
1

Log-linear Modelling of SNP Haplotype Blocks

Adrian P Mander1 and Aruna Bansal1

1GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, UK

Running Title: Log-linear Models of Haplotype Blocks

Corresponding Author: Adrian Mander MSc PhD, Glaxosmithkline, Mail Code HW8133, New

Frontiers Science Park (South), Harlow, Essex, CM19 5AW.  Tel: +44 1279 63 1203.



2

ABSTRACT

Algorithms for defining the presence and limits of haplotype blocks have been presented

previously, using measures of linkage disequilibrium.  In the current manuscript, a new log-

linear framework is proposed for the identification of blocks.  Our approach allows a

reparameterisation and formalisation of existing methods, including a means to statistically test,

via the likelihood ratio test, for the presence of block-like structure.  Our method was applied to

a data set of 76 SNP markers spanning a genomic interval of length 2.7Mb.  Obvious blocks

were verified by our approach.  In addition, evidence for sub-structure within blocks was also

detected, suggesting that blocks, if they exist, may be far more complex than previously

assumed.  It is hoped that our approach will provide the basis for a formal statistical evaluation

of blocks and will facilitate comparisons among data sets.
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INTRODUCTION

The abundance of single nucleotide polymorphisms (SNPs) and the limited power of single-locus

analysis has led to increased use of haplotype-inference methods such as Clark's algorithm

[Clark, 1990], the expectation-maximisation algorithm [Excoffier and Slatkin, 1995] and

iterative-sampling algorithms to resolve phase ambiguity by both coalescent and non-coalescent

models [Stephens et al., 2001], [Niu et al., 2002].

Recent studies [Daly et al., 2001], [Jeffreys et al., 2001], [Patil et al., 2001][Gabriel et al., 2002],

[Twells et al., 2003], have shown that the human genome can be viewed in terms of haplotype

blocks, given by discrete regions of high linkage disequilibrium (LD), and separated by shorter

regions of low LD.  Haplotype block identification has been conducted via evaluation of

measures of LD, such as Lewontin's D`, as well as by methods of directly assessing evidence of

recombination [Schwartz et al., 2003].  The corollary of the block concept was that a small

proportion of the SNPs, the 'haplotype tagging' SNPs, should be sufficient to capture the majority

of the haplotype structure contained in blocks genome-wide [Johnson et al., 2001].

We introduce a novel application of log-linear modelling, to establish block structure. Log-linear

models have been used to form the basis of Bayesian priors in resolving phase  [Morris et al.,

2003], and to model different levels of linkage disequilibria with phase known [Huttley and

Wilson, 2000].  We show that not only can the log-linear model describe the discrete islands of

LD [Goldstein, 2001], but it can also identify smaller sub-fragments of high LD.  Furthermore,

we demonstrate the use of likelihood ratio testing, to statistically evaluate specific patterns of LD.
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MATERIALS

The methods described below were applied to a data set consisting of  a random sample of 150

subjects from the PRESTO (Prevention of REStenosis with Tranilast and its Outcomes) study

[Holmes et al., 2000, Danoff et al].  These were genotyped across 76 SNPs spanning

approximately 2.7Mb within and around the gene UGT1A1.  These data and their analyses are

described in detail elsewhere [Xu et al, in preparation].

METHODS

LOG-LINEAR APPROACH

Log-linear modelling provides a unified approach for jointly modelling the patterns of LD and

haplotype diversity.  Lack of diversity leads to fewer parameters in the statistically optimal

model, and, due to collinearity, the number of parameters is never greater than the number of

haplotypes.  Traditionally, haplotype frequencies have been estimated under a saturated model, in

which all loci and interactions are represented. However, the necessarily high number of

parameters often leads to problems for fine-mapping and for translating the results into inferences

on the patterns of LD.

One solution has been to reduce the high-dimensionality of the saturated model by fitting

intermediate models.  These contain more parameters than a model of complete linkage

equilibrium but fewer parameters than the saturated model [Chiano and Clayton 1998], [Mander,
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2001].  The intermediate log-linear model has been used to reduce the area of genetic association

in the HLA region [Bitti et al., 2001] and it is this, the intermediate model, that is of interest when

trying to describe the pattern of LD within genomic regions.  In the current manuscript, we show

how such models provide the framework for quantifying the patterns of LD and for defining

haplotype blocks.

