates

are given by the inverse probability of selection:

wdi = π−1i (2)

With these weights, an unbiased (design-based, non-parametric) estimator of the total
(1) is (Horvitz and Thompson 1952)

t[y] =
∑
j∈S

yj
πj
≡
∑
j∈S

wdjyj , (3)

Probability weights protect the end user from potentially informative sampling designs,
in which the probabilities of selection are correlated with outcomes, and the design-based
methods generally ensure that inference can be generalized to the finite population even
when the statistical models used by analysts and researchers are not specified correctly
(Pfeffermann 1993; Binder and Roberts 2003).

Often, survey statisticians have auxiliary information on the units in the frame,
and such information can be included it at the sampling stage to create more efficient
designs. Unequal probabilities of selection are then controlled with probability weights,
implemented as [pw=exp] in Stata (and can be permanently affixed to the data set with
svyset command).

In many situations, however, usable information is not available beforehand, and
may only appear in the collected data. For example, the census totals of the age and
gender distribution of the population may exist, but age and gender of the sampled
units is unknown until the survey measurement is taken on them. It is still possible
to capitalize on this additional data by adjusting the weights in such a way that the
reweighted data conforms to these known figures. The procedures to perform these
reweighting steps are generally known as weight calibration (Deville and Särndal 1992;
Deville et al. 1993; Kott 2006, 2009; Särndal 2007).

Suppose there are several (categorical) variables, referred to as control variables, that
are available for both the population and the sample (age groups, race, gender, educa-
tional attainment, etc.). Weight calibration aims at adjusting the weights via an itera-
tive optimization so that the control totals for the control variables xj = (x1j , . . . , xpj),
obtained with the calibrated weights wcj , align with the known population totals:∑

j∈S
wcjxj = T [X] (4)

where the right hand side, the population totals of the control variables, is assumed to
be known from a census or a higher quality survey. Deville and Särndal (1992) framed
the problem of finding a suitable set of weights as that of constrained optimization with
the control equations (4) serving as constraints, and optimization targeted at making
the discrepancy between the design weights wdj and calibrated weights wcj as close as
possible, in a suitable sense.

The package ipfraking (Kolenikov 2014) implements a popular calibration algo-
rithm, known as iterated proportional fitting, or raking, which consists of iterative up-

S. Kolenikov 3

dating (post-stratification) of each of the margins. (For an in-depth discussion of dis-
tinctions between raking and post-stratification, see Kolenikov (2016).) Since 2014, the
continuing code development resulted in additional features that this update documents.

2 Updates to ipfraking program and package

Listed below is the full syntax, and new features are discussed in a dedicated section.

2.1 Syntax of ipfraking

ipfraking
[

if
] [

in
] [

weight
]
, ctotal(matname [matname . . .])

[
generate(newvarname) replace double iterate(#) tolerance(#)

ctrltolerance(#) trace nodivergence trimhiabs(#) trimhirel(#)

trimloabs(#) trimlorel(#) trimfrequency(once|sometimes|often) double

meta nograph
]

Note that the weight statement [pw=varname] is required, and must contain the initial
weights.

Required options

ctotal(matname
[
matname . . .

]
) supplies the names of the matrices that contain the

control totals, as well as meta-data about the variables to be used in calibration.

q Technical note

The row and column names of the control total matrices (see [P] matrix rownames)
should be formatted as follows.

• rownames: the name of the control variable

• colnames: the values the control variables takes

• coleq: the name of the variable for which total is computed; typically it is iden-
tically equal to 1.

q

generate(newvarname) contains the name of the new variable to contain the raked
weights.

replace indicates that the weight variable supplied in the [pw=varname] expression
should be overwritten with the new weights.

One and only one of generate() or replace must be specified.

4 Raking survey data: updates

Linear calibration

linear requests linear calibration of weights.

Options to control convergence

tolerance(#) defines convergence criteria (the change of weights from one iteration
to next). The default is 10−6.

iterate(#) specifies the maximum number of iterations. The default is 2000.

nodivergence overrides the check that the change in weights is greater at the current
iteration than in the previous one, i.e., ignores this termination condition. It is
generally recommended, especially in calibration with simultaneous trimming.

ctrltolerance(#) defines the criterion to assess the accuracy of the control totals. It
does not impact iterations or convergence criteria, but rather only triggers alerts in
the output. The default value is 10−6.

trace requests a trace plot to be added.

Trimming options

By default, no weight trimming is applied. To reduce variability of weights and potential
design effects, the following options can be specified.

trimhiabs(#) specifies the upper bound U on the greatest value of the raked weights.
The weights that exceed this value will be trimmed down, so that w3j ≤ U for every
j ∈ S.

trimhirel(#) specifies the upper bound u on the adjustment factor over the baseline
weight. The weights that exceed the baseline times this value will be trimmed down,
so that w3j ≤ uw1j for every j ∈ S.

trimloabs(#) specifies the lower bound L on the smallest value of the raked weights.
The weights that are smaller than this value will be increased, so that w3j ≥ L for
every j ∈ S.

trimlorel(#) specifies the lower bound l on the adjustment factor over the baseline
weight. The weights that are smaller than the baseline times this value will be
increased, so that w3j ≥ lw1j for every j ∈ S.

trimfreqency(keyword) specifies when the trimming operations are to be performed.
The following keywords are recognized:

often means that trimming will be performed after each marginal adjustment.

sometimes means that trimming will be performed after a full set of variables has
been used for post-stratification. This is the default behavior if any of the numeric
trimming options above are specified.

S. Kolenikov 5

once means that trimming will be performed after the raking process is declared to
have converged.

The numeric trimming options trimhiabs(#), trimhirel(#), trimloabs(#),
trimlorel(#) can be specified in any combination, or entirely omitted to produce
untrimmed weights.

Miscellaneous options

double specifies that the new variable named in generate() option should be generated
as double type. See [D] data types.

meta puts information taken by ipfraking as inputs and produced throughout the
process into characteristics stored with the variable specified in generate() option.
See details in Section 2.2.

nograph omits the histogram of the calibrated weights, which can be used to speed up
ipfraking (e.g., in replicate weight production).

2.2 New features of ipfraking

Reporting of results and errors by ipfraking was improved in several directions.

1. The discrepancy for the worst fitting category is now being reported.

2. The number of trimmed observations is reported.

3. If ipfraking determines that the categories do not match in the control totals
received from ctotals() and those found in the data, a full listing of categories
is provided, and the categories not found in one or the other are explicitly shown.

Linear calibration (Case 1 of Deville and Särndal (1992)) is provided with linear

option. The weights are calculated analytically:

wj,lin = wdj(1 + x′jλ), λ =
(∑
j∈S

wdjxjx
′
j

)−1
(T [X]− t[X]) (5)

Since no iterative optimization is required, linear calibration works very fast. However
it has an undesirable artefact of potentially producing negative weights, as the range
of weights is not controlled. (As raking works by multiplying the currents weights by
positive factors, if the input weights are all positive, the output weights will be positive
as well.) Negative weights are not allowed by the official svy commands or commands
that work with [pweights]. In many tasks, running linear weights first, pulling up
the negative and small positive weights (replace weight = 1 if weight <= 1) and
re-raking using the “proper” iterative proportional fitting runs faster than raking from
scratch. An example of linearly calibrated weights is given below in Section 5.

6 Raking survey data: updates

Option meta saves more information in characteristics of the calibrated weight vari-
ables. Using Example 3 from Kolenikov (2014) with trimming options, we have:

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], gen(rakedwgt3) ///
> ctotal(ACS2011_sex_age Census2011_region Census2011_race) ///
> trimhiabs(200000) trimloabs(2000) meta

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256
Iteration 3, max rel difference of raked weights = .02754514
Iteration 4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
Iteration 6, max rel difference of raked weights = .00018036
Iteration 7, max rel difference of raked weights = .00003391
Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07
The worst relative discrepancy of 3.0e-08 is observed for race == 3
Target value = 20053682; achieved value = 20053682
Trimmed due to the upper absolute limit: 5 weights.

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

. char li rakedwgt3[]
rakedwgt3[source]: finalwgt
rakedwgt3[objfcn]: 2.25435521346e-07
rakedwgt3[maxctrl]: 3.00266822363e-08
rakedwgt3[converged]: 1
rakedwgt3[worstcat]: 3
rakedwgt3[worstvar]: race
rakedwgt3[command]: [pw=finalwgt], gen(rakedwgt3) ctotal(ACS2011_sex_age Census2011_region ..
rakedwgt3[trimloabs]: trimloabs(2000)
rakedwgt3[trimhiabs]: trimhiabs(200000)
rakedwgt3[trimfrequency]: sometimes
rakedwgt3[hash1]: 2347674164
rakedwgt3[mat3]: Census2011_race
rakedwgt3[over3]: race
rakedwgt3[totalof3]: _one
rakedwgt3[Census2011_race]: 7.48567503861e-09
rakedwgt3[mat2]: Census2011_region
rakedwgt3[over2]: region
rakedwgt3[totalof2]: _one
rakedwgt3[Census2011_region]:

3.00266822363e-08
rakedwgt3[mat1]: ACS2011_sex_age
rakedwgt3[over1]: sex_age
rakedwgt3[totalof1]: _one
rakedwgt3[ACS2011_sex_age]: 4.13778410340e-09
rakedwgt3[note1]: Raking controls used: ACS2011_sex_age Census2011_region Census2011_race
rakedwgt3[note0]: 1

The following characteristics are stored with the newly created weight variable (see
[P] char).

S. Kolenikov 7

command The full command as typed by the user
matrix name The relative matrix difference from the corresponding

control total, see [D] functions
trimhiabs, trimloabs, Corresponding trimming options, if specified
trimhirel, trimlorel,
trimfrequency

maxctrl the greatest mreldif between the targets and the achieved
weighted totals

objfcn the value of the relative weight change at exit
converged whether ipfraking exited due to convergence (1)

vs. due to an increase in the objective function
or reaching the limit on the number of iterations (0)

source weight variable specified as the [pw=] input
worstvar the variable in which the greatest discrepancy between

the targets and the achieved weighted totals
(maxctrl) was observed

worstcat the category of the worstvar variable in which the
greatest discrepancy was observed

For the control total matrices #= 1, 2, . . ., the following meta-information is stored.

mat# the name of the control total matrix
totalof# the multiplier variable (matrix’ coleq)
over# the margin associated with the matrix

(i.e., the categories represented by the columns)

Also, ipfraking stores the notes regarding the control matrices used, and which of
the margins did not match the control totals, if any. See [D] notes.

2.3 Additional examples

Kolenikov and Hammer (2015) demonstrate how to solve the problem of creating weights
that are constant within a larger unit (e.g., in a household survey, it may be desirable
that all individuals within a household have the same weight). They achieve this as
follows:

1. Control totals are defined at the individual level.

2. At the household level, the weighting multipliers are defined for each individual
level control category as the number of individuals in a household that have the
requisite demographic characteristics.

