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Abstract

Thanks to their greater flexibility and more realistic substitution patterns compared to

simpler discrete choice models, mixed logit models are very popular in discrete choice analysis.

While fitting a mixed logit model in Stata using mixlogit (Hole 2007) is straight-forward,

calculating elasticities and marginal effects is not. This article describes mixlelast, a post-

estimation command for mixlogit. It allows the researcher to compute various forms of mixed

logit sample elasticities and marginal effects and to obtain bootstrapped standard errors and

confidence intervals.

1 Introduction

Mixed logit models have become very popular in discrete choice analysis. This is due to their

greater flexibility and the more realistic substitution patterns compared to simpler discrete choice

models. Thanks to the excellent user-written mixlogit by Hole (2007), it is fairly simple for the

researcher to fit mixed logit models in Stata. As there exists no straight-forward interpretation for

the estimated parameters beyond theirs signs, researchers often compute elasticities or marginal ef-

fects. In contrast to simpler logit models, computing elasticities and marginal effects for mixed logit

models is not trivial and requires simulation. This article describes mixlelast, a post-estimation

command after mixlogit, which allows the user to obtain mixed logit elasticities and marginal

effects of various flavours and to compute bootstrapped standard errors and confidence intervals.

The remainder of this paper is structured as follows: Section 2 briefly recapitulates the mixed

logit model. The various sorts of mixed logit elasticities and marginal effects are discussed in

sections 3 and 4. Section 5 deals with sample elasticities and marginal effects in the case of

heterogeneous choice sets. A bootstrap procedure for standard errors and confidence intervals is

I am grateful to Anna Lu and Arne Risa Hole for their very helpful comments and suggestions. I would also like
to thank Tomaso Duso, Florian Heiss, André Romahn, Hannes Ullrich and the participants of the DICE research
workshop at HHU Düsseldorf for their feedback. The code of mixlelast builds upon mixlpred written by Arne Risa
Hole.
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presented in section 6. Finally, the syntax of mixlelast is described in section 7 and section 8

provides some examples.

2 Mixed logit model1

As in Revelt and Train (1998) I assume N decision makers to choose among J alternatives on T

choice occasions. The utility for individual n from choosing alternative j at period t is given by

Unjt = β′
nxnjt + εnjt

where βn is a vector of individual-specific coefficients for decision maker n and xnjt is a vector of

attributes. The error term, εnjt, is assumed to be independently and identically distributed ex-

treme value I. The density of β is denoted f(β|θ), where θ are the parameters of the distribution,

i.e. the mean and the (co)variance.

The conditional probability, i.e. conditional on βn, for individual n of choosing alternative i on

choice occasion t is

Lnit(βn) =
exp(β′

nxnit)∑J
j=1 exp(β

′
nxnjt)

. (1)

Then the conditional probability of the observed sequences of choices made by decision maker n is

given by

Sn(βn) =

T∏
t=1

Lni(n,t)t(βn)

where i(n, t) denotes the chosen alternative. The unconditional probability of the observed se-

quence of choices is the conditional probability integrated over the distribution of β:

Pn(θ) =

∫
Sn(β|θ)f(β)dβ

The researcher specifies the form of the density function f and estimates its parameters θ by

maximum likelihood. The log likelihood function is given by

LL(θ) =

N∑
n=1

lnPn(θ). (2)

There exists no analytical solution for this expression and it needs to be approximated using

simulation techniques, see Train (2009). The simulated equivalent of (2) is given by

SLL(θ) =

N∑
n=1

ln

[
1

R

R∑
r=1

Sn(β
r)

]

where R is the number of draws and βr is the rth draw from f(β|θ).

1This section draws heavily from Hole (2007). See Revelt and Train (1998) and Train (2009) for an in-depth
discussion of the model.
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The estimated parameters θ̂ have, beyond their sign, no straight-forward interpretation. To be

able to provide meaningful and interpretable results for discrete choice models, researcher often

compute elasticities or marginal effects of various kinds.
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3 Elasticities

Elasticities are a unitless measure which describes the relationship between a percentage change in

an attribute of an alternative and the percentage change in the choice probability, ceteris paribus,

i.e. everything else remaining unchanged. They can take various forms, which can be distinguished

along three categories, see Hensher et al. (2015).

First, there exist a distinction between direct and cross elasticities. The former measure the

percentage change in the choice probability of an alternative with respect to a change in an attribute

of the same alternative. A prominent example for direct elasticities are own-price elasticities, i.e.

the change in the choice probability of a product when its own prices changes. The latter, in con-

trast, describes the change in the choice probability of one alternative with respect to a percentage

change in an attribute of a competing alternative. Here cross-price elasticities are a common exam-

ple describing the change in the choice probability resulting from a price change of a rival product.

Second, we differentiate between two methods of calculation, namely the point and the arc

method. Point elasticities use differentiation and evaluate a marginal change in an attribute of one

alternative. The arc method calculates the choice probabilities before and after a (non-marginal)

attribute change and evaluates the difference. This allows the researcher to compute the effects of

a discrete change in an attribute, e.g. a price increase of 20 per cent.

Third, there is a distinction between individual and sample elasticities. Data on individual

choices of decision makers allows to compute individual elasticities for every alternative on ev-

ery choice occasion. However, one usually ends up with a very large number of elasticities and

researchers are often more interested in average elasticities over the entire sample. As sample

elasticities are unweighted or weighted averages of individual elasticities, individual elasticities will

be discussed first before turning to different ways of aggregation.

3.1 Individual elasticities

3.1.1 Point elasticities

Point elasticities describe the percentage change in the choice probability given a small change in

one attribute. For calculation we use differentiation. Recalling the s-shape of the logit curve, it

becomes obvious why point elasticities are only valid for marginal changes at a particular point on

the logit curve. With a non-marginal change in an attribute, we move along the logit curve and

might find a considerably different slope compared to the original attribute value. Ignoring the

impact of the non-linearity of the logit curve can give rise to substantially biased results.

