{smcl} {* *! version 1.0.0 04Jul2025}{...} {title:Title} {p2colset 5 26 27 2}{...} {p2col:{hi:markovsteadystate} {hline 2}} Steady state probabilities for Markov chains{p_end} {p2colreset}{...} {marker syntax}{...} {title:Syntax} {p 8 17 2} {cmd:markovsteadystate} {it:transition_matrix} [{cmd:,} {opt for:mat}{it:({help format:%fmt})} ] {pstd} {it:transition_matrix} is the name of the symmetrical (square) matrix containing the probability distributions of the current and following states. Each row must add up to 1.0 {p_end} {synoptset 22 tabbed}{...} {synopthdr} {synoptline} {synopt :{opth for:mat(%fmt)}}display format for numeric values in the output table; default is {cmd:format(%6.3g)}{p_end} {synoptline} {p 4 6 2} {p2colreset}{...} {title:Description} {pstd} {cmd:markovsteadystate} computes the steady-state probabilities of the Markov chain (also referred to as equilibrium distribution or stationary distribution), indicating the long-term behavior of the system regardless of the initial state. In other words, it is the state the chain settles into after many transitions. {title:Options} {p 4 8 2} {opth format(%fmt)} specifies the format for displaying the numeric results in the table. The default is {cmd:format(%6.3g)}. {title:Examples} {pstd}For this example we generate a 4 X 4 matrix of transition probabilities, based on Table 1 of Avery and Henderson (1999). {p_end} {phang2}{cmd:. matrix pre = (0.36, 0.14, 0.17, 0.33 \ 0.38, 0.16, 0.02, 0.44 \ 0.31, 0.20, 0.15, 0.34 \ 0.28, 0.18, 0.18, 0.36)} {p_end} {phang2}{cmd:. matrix rownames pre = A C G T} {p_end} {phang2}{cmd:. matrix colnames pre = A C G T} {p_end} {pstd}We use {cmd:markovsteadystate} to compute the steady-state probabilities of the Markov chain. {p_end} {phang2}{cmd:. markovsteadystate pre} {p_end} {pstd}The results indicate that the system will be in state "A" for approximately 32.7% of the time, 16.6% of the time in state "C", 14.6% of the time in sate "G", and 36.1% of the time in state "T". {p_end} {title:Stored results} {pstd} {cmd:markovsteadystate} stores the following in {cmd:r()}: {synoptset 16 tabbed}{...} {p2col 5 18 19 2: Matrices}{p_end} {synopt:{cmd:r(steadystate)}}the steady state probabilities{p_end} {marker references}{title:References} {p 4 8 2} Avery P. J. and D. A. Henderson. (1999). Fitting Markov chain models to discrete state series such as DNA sequences. {it:Journal of the Royal Statistical Society Series C: Applied Statistics} 48: 53-61. {marker citation}{title:Citation of {cmd:markovsteadystate}} {p 4 8 2}{cmd:markovsteadystate} is not an official Stata command. It is a free contribution to the research community, like a paper. Please cite it as such: {p_end} {p 4 8 2} Linden, Ariel (2025). MARKOVSTEADYSTATE: Stata module to compute steady state probabilities for Markov chains. {p_end} {title:Author} {p 4 8 2} Ariel Linden{p_end} {p 4 8 2} President, Linden Consulting Group, LLC{p_end} {p 4 8 2} alinden@lindenconsulting.org{p_end} {title:Also see} {p 4 8 2} Online: {helpb randmarkovseq} (if installed), {helpb markovci} (if installed), {helpb markovfirstorder} (if installed), {helpb markovpredict} (if installed), {helpb markovtheotrans} (if installed), {helpb markovmfpt} (if installed) {p_end}