NOTATION

The SNPs are assumed to be ordered, but physical inter-marker distances are ignored.  The ith

SNP is given by li.  The log-linear models use the Wilkinson and Rogers notation [Wilkinson

and Rogers, 1973], where factor variables (SNPs) are combined by "+", the independence

symbol, and "*", the interaction symbol.  For example, l1+l2 denotes independence between the

first and second SNP, and l3*l4 denotes interaction between the 3rd and 4th.

LIKELIHOOD RATIO TEST

The p-value resulting from a likelihood ratio test (LRT) was used to measure the strength of LD.
In the case of two SNPs, the LRT was calculated by comparing the log-likelihood of the model
l1*l2 (in which there is LD between the SNPs) to the log-likelihood of the model l1+l2 (in which

the two SNPs are in linkage equilibrium).  The LRT was performed using hapipf [Mander,
2001], a function implemented in STATA [StataCorp. 2001].  As discussed below, it includes
two options, mv and mvdel for the handling of missing data.

MISSING DATA

The methods described are applicable to unphased genotype data, with or without missing data.

In the presence of missing data, two assumptions were explored.  The first was that the data were

missing completely at random (MCAR) [Little and Rubin, 1987].  Under this assumption, it was
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appropriate to delete all subjects that had any missing data.  Our hapipf option to do this was

mvdel.  Despite its ease of application, it was recognised that the assumption was likely to be

broken with real data.  The second, less stringent assumption was that values were missing at

random (MAR).  Under this assumption, the missing alleles were imputed via the EM algorithm,

utilising observed alleles where possible.  Our function to follow this second approach was mv.

The relative impact of the two assumptions is discussed below.

APPLICATION TO HAPLOTYPE BLOCKS

By one frequently used definition, a group of two or more consecutive markers are considered to

constitute a haplotype block if the following hold: the endpoint markers are in high LD, and the

number of pairs in strong LD is at least 19 times the number of pairs of markers "with historical

evidence of recombination", as measured by the magnitude of D', [Gabriel et al., 2002].  In log-

linear model terms, an analogous approach might be a model containing at least 19 times as

many interaction terms as main effects, conditional upon a significant interaction between the

end SNPs.  The only difference would be that the interaction terms, from the log-linear model,

are estimated jointly using orthogonal parameters, making the '19' criterion more stringent.  As

an aside, it is noted that a more robust approach might be to apply the LRT to a comparison of

the saturated model with the model of complete linkage equilibrium (LE), as this would

automatically penalise the use of too many parameters by the loss in power of the LRT.

Wall and Pritchard (2003) described three criteria for assessing haplotype blocks derived using

pair-wise measures LD.  The first, 'coverage' gives the proportion of the genome spanned by
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blocks.  The second and third, as described below, can be described in terms of log-linear

models.

THE HOLE CRITERION

One desirable feature of our approach is that haplotype blocks can be identified even if they

contain holes.  Holes arise when the outermost SNPs are not in strong LD with a SNP or multiple

SNPs that lie in between [Wall and Pritchard, 2003].  To translate this to a log-linear framework,

consider a triplet of markers 1l, l2 and l3.  If l1 and l3 show high LD, but intervening pairs (l1,l2

and l2,l3) do not show high LD, as can happen with low frequency SNPs, then the situation may

be described by the model l1*l3+l2.

This representation can be extended to a fourth SNP, l4, in a similar fashion.  The latter model

would contain a term representing interactions among the SNPs in strong LD, but no interactions

with the "hole" SNP.  For example if the hole occurs at SNP2 (variable l2), then one model

describing the block would be l1*l3*l4+l2.  Alternatively, if the three-way interaction is not

needed, then another suitable model might be l1*l3+l3*l4+l1*l4+l2, where, again, SNP2 (l2) is

independent of the other 3 SNPs.

OVERLAPPING BLOCKS

Again, as defined by Wall and Pritchard (2003), a feature of certain blocks is the presence of

SNPs that are assignable to more than one block.  In the simplest case of 4 SNPs (l1-l4) and two

overlapping independent blocks l1*l2*l3 and l2*l3*l4, the model may be given by
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l1*l2*l3+l2*l3*l4.  In real data, there may be a combination of holes and overlapping blocks.