The researcher should note that calculating point elasticities does only make sense for contin-

uous variables. Although it is mathematically possible to compute point elasticities for integer

or dummy variables, it is meaningless. The appropriate way to evaluate the impact of a discrete

change in an attribute is to use the arc method as described later.
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Direct elasticities Stated formally, the direct point elasticity of alternative i of decision maker

n for a marginal change in the mth attribute is given by2

Enixm
ni

= −xm
ni

Pni

∂Pni

∂xm
ni

(3)

where

Pni =

∫
Lni(β)f(β)dβ. (4)

Recall that Lni is the conditional probability of decision maker n of choosing alternative i as given

in (1). Taking the derivative of (4) with respect to xm
ni and plugging into (3) yields

Enixm
ni

= −xm
ni

Pni

∫
βmLni(β)(1− Lni(β))f(β)dβ (5)

where βm is the mth element of vector β.

The integral in (5) cannot be solved analytically and is therefore approximated using simulation

techniques. The simulated version of (5) is given by

Enixm
nj

≈ −
xm
nj

Pni

(
1

R

R∑
r=1

βmrLni(β
r)(1− Lni(β

r))

)

where βr denotes the rth draw from the distribution of β, see Train (2009).

Cross elasticities The cross point elasticity of alternative i for individual n given a marginal

change in the mth attribute of the rival alternative j is then

Enixm
nj

=
xm
nj

Pni

∂Pni

∂xm
nj

.

Plugging in the first derivative of (4) with respect to xm
nj yields

Enixm
nj

=
xm
nj

Pni

∫
βmLni(β)Lnj(β)f(β)dβ. (6)

The simulated equivalent of (6) is then given by

Enixm
nj

≈
xm
nj

Pni

(
1

R

R∑
r=1

βmrLni(β
r)Lnj(β

r)

)
.

3.1.2 Arc elasticities

In contrast to point elasticities, arc elasticities consider a discrete change in one attribute rather

than a marginal change.3 Instead of differentiation, we calculate expected probabilities for the

2For ease of notation, I drop T in what follows. I.e. I assume each of the N decision makers to choose only once.
3The term arc elasticity is not used consistently in the literature. Sometimes researchers refer to arc elasticities

when the first derivative is not multiplied by x/P but by the average over the before and after values, i.e. ∆x/∆P .
This approach can be seen as an linear approximation which is ignoring the non-linearity of the logit curve.
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original attribute value and with a changed attribute value and evaluate the difference. This

approach handles the non-linearity of the logit curve which affects the results when non-marginal

attribute changes are considered.

Direct elasticities Formally, the direct arc elasticity of alternative i for individual n given a

discrete change in the mth attribute is given by

Enixm
ni

=
x̄m
ni

P̄ni

∆Pni

∆xm
ni

. (7)

First consider the second right-hand side term of (7). The numerator, ∆Pni, is the difference in

the choice probability for the attribute value before the change, xni, and after the change x̂ni, i.e.:

∆P = Pni(x
m
nj)− Pni(x̂

m
nj)

The denominator ∆xm
ni is simply the difference between the original and changed attribute value:

∆xnj = xm
nj − x̂m

nj

The first right-hand side term comprises the average choice probability before and after the at-

tribute change4

P̄ = (Pni(x
m
nj) + Pni(x̂

m
nj))/2

and the attribute mean

x̄ = (xm
nj + x̂m

nj)/2.

For integer variables, we can now specify x̂ = x + a, where a can take any integer value. By

the same token, elasticities for dummy variables are calculated by setting x̂ = 0 if x = 1 and vice

versa.

Cross elasticities Equivalently, cross arc elasticities are given by

Enixm
nj

=
x̄m
nj

P̄ni

∆Pni

∆xm
nj

where ∆Pni now denotes the difference in the choice probability for alternative i with the original

attribute of j, xm
nj and the changed attribute, x̂m

nj .

3.1.3 Arc vs. point elasticities

Having established the two different methods, the question arises, which is the correct one to

use. For dummy and integer variables, the answer is obvious as marginal changes are meaningless.

Here the researcher should always use arc elasticities. For continuous variables, the answer depends

strongly on the question the researcher seeks to answer. If the researcher wants to evaluate the

decision makers sensitivity to attribute changes and establish general substitution patterns across

4The approach followed here, i.e. taking the mean probability and mean attribute value, is sometimes referred
to as the midpoint method. Two alternatives not considered multiply by either the original or the changed values
and the respective predicted probabilities.
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alternatives, the point method is appropriate. If, in contrast, we want to evaluate how a substantial

change in an attribute, e.g. a price increase by 20 percent, effects choice behaviour, we need to

obtain arc elasticities.

Calculating arc elasticities for very small discrete attribute changes should generate results very

close to point elasticities. Without any post-estimation command available, this was a practicable

solution to obtain approximated point elasticities.5 With mixlelast, the researcher is strongly

advised to use the point method rather than calculating arc elasticities for very small changes.

First, arc elasticities for small changes are only an approximation of point elasticities. Second,

calculating arc elasticities is more computationally intensive which may lead to a significantly

longer computation time for large data sets.

3.1.4 Interpretation

Elasticities can take any value between infinity and minus infinity. Positive direct elasticities indi-

cate that an increase in an attribute of an alternative leads to an increase in the choice probability

of that alternative. For cross elasticities, positive values indicate that an increase in an attribute

leads to a higher choice probability in the rival alternative. For negative elasticities, the effects are

reversed.

