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Abstract. Panel data generalized least squares (GLS) regression, with various forms of
the GLS weighting matrix including unrestricted GLS weighting matrix, is implemented
in Stata by the [XT] xtgls command. The xtgls command does not accept the robust
option. This is to say, xtgls cannot automatically calculate a variance estimator robust
to conditional heteroskedasticity and GLS weighting matrix misspecification. We show
the relevant formulae and how the user can robustify the variance of the estimators by
hand post xtgls. The tools that we use to obtain robust variance of the estimators
post xtgls are [P] robust and [P] matrix score.

1 Introduction, statement of the problem and a short di-
gression on the history of econometric thought

Stata’s [XT] xtgls estimates panel data generalized least squares (GLS) regression under
various assumptions on the structure of the “cross sectional” correlation of the errors. These
are attractive estimators when the “cross section” is small relative to the “time series”
dimension – however what is the “cross section” and what is the “time series” is up to the
econometrician to choose. Stata’s xtgls cannot compute (conditional heteroskedasticity)
robust variance matrix of the estimators post GLS regression. In this note, we show how
the econometrician can robustify by hand the variance matrix of the estimators post GLS
estimation by xtgls.

We place the terms “cross section” and “time series” in quotation marks because this
is just our interpretation of the model. Mathematically speaking, we have two indices,
i = 1, 2.., I and j = 1, 2.., J . In the type of models estimated by xtgls observations are
taken to be arbitrarily correlated and/or heteroskedastic across j, and the index j does not
have an inherent ordering: one cannot say whether j and j′ are close or far away in any
sense. An independent or autoregressive structure of certain order across i is assumed, and
the i index has certain ordering if autoregressive structure is assumed, we know whether i′

immediately follows i or not. So we have an arbitrary dependence across j, and indepen-
dence or model determined dependence across i. J is required to be somewhat small, I is
required to be somewhat large for the estimators to have attractive asymptotic properties.
An econometrician is free to choose which index she calls “time” and which she calls “cross
section.” The binding constraint is that if she wants to use unrestricted “cross sectional”
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correlation structure, the panel data have to be balanced, i.e., for each i the j index has to
run up to and including J .

In the current mainstream econometric thought, an applied econometrician is supposed
to have two options. She can either be agnostic about the error dependence structure and
estimate ordinary least squares (OLS) followed by robust (to conditional heteroskedasticity
and arbitrary within cluster correlation) variance, or she can make all the additional relevant
restrictive assumptions which make the GLS estimator best linear unbiased (BLUE) and she
can proceed with GLS estimation with non-robust variance. Stata programmers accordingly
did not program the robust option in xtgls.

We have been through similar debate in the Stata community in the context of fixed
and random effects (equi-correlated structure) panel data models. Stata 7 did not accept
the robust option in fixed effects (xtreg, fe robust was not a valid syntax) or random
effects (xtreg, re robust was not a valid syntax) panel data estimation, and there were
econometricians issuing stark warnings that robust variance post random or fixed effect
estimation does not make any sense. Hence the rest of us who did not see the estimation
problem quite this way had to find work-around solutions. The areg was accepting the robust
and cluster options for fixed effects estimation, or we could transform all the variables by the
random effects GLS transformation so that we can fit random effects GLS by regress, which
was accepting the robust and cluster options too. In the first draft of Kolev (2012), which
one of us wrote in Stata 7/8, work-around solutions for random effect estimation (quasi-time
demeaning, Wooldridge, 2002, eq. 10.75) had to be used, and in later drafts, Stata 9 and
up, specifying xtreg, re robust cluster(clusterID) was permitted.