3. Raking is performed at the household level.

4. The resulting weights are assigned to every individual in the household.

8 Raking survey data: updates

2.4 Utility programs

The original package ipfraking provided two additional utility programs, mat2do and
xls2row. The former was updated to provide notimestamp option to omit the time
stamps (which tend to unnecessarily throw off the project building and revision control
systems). An additional utility program whatsdeff was added to compute the design
effects and margins of error, common tasks associated with describing survey weights.
Specifically, the Transparency Initiative of the American Association for Public Opinion
Research (AAPOR 2014) requires that

For probability samples, the estimates of sampling error will be reported,
and the discussion will state whether or not the reported margins of sampling
error or statistical analyses have been adjusted for the design effect due to
weighting, clustering, or other factors.

whatsdeff weight variable
[

if
] [

in
]
,
[

by(varlist)
]

The utility program whatsdeff calculates the apparent design effect due to unequal
weighting,

DEFFUWE = 1 + CV 2
w = 1 + r(Var)/(r(mean))^2

using the returned values from summarize weight variable (see help return). Addi-
tionally, it reports the effective sample size, n/DEFFUWE, and also returns the margins
of error for the sample proportions that estimate the population proportions of 10%
and 50%.

. webuse nhanes2, clear

. whatsdeff finalwgt

Group Min Mean Max CV DEFF N N eff

Overall 2000.00 11318.47 79634.00 0.6453 1.4164 10351 7307.97

. return list

scalars:
r(N) = 10351

r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974

r(Neff_Overall) = 7307.97435325364
r(DEFF_Overall) = 1.416397964696134

Design effects can also be broken down by a categorical variable:

. whatsdeff finalwgt, by(sex)

Group Min Mean Max CV DEFF N N eff

sex
Male 2000.00 11426.14 79634.00 0.6578 1.4326 4915 3430.94

Female 2130.00 11221.12 61534.00 0.6333 1.4010 5436 3880.01

Overall 2000.00 11318.47 79634.00 0.6453 1.4164 10351 7307.97

S. Kolenikov 9

. return list

scalars:
r(N) = 10351

r(MOE10) = .0068792766212984
r(MOE50) = .0114654610354974

r(Neff_Overall) = 7307.97435325364
r(DEFF_Overall) = 1.416397964696134
r(Neff_Female) = 3880.00710397866
r(DEFF_Female) = 1.40102836266093
r(Neff_Male) = 3430.938195872213
r(DEFF_Male) = 1.432552765279559

2.5 New programs in the package

Two new programs are added to the package: ipfraking report and wgtcellcollapse,
and are documented in the subsequent sections of this article. The former provides re-
ports on the raked weights, including summaries of the data with no weights, with the
input weights, and with the calibrated weights. The latter creates a mostly automated
flow of collapsing weighting cells that are too detailed (and hence have low sample sizes).

3 Excel reports on raked weights: ipfraking report

ipfraking report using filename , raked weight(varname)
[

matrices(namelist) by(varlist) xls replace force
]

The utility command ipfraking report produces a detailed report describing the
raked weights, and places it into filename.dta file (or, if xls option is specified, both
filename.dta and filename.xls files).

Along the way, ipfraking report runs a regression of the log raking ratio w3j/w1j

on the calibration variables. This regression is expected to have R2 equal to or very
close to 1, and residual variance equal to or very close to zero. This naturally produces
obscenely high t-test values, but the purpose of this regression is not in establishing “sig-
nificance” of any variable in explaining the outcome (which we know to be predicted with
near certainty). Instead, the regression coefficients provide insights regarding which cat-
egories received greater vs. smaller adjustments (which in turn indicate lower response
or coverage rates for the corresponding population subgroups). Conversely, control vari-
ables that are associated with relatively similar adjustment factors may be contributing
relatively little to the weight adjustment, and may be candidates for removal from the
list of control totals.

Using the working example from Kolenikov (2014), the example regression output
is:

10 Raking survey data: updates

. ipfraking_report using rakedwgt3-report, raked_weight(rakedwgt3) replace by(_one)
Margin variable sex_age (total variable: _one; categories: 11 12 13 21 22 23).
Margin variable region (total variable: _one; categories: 1 2 3 4).
Margin variable race (total variable: _one; categories: 1 2 3).
Auxiliary variable _one (categories: 1).

file rakedwgt3-report.dta saved

Source SS df MS Number of obs = 10,351
F(10, 10340) > 99999.00

Model 2086.13859 10 208.613859 Prob > F = 0.0000
Residual .78315703 10,340 .000075741 R-squared = 0.9996

Adj R-squared = 0.9996
Total 2086.92175 10,350 .201634952 Root MSE = .0087

__000003 Coef. Std. Err. t P>|t| [95% Conf. Interval]

sex_age
11 .0644365 .0002775 232.21 0.000 .0638925 .0649804
12 .4545577 .0003154 1441.25 0.000 .4539395 .455176
13 .6782466 .0002804 2418.71 0.000 .6776969 .6787963
22 .3966406 .0003049 1300.84 0.000 .3960429 .3972383
23 .7304392 .0002726 2679.97 0.000 .7299049 .7309734

region
NE -.4455127 .0002536 -1756.49 0.000 -.4460099 -.4450155
MW -.4428144 .0002335 -1896.53 0.000 -.4432721 -.4423567
W -.6672675 .0002407 -2772.21 0.000 -.6677393 -.6667957

race
Black .3360321 .0002848 1180.08 0.000 .3354739 .3365902
Other 1.613276 .0006303 2559.34 0.000 1.612041 1.614512

_cons .5864801 .0002455 2388.48 0.000 .5859988 .5869614

Raking adjustments for sex_age variable:
the smallest was 1.798 for category 21 (21)
the greatest was 3.732 for category 23 (23)

Raking adjustments for region variable (1=NE, 2=MW, 3=S, 4=W):
the smallest was 0.922 for category 4 (W)
the greatest was 1.798 for category 3 (S)

Raking adjustments for race variable (1=white, 2=black, 3=other):
the smallest was 1.798 for category 1 (White)
the greatest was 9.023 for category 3 (Other)

It looks like ipfraking had to make greater adjustments to the weights of older
females (sex age==23, i.e., sex==2 & age==3; the adjustment factor for this category
was 3.732 vs. the low of 1.798 for young women), and especially other race individuals
(the adjustment factor was 9.023, vs. 1.798 for the whites). The diagnostic value is
in the differences in the adjustment factors with the same variable; since no attempt
is being made to average across the population or the sample or to assign the “base”
variable, the absolute reported values of the adjustment factors may not be meaningful.
In the example above, 1.798 figures both as the greatest adjustment factor of the region
variable, and as the lowest adjustment factor for the race and sex-by-age interaction.
As is easily seen from regression output, this value is the exponent of the intercept
1.798=exp(0.586). Since all of the “estimates” of the region specific coefficients are
negative, the lowest reported value is less than this baseline value. Since all of the

S. Kolenikov 11

“estimates” of the race and sex-by-age indicators are positive, all the category-specific
adjustment factors are greater than this baseline value. This is an interplay of the base
categories, and the differences in the demographic composition within each category of
a control total variable vis-a-vis other weighting variables.

3.1 Options of ipfraking report

raked weight(varname) specifies the name of the raked weight variable to create the
report for. This is a required option.

matrices(namelist) specifies a list of matrices (formatted as the matrices supplied
to ctotal() option of ipfraking) to produce weighting reports for. In particular,
the variables and their categories are picked up from these matrices; and the control
totals/proportions are compared to those defined by the weight being reported on.

by(varlist) specifies a list of additional variables for which the weights are to be tabu-
lated in the raking weights report. The difference with the matrices() option is that
the control totals for these variables may not be known (or may not be relevant). In
particular, by(one), where one is identically one, will produce the overall report.

xls requests exporting the report to an Excel file.

replace specifies that the files produced by ipfraking report (i.e., the .dta and the
.xls file if xls option is specified) should be overwritten.

force requires that a variable that may be found repeatedly (between the calibration
variables supplied originally to ipfraking, the variables found in the independent
total matrices(), and the variables without the control totals provided in by()

option) is processed every time it is encountered. (Otherwise, it is only processed
once.)

3.2 Variables in the raking report

The raking report file contains the following variables.

(Continued on next page)

12 Raking survey data: updates

Variable name Definition
Weight Variable The name of the weight variable, generate()
C Total Margin Variable Name The name of the control margin,

rowname of the corresponding ctotal() matrix
C Total Margin Variable Label The label of the control margin variable
Variable Class The role of the variable in the report:

Raking margin: a variable used as a calibration margin
(picked up automatically from the ctotal()

matrix, provided meta option was specified)
Other known target: supplied with matrices()

option of ipfraking report

Auxiliary variable: additional variable supplied
with by() option of ipfraking report

C Total Arg Variable Name The name of the multiplier variable
C Total Arg Variable Label The label of the multiplier variable
C Total Margin Category Number Numeric value of the control total category
C Total Margin Category Label Label of the control total category
C Total Margin Category Cell An indicator whether a weighting cell was

produced by collapsing categories
using wgtcellcollapse

Category Total Target The control total to be calibrated to
(the specific entry in the ctotal() matrix)

Category Total Prop Control total proportion
(the ratio of the specific entry in the ctotal()

matrix to the matrix total)
Unweighted Count Number of sample observations in the category
Unweighted Prop Unweighted proportion
Unweighted Prop Discrep Difference Unweighted Prop - Category Total Prop

Category Total SRCWGT Weighted category total, with input weight
Category Prop SRCWGT Weighted category proportion, with input weight
Category Total Discrep SRCWGT Difference Category Total SRCWGT -

- Category Total Target

Category Prop Discrep SRCWGT Difference Category Prop SRCWGT -
- Category Total Prop

Category RelDiff SRCWGT reldif(Category Total SRCWGT,

Category Total Target)

Overall Total SRCWGT Sum of source weights
Source The name of the matrix from which the totals

were obtained
Comment Placeholder for comments, to be entered during

manual review

For each of the input weights (SRCWGT suffix), raked weights (RKDWGT suffix) and
raking ratio (the ratio of raked and input weights, RKDRATIO suffix), the following sum-
maries are provided.

S. Kolenikov 13

Variable name Definition
Min WEIGHT Min of the respective weight
P25 WEIGHT 25th percentile of the respective weights
P50 WEIGHT Median of the respective weights
P75 WEIGHT 75th percentile of the respective weights
Max WEIGHT Max of the respective weights
Mean WEIGHT Mean of the respective weights
SD WEIGHT Standard deviation of the respective weights
DEFF WEIGHT Apparent UWE DEFF of the respective weights

3.3 Example

Continuing with the example of calibration by region, race, and sex-by-age interaction,
a glimpse of the raking report looks as follows.

. use rakedwgt3-report, clear
(Weighting report on rakedwgt3)

. list C_Total_Margin_Variable_Name C_Total_Margin_Category_Label ///
> Category_Total_Target Category_Total_RKDWGT DEFF_SRCWGT DEFF_RKDWGT , ///
> sepby(C_Total_Margin_Variable_Name)

C_Tota.. ~y_Label Categor~t Categor.. DEFF_SR~T DEFF_RK~T

1. sex_age 11 41995394 41995394 1.2148059 1.6259899
2. sex_age 12 42148662 42148662 1.2462168 1.5716613
3. sex_age 13 26515340 26515340 1.2241095 1.5460785
4. sex_age 21 41164255 41164255 1.2325105 1.5639529
5. sex_age 22 43697440 43697440 1.1937826 1.5175312
6. sex_age 23 32773080 32773080 1.233902 1.664307

7. region NE 40679030 40679030 1.3056639 1.3657837
8. region MW 49205289 49205289 1.3475551 1.4909581
9. region S 85024007 85024006 1.4950056 1.4912995
10. region W 53385843 53385844 1.459859 2.3772667

11. race White 1.784e+08 1.784e+08 1.4059259 1.4337901
12. race Black 29856865 29856865 1.5173846 1.5092533
13. race Other 20053682 20053682 1.3179136 1.2264706

14. _one 1 . 2.283e+08 1.4164382 1.7349278

The last line, corresponding to the auxiliary variable one identically equal to 1 (this
variable was present in the data set as it was used by ipfraking as a multiplier)do
”C:.bib” , contains summaries for the sample as a whole. It is always recommended to
include it (note the use of ipfraking report, ... by(one) option in the syntax in
the previous section.)