If a one percent change in an attribute results in a one percent change in the choice probability,

we speak about unit elasticity. If the percentage in the choice probability is smaller or larger than

one, we speak about relatively inelastic and relatively elastic elasticities respectively. Two extreme

cases are perfectly inelastic and perfectly elastic elasticities. In the former case, an attribute

change leaves the choice probability unchanged. In the latter case, the choice probability will drop

to zero following an increase of one percent in the attribute. The various types of elasticities are

summarized in table 1 below.

Absolute value
of elasticity

Direct elasticity Cross elasticity

Perfectly inelastic E = 0 no change in Pi no change in Pj

Relatively inelastic 0 < E < 1 change in Pi less than
one percent

change in Pj less than
one percent

Unit elastic E = 1 no change in Pi no change in Pj

Relatively elastic 1 < E < ∞ change in Pi larger than
one percent

change in Pj larger than
one percent

Perfectly elastic E = ∞ change in Pi is ∞ change in Pj is ∞

Table 1: Changes in the choice probability given a one percent change in an attribute of alternative

i, adapted from Hensher et al. (2015)

5Cameron and Trivedi (2010) advocate calculating arc elasticities using a discrete change of a one thousandth
of the standard deviation of the attribute to approximate point elasticities.
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3.1.5 Mixed vs. conditional logit elasticities

Having established expressions for individual direct and cross point elasticities, we can now com-

pare mixed logit elasticities with those from standard conditional logit models.

The conditional logit formula (McFadden 1973) is

Pnit =
exp(β′xnit)∑J
j=1 exp(β

′xnjt)
.

In contrast to the mixed logit model, the β coefficients are assumed to be identical for all decision

makers. Now, direct elasticities are given by

Enixm
ni

= −xm
ni

Pni

∂Pni

∂xm
ni

. (8)

Taking the derivative in (8) yields

Enixm
ni

= −xni

Pni
βPni(1− Pni)

which simplifies to

Enixm
ni

= −xniβ(1− Pni). (9)

Contrary to the complex mixed logit elasticity in (5) which contains integrals which have to be

simulated, direct logit elasticities given in (9) are a simple function of the attribute value, the

estimated coefficient and the predicted choice probability.

More insightful, however, is the comparison of cross elasticities. Conditional logit cross elastic-

ities are given by

Enixm
nj

=
xm
nj

Pni

∂Pni

∂xm
nj

=
xm
nj

Pni
βPniPnj .

As before, Pni cancels out:

Enixm
nj

= xm
njβPnj (10)

As we can see in (10), cross elasticities are identical for all i. Hence, a change in an attribute

of j gives rise to the exact same change in the choice probability of all rival alternatives. This

property of logit elasticities is sometimes referred to as ”proportionate shifting”.6 While this might

be realistic for some choice situations, for many it is not. If some alternatives resemble each other

closely, while others are very different, we would expect substitution between the former to be

stronger than between the latter.

Here, the strength of mixed logit models comes into play. Recall the mixed logit cross elasticities

6See Train (2009) for an in-depth discussion of the properties of logit elasticities.
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given in (6):

Enixm
nj

= −
xm
nj

Pni

∫
βmLni(β)Lnj(β)f(β)dβ

This expression is different for each alternative i. The percentage change in the probability Pni

depends on the correlation of Lni and Lnj over different realisations of β. For alternatives between

which xm is positively correlated, substitution will be stronger than for alternatives with no or

negative correlation, see Train (2009). Therefore, similar alternatives will exhibit much stronger

substitution than those which are very different.

The comparison also illustrates that using the more flexible mixed logit framework does not

come without costs. While there are simple closed form solutions for the logit model and the

resulting elasticities, we need to employ simulation techniques both for estimation and calculation

of elasticities for the mixed logit model.

3.2 Sample elasticities

The elasticities above are calculated for one specific decision maker in one particular choice situa-

tion. With J alternatives this gives J2 values on a single choice occasion; J direct elasticities and

(J − 1) · J cross elasticities. For N choice occasion, this amounts to N · J2 values.

Thus, the first obvious reason why researchers usually want to compute sample elasticities, is

to reduce the amount of output produced and to make it readable. Taking the sample averages

reduces the number of values obtained by a factor of N to J2. These can be practically displayed

in a JxJ matrix with direct elasticities on the diagonal. A second and equally important argument

in favour of sample elasticities is that the underlying model is estimated on a sample of choice data.

Meaningful elasticities can therefore only be calculated for the sample, but not separately for each

decision maker, see Hensher et al. (2015).

3.2.1 Unweighted sample average

The most straight-forward way of obtaining samples averages is to simply calculate the mean over

all decision makers in the sample. Sample direct and cross elasticities are then given by

SEixm
i
=

1

N

N∑
n=1

Enixm
i

and

SEixm
j
=

1

N

N∑
n=1

Enixm
j

respectively, where Eixm
i

and Eixm
j

can either be individual point or arc elasticities.
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3.2.2 Probability weighted sample average

In the simple approach above, all elasticities enter with the same weight, regardless of the contri-

bution to the choice outcome of each alternative. Suppose an alternative has a very high choice

probability in one choice occasion but a low one in another. Simply averaging over the elasticities

from those two choice occasions ignores this fact and is sometimes referred to as ”naive pooling”,

see Louviere et al. (2000). To account for this, we can compute probability weighted sample aver-

ages using the decision maker’s choice probabilities as weights7

Formally, probability weighted sample elasticities are then

SEixm
i
=

(
N∑

n=1

PniEnixm
i

)/ N∑
n=1

Pni

and

SEixm
j
=

(
N∑

n=1

PniEnixm
j

)/ N∑
n=1

Pni

where, once again, Eixm
i

and Eixm
j

can be calculated using the point or the arc method.

4 Marginal effects

In contrast to elasticities, which are we have discussed in section 3, marginal effects describe a

change in the choice probability given a unit change in an attribute.