There is a different school of statistical thought originating in the Generalized Estimating
Equations literature (Liang & Zeger, 1986; Zeger, Liang & Albert, 1988). In this literature
statisticians use routinely GLS, however with the understanding that the assumed GLS
covariance matrix of the errors might be misspecified (in this context the GLS weighting
matrix is called “working correlation matrix”), and hence they proceed with robust variance
estimation post GLS (to guard against possible misspecification of the GLS weighting matrix,
and to still obtain valid asymptotic inference). Note that when we are being agnostic and
use OLS followed by robust and cluster options, we are deliberately misspecifying the error
correlation matrix to have a scalar multiplied by identity matrix structure. Logically, a
more reasonable approach would be to have a best guess at the cross sectional correlation
and heteroskedasticity, and still to follow the GLS analysis by robust variance estimation.

To summarize, first, an econometrician might want to collect gains from GLS by spec-
ifying a good, reasonable cross sectional error structure, and still obtain valid asymptotic
inference if this matrix is misspecified. Second, an econometrician might want to carry out
panel data GLS and calculate robust to conditional heteroskedasticity variance matrix. For
any of these two reasons, the approach we outline below might be deemed desirable and
attractive.
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2 Formulae

Summaries of formulae of GLS with robust variance matrix can be found in Wooldridge
(2002, eq.7.49, eq. 10.38, and Section 10.4.3), Cameron & Miller (2010, eq.13) and Cameron
& Miller (2013, eq. 15). We have the model for a random draw i = 1, 2.., I from a population
of interest, and on J correlated measurements, j = 1, 2, .., J . Note at this point that the
indices are confusing. For example in Wooldridge (2002) the interpretation is that we have
panel data where we have random sampling across i, i are the cross sectional units say people,
firms, counties etc., and the J measurements on each unit are the time periods in the panel
data. In Cameron & Miller the i would be the independent clusters, and j would be the
correlated measurements within a cluster.

In Stata xtgls, i are the time periods, and j are the correlated measurements within a
time period. Therefore when you specify xtset panelVar otherVar, it is panelVar the j,
across which you have correlated measurements, and it is the otherVar the i over which you
assume random sampling.1 The typical symptom of incorrectly set panel data structure is
“too big standard errors” – the estimator in xtgls is attractive with “small” J , equivalent
to panelVar, and large I equivalent to otherVar. If you obtain too large standard errors, it
might mean that you have specified too few is and too many js.

The models is

yij = x′ijβ + uij, xij and β are K × 1, i = 1, 2.., I, j = 1, 2.., J, (1)

which can be stacked for a single i as

yi = Xiβ + ui ≡


yi1
yi2
..
yiJ

 =


x′i1
x′i2
..
x′iJ

 β +


ui1
ui2
..
uiJ

 , (2)

where yi is J × 1, Xi is J ×K, β is K × 1, and ui is J × 1.

If we assume that each element of ui is uncorrelated with each element ofXi, E(Xi
⊗
ui) =

0, plus the assumption that Ω ≡ E(uiu
′
i) is positive definite and E(X ′iΩ

−1Xi) is invertible,
then the Feasible GLS estimator

β̂gls =

(
I∑

i=1

X ′iΩ̂
−1Xi

)−1 ( I∑
i=1

X ′iΩ̂
−1yi

)
, Ω̂ = I−1

I∑
i=1

ûiû
′
i, (3)

where ûi is the OLS residual vector, is consistent. Without further requirements on ui, the
robust variance estimator

Var(β̂gls) =

(
I∑

i=1

X ′iΩ̂
−1Xi

)−1 ( I∑
i=1

X ′iΩ̂
−1̂̂uî̂u′iΩ̂−1Xi

)(
I∑

i=1

X ′iΩ̂
−1Xi

)−1
, (4)

1. We are oversimplifying here because in Stata xtgls the interpretation of i is time, and xtgls allows
parametric dependence across i, you can specify say first order autoregressive process for the error across
i.
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where ̂̂ui = yi −Xiβ̂gls is the GLS residual, would be generally valid.

Remarks:

• At this point we are in the way of reasoning of the generalized estimating equations lit-
erature (Liang & Zeger, 1986) – the Feasible GLS estimator in eq.(3) is not guaranteed
to be “best” under our set of minimal assumptions. However the Feasible GLS estima-
tor is more natural than the OLS estimator, given that we allow the J measurements
on unit i to be arbitrarily correlated.