Functionality of ipfraking report is aimed at manual quality control review, which
typically involves (i) categories with raking factors that differ the most (in the output),
and (ii) the resulting report file in Excel, although for some aspects of automated quality
control, it can be useful, as well.

14 Raking survey data: updates

4 Collapsing weighting cells: wgtcellcollapse

An additional new component of ipfraking package is a tool to semi-automatically
collapse weighting cells, in order to achieve a required minimal size of the weighting
cell. (A typical recommendation is to have cells of size 30 to 50.)

wgtcellcollapse task
[

if
] [

in
]
,
[
task options

]
where task is one of:

define to define collapsing rules explicitly

sequence to create collapsing rules for a sequence of categories

report to list the currently defined collapsing rules

candidate to find rules applicable to a given category

collapse to perform cell collapsing

label to label collapsed cells using the original labels after wgtcellcollapse collapse

4.1 Syntax of wgtcellcollapse report

wgtcellcollapse report , variables(varlist)
[

break
]

variables(varlist) is the list of variables for which the collapsing rules are to be re-
ported

break requires wgtcellcollapse report to exit with error when technical inconsisten-
cies are encountered

4.2 Syntax of wgtcellcollapse define

wgtcellcollapse define , variables(varlist)
[

from(numlist) to(#)

label(string) max(#) clear
]

variables(varlist) is the list of variables for which the collapsing rule can be used

from(numlist) is the list of categories that can be collapsed according to this rule

to(#) is the numeric value of the new, collapsed category

label(string) is the value label to be attached to the new, collapsed category

max(#) overrides the automatically determined max value of the collapsed variable

clear clears all the rules currently defined

S. Kolenikov 15

Let us demonstrate the two subcommands introduced so far with the following toy
example.

. clear

.

. set obs 4
number of observations (_N) was 0, now 4

.

. gen byte x = _n

.

. label define x_lbl 1 "One" 2 "Two" 3 "Three" 4 "Four"

.

. label values x x_lbl

.

. wgtcellcollapse define, var(x) from(1 2 3) to(123)

.

. wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (123)
WARNING: unlabeled value x == 123

For automated quality control purposes, break option of wgtcellcollapse report

can be used to abort the execution when technical deficiencies in the rules or in the
data are encountered. In the above example, the label of the new category 123 was
not defined. Should the break option be specified, this would be considered a serious
enough deficiency to stop:

. wgtcellcollapse report, var(x) break

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (123)
ERROR: unlabeled value x == 123

assertion is false
r(9);

.

. wgtcellcollapse define, var(x) clear

.

. wgtcellcollapse define, var(x) from(1 2 3) to(123) label("One through three")

.

. wgtcellcollapse report, var(x) break

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 123 (One through three)

16 Raking survey data: updates

4.3 Syntax of wgtcellcollapse sequence

wgtcellcollapse sequence , variables(varlist) from(numlist) depth(#)

variables(varlist) is the list of variables for which the collapsing rule can be used

from(numlist) is the sequence of values from which the plausible subsequences can be
constructed

depth(#) is the maximum number of the original categories that can be collapsed

Continuing with the toy example introduced above, here is an example of moderate
length sequences to collapse categories:

. clear

. set obs 4
number of observations (_N) was 0, now 4

. gen byte x = _n

. label define x_lbl 1 "One" 2 "Two" 3 "Three" 4 "Four"

. label values x x_lbl

. wgtcellcollapse sequence, var(x) from(1 2 3 4) depth(3)

. wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 1 (One)
x == 2 (Two)
into x == 212 (One to Two)

Rule (2): collapse together
x == 2 (Two)
x == 3 (Three)
into x == 223 (Two to Three)

Rule (3): collapse together
x == 3 (Three)
x == 4 (Four)
into x == 234 (Three to Four)

Rule (4): collapse together
x == 1 (One)
x == 2 (Two)
x == 3 (Three)
into x == 313 (One to Three)

Rule (5): collapse together
x == 1 (One)
x == 223 (Two to Three)
into x == 313 (One to Three)

Rule (6): collapse together
x == 3 (Three)
x == 212 (One to Two)
into x == 313 (One to Three)

(Continued on next page)

S. Kolenikov 17

Rule (7): collapse together
x == 2 (Two)
x == 3 (Three)
x == 4 (Four)
into x == 324 (Two to Four)

Rule (8): collapse together
x == 2 (Two)
x == 234 (Three to Four)
into x == 324 (Two to Four)

Rule (9): collapse together
x == 4 (Four)
x == 223 (Two to Three)
into x == 324 (Two to Four)

Note how wgtcellcollapse sequence automatically created labels for the collapsed
cells.

When creating sequential collapses, wgtcellcollapse sequence uses the following
conventions in creating the new categories:

• First comes the length of the collapsed subsequence (up to depth(#)).

• Then comes the starting value of the category in the subsequence (padded by
zeroes as needed).

• Then comes the ending value of the category in the subsequence (padded by zeroes
as needed).

In the example above, rules 7 through 9 lead to collapsing into the new category 324.
This should be interpreted as “the subsequence of length 3 that starts with category 2
and ends with category 4”. A numeric value of the collapsed category that reads like
50412 means “the subsequence of length 5 that starts with category 4 and ends with
category 12”. In that second example, wgtcellcollapse sequence padded the value
of 4 with an additional zero, so that the length of resulting collapsed category value
is always (of digits of the sequence length) + twice (of digits of the greatest source
category).

Note that wgtcellcollapse sequence respects the order in which the categories
are supplied in the from() option, and does not sort them. If the categories are supplied
in the order 2, 4, 1 and 3, then wgtcellcollapse sequence would collapse 2 with 4, 4
with 1, and 1 with 3:

. wgtcellcollapse define, var(x) clear

. wgtcellcollapse sequence, var(x) from(2 4 1 3) depth(2)

. wgtcellcollapse report, var(x)

Rule (1): collapse together
x == 2 (Two)
x == 4 (Four)
into x == 224 (Two to Four)

18 Raking survey data: updates

Rule (2): collapse together
x == 4 (Four)
x == 1 (One)
into x == 241 (Four to One)

Rule (3): collapse together
x == 1 (One)
x == 3 (Three)
into x == 213 (One to Three)

4.4 Syntax of wgtcellcollapse candidate

wgtcellcollapse candidate , variable(varname) category(#)
[

max #
]

variable(varname) is the variable whose collapsing rules are to be searched

category(#) is the category for which the candidate rules are to be identified

max(#) is the maximum value of the categories in the candidate rules to be returned

The rules found are quietly returned through the mechanism of sreturn, see [P] re-
turn, as they are intended to stay in memory sufficiently long for wgtcellcollapse

collapse to evaluate each rule. Going back to the example from the previous sec-
tion with sequential collapses of depth 3, we can identify the following candidates for
categories 2, 212 (collapsed values of 1 and 2), and a non-existent category of 55:

. wgtcellcollapse candidate, var(x) cat(2)

. sreturn list

macros:
s(goodrule) : "1 2 4 7 8"

s(rule8) : "2:234=324"
s(rule7) : "2:3:4=324"
s(rule4) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rule1) : "1:2=212"
s(cat) : "2"
s(x) : "x"

. wgtcellcollapse candidate, var(x) cat(2) max(9)

. sreturn list

macros:
s(goodrule) : "1 2 4 7"

s(rule7) : "2:3:4=324"
s(rule4) : "1:2:3=313"
s(rule2) : "2:3=223"
s(rule1) : "1:2=212"
s(cat) : "2"
s(x) : "x"

(Continued on next page)

S. Kolenikov 19

. wgtcellcollapse candidate, var(x) cat(212)

. sreturn list

macros:
s(goodrule) : "6"

s(rule6) : "3:212=313"
s(cat) : "212"
s(x) : "x"

. wgtcellcollapse candidate, var(x) cat(55)

. sreturn list

macros:
s(cat) : "55"
s(x) : "x"

In the second call to the option max(9) was used to restrict the returned rules to
the rules that deal with the original categories only (so rule 8 that involved a collapsed
category 234 was omitted). In the third call, a list of rules that involve a collapsed cat-
egory cat(212) was requested. Requests for nonexisting categories are not considered
errors, but simply produce empty lists of “good rules”.

4.5 Syntax of wgtcellcollapse label

wgtcellcollapse label , variable(varname)
[

verbose force
]

variable(varname) is the collapsed variable to be labeled.

verbose outputs the labeling results. There may be a lot of output.

force instructs wgtcellcollapse label to only use categories present in the data.

Example is given in section 4.7 below.

4.6 Syntax of wgtcellcollapse collapse

wgtcellcollapse collapse
[

if
][

in
]
, variables(varlist) mincellsize(#)

saving(dofile name)
[

generate(newvarname) replace append

feed(varname) strict sort(varlist) run maxpass(#) maxcategory(#)

zeroes(numlist) greedy
]

variables(varlist) provides the list of variables whose cells are to be collapsed. When
more than one variable is specified, wgtcellcollapse collapse proceeds from right
to left, i.e., first attempts to collapse the rightmost variable.

mincellsize(#) specifies the minimum cell size for the collapsed cells. For most
weighting purposes, values of 30 to 50 can be recommended.

generate(newvarname) specifies the name of the collapsed variable to be created.

20 Raking survey data: updates

feed(varname) provides the name of an already existing collapsed variable.

strict modifies the behavior of wgtcellcollapse collapse so that only collapsing
rules for which all participating categories have nonzero counts are utilized.

sort(varlist) sorts the data set before proceeding to collapse the cell. The default sort
order is in terms of the values of the collapsed variable. A different sort order may
produce a different set of collapsed cell when cells are tied on size.

maxpass(#) specifies the maximum number of passes through the data set. The default
value is 10000.

maxcategory(#) is the maximum category value of the variable being collapsed. It is
passed to the internal calls to wgtcellcollapse candidate, see above.

zeroes(numlist) provides a list of the categories of the collapsed variable that may
have zero counts in the data.

greedy modifies the behavior wgtcellcollapse collapse to prefer the rules that col-
lapse the maximum number of categories.

Options to deal with the do-file to write the collapsing code to:

saving(dofile name) specifies the name of the do-file that will contain the cell col-
lapsing code.

replace overwrites the do-file if one exists.

append appends the code to the existing do-file.

run specifies that the do-file created is run upon completion. This option is typically
specified with most runs.

The primary intent of wgtcellcollapse collapse is to create the code that can be
utilized in both a survey data file and a population targets data file that are assumed
to have identically named variables. Thus it does not only manipulate the data in the
memory and collapses the cells, but also produces the do-file code that can be recycled
in automated weight production. To that effect, when a do-file is created with the
replace and saving() options, the user needs to specify generate() option to provide
the name of the collapsed variable; and when the said do-file is appended with the the
append and saving() options, the name of that variable is provided with the feed()

option.