The direct marginal effect for decision maker n and alternative i with respect to a unit change

in xm
ni is given by

MEnixm
ni

=
∂Pni

∂xm
ni

. (11)

Comparing (11) and the expression for direct direct point elasticities given in (3), the difference

between the two becomes obvious. It is the second term in (7),
xm
ni

Pni
, which transforms a marginal

effect into an elasticity.

Equivalently, the cross marginal effect is given by

MEnixm
nj

=
∂Pni

∂xm
nj

.

For the same reason as for elasticities we need to consider discrete changes for discrete and dummy

variables.8 Direct and cross marginal effects for discrete and dummy variables using the arc method

are given by

MEnixm
ni

=
∆Pni

∆xni

7For a discussion of these issues (in the context of the conditional logit model) see Louviere et al. (2000).
8Speaking about marginal effects in this context falsely suggests marginal changes which is why researchers

sometimes refer to incremental effects.
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and

MEnixm
nj

=
∆Pni

∆xm
nj

.

The same methods of aggregation discussed before can be applied.

5 Heterogeneous choice sets

So far I have implicitly assumed choice sets to be homogeneous across individuals, i.e. Jn = J .

With homogeneous choice sets we get a full JxJ matrix of direct and cross effects for all N choice

occasions. However, it is possible that the availability of alternatives differs across individuals.9

That is only a subset Jn of the J alternatives is available to decision maker n. Then cross and

directs effects are only defined for the alternatives in Jn. That is, we get Jn direct effects and

(Jn − 1) ∗ Jn cross effects between all available alternatives. Considering the entire sample of all

N decision makers, we obtain between one and N individual direct effects for an alternative: N if

the respective alternative is contained in all choice sets and one if it is available on only a single

choice occasion. For cross effects between two alternatives to be defined, both need to be available

at the same time. This can be the case at all N choice occasions, only a subset of N or even at

zero choice occasions.

Now, the question arises how should we calculate averages over the sample of decision makers

which are heterogeneous regarding the alternatives to choose from. In the following, I will first

discussion aggregation of direct effects before turning to cross effects.

5.1 Direct Elasticities

Calculating sample averages for direct effects, we generally have two possibilities. First, we consider

all N decision makers in the sample no matter if the respective alternative is available or not. That

is, we also include all those who do not at all react to any attribute change and set their individual

elasticities to zero. Let’s denote this type I aggregation. Secondly, we restrict our attention to

those who can actually choose the alternative and will hence be affected by a change. Let’s call

this aggregation of type II.

Unweighted sample averages Formally, unweighted sample averages of type I are given by

SEI
ii =

1

N

N∑
n=1

Enii.

Type II unweighted sample elasticities are then

SEII
ii =

1

N i

∑
n∈Ni

Enii

where N i denotes the subset of decision makers which hold alternative i in their choice set.

9The availability of alternatives might even differ across choice occasions faced by the same decision maker, if
we deal with panel data where individuals choose repeatedly.
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Probability weighted sample averages Applying the same logic of aggregation to probability

weighted sample elasticities, we get the the following expression for type I:

SEI
ii =

N∑
n=1

PniEnii

/ N∑
n=1

Pni

The observant reader will have noticed that the choice probability Pni is not defined if alternative

i is not in n’s choice set. For convenience, we set it to zero indicating that alternative i is chosen

with zero probability. For this reason, type I weighted sample averages are equivalent to their type

II counterparts given by

SEII
ii =

∑
n∈Ni

PniEnii

/ ∑
n∈Ni

Pni.

5.2 Cross elasticities

There exist three types of aggregation for cross elasticities which I denote type I, IIa and IIb.

First, type I aggregation considers all decision makers no matter if either i or j is present in the

choice set. Second, we can aggregate over those decision makers which hold i in their choice sets no

matter if alternative j is also present or not. Let’s denote this type IIa. Third, we can restrict our

attention to those decision makers which have both i and j in their choice sets, which we denote

type IIb aggregation.

Unweighted sample averages Formally, unweighted average sample elasticities of type I are

given by

SEI
ij =

1

N

N∑
n=1

Enij .

Aggregation by type IIa and IIb yields

SEIIa
ij =

1

N i

∑
n∈Ni

Enij

and

SEIIb
ij =

1

N ij

∑
n∈Nij

Enij

respectively, where N ij denotes the subset of N where both alternatives are available.

Probability weighted sample averages Probability weighted sample elasticities constructed

according to type I are then

SEI
ij =

N∑
n=1

PniEnij

/ N∑
n=1

Pni.

Again, for all decision makers which did not have alternative i in their choice set, we set the

probability and hence the weight to zero. For this reason, type I and type IIa aggregation given

below are equivalent:

SEIIa
ij =

∑
n∈Ni

PniEnij

/ ∑
n∈Ni

Pni
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Sample cross elasticities computed of type IIb are then given by

SEIIb
ij =

∑
n∈Nij

PniEnij

/ ∑
n∈Nij

Pni.

5.3 Choice of aggregation type

Having established different ways of aggregation, we need to determine which is the correct one

to use. Once again, the answer very much depends on the question we are asking. If we are

interested in a measure of how the entire sample, being affected or not, reacts to changes, we want

to employ type I. If, however, we care about those who are effected only, type II is what we need.

For cross-effects we further need to decide if all individuals who hold i in their choice set are the

sub-sample of interest (type IIa) or if we want to restrict our attention to those who can actually

also choose j (type IIb).