• Note that we can also restrict the Ω̂ to have diagonal structure, which would correspond
to J measurements which are uncorrelated but unconditionally heteroskedastic.

• We can also restrict the Ω̂ to have a scalar multiplied by the identity matrix structure,
which would correspond to J measurements which are uncorrelated and unconditionally
homoskedastic. In fact this would be the OLS estimator.

If we further impose the conditional homoskedasticity assumption E(X ′iΩ
−1uiu

′
iΩ
−1Xi) =

E(X ′iΩ
−1Xi), then the Feasible GLS in eq.(3) will be more efficient than any other estimator

under the orthogonality condition E(Xi
⊗
ui) = 0, and we can use the standard conditionally

homoskedastic formula for the variance of eq.(3),

Var(β̂gls) =

(
I∑

i=1

X ′iΩ̂
−1Xi

)−1
. (5)

Remarks:

• Stata uses eq.(5) to compute the variance matrix of the estimators in xtgls. Stata
cannot immediately compute the variance matrix in eq.(4).

• Stata computes conditionally homoskedastic variance with arbitrary unconditional
cross sectional correlation and heteroskedasticity with the option xtgls, panels(correlated),
i.e., eq.(3) with the expression of Ω̂ after the comma.

• Stata computes conditionally homoskedastic variance with arbitrary unconditional
cross sectional heteroskedasticity with the option xtgls, panels(heteroskedastic),
i.e., eq.(3) with the Ω̂ constrained to be a diagonal matrix.

• Stata computes conditionally homoskedastic variance with unconditional homoskedas-
ticity with the option xtgls, panels(iid) , i.e., eq.(3) with the Ω̂ constrained to be
a scalar multiplied by the identity matrix.
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3 The tools that we will use

This section is best read after looking at the code in the following section. It is a lot harder
to explain what we do, than to actually do it. The reader is advised to skip this section on
first reading.

The programmers command [P] robust calculates robust variance matrices. Post esti-
mation it expects the user to provide a variable name, say resid ij, which holds the residual
from the estimator whose variance we want to robustify. Upon issuing a call

robust resid ij, cluster(i) options

the command replaces the variance matrix posted in e(V) (see [P] ereturn) by

e(V)
(∑I

i=1X
′
i
̂̂uî̂u′iXi

)
e(V), where ̂̂u′i = [resid i1 resid i2 .. resid iJ ]. The outer matrix

in e(V) needs no further modifications, as previously discussed the xtgls uses eq.(5) to
calculate e(V), and this matches the outer matrix we need in eq.(4). However the inside

matrix we need is
(∑I

i=1X
′
iΩ̂
−1̂̂uî̂u′iΩ̂−1Xi

)
, see eq.(4) and there is a difference between what

we need and what robust would provide.

Mathematically, the operation Ω̂−1̂̂ui takes the residual vector ̂̂ui and transforms it into a
new residual vector ũi, which we will call a weighted residual from now on. The first element
of the ũi is the inner product of the first row in Ω̂−1 and ̂̂ui, the second element of the ũi
is the inner product of the second row in Ω̂−1 and ̂̂ui, and so on and so forth, until the Jth
element of the ũi is the inner product of the Jth row in Ω̂−1 and ̂̂ui.

Our plan is to calculate by hand ũi = Ω̂−1̂̂ui and to pass it to robust. In this way,
robust will calculate the inside matrix as(

I∑
i=1

X ′iũiũi
′Xi

)
=

(
I∑

i=1

X ′iΩ̂
−1̂̂uî̂u′iΩ̂−1Xi

)
,

and this is what we need.

The inner products in ũi can be viewed also as linear combinations of ̂̂ui where the
weights are given in the respective rows of Ω̂−1. The [P] matrix score newvarname = b

construct takes a b row vector which has respective variable names as column names, and
forms a linear combination of the variables in the column names of b, where the weights are
given by b.