The algorithm by which wgtcellcollapse collapse identifies the cells to be col-
lapsed uses a variation of greedy search. It first identifies the cells with the lowest
(positive) counts; finds the candidate rules for the variable(s) to be collapsed; evaluates
the counts of the collapsed cells across all these candidate rules; and uses the rule that
produces the smallest size of the collapsed cell across all applicable rules. So when it
finds several rules that are applicable to the cell being currently processed that has a
size of 5, and the candidate rules produce cells of sizes 7, 10 and 15, wgtcellcollapse
collapse will use the rule that produces the cell of size 7. The algorithm runs until all
cells have sizes of at least mincellsize(#) or until maxpass(#) passes through the

S. Kolenikov 21

data are executed. In real world situations with missing data, this basic algorithm often
produces inconsistent results, generally because it fails to identify empty cells, or fully
track the cells that have already been collapsed. For that reason, a number of options
are provided to modify its behavior. Section 4.7 will demonstrate the typical failures,
and the ways to overcome them.

Hint 1. Since wgtcellcollapse collapse works with the sample data, it will not
be able to identify categories that are not observed in the sample (e.g., rare categories),
but may be present in the population. This will lead to errors at the raking stage, when
the control total matrices have more categories than the data, forcing ipfraking to
stop. To help with that, the option zeroes() allows the user to pass the categories of
the variables that are known to exist in the population but not in the sample.

Hint 2. The behavior of wgtcellcollapse collapse, zeroes() may still not be
satisfactory. As it evaluates the sample sizes of the collapsed cells across a number of
candidate rules that involve zero cells, it may pick up the rule with lowest number,
and that rule may as well leave some other candidate rules with zero cells untouched.
This creates problems when wgtcellcollapse collapse returns to those untouched
cells, and looks for the existing cells to collapse them with, creating collapsing rules
with breaks in the sequences. To improve upon that behavior, option greedy makes
wgtcellcollapse collapse look for a rule that has as many categories as possible,
thus collapsing as many categories with zero counts in one pass as it can.

Hint 3. Other than for dealing with zero cells, the option strict should be specified
most of the time. It effectively makes sure that the candidate rules correspond to the
actual data.

Hint 4. If you want to guarantee some specific combination of cells to be collapsed by
wgtcellcollapse collapse, the most reliable way is to explicitly identify them with
the if condition, and specify a very large cell size like mincellsize(10000) so that
wgtcellcollapse collapse makes every possible effort to collapse those cells. Since
the resulting cell(s) will fall short of that size, the program will exit with a complaint
that this size could not be achieved, but hopefully the cells will be collapsed as needed.

4.7 Extended motivating example

The primary purpose of developing wgtcellcollapse and adding it to the ipfraking

suite was to address the need to collapse cells of the margin variables so that each cell
has a minimum sample size; and to do so in a way that can be easily made consistent
between a sample data and the population targets data. The problem arises when
some of the target variables have dozens of categories, most of which have small counts.
Example where such needs arise include:

• transportation surveys, where many stations will have low counts of boardings
and especially alightings;

• country of origin variables in household surveys, where most countries will have

22 Raking survey data: updates

very low counts;

• continuous age variables which can be collapsed into age groups differently for the
different races.

The workflow of wgtcellcollapse is demonstrated with the following simulated
transportation data set of trips along a commuter metro line composed of 21 stations:

. use stations, clear

. list station_id, sep(0)

station_id

1. 1. Alewife
2. 2. Brookline
3. 8. Carmenton
4. 11. Dogville
5. 18. East End
6. 24. Framington
7. 26. Grand Junction
8. 30. High Point
9. 36. Irvingtown
10. 39. Johnsville
11. 40. King Street
12. 44. Limerick
13. 47. Moscow City
14. 49. Ninth Street
15. 50. Ontario Lake
16. 53. Picadilly Square
17. 55. Queens Zoo
18. 60. Redline Circle
19. 62. Silver Spring
20. 68. Toledo Town
21. 69. Union Station

Suppose turnstile counts were collected at entrances and exits of these stations,
producing the following population figures.

(Continued on next page)

S. Kolenikov 23

. use trip_population, clear

. table board_id daypart , c(sum num_pass) cellwidth(10) mi

daypart
board_id AM Peak Midday PM Reverse Night Weekend

1. Alewife 1423 34 219 113 44
2. Brookline 7198 298 773 169 144
8. Carmenton 19254 181 3739 872 422
11. Dogville 12626 872 3476 769 1270
18. East End 2470 143 1263 145 114

24. Framington 634 50 1296 133 60
26. Grand Junction 2208 233 439 88 166

30. High Point 4319 424 3740 482 115
36. Irvingtown 1221 34 444 30 167
39. Johnsville 93 4 64 2 6
40. King Street 398 46 76 11 13

44. Limerick 1021 19 129 53 34
47. Moscow City 3300 776 984 140 301

49. Ninth Street 38 22 191 5 5
50. Ontario Lake 606 22 80 18 23

53. Picadilly Square 642 71 622 153 69
55. Queens Zoo 331 23 174 15 19

60. Redline Circle 270 4 63 13 3
62. Silver Spring 3402 240 950 206 445
68. Toledo Town 5085 61 744 272 112

. table alight_id daypart , c(sum num_pass) cellwidth(10) mi

daypart
alight_id AM Peak Midday PM Reverse Night Weekend

2. Brookline 19 . 3 2 .
8. Carmenton 492 18 56 23 15
11. Dogville 2475 42 423 153 80
18. East End 929 31 193 67 68

24. Framington 404 13 91 28 27
26. Grand Junction 576 20 147 42 41

30. High Point 2189 89 560 165 167
36. Irvingtown 288 10 91 21 18
39. Johnsville 41 . 11 2 1
40. King Street 131 3 38 8 6

44. Limerick 277 9 87 20 18
47. Moscow City 1746 78 556 142 128

49. Ninth Street 88 2 25 3 4
50. Ontario Lake 232 11 70 14 14

53. Picadilly Square 633 33 198 47 47
55. Queens Zoo 230 10 71 13 14

60. Redline Circle 90 2 26 3 4
62. Silver Spring 1134 67 369 91 85

68. Toledo Town 1372 81 444 112 118
69. Union Station 53193 3038 16007 2733 2677

Most people ride the train to the last station, with much smaller traffic at other
population centers.

Suppose a survey was administered to a sample of the metro line users, with the

24 Raking survey data: updates

following counts of cases collected.

. use trip_sample, clear

. table board_id daypart , c(freq) cellwidth(10) mi

daypart
board_id AM Peak Midday PM Reverse Night Weekend

1. Alewife 46 4 11 7 3
2. Brookline 236 4 35 6 7
8. Carmenton 653 4 184 47 24
11. Dogville 410 41 166 35 56
18. East End 85 5 64 4 4

24. Framington 30 3 74 3 1
26. Grand Junction 72 13 23 5 6

30. High Point 158 20 187 25 12
36. Irvingtown 34 2 25 1 15
39. Johnsville 5 1 1 . .
40. King Street 17 1 2 . 1

44. Limerick 28 . 9 1 3
47. Moscow City 94 31 49 7 13

49. Ninth Street . . 9 . .
50. Ontario Lake 13 1 4 1 1

53. Picadilly Square 23 4 35 7 5
55. Queens Zoo 10 1 14 . 2

60. Redline Circle 13 . 5 . .
62. Silver Spring 106 18 38 12 17

68. Toledo Town 149 6 33 11 3

. table alight_id daypart , c(freq) cellwidth(10) mi

daypart
alight_id AM Peak Midday PM Reverse Night Weekend

2. Brookline 1
8. Carmenton 11 1 1 . 1
11. Dogville 85 1 14 6 5
18. East End 36 1 18 1 4

24. Framington 15 1 2 2 2
26. Grand Junction 15 2 8 1 1

30. High Point 73 4 22 11 8
36. Irvingtown 9 . 4 2 2
39. Johnsville 3 . 1 . .
40. King Street . . 3 . .

44. Limerick 13 . 2 . 2
47. Moscow City 81 6 22 6 6

49. Ninth Street 3 1 1 . .
50. Ontario Lake 2 . 1 2 1

53. Picadilly Square 23 1 8 3 2
55. Queens Zoo 6 . 5 1 .

60. Redline Circle 5
62. Silver Spring 49 . 19 3 9
68. Toledo Town 43 3 24 6 7

69. Union Station 1,709 138 813 128 123

As only 3654 surveys were collected from a total of 96783 riders, we would reason-
ably expect that there is a need for weighting and nonresponse adjustment. The data

S. Kolenikov 25

available for calibration includes the population turnstile counts listed above. We will
produce interactions of the day part and the station that will serve as two weighting
margins (one for the stations where the metro users boarded, and one for the stations
where they got off).

First, we need to define the weighting rules. In this case, the stations are num-
bered sequentially, with the northernmost, say, station Alewife being number 3, and the
southernmost station, Union Station, where everybody gets off to rush to their city jobs
or attractions, being number 69. Below, we create a list of stations and provide it to
wgtcellcollapse sequence. We would be collapsing stations along the line, with the
expectation that travelers boarding or leaving at adjacent stations within the same day
part are more similar to one another than the travelers boarding or leaving a particular
station at different times of the day. Collapsing rules need to be defined for the daypart
variable as well — mostly because wgtcellcollapse collapse expects all variables to
have collapsing rules defined.

. use trip_sample, clear

. wgtcellcollapse sequence , var(daypart) from(2 3 4) depth(3)

. levelsof board_id, local(stations_on)
1 2 8 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68

. levelsof alight_id, local(stations_off)
2 8 11 18 24 26 30 36 39 40 44 47 49 50 53 55 60 62 68 69

. local all_stations : list stations_on | stations_off

. * relies on stations being in sequential order!!!

. wgtcellcollapse sequence , var(board_id alight_id) from(`all_stations´) depth(20)

. save trip_sample_rules, replace
file trip_sample_rules.dta saved

The syntax above relies on the stations being in the sequential order, which is how
the output of levelsof is organized. Otherwise, the internal numeric identifiers of the
stations would need to be supplied in the order in which the trains run through them.

The number of collapsing rules for variables board id and alight id created by
wgtcellcollapse sequence is 2961 each.

The first pass of cell collapse and raking

Let us say that we want to define weighting cells with at least 20 cases in each. We will
thus start with weighting cells defined as station-by-daypart interaction, and collapsing
stations within daypart to achieve the cell sizes of at least 20 cases. Here is what a
simple run of wgtcellcollapse collapse might look like.