For example, the same model with a hole at SNP2 for the first block is  l1*l3+l2*l3*l4.  The

method is highly generalisable.

SEARCH ALGORITHMS

In our application, all of the log-linear models were fitted using an EM algorithm that resolves

phase [Mander, 2001].  A dataset containing a large number of SNPs can be very computer

intensive to analyse, and slow to estimate haplotype frequencies.  In order to apply our

methodology for haplotype block detection, two algorithms were implemented that alllow

efficiency gains by requiring fewer SNPs per model.  The first was used to identify haplotype

block edges and the second was used to find the most parsimonious model by a step-wise

approach.

EDGE DETECTION ALGORITHM

The first algorithm analyses a set of "n" ordered SNPs, labelled as l1, l2, … ,ln.  A window size

for analysis is chosen at the start of the algorithm, and this can later be varied as part of a

sensitivity analysis.  In order to detect an edge within the window, the saturated model is

compared to a model in which the LD can be described by two blocks.  The latter model has a

"+" symbol between a pair of neighbouring SNPs in an otherwise saturated model.  In order to

cover all possible positions of the haplotype block edge, a 'sliding window' of models is fitted

across the marker set of interest..
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For example, with a window size of 4 and working left to right, the following models may be

compared using a likelihood ratio test.

l1+l2*l3*l4  vs l1*l2*l3*l4

l1*l2+l3*l4  vs l1*l2*l3*l4 

l2*l3+l4*l5  vs l2*l3*l4*l5

l3*l4+l5*l6  vs l3*l4*l5*l6

and so on.

It can be seen that in the first window, the first alternative model has a non-centred edge, as it

arises at the start of the sequence of interest.  It has therefore fewer degrees of freedom than the

subsequent windows shown.

If the p-value for the likelihood ratio test falls below the nominal threshold of p=0.05, then the

saturated model is rejected, and an edge of a haplotype block has been detected.  For example, if

the saturated model is rejected at the 5% level for the comparison between l1*l2+l3*l4 and

l1*l2*l3*l4 , then there is an edge between SNP 2 and 3 or there is an edge at position 2.5.

It is noted that if a window size of two is chosen, then the method is equivalent to using pair-

wise methods.  Furthermore, as window size increases, the number of degrees of freedom (df)

also increases.  For example, a window size of 8 leads to a  225 df LRT  (=28-1 – (24-1) – (24-

1)).  In this way, power decreases with increasing window size.

SENSITIVITY ANALYSIS FOR EDGE DETECTION
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Varying the window size allows some optimisation, and  the optimal window size depends upon

the size of the dataset.  As shown later, for 150 subjects, a window size of 8 SNPs did not detect

smaller blocks.  In general however, it is acknowledged that Edge Detection, as defined here,

relies upon the alternative model ('two blocks') being a reasonable approximation to the data.  It

is expected that if the true LD pattern encompasses non-distinct blocks or overlapping blocks,

then some power of detection will be lost.  In these instances, further investigation by the second

(stepwise) algorithm below will be of value.

FORWARD STEPWISE ALGORITHM

The second search algorithm inolves a forward stepwise approach to determining the most

parsimonious model of LD.  Starting with a model of complete linkage equilibrium (LE), higher

order LD terms are added sequentially to the model.  This continues until a model is found that

describes the observed pattern of LD using fewest parameters.

This approach can be used to detect patterns within a haplotype block and it provides a better

description of the haplotype blocks in genomic areas in which the first ('Edge Detection')

algorithm demonstrated evidence of a relationship between window length and the haplotype

blocks detected.

The algorithm examines a window of 'n' SNPs.  In order to preserve efficiency of the EM

algorithm, fewer than 8 SNPs is practical.  The first step is to estimate the log-likelihood under

the linkage equilibrium model l1+l2+…+ln. Then, every pair-wise SNP interaction term is

added to this model and the likelihood ratio test is re-evaluated.  The most significant interaction
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term is then added to the base model and the process repeats.  A nominal p-value of p=0.05 is

chosen to compare new models to the LE model.  Once no more pair-wise interactions are

significant, the algorithm proceeds to the next order of interaction terms, and so on.  This

approach accommodates the fact that pair-wise interactions can occur over greater distances than

contiguous pairs and that LD does not decay monotonically with distance.  Interest focuses on

the "simplest" model to describe the pattern of LD.  The algorithm continues until the highest

interaction term is evaluated, the saturated model.