4 Stata code for obtaining robust variance of estimators
post xtgls

We will use as an example the dataset that is used in [XT] xtgls entry, p.5. The Stata
log is presented, where the commands are followed by comments. (In a Stata do file, what
follows “//” is not executed, so comments can be placed after “//”. Statements after “*”
are not executed either, so these are comments too.)
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. use http://www.stata-press.com/data/r11/invest2 // Adjust r# for the version of Stata you are using.

.

. xtset company time // company is the j index, time is the i index
panel variable: company (strongly balanced)
time variable: time, 1 to 20

delta: 1 unit

.

. * We quietly run the three xtgls estimators, store the results for later tabulation (see [R] estimates) and

. * display the matrix with cross sectional correlations. We called this matrix Omega, it is in e(Sigma).
* To see what an estimation command leaves behind, type ereturn list,
* or look up towards the end of the command manual entry.

. * The inverse of e(Sigma) is the GLS weighting matrix.

.

. qui xtgls invest market stock, panels(correlated)

. estimates store Corr

. matrix list e(Sigma) // Note the structure of the matrix, arbitrary cross sectional correlation is estimated.

symmetric e(Sigma)[5,5]
_ee _ee2 _ee3 _ee4 _ee5

_ee 9410.9061
_ee2 -168.04631 755.85077
_ee3 -1915.9538 -4163.3434 34288.49
_ee4 -1129.2896 -80.381742 2259.3242 633.42367
_ee5 258.50132 4035.872 -27898.235 -1170.6801 33455.511

. matrix ScorrInv = invsym(e(Sigma)) // We take the inverse of the matrix for later use.

. predict double corr_res // xtgls cannot predict residuals. So we predict the xb first
(option xb assumed; fitted values)

. replace corr_res = invest - corr_res // and then we form the residual as (y - xb).
(100 real changes made)

.

. qui xtgls invest market stock, panels(hetero)

. estimates store Hetero

. matrix list e(Sigma) // Notice that the matrix is constrained to be diagonal.

symmetric e(Sigma)[5,5]
c1 c2 c3 c4 c5

r1 9410.9061
r2 0 755.85077
r3 0 0 34288.49
r4 0 0 0 633.42367
r5 0 0 0 0 33455.511

. matrix SheteroInv = invsym(e(Sigma))

. predict double hetero_res
(option xb assumed; fitted values)

. replace hetero_res = invest - hetero_res
(100 real changes made)

.

. qui xtgls invest market stock, panels(iid)

. estimates store Homo

. matrix list e(Sigma) // Notice that the matrix is a scalar multiplied by identity matrix.

symmetric e(Sigma)[5,5]

6



c1 c2 c3 c4 c5
r1 15708.836
r2 0 15708.836
r3 0 0 15708.836
r4 0 0 0 15708.836
r5 0 0 0 0 15708.836

. matrix ShomoInv = invsym(e(Sigma))

. predict double homo_res
(option xb assumed; fitted values)

. replace homo_res = invest - homo_res
(100 real changes made)

.

.

. * We reshape the data to wide. matrix score operates on variables.

. reshape wide invest market stock corr_res hetero_res homo_res, i(time) j(company)
(note: j = 1 2 3 4 5)

Data long -> wide
-----------------------------------------------------------------------------
Number of obs. 100 -> 20
Number of variables 11 -> 34
j variable (5 values) company -> (dropped)
xij variables:

invest -> invest1 invest2 ... invest5
market -> market1 market2 ... market5
stock -> stock1 stock2 ... stock5

corr_res -> corr_res1 corr_res2 ... corr_res5
hetero_res -> hetero_res1 hetero_res2 ... hetero_res5
homo_res -> homo_res1 homo_res2 ... homo_res5

-----------------------------------------------------------------------------

.

. * We need to give the residual names as column names of the respective inverted

. * cross sectional correlation GLS matrix. matrix colnames names columns in a matrix,
* see [P] matrix rownames.

. matrix colnames ScorrInv = corr_res1 corr_res2 corr_res3 corr_res4 corr_res5

.

. matrix colnames SheteroInv = hetero_res1 hetero_res2 hetero_res3 hetero_res4 hetero_res5

.