(Continued on next page)

26 Raking survey data: updates

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> generate(dpston1) saving(dpston1.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 39:40=23940
replace dpston1 = 2023940 if inlist(dpston1, 2000039, 2000040)

Pass 1 through the data...
smallest count = 1 in the cell 2000050
Invoking rule 50:53=25053
replace dpston1 = 2025053 if inlist(dpston1, 2000050, 2000053)

Pass 2 through the data...
smallest count = 1 in the cell 2000055
Invoking rule 55:25053=35055
replace dpston1 = 2035055 if inlist(dpston1, 2000055, 2025053)

Pass 3 through the data...
smallest count = 1 in the cell 3000039
Invoking rule 39:40=23940
replace dpston1 = 3023940 if inlist(dpston1, 3000039, 3000040)
(output omitted)

Pass 35 through the data...
smallest count = 11 in the cell 5031826
Invoking rule 30:31826=41830
replace dpston1 = 5041830 if inlist(dpston1, 5000030, 5031826)

Pass 36 through the data...
smallest count = 12 in the cell 2065068
WARNING: could not find any rules to collapse dpston1 == 2065068

Pass 37 through the data...
smallest count = 12 in the cell 3033944
Invoking rule 26:23036:33944=62644
replace dpston1 = 3062644 if inlist(dpston1, 3000026, 3023036, 3033944)

(output omitted)

Pass 38 through the data...
smallest count = 13 in the cell 1000050
Invoking rule 50:53=25053
replace dpston1 = 1025053 if inlist(dpston1, 1000050, 1000053)

(output omitted)

Pass 43 through the data...
smallest count = 14 in the cell 3000055
Invoking rule 53:55=25355
replace dpston1 = 3025355 if inlist(dpston1, 3000053, 3000055)

Pass 44 through the data...
smallest count = 15 in the cell 5104068
WARNING: could not find any rules to collapse dpston1 == 5104068

Pass 45 through the data...
smallest count = 17 in the cell 5000062
Invoking rule 11:18:24:26:30:36:39:40:44:47:49:50:53:55:60:62=161162
replace dpston1 = 5161162 if inlist(dpston1, 5000011, 5000018, 5000024, 5000026, 5

> 000030, 5000036, 5000039, 5000040, 5000044, 5000047, 5000049, 5000050, 5000053, 50
> 00055, 5000060, 5000062)
Pass 46 through the data...
smallest count = 18 in the cell 2000062
Invoking rule 30:36:39:40:44:47:49:50:53:55:60:62=123062
replace dpston1 = 2123062 if inlist(dpston1, 2000030, 2000036, 2000039, 2000040, 2

> 000044, 2000047, 2000049, 2000050, 2000053, 2000055, 2000060, 2000062)
Pass 47 through the data...
smallest count = 18 in the cell 3054960
Invoking rule 62:54960=64962

S. Kolenikov 27

replace dpston1 = 3064962 if inlist(dpston1, 3000062, 3054960)
Pass 48 through the data...
smallest count = 22 in the cell 1023940
Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id) = 1023940

r(min) = 22

macros:
r(cfailed) : "2065068,5104068"
r(failed) : "2065068 5104068"

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> generate(dpstoff1) saving(dpstoff1.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208
replace dpstoff1 = 1020208 if inlist(dpstoff1, 1000002, 1000008)

Pass 1 through the data...
smallest count = 1 in the cell 2000008
Invoking rule 8:11=20811
replace dpstoff1 = 2020811 if inlist(dpstoff1, 2000008, 2000011)

(output omitted)

Pass 53 through the data...
smallest count = 16 in the cell 5026268
Invoking rule 69:26268=36269
replace dpstoff1 = 5036269 if inlist(dpstoff1, 5000069, 5026268)

Pass 54 through the data...
smallest count = 22 in the cell 3000047
Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id) = 3000047

r(min) = 22

macros:
r(cfailed) : "2044753,4055368"
r(failed) : "2044753 4055368"

Each pass identified the smallest cell count, the cell where this low count is found, the
rule that can be used to collapse this cell with some other cell (see more on determination
of what wgtcellcollapse believes to be the best rule below), and Stata code that can
be used to apply this collapsing rule.

The collapsed values of the variables dpston (DayPart-STation-ON) and dpstoff

(DayPart-STation-OFF) combine the values of the parent variables. The value of
dpston==1000003 indicates the combination of categories daypart==1 and station num-
ber 3. The value of dpston==2023940, the very first collapsed cell, indicates daypart==2
and sequence of two stations from 39 to 40. The value of dpston==3064960 indicates
daypart==3 and sequence of six stations from 49 to 60.

Note that in passes 36 and 44 for the boarding counts, wgtcellcollapse could not
find any applicable rules to collapse the cells and improve the count, of which a warning
was issued in the output. Additionally, the problematic value are returned to the user in
r(failed) macro as a space delimited list, and in r(cfailed), as a comma-delimited

28 Raking survey data: updates

list. The content of the r(failed) macro can be used in code that could read

foreach c in `r(failed)´ {
...
* run some diagnostics for each category that failed
...

}

while the content of the the r(cfailed) macro can be used in code that could read

list ... if inlist(dpston,`r(cfailed)´)

Also, these returned values should be used in production code by using assert command
(Gould 2003) to ascertain that these macros are empty (i.e., no errors were encountered):

assert "`r(failed)´" == ""

In Pass 48, wgtcellcollapse finds that, with the exception of the failures noted
above, all successfully collapsed cells now have sizes above the required minimum (option
mincellsize(20)), and exits.

Similar output is produced for collapsing of the cells for alighting counts. Only a
few lines of output, out of several hundred, are shown.

While we know that some cell counts are less than 20, we will ignore the issue for
the moment, as there are bigger concerns with the collapsed cells, as will become clear
once we follow through with the workflow of weighting, and attempt raking.

From the above run, wgtcellcollapse produced two files, one for each weighting
margin, called dpston.do and dpstoff.do. An interested reader is welcome to list

them; they contain long sequences of replace commands to perform the cell collapsing.
These do-files can be run on the population data to create identical categories and
produce the matrices of the population control totals for ipfraking to use:

. use trip_population, clear

. run dpston1.do

. total num_pass , over(dpston1)

Total estimation Number of obs = 719

1000001: dpston1 = 1000001
1000002: dpston1 = 1000002

(output omitted)

5104068: dpston1 = 5104068
5161162: dpston1 = 5161162

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000001 1423 967.7508 -476.9595 3322.959
1000002 7198 4895.91 -2414.011 16810.01

(output omitted)

5104068 270 116.7702 40.74822 499.2518
5161162 1723 909.6551 -62.90172 3508.902

S. Kolenikov 29

. matrix dpston1 = e(b)

. matrix coleq dpston1 = _one

. matrix rownames dpston1 = dpston1

. run dpstoff1.do

. total num_pass , over(dpstoff1)

Total estimation Number of obs = 719

1000011: dpstoff1 = 1000011
1000018: dpstoff1 = 1000018

(output omitted)

5000060: dpstoff1 = 5000060
5036269: dpstoff1 = 5036269
5140853: dpstoff1 = 5140853

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000011 2475 1468.807 -408.6691 5358.669
1000018 929 360.7303 220.7878 1637.212

(output omitted)

5000060 4 2 .0734531 7.926547
5036269 2880 980.8909 954.2428 4805.757
5140853 634 139.2172 360.6787 907.3213

. matrix dpstoff1 = e(b)

. matrix coleq dpstoff1 = _one

. matrix rownames dpstoff1 = dpstoff1

We can then go back to the sample data and try creating raked weights:

. use trip_sample, clear

. run dpston1

. run dpstoff1

. gen byte _one = 1

. ipfraking [pw=_one], ctotal(dpston1 dpstoff1) gen(raked_weight1)

categories of dpston1 do not match in the control dpston1 and in the data (nolab opt
> ion)
This is what dpston1 gives:
_one:1000001 _one:1000002 _one:1000008 _one:1000011 _one:1000018 _one:1000024 _one

> :1000026 _one:1000030 _one:1000036 _one:1000044 _one:1000047 _one:1000049 _one:100
> 0062 _one:1000068 _one:1023940 _one:1025053 _one:1025560 _one:2000011 _one:2065068
> _one:2070126 _one:2110847 _one:2123062 _one:3000008 _one:3000011 _one:3000018 _on
> e:3000024 _one:3000030 _one:3000036 _one:3000047 _one:3000068 _one:3020102 _one:30
> 25355 _one:3062644 _one:3064962 _one:4030108 _one:4041830 _one:4084768 _one:413115
> 3 _one:5030108 _one:5041830 _one:5053647 _one:5104068 _one:5161162
This is what I found in data:
_one:1000001 _one:1000002 _one:1000008 _one:1000011 _one:1000018 _one:1000024 _one

> :1000026 _one:1000030 _one:1000036 _one:1000044 _one:1000047 _one:1000062 _one:100
> 0068 _one:1023940 _one:1025053 _one:1025560 _one:2000011 _one:2065068 _one:2070126
> _one:2110847 _one:2123062 _one:3000008 _one:3000011 _one:3000018 _one:3000024 _on
> e:3000030 _one:3000036 _one:3000047 _one:3000068 _one:3020102 _one:3025355 _one:30
> 62644 _one:3064962 _one:4030108 _one:4041830 _one:4084768 _one:4131153 _one:503010
> 8 _one:5041830 _one:5053647 _one:5104068 _one:5161162

30 Raking survey data: updates

This is what dpston1 has that data don´t:
_one:1000049

This is what data have that dpston1 doesn´t:
<none>

r(111);

. ipfraking [pw=_one], ctotal(dpstoff1 dpston1) gen(raked_weight1)

categories of dpstoff1 do not match in the control dpstoff1 and in the data (nolab o
> ption)
This is what dpstoff1 gives:
_one:1000011 _one:1000018 _one:1000030 _one:1000047 _one:1000068 _one:1000069 _one

> :1025355 _one:1043644 _one:1060226 _one:1064962 _one:2044753 _one:2190869 _one:300
> 0002 _one:3000047 _one:3000068 _one:3000069 _one:3050826 _one:3053044 _one:3064962
> _one:4000002 _one:4000008 _one:4000049 _one:4055368 _one:4075069 _one:4101147 _on
> e:5000055 _one:5000060 _one:5036269 _one:5140853
This is what I found in data:
_one:1000011 _one:1000018 _one:1000030 _one:1000047 _one:1000068 _one:1000069 _one

> :1025355 _one:1043644 _one:1060226 _one:1064962 _one:2044753 _one:2190869 _one:300
> 0047 _one:3000068 _one:3000069 _one:3050826 _one:3053044 _one:3064962 _one:4055368
> _one:4075069 _one:4101147 _one:5036269 _one:5140853
This is what dpstoff1 has that data don´t:
_one:3000002 _one:4000002 _one:4000008 _one:4000049 _one:5000055 _one:5000060

This is what data have that dpstoff1 doesn´t:
<none>

r(111);

.

We see that raking failed, because survey nonresponse wiped out some of the smaller
stations from the sample. (Note also the informative error message with diagnostics
of missing categories produced by ipfraking. This is a functionality added since
Kolenikov (2014). The message lists the categories found in the data, in the control
totals, and in the mismatch.) We may have suspected as much from the full output of
the population control totals. For instance, the line in the output of the total com-
mand for dpstoff==5000060 showed only 4 alightings at station Redline Circle (60) on
the weekends, a much lower count than others.

The second pass of cell collapse and raking: zeroes() option

Having identified the issue, we can overcome it with zeroes() option of wgtcellcollapse
collapse whose purpose is specifically to add missing categories. This option provides
the list of stations that may have zero sample counts in a given daypart. For instance,
notice that the sample registers only one alighting at Brookline (2) in AM Peak daypart,
even though there are passengers exiting in other dayparts. All in all, wgtcellcollapse
needs to be made aware of the zero sample boardings at Johnsville (39), King Street
(40), Limerick (44), Ninth Street (49), Queens Zoo (55) and Redline Circle (60); as well
as zero alightings at Brookline (2), Carmenton (8), Irvingtown (36), Johnsville (39),
King Street (40), Limerick (44), Moscow City (47), Ninth Street (49), Ontario Lake
(50), Queens Zoo (55), Redline Circle (60), and Silver Spring (62).