6 Standard errors and confidence intervals

Recall that when estimating a mixed logit model, we in fact estimate the parameters of the distri-

bution denoted θ, i.e. the mean and the (co)variance. In what we have discussed so far, we simply

take the point estimates θ̂ of θ to simulate elasticities and marginal effects as described above. This

gives us sample effects and standard deviations describing how much individual effects vary across

the sample. However, we have ignored the sampling variance Ŵ of the estimated θ̂. To obtain a

measure of precision of our average sample effects, i.e. standard errors or confidence intervals, we

need to incorporate the sampling variance of the estimated coefficients, Ŵ , into our calculation of

elasticities and marginal effects.

We can generally think of three different methods for generating standard errors and confidence

intervals, namely the non-parametric bootstrap, the parametric bootstrap (Krinsky-Robb method)

and the delta-method. In the following we will consider the method proposed by Krinsky and Robb

(1986, 1990) only as it does not require re-estimating the model and is fairly easy to implement.10

The Krinsky-Robb method involves the following four steps:

1. Compute the Cholesky-decomposition of the covariance matrix Ŵ , yielding a lower triangular

matrix L such that LL′ = Ŵ , see e.g. Greene (2008).

2. For t = 1, . . . , T create a Kx1 vector of random draws from a standard normal distribution,

where K is the length of vector θ and label it ηt. Then create θt = θ̂ + Lηt.

3. For t = 1, . . . , T use θt to simulate elasticities or marginal effects as described above.

10For the non-parametric bootstrap we would have to re-estimate the model multiple times, which is often far
too time-consuming and bears the risk that the model does not converge for some sub-samples. The delta method,
in contrast, is relatively complex for mixed logit models and difficult to implement. A second downside of the
delta-method is that confidence intervals are symmetric about the mean by construction.
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4. Calculate the mean sample effect by averaging over the T draws. To obtain standard errors,

compute the variance and take the square root. For the 95% confidence interval, take the

0.025 and 0.975 percentile.

7 mixlelast

Syntax

mixlelast
[
if
] [

in
]
, alternatives(varname)

[
for(varname) marginaleffect

percentchange(#) absolutechange(#) dummy weighted nosd nrep(#) burn(#)

hettype() krobb(#) krse krlevel(#) kruserdraws krburn(#) quietly
]

Options

alternatives(varname) is required and identifies the alternatives. varname must be numeric.

for(varname) specifies the variable for which the elasticities/marginal effects are calculated. The

default is the first variable specified in mixlogit’s rand option.

percentchange(#) allows the user to compute arc elasticities/marginal effects for an attribute

change of # percent. This option cannot be combined with absolutechange and dummy.

absolutechange(#) allows the user to compute arc elasticities/marginal effects for an absolute

attribute change of #. This option cannot be combined with percentchange and dummy.

dummy allows the user to compute arc elasticities/marginal effects for dummy variables. This option

cannot be combined with percentchange and absolutechange.

marginaleffect allows the user to obtain marginal effects. The default is elasticities.

weighted specifies that probability weighted sample averages are computed. The default is un-

weighted sample averages.

nosd prevents the calculation and display of standard deviations.

nrep(#) specifies the number of Halton draws used for simulation. The default is the number

specified for mixlogit, which in turn has a default of 50.

burn(#) specifies the number of initial sequence elements to drop when creating the Halton se-

quences. The default is the number specified for mixlogit, which in turn has a default of 15.
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hettype() allows the user to specify the type of aggregation when choice sets are heterogenous.

The default is I for unweighted and IIa for probability weighted sample averages. hettype()

cannot be specified if choice sets are homogeneous.

krobb(#) allows the user to obtain Krinsky-Robb standard errors or confidence intervals using #

draws.

krse specifies that standard errors are computed. The default is confidence intervals.

krlevel(#) specifies the confidence level. The default is 95%.

krburn(#) specifies the number of initial sequence elements to drop when creating the Halton

sequences for the Krinsky-Robb procedure.

kruserdraws allows the user to provide draws for the Krinsky-Robb parametric bootstrap in a

Mata matrix mixl uswerdraws. The matrix must have the number of rows equal to the num-

ber coefficients in the model and the number of columns equal to the number of choice occasions

times the number of repititions.11 If userdraws is not specified, mixlelast will use Halton

draws if the number of coefficients is less or eqal 10 and standard normal draws if it exceeds 10.12

quietly suppresses the output.

8 Examples

8.1 Homogeneous choice sets

To illustrate mixlelast, we use an artificial data set of 100 individuals making 10 repeated pur-

chasing decisions. Each decision maker chooses from 5 different products.

The following three variables enter the choice model:

� product price

� product quality

� brand dummy

Following the notation of Hole (2007), gid identifies the alternatives in a choice occasion and

pid identifies the choice occasion faced by a decision maker. The dependent variable y is 1 for the

11Note that here the number of coefficients is total number of coefficients estimated in mixlogit, i.e. the vari-
able(s) specified in the random() option count twice as the mean and the SD are separate coefficients.

12Halton sequences are prefered with lower dimensions, however with dimension above 10, pseudo-random num-
bers outperform Halton draws, see Drukker and Gates (2006). More advanced procedures, such as sqrambled Halton
sequences (Kolenikov 2012), can be used via the kruserdraws option.

15



chosen alternative and 0 otherwise.

The first 10 observations are listed below.

. use example_hom.dta

. list in 1/10,sepby(gid)

alt y price quality brand gid pid

1. Prod 1 0 1.308418 3 Brand A 1 1
2. Prod 2 0 2.357423 5 Brand A 1 1
3. Prod 3 0 3.380476 8 Brand A 1 1
4. Prod 4 1 4.414344 11 Brand B 1 1
5. Prod 5 0 8.617756 22 Brand B 1 1

6. Prod 1 0 .8786653 3 Brand A 2 1
7. Prod 2 0 1.99105 5 Brand A 2 1
8. Prod 3 0 3.536737 8 Brand A 2 1
9. Prod 4 0 4.295895 11 Brand B 2 1

10. Prod 5 1 8.679978 22 Brand B 2 1

We start by fitting a mixed logit model. The coefficient on price is assumed to be normally

distributed, the coefficients on quality and the brand dummy are fixed.