. matrix colnames ShomoInv = homo_res1 homo_res2 homo_res3 homo_res4 homo_res5

.

. * We cycle and generate the weighted residual element by element.

. * matrix score expect a row vector as an input. Therefore we have to

. * extract the respective rows of the GLS matrix and place them in tempvec.
* For how loops work in Stata, see Cox (2002,2003).
* `i´ is the local macro which takes the values 1,2,..5 consequtively.
* Matrix[3,1...] is a matrix extraction operation (extracts the 3rd row), see [P] matrix define.

. forvalues i = 1/5 {
2. matrix tempvec = ScorrInv[`i´,1...]
3. matrix score corr_reswt`i´ = tempvec
4.

. matrix tempvec = SheteroInv[`i´,1...]
5. matrix score hetero_reswt`i´ = tempvec
6.

. matrix tempvec = ShomoInv[`i´,1...]
7. matrix score homo_reswt`i´ = tempvec
8. }
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.

.

. * We reshape back to long, this is the format that xtgls expects.

. reshape long invest market stock corr_res hetero_res homo_res corr_reswt hetero_reswt homo_reswt, i(time) j(company)
(note: j = 1 2 3 4 5)

Data wide -> long
-----------------------------------------------------------------------------
Number of obs. 20 -> 100
Number of variables 49 -> 14
j variable (5 values) -> company
xij variables:

invest1 invest2 ... invest5 -> invest
market1 market2 ... market5 -> market

stock1 stock2 ... stock5 -> stock
corr_res1 corr_res2 ... corr_res5 -> corr_res

hetero_res1 hetero_res2 ... hetero_res5 -> hetero_res
homo_res1 homo_res2 ... homo_res5 -> homo_res

corr_reswt1 corr_reswt2 ... corr_reswt5 -> corr_reswt
hetero_reswt1 hetero_reswt2 ... hetero_reswt5->hetero_reswt
homo_reswt1 homo_reswt2 ... homo_reswt5 -> homo_reswt
-----------------------------------------------------------------------------

.

. qui xtgls invest market stock, panels(correlated)

. * The call to _robust provides the weighted residual as an input.

. * The minus(0) option specified that we do not want degrees of freedom adjustment.

. _robust corr_reswt, cluster(time) minus(0)

. estimates store Corr_Robust

.

. qui xtgls invest market stock, panels(hetero)

. _robust hetero_reswt, cluster(time) minus(0)

. estimates store Hetero_Robust

.

. qui xtgls invest market stock, panels(iid)

. _robust homo_reswt, cluster(time) minus(0)

. estimates store Homo_Robust

.

. * We tabulate the results.

. estimates table Corr Corr_Robust Hetero Hetero_Robust Homo Homo_Robust, b se ///
> title(Dependent variable is invest, panels are assumed to have the cross sectional structure in the column name)

Dependent variable is invest, panels are assumed to have the cross sectional structure in the column name

--------------------------------------------------------------------------------------------
Variable | Corr Corr_Rob~t Hetero Hetero_R~t Homo Homo_Rob~t

-------------+------------------------------------------------------------------------------
market | .09618945 .09618945 .09499051 .09499051 .10508541 .10508541

| .00547516 .00582834 .00740898 .0060503 .01120586 .00847444
stock | .30953206 .30953206 .33781285 .33781285 .30536554 .30536554

| .01798509 .01622246 .0302254 .03263735 .04285023 .04418531
_cons | -38.361276 -38.361276 -36.253703 -36.253703 -48.029736 -48.029736

| 5.3448707 5.7061914 6.1243632 5.8184242 21.155509 11.500451
--------------------------------------------------------------------------------------------

legend: b/se
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.

. * Robust variance post xtgls with unconditionally homoskedastic cross sectional

. * error structure is equivalent to OLS with robust variance clustered by time.

. * For this case we can verify our results by an existing estimator.