(Continued on next page)

S. Kolenikov 31

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> zeroes(39 40 44 49 55 60) ///
> generate(dpston2) saving(dpston2.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 2000039

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells
replace dpston2 = 1024950 if inlist(dpston2, 1000049, 1000050)

Pass 0 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 40:44=24044 to collapse zero cells
replace dpston2 = 2024044 if inlist(dpston2, 2000040, 2000044)

(output omitted)

Pass 0 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 24950:25355:60=54960 to collapse zero cells
replace dpston2 = 5054960 if inlist(dpston2, 5024950, 5025355, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 2000039

Pass 12 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 39:24044=33944
replace dpston2 = 2033944 if inlist(dpston2, 2000039, 2024044)

(output omitted)

Pass 58 through the data...
smallest count = 18 in the cell 4055368
WARNING: could not find any rules to collapse dpston2 == 4055368

Pass 59 through the data...
smallest count = 20 in the cell 2000030
Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id) = 2000030

r(min) = 20

macros:
r(cfailed) : "5055368,4055368"
r(failed) : "5055368 4055368"

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> zeroes(2 8 36 39 40 44 47 49 50 55 60 62) ///
> generate(dpstoff2) saving(dpstoff2.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells
replace dpstoff2 = 1023940 if inlist(dpstoff2, 1000039, 1000040)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208 to collapse zero cells
replace dpstoff2 = 2020208 if inlist(dpstoff2, 2000002, 2000008)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 30:36=23036 to collapse zero cells
replace dpstoff2 = 2023036 if inlist(dpstoff2, 2000030, 2000036)

(output omitted)

32 Raking survey data: updates

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 24950:53:55:60=54960 to collapse zero cells
replace dpstoff2 = 5054960 if inlist(dpstoff2, 5024950, 5000053, 5000055, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 1000002

Pass 24 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208
replace dpstoff2 = 1020208 if inlist(dpstoff2, 1000002, 1000008)

(output omitted)

Pass 38 through the data...
smallest count = 2 in the cell 1000050
Invoking rule 49:50=24950
replace dpstoff2 = 1024950 if inlist(dpstoff2, 1000049, 1000050)

(output omitted)

Pass 47 through the data...
smallest count = 3 in the cell 1023940
Invoking rule 36:23940=33640
replace dpstoff2 = 1033640 if inlist(dpstoff2, 1000036, 1023940)

(output omitted)

Pass 55 through the data...
smallest count = 5 in the cell 1000060
Invoking rule 24950:25355:60=54960
replace dpstoff2 = 1054960 if inlist(dpstoff2, 1024950, 1025355, 1000060)

(output omitted)

Pass 76 through the data...
smallest count = 15 in the cell 3054960
Invoking rule 62:54960=64962
replace dpstoff2 = 3064962 if inlist(dpstoff2, 3000062, 3054960)

Pass 77 through the data...
smallest count = 21 in the cell 4070230
Done collapsing! Exiting...

. return list

scalars:
r(arg_min_id) = 4070230

r(min) = 21

macros:
r(cfailed) : "2023036,2110244,5103660"
r(failed) : "2023036 2110244 5103660"

Note that wgtcellcollapse reports specifically that it processes zero cells, and then
proceeds to the nonempty cells at Pass 12 for boarding, and at Pass 24 for alightings.

We will continue to disregard the cell counts of insufficient size for the time being.
Running the resulting do-files dpston.do and dpstoff.do on the population data to
create control totals, and providing these control totals to ipfraking program produces
an apparently successful raking result:

. use trip_sample, clear

. run dpston2

. run dpstoff2

. gen byte _one = 1

S. Kolenikov 33

. ipfraking [pw=_one], ctotal(dpston2 dpstoff2) gen(raked_weight2)

Iteration 1, max rel difference of raked weights = 36.208881
Iteration 2, max rel difference of raked weights = .05484732
Iteration 3, max rel difference of raked weights = .0055794
Iteration 4, max rel difference of raked weights = .00053851
Iteration 5, max rel difference of raked weights = .00005171
Iteration 6, max rel difference of raked weights = 4.962e-06
Iteration 7, max rel difference of raked weights = 4.762e-07
The worst relative discrepancy of 3.9e-08 is observed for dpstoff2 == 5180262
Target value = 483; achieved value = 483

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.9013 8.1096 37.001 .2228
Adjust factor 26.4869 8.1096 37.0014

. whatsdeff raked_weight2

Group Min Mean Max CV DEFF N N eff

Overall 8.11 26.49 37.00 0.2228 1.0496 3654 3481.24

Note the use of utility program whatsdeff to compute the design effect due to un-
equal weighting; see section 2.4. The problem of zero cells appeared to have been solved:
each and every population combination of daypart and station is properly reflected
in control total categories, and there are no error messages concerning mismatching
categories.

The weighting cells, however, are still not without problems. Consider this cross-tab
of original and collapsed stations:

. tab alight_id dpstoff2 if daypart == 1 & mod(dpstoff2,100*100)>99

Long ID of the interaction
alight_id 1025355 1043644 1060226 1064962 Total

2. Brookline 0 0 1 0 1
8. Carmenton 0 0 11 0 11

24. Framington 0 0 15 0 15
26. Grand Junction 0 0 15 0 15

36. Irvingtown 0 9 0 0 9
39. Johnsville 0 3 0 0 3
44. Limerick 0 13 0 0 13

49. Ninth Street 0 0 0 3 3
50. Ontario Lake 0 0 0 2 2

53. Picadilly Square 23 0 0 0 23
55. Queens Zoo 6 0 0 0 6

60. Redline Circle 0 0 0 5 5
62. Silver Spring 0 0 0 49 49

Total 29 25 42 59 155

Here, the first part of the if expression identifies the AM peak. The second part
identifies collapsed stations, given the nomenclature of dpstoff variable described on
page 4.7. The collapsed category code is a the concatenation of the value of the first
variable of the interaction, daypart; the length of the collapsed sequence; and its starting

34 Raking survey data: updates

and end points. Station numbers take up to two characters, and hence the collapsed
values would use categories of alight id like 20102. Hence collapsed cells could be
identified as mod by 100*100 being greater than the maximum two-digit number, 99.

In the output, it appears that Picadilly Square (53) and Queens Zoo (55) should
have been a part of the six-station sequence 1064962 spanning from Ninth Street (49)
to Silver Spring (62). Instead, wgtcellcollapse decided to separate these two stations
out into their own cell. How did that happen? The logic of wgtcellcollapse is to
collapse categories in such a way as to produce the result with the smallest possible
count. Thus, within AM peak day part, the sequence of collapsing steps was as follows
(the numbers refer to the full output):

Pass 0 The zero cells were collapsed first: Johnsville (39) and King Street (40) resulting
in an intermediate cell of size 3.

Pass 24 The smallest cell of size 1 (Brookline (2)) was collapsed with its neighbor
(Carmenton (8)) resulting in an intermediate cell of size 12.

Pass 38 The smallest cell of size 2 (Ontario Lake (50)) was collapsed with its neighbor
(Ninth Street (49)) resulting in an intermediate cell of size 5.

Pass 47 The smallest cell of size 3, collapsed Johnsville (39) + King Street (40), was
further collapsed with its neighbor Irvingtown (36) resulting in an intermediate
cell of size 12.

Pass 55 The smallest cell of size 5, Redline Circle (60), was collapsed by a three-way
rule with a duo Picadilly Square (53) + Queens Zoo (55), which actually was
empty, and a small cell Ontario Lake (50) + Ninth Street (49), resulting in an
intermediate cell of size 10.

Let us look at that last step in more detail. At this stage, Redline Circle (60) with
5 exiting passengers in the sample could be collapsed with:

1. Silver Spring (62), to form a cell of size 54;

2. Queens Zoo (55), to form a cell of size 11;

3. a sequence of Picadilly Square (53) and Queens Zoo (55), to form a cell of size 34;

4. . . . and a number of other options

However, at pass 55, wgtcellcollapse picked the rule 24950:25355:60=54960 which,
at the time it was processed, had a count of 5 in the cell 24950, a count of zero in the
cell 25355, and a count of 5 in the original station Redline Circle (60). (Note that the
cell 25355 would actually form later at pass 58.) This produced the smallest count of
the resulting cell, which according to the minimalist logic of wgtcellcollapse is the
best route to go.

S. Kolenikov 35

The problem lies with the zero count of the ghost of the cell 25355, and the appli-
cation of a rule that contains this ghost cell!

To overcome this problem, wgtcellcollapse using strict option would only allow
for the rules that have a non-zero count in every component of the rule (so the problem-
atic rule 24950:25355:60=54960 would not be a legal one under that restriction). As is
easily seen, this option directly contradicts the zeroes() option, and that necessitates
separate runs.

The third pass of cell collapse and raking: strict and feed options

We will separate the two runs of wgtcellcollapse into a run that only deals with
zeroes, and another run that deals with everything else. To prevent wgtcellcollapse

from any further merges, mincellsize(1) can be specified in the first run. As the
relevant variables will have already been created by the first run, the option to pass the
variable name to be further modified is feed(). To make sure that the relevant variable
exists in the data set, the option run instructs wgtcellcollapse to run the do-file it
just created, thus creating or modifying the collapsed cell variable. Finally, instead of
specifying replace to overwrite the do-files that wgtcellcollapse creates, we need to
specify append to keep adding to these files.

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes(39 40 44 49 55 60) ///
> generate(dpston3) saving(dpston3.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 2000039

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells
replace dpston3 = 1024950 if inlist(dpston3, 1000049, 1000050)

Pass 0 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 40:44=24044 to collapse zero cells
replace dpston3 = 2024044 if inlist(dpston3, 2000040, 2000044)

(output omitted)

Pass 0 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 24950:25355:60=54960 to collapse zero cells
replace dpston3 = 5054960 if inlist(dpston3, 5024950, 5025355, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 2000039

Pass 12 through the data...
smallest count = 1 in the cell 2000039
Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> strict feed(dpston3) saving(dpston3.do) append run
Pass 12 through the data...
smallest count = 1 in the cell 2000039
Invoking rule 39:24044=33944
replace dpston3 = 2033944 if inlist(dpston3, 2000039, 2024044)

(output omitted)

36 Raking survey data: updates

Pass 57 through the data...
smallest count = 19 in the cell 3025560
Invoking rule 62:25560=35562
replace dpston3 = 3035562 if inlist(dpston3, 3000062, 3025560)

Pass 58 through the data...
smallest count = 20 in the cell 5026268
Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes(2 8 36 39 40 44 47 49 50 55 60 62) ///
> generate(dpstoff3) saving(dpstoff3.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells
replace dpstoff3 = 1023940 if inlist(dpstoff3, 1000039, 1000040)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208 to collapse zero cells
replace dpstoff3 = 2020208 if inlist(dpstoff3, 2000002, 2000008)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 30:36=23036 to collapse zero cells
replace dpstoff3 = 2023036 if inlist(dpstoff3, 2000030, 2000036)

(output omitted)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 24950:53:55:60=54960 to collapse zero cells
replace dpstoff3 = 5054960 if inlist(dpstoff3, 5024950, 5000053, 5000055, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 1000002

Pass 24 through the data...
smallest count = 1 in the cell 1000002
Done collapsing! Exiting...