. mixlogit y brand quality, rand(price) group(gid) id(pid)

Iteration 0: log likelihood = -1386.9157

(output omitted )

Iteration 4: log likelihood = -1218.6785

Mixed logit model Number of obs = 5,000
LR chi2(1) = 635.40

Log likelihood = -1218.6785 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
brand .8389558 .1664776 5.04 0.000 .5126657 1.165246

quality .7326987 .0890225 8.23 0.000 .5582178 .9071797
price -1.766318 .2272046 -7.77 0.000 -2.21163 -1.321005

SD
price .5507636 .0545198 10.10 0.000 .4439067 .6576205

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

Both price and quality have the expected sign, i.e. the utility decreases in price and increases

in quality. The SD coefficient is significantly different from zero, showing that there is preference

heterogeneity. The positive coefficient on the dummy variable indicates that c.p. products of brand

A (which is coded 1) are preferred.

We now compute unweighted sample point price elasticities.
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. mixlelast, alternatives(alt)

Mixed logit sample elasticities

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean -1.583582 1.20702 1.234225 .5806123 1.160138

SD .5321263 .35009 .4233442 .2133211 .2015333

Prod 2
Mean .8620516 -2.993063 1.256074 .6522315 1.689042

SD .1310344 .6221173 .3964381 .226443 .2854372

Prod 3
Mean .6431518 .9099626 -4.794224 .7198147 2.664615

SD .1075382 .2245667 .6208259 .2306577 .4073909

Prod 4
Mean .4741855 .7339106 1.113647 -6.85574 3.730741

SD .0869767 .1709876 .2885865 .470882 .4400616

Prod 5
Mean .1097656 .2170911 .4650955 .4201686 -3.954723

SD .0208497 .0434097 .0906856 .1006895 .1834887

Calculated for a marginal change in price

The output table above displays the mean direct and cross elasticities and the respective stan-

dard deviations. The elements on the diagonal are the direct elastictities which are, as expected,

all negative. Given a one percent increase in price, the decrease in the choice probability ranges

from 1.584 to 6.856 percent. The off-diagonal elements are the cross elasticities, where each entry

describes the percentage change in the row alternative given a one percent change in an attribute

of the column alternative. E.g. the choice probability of Prod 1 increaes by 1.207 percent when

the price of Prod 2 rises by 1 percent. All cross-price elasticities are positive indicating that the

demand for rival alternatives increases as the price for one specific rival alternative rises.

Alternatively, we could compute probability weighted sample averages. This time, we make use

of the nosd option which produces sample averages without standard deviations.

. mixlelast, alternatives(alt) weighted nosd

Mixed logit probability weighted sample elasticities

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 -1.437372 1.129342 1.178512 .5706147 1.147615
Prod 2 .8389906 -2.795044 1.216929 .6372329 1.64468
Prod 3 .6416162 .8983047 -4.591341 .7086891 2.560194
Prod 4 .4834713 .7372868 1.113011 -6.706311 3.620954
Prod 5 .1108344 .2183731 .4632295 .4174095 -3.941572

Calculated for a marginal change in price

Instead of calculating price elasticities, we could also consider a change in the quality vari-

able. As price was the first (and only) variable set to be random in mixlogit, we did not have

to specify it in mixlelast. To obtain elasticities w.r.t. quality, we need to use the elastvar option.

Quality is an integer variable and hence looking at a marginal change does not make very much

sense. mixlelast will still produce results, but detects that quality is an integer variable and

issues a warning. More meaningful, however, is to look at a discrete change in the quality variable,

let’s say by one.
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. mixlelast, alternatives(alt) for(quality) absolutechange(1)

Mixed logit sample elasticities

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean 1.388182 -1.396422 -1.524345 -.7976167 -1.520772

SD .2607879 .4197096 .5221947 .2983788 .2449431

Prod 2
Mean -1.005672 2.624413 -1.615071 -.929526 -2.236142

SD .2040373 .388189 .513181 .3318357 .3566263

Prod 3
Mean -.8210379 -1.18665 4.448009 -1.079768 -3.60011

SD .1746568 .3130168 .459669 .3588448 .523858

Prod 4
Mean -.6550803 -1.018255 -1.592809 7.037799 -5.179757

SD .1483684 .2581882 .4276922 .3251452 .5807602

Prod 5
Mean -.1922135 -.367616 -.7905778 -.7807326 4.480929

SD .0462874 .0848141 .1714049 .2014827 .2330713

Calculated for an absolute change of 1 in quality

Contrary to price elasticities, we find positive direct and negative cross elasticities for quality.

This is due to the positive sign on the quality coefficient and makes sense intuitively as an increase

in quality should make a product more attractive.

By the same token, we could also look at the change in the brand variable, i.e. evaluate the

counterfactual situation where a product is sold under the rival’s brand. In this case, we would

use the dummy option to simulate hypothetical changes of the dummy variable brand from zero to

one and vice versa.

To obtain marginal effects instead of elasticities, we use the marginaleffect option.

. mixlelast, alternatives(alt) marginal

Mixed logit sample marginal effects

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean -.2878743 .1365916 .0887652 .0314141 .0311034

SD .0313022 .0341118 .0318789 .0144679 .0097729

Prod 2
Mean .1365916 -.2766283 .0749002 .0286624 .0364741

SD .0341118 .0560073 .0303258 .0131542 .0110592

Prod 3
Mean .0887652 .0749002 -.2383686 .0268862 .0478171

SD .0318789 .0303258 .0612841 .0126498 .0115994

Prod 4
Mean .0314141 .0286624 .0268862 -.1184339 .0314712

SD .0144679 .0131542 .0126498 .0382954 .0084627

Prod 5
Mean .0311034 .0364741 .0478171 .0314712 -.1468658

SD .0097729 .0110592 .0115994 .0084627 .0136522

Calculated for a marginal change in price
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Here, the columns (and rows) add up to zero, as the decrease in the choice probability of one

alternative is compensated by an increase in the probability of choosing the rival alternatives.