Holes, overlapping blocks, distant LD or contiguous blocks will all be detected in this very

powerful set of models. At each step, the number of degrees of freedom is minimised in the

sequence of likelihood ratio tests.

EXAMPLE OF THE STEPWISE APPROACH

The sequence of models for 3 SNPs, when only the l2*l3 interaction is significant, is,

l1+l2+l3

l1*l2+l3

l1*l3+l2

l1+l2*l3

l1*l2+l2*l3

l1*l3+l2*l3

l1*l2*l3
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In our experience of applying this algorithm, most haplotype blocks can be divided into smaller

sub-blocks.  One model of a sub-block might be l1*l4+l2*l3, in which the larger haplotype block

l1-l4 has a sub-block l2-l3.  In practice, there may be other pair-wise interactions , e.g. l1*l3, that

obscure this pattern.



13

RESULTS

All pair-wise |D'| statistics for the 76 SNPs were produced using STATA and the pwld command

(available from David Clayton's website, http:\\www-gene.cimr.cam.ac.uk/clayton).  Figure 1

displays estimates of all the pair-wise statistics.  A few areas had very high |D'| values, given by

the black squares, and these indicated a block-like structure for the first 41 SNPs.  By contrast,

the final 35 SNPs did not appear to have a clear block structure.

APPLICATION OF EDGE DETECTION

The edge detection algorithm was applied with window widths of 2, 4, 6 and 8.  Even numbers

were selected in order that the "+" sign in the alternative model would always be in the middle of

the model.  For each pair of neighbouring SNPs, a likelihood ratio test p-value was calculated

and the p-value was assigned an inter-marker position.  For example, in the test l1*l2+l3*l4

versus l1*l2*l3*l4 the "+" term is at position 2.5 i.e. between SNP 2 and SNP 3.  Graphs of the

p-values against inter-marker position are given in Figure 2 for every test evaluated.  In this

representation, flat horizontal lines with low p-value indicate blocks; interruptions denote edges

of blocks.  An example of a block, when using a window width of 4 SNPs is SNP1-SNP5 in

Figure 2. Using these data, it was observed that the length of the haplotype block depended upon

the window size. Generally the longer the window, the shorter the haplotype block, suggesting

the need to apply our stepwise algorithm for clarification.

It was only by using a window of 8 SNPs that a haplotype block edge was detected between

SNP22 and SNP24.  This pattern was visible in the pwld graph (Figure 1), but the |D'| values
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were so high that other methods might have considered this a single block.  Similarly, all the

window sizes detected a block somewhere between SNP1 and SNP5, but only window sizes of

greater than 4 SNPs showed that the first SNP should not be included in the block.  The largest

discrepancies in haplotype block definition with varying window size occured between SNP67

and SNP73.   From the pwld comparisons, high LD occured between SNP73 and SNP67, without

much LD among intervening SNPs.  Therefore, in this instance, the variability in predicted

structure may be traced to the unsuitability of the alternative hypothesis of 'two hapotype blocks'.

A window width of 8 SNPs did not capture much LD structure downstream of SNP41 because

there was not a sufficiently large area of high LD.  This lack of detection again was a symptom

of an inappropriate alternative hypothesis.

This procedure provided a very fast initial screen, taking about an hour on a 1gigaHz computer.

The stepwise algorithm (results below) was more time-consuming to perform, but allowed the

unravelling of more detailed structure.

EFFECT OF MISSING DATA

By taking a window size of 8 and the two missing data mechanisms mv (assuming MAR) and

mvdel (assuming MCAR),  the results in Figure 3 were obtained.

Major differences between Figure 2 and Figure 3 were seen for markers falling between SNP2

and SNP24, and this was attributable to the assumed missing data mechanism.  The percentage

of missing values at each point is given in Figure 3 and interestingly, for models that included
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the "+" term at position 6.5, about 90% of the data was missing, but only 20% was missing at

position 13.5.  This suggested that the extent of missingness was not the only factor.  Instead,

greater impact was from the nature of the missingness; the fact that missing values were not a

random sample of the full sample.