. qui xtgls invest market stock, panels(iid)

. _robust homo_reswt, cluster(time) minus(0)

. matrix list e(V)

symmetric e(V)[3,3]
market stock _cons

market .00007182
stock -.00024263 .00195234
_cons -.03038361 -.22883965 132.26038

.

. qui reg invest market stock, robust cluster(time)

. * Regress does a degrees of freedom adjustment, which the formula below undoes.

. * See p. 21 in [R] regress.

. matrix Vreg = e(V)*((e(N_clust)-1)*(e(N)-e(df_m)-1)/(e(N)-1)/e(N_clust))

. matrix list Vreg

symmetric Vreg[3,3]
market stock _cons

market .00007182
stock -.00024263 .00195234
_cons -.0303836 -.22883967 132.26038

.

. * We observe that the two variance matrices are the same.

We close this section with an important final remark. The call to robust replaces
the variance matrix of the estimators. Therefore we can proceed using all post estimation
facilities as usual, for example we can use test to carry out Wald tests post estimation.

. * Note that _robust replaces the posted variance matrix

. * and we can proceed as usual, using all post estimation facilities, such as test.

. xtgls invest market stock, panels(correlated) // This is xtgls with standard, conditionally homoskedastic variance.

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 1285.19
Prob > chi2 = 0.0000

------------------------------------------------------------------------------
invest | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
market | .0961894 .0054752 17.57 0.000 .0854583 .1069206
stock | .3095321 .0179851 17.21 0.000 .2742819 .3447822
_cons | -38.36128 5.344871 -7.18 0.000 -48.83703 -27.88552

------------------------------------------------------------------------------

.
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. _robust corr_reswt, cluster(time) minus(0) // With this call we robustify the variance.

.

. xtgls // We replay the xtgls call, note that the standard errors are different - they are the robust
// standard errors, compare with the table above containing all estimators.

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20

Wald chi2(2) = 1285.19
Prob > chi2 = 0.0000

(Std. Err. adjusted for 20 clusters in time)
------------------------------------------------------------------------------

| Robust
invest | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
market | .0961894 .0058283 16.50 0.000 .0847661 .1076128
stock | .3095321 .0162225 19.08 0.000 .2777366 .3413275
_cons | -38.36128 5.706191 -6.72 0.000 -49.54521 -27.17735

------------------------------------------------------------------------------

. test market stock // test works as usual to carry out Wald test of hypotheses.

( 1) market = 0
( 2) stock = 0

chi2( 2) = 1470.43
Prob > chi2 = 0.0000

.

. test market=stock

( 1) market - stock = 0

chi2( 1) = 112.47
Prob > chi2 = 0.0000

5 Conclusion and directions for further analysis

Robust variance estimation has been an important positive development in the practice of
statistics and econometrics (Wooldridge, 2002; Stock, 2010), and Stata has been a forerunner
in introducing routines that calculate robust variances in the context of single equation
models and panel data (Rogers, 1994).

We show here how robust variance of estimators can be calculated when using xtgls. We
show how robust and matrix score can be used to robustify GLS regression variances.

There are two issues we have not addressed. First, xtgls can also compute models
in which the error terms are not only “cross sectionally” correlated and (unconditionally)
heteroskedastic, but also autocorrelated across “time.” How do we robustify inference when
both cross sectional and time series dependence is assumed? We have appealed to results
in Wooldridge (2002) which assume independence (random sampling) across “time” (i.e.,
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the index i). Can these results still be used if we assume that there is an autoregression in
the time series dimension? (Our guess is that the answer is positive, one can still assume
that the error in the autoregression is independent across time, so that with the Cochrane-
Orcutt (1949) transformation one achieves independence across time of the transformed
error.) Second, as mentioned before, xtgls can easily be used on panels with many subjects
and few time periods – one just has to reverse the indices xtset timeVar panelVar, and
GLS with unconditional heteroskedasticity and arbitrary correlation across time becomes
available. The problem is that xtgls requires balanced panels. This is another interesting
question: what to do when we want to have unrestricted GLS matrix across time, but we do
not observe all units over all time periods?
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