Finally, we look at a very small discrete change of 0.001 percent and recompute the marginal

effects from above using the arc method.

. mixlelast, alternatives(alt) marginal percentchange(0.001)

Mixed logit sample incremental effects

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean -.2878735 .1365904 .0887634 .031413 .0311024

SD .0313027 .0341119 .0318786 .0144675 .0097726

Prod 2
Mean .1365913 -.2766259 .0748988 .0286615 .0364732

SD .0341118 .0560079 .0303255 .0131538 .0110589

Prod 3
Mean .0887649 .0748996 -.2383644 .0268853 .0478164

SD .0318789 .0303257 .0612842 .0126495 .0115992

Prod 4
Mean .031414 .0286622 .0268857 -.1184302 .0314711

SD .0144679 .0131541 .0126497 .0382946 .0084626

Prod 5
Mean .0311032 .0364737 .0478164 .0314704 -.1468632

SD .0097729 .0110592 .0115994 .0084626 .0136522

Calculated for a change of .001 per cent in price

As expected, the results for sample averages and their standard deviations are practically

identical. Nonetheless, the researcher is advised to use the arc method only when necessary: the

computation is somewhat more complicated and hence more time consuming. The difference in

terms of computation time is both increasing in the number of alternatives and the number of

choice occasions.

8.2 Heterogeneous choice sets

In the second data set, decision makers live in one of three locations, which differ according to the

set of products available. Indvididuals 1 to 50 live in Location 1 where all five product of both

brands A and B are available. In Location 2, where individuals 51 to 75 live, only products of

brand A are available, i.e. products 1, 2 and 3. Finally, only Products 4 and 5 of Brand B are in

the choice sets of decision makers 75 to 100 living in Location 3.

A representative choice set for each location is displayed below:
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. use example_het.dta

. list if gid == 1 | gid == 501 | gid == 751, sepby(gid)

alt y price quality brand gid pid location

1. Prod 1 0 1.308418 3 Brand A 1 1 1
2. Prod 2 0 2.357423 5 Brand A 1 1 1
3. Prod 3 0 3.380476 8 Brand A 1 1 1
4. Prod 4 1 4.414344 11 Brand B 1 1 1
5. Prod 5 0 8.617756 22 Brand B 1 1 1

2501. Prod 1 0 1.356619 3 Brand A 501 51 2
2502. Prod 2 1 2.180957 5 Brand A 501 51 2
2503. Prod 3 0 3.14988 8 Brand A 501 51 2

3251. Prod 4 1 4.398738 11 Brand B 751 76 3
3252. Prod 5 0 8.765503 22 Brand B 751 76 3

As before, we estimate the mixed logit model.

. mixlogit y brand quality, rand(price) group(gid) id(pid)

Iteration 0: log likelihood = -1094.6025

(output omitted )

Iteration 5: log likelihood = -930.11945

Mixed logit model Number of obs = 3,750
LR chi2(1) = 559.92

Log likelihood = -930.11945 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean
brand .9619626 .2485758 3.87 0.000 .474763 1.449162

quality .8084889 .1005983 8.04 0.000 .6113199 1.005658
price -1.926808 .2566438 -7.51 0.000 -2.429821 -1.423795

SD
price .6458248 .0680799 9.49 0.000 .5123906 .779259

The sign of the estimated standard deviations is irrelevant: interpret them as
being positive

First, we compute the unweighted sample elasticities of type I, i.e. over the entire sample of

100 decision makers.

. mixlelast, alternatives(alt) hettype(I) nosd

Mixed logit sample elasticities (type I)

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 -1.249679 1.027456 1.100893 .2595871 .5574325
Prod 2 .7087478 -2.334087 1.184107 .3049821 .8680116
Prod 3 .4862719 .7379635 -3.355797 .3496448 1.460553
Prod 4 .2535825 .3996399 .6194909 -4.395615 3.301949
Prod 5 .0487804 .1000686 .2244125 .6515905 -2.76727

Calculated for a marginal change in price

Now we restrict our attention to those individuals who have the row product in their choice set

(type IIa).
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. mixlelast, alternatives(alt) hettype(IIa) nosd

Mixed logit sample elasticities (type IIa)

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 -1.666239 1.369941 1.467857 .3461161 .7432433
Prod 2 .9449971 -3.112116 1.57881 .4066428 1.157349
Prod 3 .6483625 .9839513 -4.474397 .4661931 1.947404
Prod 4 .33811 .5328532 .8259879 -5.86082 4.402598
Prod 5 .0650405 .1334248 .2992166 .8687874 -3.689693

Calculated for a marginal change in price

Comparing both tables shows that direct and cross elasticities have increased in absolute val-

ues. This result is not surprising. For type I, we consider all individuals including some whose

individual elasticities are zero. For IIa, we ignore all individuals who could not have chosen the

row product. That is for products 1,2 and 3 we now look at decision makers in Location 1 and

Location 2 only. Likewise, only decision makers in Location 1 and Location 3 are considered for

products 4 and 5.

This means that we no longer consider individuals with zero individual direct elasticities, which

is why direct sample elasticities must rise in absolute value. For cross elasticities, we also reduce

the number of decision makers with zero individual elasticities, namely those who could not choose

the row product. Note, however, that we still consider those instances of zero individual cross

elasticities, where the row product is available but the column product is not.