APPLICATION OF STEPWISE ANALYSIS

Based upon the results of the first algorithm, two regions appeared to have a more complex

pattern of LD than the 'two-block' alternative model suggested.  This was implied by the fact that

different haplotype blocks were estimated according to window size.  These regions were SNP67

to SNP73 and SNP46 to SNP50.  The most parsimonious models was found for these two

intervals and for an additional three areas of high LD, (SNP1 to SNP5), (SNP24 to SNP28) and

(SNP12 to SNP17), to look for any sub-blocks.

STEPWISE ANALYSIS OF SNP67 TO SNP73

A sequence of 198 models was fitted and the output from the early stages - selection up to only

the first significant pair-wise interaction - is given below in Table 1.  In this analysis, SNP67 is

labelled l1, SNP68 is labelled l2, and so on.

The likelihood ratio test statistics all have a single degree of freedom and the largest chi-squared

value is 36.799, for the model l1+l4+l5+l6+l7+l2*l3 versus a model of LE.  This is highly

significant, with  p<1 x 10-8.  The second term was selected after refitting all the models again

(output not given) and so on.  The most parsimonious model was

l5+l6+l2*l3+l2*l7+l1*l7+l1*l3+l1*l2*l4.
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According to this model, SNP71 (l5) and SNP72 (l6) were independent of all the other SNPs.

The largest possible block detected was SNP67-SNP73, assuming that both SNP71 and SNP72

were "holes", because the model included the interaction term l1*l7.  However, smaller blocks

were also identified, namely SNP67-SNP69 and SNP67-SNP70.  Indeed, most of the parameters

of the model were within the SNP67-SNP70 block.  It was notable that only one three-way

interaction term was needed (l1*l2*l4, corresponding to SNP67, SNP68 and SNP70), and that

SNP69 was not in this interaction despite being related, in a pairwise fashion, to SNP67 and

SNP68.  SNP69 may define a "hole" in this block as seen from the pwld graph in Figure 1.

STEPWISE ANALYSIS OF OTHER SUB-REGIONS

A look at the other regions showed evidence of a large number of overlapping blocks.  For

SNP24-SNP28, the most parsimonious model was l1*l4+l4*l5+l1*l3+l2*l5+l2*l3.  This

complicated structure appeared to correspond to two overlapping blocks, l1-l4 and l2-l5.

Similarly, for SNP1-SNP5 the most parsimonious model was l2*l3+l3*l5+l3*l4+l1*l4, giving a

clearer pair of overlapping blocks, SNP1-SNP4 and SNP3-SNP5  (l1-l4 and l3-l5).  For SNP12-

SNP17, the most parsimonious model was l3*l4+l4*l6+l1*l2+l1*l4+l1*l5, suggesting another

pair of overlapping blocks, consisting of  SNPs12-16 and 15-17.  Lastly, for SNP46-SNP50, the

most parsimonious model was l2*l4+l1*l5+l1*l2*l3+l3*l4*l5+l1*l3*l4.  All but one two-way

interaction term was significant here. There was clearly a block SNP48-SNP50, but SNP46 was

also related to all the other SNPs independently. This pattern was not clear in the pwld graph

(Figure 1), although it was seen using the Edge Detection algorithm.  The large number of
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parameters suggests that this is an area of high haplotype diversity and that a haplotype diversity

approach to block identification may have missed this structure.

DISCUSSION

This study shows that log-linear modelling can successfully identify areas of high LD and the

blocks they encode.  This approach allows likelihood ratio testing to be applied, and thus it

provides a robust framework within which to investigate haplotype block definitions.  The

models described elucidate how many SNPs (and subsequent interactions) are needed to describe

the pattern of LD within a region.  That is they provide the route to 'haplotype tagging' SNPs or

htSNPs.  At the same time, they identify SNPs that are uninformative, in the sense of failing to

add any information about LD within a region.

Earlier evaluations of partial LD models have been made.  One group commented on the

exceeding complication arising from the inclusion of higher order interactions [McPeek and

Strahs, 1999].  Model complexity is indeed an outcome of applying this method to a large

window size.  However, it is clear that areas of very high LD can more often be described in

terms of lower order interactions, with very specific meaning.  This benefit is attributable to the

orthogonal parameterisation of the log-linear model.