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> strict feed(dpstoff3) saving(dpstoff3.do) append run
Pass 24 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208
replace dpstoff3 = 1020208 if inlist(dpstoff3, 1000002, 1000008)

Pass 25 through the data...
smallest count = 1 in the cell 2000011
Invoking rule 11:18=21118
replace dpstoff3 = 2021118 if inlist(dpstoff3, 2000011, 2000018)

(output omitted)

Pass 76 through the data...
smallest count = 16 in the cell 5026268
Invoking rule 170260:26268=190268
replace dpstoff3 = 5190268 if inlist(dpstoff3, 5170260, 5026268)

Pass 77 through the data...
smallest count = 21 in the cell 4070230
Done collapsing! Exiting...

The result still isn’t satisfactory, as some collapsed cells still overlap:

S. Kolenikov 37

. tab alight_id dpstoff3 if daypart == 2 & mod(dpstoff3,100*100)>99

Long ID of the interaction
alight_id 2023036 2042639 2200269 Total

8. Carmenton 0 0 1 1
11. Dogville 0 0 1 1
18. East End 0 0 1 1

24. Framington 0 0 1 1
26. Grand Junction 0 2 0 2

30. High Point 4 0 0 4
47. Moscow City 0 0 6 6
49. Ninth Street 0 0 1 1

53. Picadilly Square 0 0 1 1
68. Toledo Town 0 0 3 3

69. Union Station 0 0 138 138

Total 4 2 153 159

This overlap can be traced back to the collapsing of zero cells: first, the cell 2023036
came to being by a reasonable, at its face, collapsing of the zero cell Irvingtown (36)
with non-zero cell High Point (30); and then the cell 2042639 came to being by a long
overreach for the zero cell Johnsville (39) to be collapsed with a non-zero cell Grand
Junction (26). The resulting cells can neither be collapsed together, nor added to the
“everything” cell 2200269.

The fourth pass of cell collapse and raking: greedy and maxcat() options

The next improvement is to fix the problem of weak performance in collapsing the zero
cells with an additional option greedy. It modifies the behavior of wgtcellcollapse to
require that, among the possible candidate rules with the lowest count, the rule with the
greatest number of components is preferred. That way, the long streaks of zeroes from
Irvingtown (36) to Limerick (44) in the midday part could be collapsed simultaneously
into one cell. To support this option, and avoid complex collapses of zero cells with the
already defined cells, option maxcategory() specifies the greatest value of a component
of a rule. By specifying maxcategory(99), we can instruct wgtcellcollapse to only
use rules that deal with individual stations (that have category numbers from 1 to 69,
and thus are below 99), and do not use the rules that involve collapsed cells (which
would have numbers of at least 20102 for the collapsed cell Alewife (1) and Brookline
(2)). In the first run, those collapsed cells will always be empty ghosts, and they should
not be used in defining how the cells be collapsed.

Note also that with the greedy option, one would want to specify the zeroes some-
where in the middle of the streak, and possibly across multiple categories of the in-
teracting variable. In our example, specifying zeroes(36) would collapse the midday
streak of zero counts, but the need to collapse the zeroes for the night day part and on
the weekend would still remain, necessitating something like zeroes(40) — which, in
turn, will likely create overlapping artifacts in the midday section. However, specifying
zeroes(40) without zeroes(36) would take care of all the streaks identified in the
output on page 23.

38 Raking survey data: updates

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes(39 44 49 60) greedy maxcategory(99) ///
> generate(dpston4) saving(dpston4.do) replace run

(output omitted)

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> strict feed(dpston4) saving(dpston4.do) append run

(output omitted)

. assert "`r(failed)´" == ""

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes(2 40 49 50 60) greedy maxcategory(99) ///
> generate(dpstoff4) saving(dpstoff4.do) replace run

(output omitted)

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> strict feed(dpstoff4) saving(dpstoff4.do) append run

(output omitted)

. assert "`r(failed)´" == ""

We have finally been able to produce a clean collapse of everything! Note the use of
assert "‘r(failed)’"=="" in the above code snippet to make sure that all cells have
the minimal required size of 20.

As a very minor point, there is still some room for improvement in collapsing the
cells on the weekend:

. tab alight_id dpstoff4 if daypart == 5 & mod(dpstoff4,100*100)>99

Long ID of the
interaction

alight_id 5084969 5150150 Total

8. Carmenton 0 1 1
11. Dogville 0 5 5
18. East End 0 4 4

24. Framington 0 2 2
26. Grand Junction 0 1 1

30. High Point 0 8 8
36. Irvingtown 0 2 2
44. Limerick 0 2 2

47. Moscow City 0 6 6
50. Ontario Lake 0 1 1

53. Picadilly Square 2 0 2
62. Silver Spring 9 0 9
68. Toledo Town 7 0 7

69. Union Station 123 0 123

Total 141 32 173

Instead of two cells with sizes 141 and 32, it seems like we could produce three cells,
with Union Station (69) being its own cell, and everything else split somewhere in the
middle.

S. Kolenikov 39

The fifth pass of cell collapse and raking: if conditions

We will now code the collapsing cells for the weekend at the lowest level allowed by
wgtcellcollapse, and we will put those custom coded cells upfront before the main
run. (Some special treatment had to be given to the zero cells to avoid overlapping cells
around Ninth Street (49) for the night and weekend day parts; without the separation,
it is getting collapsed in a long overreach all the way up to Redline Circle (60).)

. use trip_sample_rules, clear

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(1) ///
> zeroes(39 44 49 60) greedy maxcategory(99) ///
> generate(dpston5) saving(dpston5.do) replace run

(output omitted)

. wgtcellcollapse collapse, variables(daypart board_id) mincellsize(20) ///
> strict feed(dpston5) saving(dpston5.do) append run

(output omitted)

. assert "`r(failed)´" == ""

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(1) ///
> zeroes(2 40 60) greedy maxcategory(99) ///
> generate(dpstoff5) saving(dpstoff5.do) replace run
Pass 0 through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 39:40=23940 to collapse zero cells
replace dpstoff5 = 1023940 if inlist(dpstoff5, 1000039, 1000040)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 1:2:8=30108 to collapse zero cells
replace dpstoff5 = 2030108 if inlist(dpstoff5, 2000001, 2000002, 2000008)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 30:36:39:40:44=53044 to collapse zero cells
replace dpstoff5 = 2053044 if inlist(dpstoff5, 2000030, 2000036, 2000039, 2000040,

> 2000044)

(output omitted)

Pass 0 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 53:55:60=35360 to collapse zero cells
replace dpstoff5 = 5035360 if inlist(dpstoff5, 5000053, 5000055, 5000060)

Pass 0 through the data...
smallest count = 1 in the cell 1000002

Pass 12 through the data...
smallest count = 1 in the cell 1000002
Done collapsing! Exiting...

. wgtcellcollapse collapse if inlist(daypart,4,5) & inrange(alight_id,49,50), ///
> variables(daypart alight_id) mincellsize(1) ///
> feed(dpstoff5) zeroes(49) maxcategory(99) saving(dpstoff5.do) append run
Pass 12 through the data...
smallest count = 1 in the cell 1000002

Processing zero cells...

Invoking rule 49:50=24950 to collapse zero cells
replace dpstoff5 = 4024950 if inlist(dpstoff5, 4000049, 4000050)

Pass 12 through the data...
smallest count = 1 in the cell 1000002

40 Raking survey data: updates

Invoking rule 49:50=24950 to collapse zero cells
replace dpstoff5 = 5024950 if inlist(dpstoff5, 5000049, 5000050)

Pass 12 through the data...
smallest count = 1 in the cell 1000002

Pass 14 through the data...
smallest count = 1 in the cell 5024950
Done collapsing! Exiting...

. * special cells for weekend

. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,1,36), ///
> variables(daypart alight_id) mincellsize(50) ///
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 14 through the data...
smallest count = 1 in the cell 5000026
Invoking rule 24:26=22426
replace dpstoff5 = 5022426 if inlist(dpstoff5, 5000024, 5000026)

Pass 15 through the data...
smallest count = 1 in the cell 5030108
Invoking rule 11:30108=40111
replace dpstoff5 = 5040111 if inlist(dpstoff5, 5000011, 5030108)

(output omitted)

Pass 19 through the data...
smallest count = 10 in the cell 5043040
Invoking rule 70126:43040=110140
replace dpstoff5 = 5110140 if inlist(dpstoff5, 5070126, 5043040)

Pass 20 through the data...
smallest count = 23 in the cell 5110140
WARNING: could not find any rules to collapse dpstoff5 == 5110140

Pass 21 through the data...
smallest count = .i in the cell 1000002
Done collapsing! Exiting...

. wgtcellcollapse collapse if daypart==5 & inrange(alight_id,44,68), ///
> variables(daypart alight_id) mincellsize(50) ///
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 20 through the data...
smallest count = 1 in the cell 5024950
Invoking rule 24950:35360=54960
replace dpstoff5 = 5054960 if inlist(dpstoff5, 5024950, 5035360)

Pass 21 through the data...
smallest count = 2 in the cell 5000044
Invoking rule 44:47=24447
replace dpstoff5 = 5024447 if inlist(dpstoff5, 5000044, 5000047)

(output omitted)

Pass 25 through the data...
smallest count = 27 in the cell 5094468
WARNING: could not find any rules to collapse dpstoff5 == 5094468

Pass 26 through the data...
smallest count = .i in the cell 1000002
Done collapsing! Exiting...

. * all other cells

. wgtcellcollapse collapse, variables(daypart alight_id) mincellsize(20) ///
> strict feed(dpstoff5) saving(dpstoff5.do) append run
Pass 25 through the data...
smallest count = 1 in the cell 1000002
Invoking rule 2:8=20208
replace dpstoff5 = 1020208 if inlist(dpstoff5, 1000002, 1000008)

Pass 26 through the data...
smallest count = 1 in the cell 2000011
Invoking rule 11:18=21118

S. Kolenikov 41

replace dpstoff5 = 2021118 if inlist(dpstoff5, 2000011, 2000018)

(output omitted)

Pass 64 through the data...
smallest count = 15 in the cell 3054960
Invoking rule 62:54960=64962
replace dpstoff5 = 3064962 if inlist(dpstoff5, 3000062, 3054960)

Pass 65 through the data...
smallest count = 21 in the cell 2200168
Done collapsing! Exiting...

. assert "`r(failed)´" == ""

The special missing value .i that appears in the smallest count report is used inter-
nally to stop wgtcellcollapse after all of the relevant cases selected by the if conditions
have been processed.