This leads us to type IIb where we only consider those individuals who are actually affected by

an attribute change, i.e. both the row and the column alternative are present in their choice set.

. mixlelast, alternatives(alt) hettype(IIb) nosd

Mixed logit sample elasticities (type IIb)

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1 -1.666239 1.369941 1.467857 .5191742 1.114865
Prod 2 .9449971 -3.112116 1.57881 .6099641 1.736023
Prod 3 .6483625 .9839513 -4.474397 .6992897 2.921106
Prod 4 .507165 .7992798 1.238982 -5.86082 4.402598
Prod 5 .0975608 .2001371 .4488249 .8687874 -3.689693

Calculated for a marginal change in price

Comparing the results for type IIa and type IIb, we note three things. First, direct elasticities

are identical. This is because the subset of individual direct effects taken into consideration does

not differ between type IIa and type IIb. Second, cross elasticities between alternatives of the

same brand also remain unchanged. Recalling that the heterogeneity was on brand level, there

are no cases in which one product of brand A is available and another is not. Hence, regarding

substitution patterns between alternatives of the same brand, there is no difference between type

IIa and type IIb either. Third, for cross effects across brands, only those decision makers who have

both products available remain. All individuals with zero cross effects are now excluded which is

why the sample effects rise in absolute value.
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8.3 Standard errors and confidence intervals

Finally, we want to compute confidence intervals and standard errors using the Krinsky-Robb

parametric bootstrap. For demonstration, we use the same data set as in the first example, see

subsection 8.1.

We now compute standard errors with 100 replications using the krse option.

. mixlelast, alternatives(alt) kr(100) krse

Mixed logit sample elasticities

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean -1.588732 1.209058 1.235619 .5851914 1.168598

SE .1741421 .1293064 .14276 .0947962 .2206916

Prod 2
Mean .8656952 -3.006101 1.258633 .657472 1.695867

SE .1059331 .3317349 .1474431 .1033878 .283632

Prod 3
Mean .6456213 .9128968 -4.814247 .7260494 2.669903

SE .076321 .1053874 .5710928 .1146381 .4180427

Prod 4
Mean .4762443 .7370268 1.118481 -6.881942 3.73549

SE .0566474 .0891121 .1443512 .8692364 .5892882

Prod 5
Mean .1115721 .2204908 .4716262 .4269033 -4.017563

SE .0207407 .0412111 .0887768 .0860485 .7422291

Calculated for a marginal change in price
Means and standard errors by Krinsky-Robb parametric bootstrap with 100 repetitions

Alternatively, we could compute confidence intervals. The default is 95% confidence intervals.

To set the confidence level to, let’s say, 99%, we make use of the krlevel option.
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. mixlelast, alternatives(alt) kr(100) krlevel(99)

Mixed logit sample elasticities

Prod 1 Prod 2 Prod 3 Prod 4 Prod 5

Prod 1
Mean -1.588732 1.209058 1.235619 .5851914 1.168598

CI_lower -2.036889 .885817 .9136785 .390892 .7357463
CI_upper -1.162032 1.540968 1.617532 .8230219 1.778616

Prod 2
Mean .8656952 -3.006101 1.258633 .657472 1.695867

CI_lower .594959 -3.751526 .9098775 .4391683 1.131964
CI_upper 1.192836 -2.167427 1.635249 .9178194 2.445996

Prod 3
Mean .6456213 .9128968 -4.814247 .7260494 2.669903

CI_lower .4488157 .6570522 -6.078871 .4858516 1.739164
CI_upper .8719096 1.181786 -3.407677 1.006442 3.725657

Prod 4
Mean .4762443 .7370268 1.118481 -6.881942 3.73549

CI_lower .3345948 .5277493 .7775908 -8.96048 2.333426
CI_upper .6314298 .9583172 1.492383 -4.728254 5.122632

Prod 5
Mean .1115721 .2204908 .4716262 .4269033 -4.017563

CI_lower .0712387 .141619 .2904997 .2830188 -6.543079
CI_upper .1802272 .3584905 .7616104 .6880237 -2.611262

Calculated for a marginal change in price
Means and 99% confidence intervals by Krinsky-Robb parametric bootstrap with 100 repetitions

As we can see, none of the confidence intervals contains zero and hence all direct- and cross-

elasticities are significantly different from zero at the 1% level. However, to obtain robust results,

we should use a much higher number of draws.

9 Saved results

mixlogit stores the following results to r():

Scalars

r(N) number of observations r(burn) initial elements to drop when

creating Halton sequences

r(N group) number of choice occasions r(nrep) number of Halton draws

r(N id) number of decision makers r(krobb) number of Krinsky-Robb

repetitions

r(N alt) number of alternatives r(krlevel) Krinsky-Robb confidence level

r(het) 1 if heterogeneous choice sets, r(krse) 1 if Krinsky-Robb standard

0 otherwise erros, 0 if confidence intervals

r(marginal) 1 if marginal effects, 0 r(krburn) initial elements to drop when

otherwise in Halton seqence for krobb

r(weighted) 1 if probability weighted r(kruser) 1 if user-provided random

effects, 0 otherwise numbers, 0 otherwise

r(nosd) 1 if no standard deviations,

0 otherwise
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Macros

r(cmd) mixlelast r(title) title in output table

r(subtitle) subtitle in output table r(altid) name of altid() variable

r(subtitle2) subtitle of output for krobb r(hettype) type of aggregation for hetero-

geneous choice sets

r(elastvar) name of elastvar() variable r(group) name of group() variable

r(id) name of id() variable r(method) type of calculation method

Matrices

r(mean) sample elasticities/marginal effects r(sd) standard deviations

r(KRSE) Krinsky-Robb standard errors r(KR lower) Krinsky-Robb lower confidence

bounds

r(KR upper) Krinsky-Robb upper

confidence bounds
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