The power of haplotype anlysis has been improved previously by looking at subsets of

haplotypes [Fallin et al., 2001].  However, a benefit of our approach is that the dimensionality of

the data is preserved while only the dimensionality of the model is reduced.  Furthermore, there
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is no need to combine rare haplotypes, because of the relationship between haplotype diversity

and the number of parameters in the model.

In most studies, the next step, having genotyped in full, the subset of most highly informative

markers, is to identify a single SNP that is associated with a disease.  This step also can be

accommodated within the current framework.  Given the most parsimonious model, disease

status can be added to the model under the assumption of no association (as an independent

factor), and compared to a model in which disease status interacts with all other terms.  It is

predicted that this approach would be much more powerful than the usual comparison with the

saturated model, employed by other EM algorithms.

Our results support the view that areas of high LD probably form discrete haplotype blocks

[Schwartz et al., 2003].  However, the likely presence of overlapping sub-blocks, indicates that

the true block structure in the human genome may be more complex than the original vision of

discrete blocks of uniformly high LD.
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List of Figures

Figure 1

Graph depicting all pair-wise |D'| statistics for the 76 SNPs, produced using STATA and the

pwld command (available from David Clayton's website, http:\\www-

gene.cimr.cam.ac.uk/clayton).

Figure 2

Graph showing p-values derived from the Edge Detection LRT (option mvdel), plotted against

inter-marker edge position.  Results from window widths of 2, 4, 6 and 8 SNPs are shown.  Flat

areas of the graph with low p-value denote evidence for block structure; interruptions raising

above p=0.05 denote block edges.

Figure 3

Graph showing p-values, derived from the Edge Detection LRT, using a window size of 8 SNPs.

The results from using the mv function (assuming MAR) are given by a broken line.  The results

from using the Mvdel function (assuming MCAR) are given by a solid line.  The proportion of

missing data is also plotted for each marker.
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Figure 3
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Table 1

First part of the sequence of models fitted for the Stepwise Analysis of SNP67 to SNP73.  Output

of the likelihood ratio test (LRT) is given, up to selection of the first significant pair-wise

interaction.  Each test had one degree of freedom.

Model Loglikelihood LRT statistic
compared to LE

LRT p-value

l1+l2+l3+l4+l5+l6+l7 -337.90253 N/A N/A

l1+l2+l3+l4+l5+l6*l7 -337.86635 .7879168 .07237

l1+l2+l3+l4+l6+l5*l7 -337.90155 .96461774 .00196778

l1+l2+l3+l4+l7+l5*l6 -337.4069 .31943159 .99127237

l1+l2+l3+l5+l6+l4*l7 -333.16955 .00209319 9.4659637

l1+l2+l3+l5+l7+l4*l6 -337.54557 .39814589 .71391891

l1+l2+l3+l6+l7+l4*l5 -337.54187 .39571111 .72132048

l1+l2+l4+l5+l6+l3*l7 -336.15043 .06121324 3.5042048

l1+l2+l4+l5+l7+l3*l6 -337.84583 .73629892 .11340632

l1+l2+l4+l6+l7+l3*l5 -337.65884 .4850981 .48738058

l1+l2+l5+l6+l7+l3*l4 -329.69117 .00005067 16.422719

l1+l3+l4+l5+l6+l2*l7 -329.55224 .00004377 16.700579

l1+l3+l4+l5+l7+l2*l6 -337.89887 .93177705 .00732894

l1+l3+l4+l6+l7+l2*l5 -337.42341 .32762735 .95825335

l1+l3+l5+l6+l7+l2*l4 -320.05663 2.311e-09 35.691807

l1+l4+l5+l6+l7+l2*l3 -319.50278 1.309e-09 36.799506

l2+l3+l4+l5+l6+l1*l7 -330.32187 .0000987 15.161334

l2+l3+l4+l5+l7+l1*l6 -337.46949 .35204097 .86608668

l2+l3+l4+l6+l7+l1*l5 -336.01851 .05224042 3.7680529

l2+l3+l5+l6+l7+l1*l4 -334.89927 .01425307 6.0065251

l2+l4+l5+l6+l7+l1*l3 -337.81308 .67231003 .17891188

l3+l4+l5+l6+l7+l1*l2 -334.12801 .00600418 7.5490473