The manual resolution was successful as the following output demonstrates:

. tab alight_id dpstoff5 if daypart == 5

Interactions of daypart
alight_id, with some collapsing

alight_id 5000069 5094468 5110140 Total

8. Carmenton 0 0 1 1
11. Dogville 0 0 5 5
18. East End 0 0 4 4

24. Framington 0 0 2 2
26. Grand Junction 0 0 1 1

30. High Point 0 0 8 8
36. Irvingtown 0 0 2 2
44. Limerick 0 2 0 2

47. Moscow City 0 6 0 6
50. Ontario Lake 0 1 0 1

53. Picadilly Square 0 2 0 2
62. Silver Spring 0 9 0 9
68. Toledo Town 0 7 0 7

69. Union Station 123 0 0 123

Total 123 27 23 173

The resulting do-files can now be applied to producing control totals, and eventually
to raking:

. use trip_population, clear

. run dpston5.do

. total num_pass , over(dpston5)

Total estimation Number of obs = 719

1000001: dpston5 = 1000001
1000002: dpston5 = 1000002

(output omitted)

5000011: dpston5 = 5000011
5026268: dpston5 = 5026268
5030108: dpston5 = 5030108
5051836: dpston5 = 5051836
5093960: dpston5 = 5093960

42 Raking survey data: updates

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000001 1423 967.7508 -476.9595 3322.959
1000002 7198 4895.91 -2414.011 16810.01

(output omitted)

5000011 1270 834.301 -367.961 2907.961
5026268 557 364.4324 -158.4805 1272.481
5030108 610 263.2061 93.25444 1126.746
5051836 622 215.5712 198.7749 1045.225
5093960 473 261.8954 -41.17225 987.1723

. matrix dpston5 = e(b)

. matrix coleq dpston5 = _one

. matrix rownames dpston5 = dpston5

. run dpstoff5.do

. total num_pass , over(dpstoff5)

Total estimation Number of obs = 719

1000018: dpstoff5 = 1000018
1000030: dpstoff5 = 1000030

(output omitted)

5000069: dpstoff5 = 5000069
5094468: dpstoff5 = 5094468
5110140: dpstoff5 = 5110140

Over Total Std. Err. [95% Conf. Interval]

num_pass
1000018 929 360.7303 220.7878 1637.212
1000030 2189 868.0319 484.8161 3893.184

(output omitted)

5000069 2677 895.7917 918.316 4435.684
5094468 432 87.57763 260.0612 603.9388
5110140 423 120.0254 187.3574 658.6426

. matrix dpstoff5 = e(b)

. matrix coleq dpstoff5 = _one

. matrix rownames dpstoff5 = dpstoff5

. use trip_sample_rules, clear

. run dpston5

. run dpstoff5

. gen byte _one = 1

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) gen(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818
Iteration 7, max rel difference of raked weights = 4.198e-06

S. Kolenikov 43

Iteration 8, max rel difference of raked weights = 6.257e-07
The worst relative discrepancy of 7.8e-08 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 .2172
Adjust factor 26.4869 13.1743 38.6339

. whatsdeff raked_weight5

Group Min Mean Max CV DEFF N N eff

Overall 13.17 26.49 38.63 0.2172 1.0472 3654 3489.37

Informative labels

Once the collapsing rules are finalized, a variety of labels that can be attached to
the resulting collapsed cells. Using the mechanics of labels in multiple languages (see
[R] label language), wgtcellcollapse label defines three “languages” to describe the
cells. The language numbered ccells may be convenient for debugging purposes in fine-
tuning the collapsing algorithms, while the language texted ccells would prove useful
for ipfraking report in creating human-readable labels. (In Stata SMCL output, the
label language instructions are clickable, so the user does not have to copy and paste
the command, but can click it instead.)

. wgtcellcollapse label, var(dpston5)
(language default renamed unlabeled_ccells)
(language numbered_ccells now current language)
(language texted_ccells now current language)

To attach the numeric labels (of the kind "dpston5==1000001"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpston5==AM Peak; 1. Alewife"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

. wgtcellcollapse label, var(dpstoff5)

To attach the numeric labels (of the kind "dpstoff5==1000018"), type:
label language numbered_ccells

To attach the text labels (of the kind "dpstoff5==AM Peak; 18. East End"), type:
label language texted_ccells

The original state, which is also the current state, is:
label language unlabeled_ccells

. label language numbered_ccells

. tab dpstoff5 if daypart==5

Long ID of the interaction Freq. Percent Cum.

daypart==5, alight_id==69 123 71.10 71.10
daypart==5, alight_id==94468 27 15.61 86.71
daypart==5, alight_id==110140 23 13.29 100.00

Total 173 100.00

44 Raking survey data: updates

. label language texted_ccells

. tab dpstoff5 if daypart==5

Long ID of the interaction Freq. Percent Cum.

Weekend; 69. Union Station 123 71.10 71.10
Weekend; 44. Limerick to 68. Toledo Tow 27 15.61 86.71
Weekend; 1. Alewife to 40. King Street 23 13.29 100.00

Total 173 100.00

. label language unlabeled_ccells

. tab dpstoff5 if daypart==5

Interaction
s of

daypart
alight_id,
with some
collapsing Freq. Percent Cum.

5000069 123 71.10 71.10
5094468 27 15.61 86.71
5110140 23 13.29 100.00

Total 173 100.00

5 Linear calibrated weights

Using the final set of collapsed categories in the simulated transportation data example,
let us demonstrate the linear calibration option of ipfraking, added since Kolenikov
(2014). The main advantage of linear calibrated weights is a much faster time, so we
will time the output by using the immediate timing results, set rmsg on (see [R] set).

. set rmsg on
r; t=0.00 14:59:22

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) nograph gen(raked_weight5)

Iteration 1, max rel difference of raked weights = 37.856256
Iteration 2, max rel difference of raked weights = .06404821
Iteration 3, max rel difference of raked weights = .00891802
Iteration 4, max rel difference of raked weights = .00128619
Iteration 5, max rel difference of raked weights = .00018966
Iteration 6, max rel difference of raked weights = .00002818
Iteration 7, max rel difference of raked weights = 4.198e-06
Iteration 8, max rel difference of raked weights = 6.257e-07
The worst relative discrepancy of 7.8e-08 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.754 13.174 38.634 .2172
Adjust factor 26.4869 13.1743 38.6339
r; t=2.16 14:59:24

. ipfraking [pw=_one], ctotal(dpston5 dpstoff5) nograph gen(raked_weight5l) linear

S. Kolenikov 45

Linear calibration
The worst relative discrepancy of 1.8e-14 is observed for dpstoff5 == 5110140
Target value = 423; achieved value = 423

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 1 0 1 1 0
Raked weights 26.487 5.7523 12.518 38.204 .2172
Adjust factor 26.4869 12.5178 38.2040
r; t=0.63 14:59:25

. set rmsg off

. label variable raked_weight5l "Linear calibrated weights"

. compare raked_weight5 raked_weight5l

difference
count minimum average maximum

raked_w~5<raked_~5l 1896 -1.813144 -.0476911 -3.11e-11
raked_w~5>raked_~5l 1758 2.18e-09 .0514348 2.405758

jointly defined 3654 -1.813144 3.21e-10 2.405758

total 3654

Figure 1: Linear and raked weights

46 Raking survey data: updates

The speed advantages of linear calibration are quite clear (0.63 seconds vs. 2.16
seconds), and raking convergence of raking in 8 iterations is quite fast, in the author’s
experience (it is not unusual to see dozens and hundreds of iterations, especially when
higher order interactions with many cells and subtle correlations between them are
being used as raking margins). Linear calibrated and raked weights are very similar to
one another, and the lowest of the linearly calibrated weights are slightly smaller than
comparable raked weights. As mentioned before, in the extreme situations, linearly
calibrated weights may become negative, which creates additional issues.

Acknowledgements

The author is grateful to Tom Guterbock for bug reports and functionality suggestions,
and to Jason Brinkley for extensive comments and critique. The opinions stated in this
paper are of the author only, and do not represent the position of Abt Associates.

6 References
AAPOR. 2014. AAPOR Terms and Conditions for Transparency Certifica-

tion. The American Association for Public Opinion Research. Avail-
able at http://www.aapor.org/AAPOR Main/media/MainSiteFiles/TI-Terms-and-
Conditions-10-4-17.pdf.

Binder, D. A., and G. R. Roberts. 2003. Design-based and Model-based Methods for
Estimating Model Parameters. In Analysis of Survey Data, ed. R. L. Chambers and
C. J. Skinner, chap. 3. New York: John Wiley & Sons.

Deville, J. C., and C. E. Särndal. 1992. Calibration Estimators in Survey Sampling.
Journal of the American Statistical Association 87(418): 376–382.

Deville, J. C., C. E. Särndal, and O. Sautory. 1993. Generalized Raking Procedures
in Survey Sampling. Journal of the American Statistical Association 88(423): 1013–
1020.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3(4).

Groves, R. M., D. A. Dillman, J. L. Eltinge, and R. J. A. Little. 2001. Survey Nonre-
sponse. Wiley Series in Survey Methodology, Wiley-Interscience.

Holt, D., and T. M. F. Smith. 1979. Post Stratification. Journal of the Royal Statistical
Society, Series A 142(1): 33–46.

Horvitz, D. G., and D. J. Thompson. 1952. A Generalization of Sampling Without
Replacement From a Finite Universe. Journal of the American Statistical Association
47(260): 663–685.

Kolenikov, S. 2014. Calibrating survey data using iterative proportional fitting. The
Stata Journal 14(1): 22–59.

S. Kolenikov 47

———. 2016. Post-stratification or non-response ad-
justment? Survey Practice 9(3). Available at
http://www.surveypractice.org/index.php/SurveyPractice/article/view/315.

Kolenikov, S., and H. Hammer. 2015. Simultaneous Raking of Survey Weights
at Multiple Levels. Survey Methods: Insights from the Field Special is-
sue on Weighting: Practical Issues and How to Approach. Retrieved from
https://surveyinsights.org/?p=5099.

Korn, E. L., and B. I. Graubard. 1995. Analysis of Large Health Surveys: Accounting
for the Sampling Design. Journal of the Royal Statistical Society, Series A 158(2):
263–295.

———. 1999. Analysis of Health Surveys. John Wiley and Sons.

Kott, P. S. 2006. Using Calibration Weighting to Adjust for Nonresponse and Coverage
Errors. Survey Methodology 32(2): 133–142.

———. 2009. Calibration Weighting: Combining Probability Samples and Linear Pre-
diction Models. In Sample Surveys: Inference and Analysis, ed. D. Pfeffermann and
C. R. Rao, vol. 29B of Handbook of Statistics, chap. 25. Oxford, UK: Elsevier.

Pew Research Center. 2012. Assessing the Representativeness of Public Opinion Sur-
veys. Technical report, Pew Research Center for People and Press. Available
at http://www.people-press.org/files/legacy-pdf/Assessing the Representativeness of
Public Opinion Surveys.pdf.

Pfeffermann, D. 1993. The role of sampling weights when modeling survey data. Inter-
national Statistical Review 61: 317–337.

Särndal, C.-E. 2007. The calibration approach in survey theory and practice. Survey
Methodology 33(2): 99–119.

Thompson, M. E. 1997. Theory of Sample Surveys, vol. 74 of Monographs on Statistics
and Applied Probability. New York: Chapman & Hall/CRC.

About the author

Stanislav (Stas) Kolenikov is a Senior Scientist at Abt Associates. His work involves appli-

cations of statistical methods in data collection for public opinion research, public health,

transportation, and other disciplines that utilize collection of survey data. Within survey

methodology, his expertise includes advanced sampling techniques, survey weighting, calibra-

tion, missing data imputation, variance estimation, nonresponse analysis and adjustment, small

area estimation, and mode effects. Besides survey statistics, Stas has extensive experience de-

veloping and applying statistical methods in social sciences, with focus on structural equation

modeling and microeconometrics. He has been writing Stata programs since 1998 when Stata

was version 5.

	Updates to the ipfraking ecosystemto.44em.S. Kolenikov

