{smcl} {* *! version 1.0 21 Oct 2024}{...} {vieweralsosee "" "--"}{...} {vieweralsosee "Install nca" "ssc install nca"}{...} {vieweralsosee "Help nca (if installed)" "help nca"}{...} {viewerjumpto "Syntax" "nca_power##syntax"}{...} {viewerjumpto "Description" "nca_power##description"}{...} {viewerjumpto "Options" "nca_power##options"}{...} {viewerjumpto "Remarks" "nca_power##remarks"}{...} {viewerjumpto "Examples" "nca_power##examples"}{...} {title:Title} {phang} {bf:nca_power} {hline 2} NCA power {marker syntax}{...} {title:Syntax} {p 8 17 2} {cmdab:nca_power} [{cmd:,} {it:options}] {synoptset 25 tabbed}{...} {synopthdr} {synoptline} {syntab:Optional} {synopt:{opt n(numlist integer >0)}} number of observations to be simulated. The default is{bf: 20 50 100}. {synopt:{opt r:ep(#)}} the number of simulated datasets to be created for each value of {opt n}. The default value is 100. {synopt:{opt e:ffect(#)}} the postulated effect size. The default values is 0.1. {synopt:{opt s:lope(#)}} The postulated slope of the ceiling line. The default values is 1. {synopt:{opt c:eiling(string)}} Ceiling method to be used in each simulation. The allowed ceilings are ce_fdh, cr_fdh, ce_vrs and cr_vrs. The default are ce_fdh and cr_fdh. {synopt:{opt xd:istribution(string)}} The distribution to be used to simulate the conditions. {synopt:{opt yd:istribution(string)}} The distribution to be used to simulate the outcomes. {synopt:{opt xm:ean(#)}} Mean of the condition variables to be generated. {synopt:{opt xs:d(#)}} Standard deviation of the condition variables to be generated. {synopt:{opt ym:ean(#)}} Mean of the outcome variable to be generated. {synopt:{opt ys:d(#)}} Standard deviation of the outcome variable to be generated. {synopt:{opt cor:ner(#)}} Define which corner should be empty. {synopt:{opt t:estrep(#)}} The number of permutations to be used in the approximate premutation test. The default value is 200. {synopt:{opt sig:nificance(#)}} specifies the significance level to be considered during for the the approximate premutation test. The default is 0.01*(100 - {it: $S_level}), where {it: $S_level} is the default confidence level for confidence intervals for all commands that report confidence intervals (see also {bf: help set level} and {bf: macro dir}). {synoptline} {p2colreset}{...} {p 4 6 2} {marker description}{...} {title:Description} {pstd} {marker options}{...} {title:Options} {dlgtab:Main} {phang} {opt n(numlist integer >0)} number of observations to be simulated. The default is{bf: 20 50 100}. {phang} {opt r:ep(#)} the number of simulated datasets to be created for each value of {opt n}. The default value is 100. {phang} {opt e:ffect(#)} the postulated effect size. The default values is 0.1. {phang} {opt s:lope(#)} The postulated slope of the ceiling line. The default values is 1. {phang} {opt c:eiling(string)} Ceiling method to be used in each simulation. The allowed ceilings are ce_fdh, cr_fdh, ce_vrs and cr_vrs. The default are ce_fdh and cr_fdh. {phang} {opt xd:istribution(string)} The distribution to be used to simulate the conditions. {phang} {opt yd:istribution(string)} The distribution to be used to simulate the outcomes. {phang} {opt xm:ean(#)} Mean of the condition variables to be generated. {phang} {opt xs:d(#)} Standard deviation of the condition variables to be generated. {phang} {opt ym:ean(#)} Mean of the outcome variable to be generated. {phang} {opt ys:d(#)} Standard deviation of the outcome variable to be generated. {phang} {opt cor:ner(#)} Define which corner should be empty. {phang} {opt t:estrep(#)} The number of permutations to be used in the approximate premutation test. The default value is 200. {phang} {opt sig:nificance(#)} specifies the significance level to be considered during for the the approximate premutation test. The default is 0.01*(100 - {it: $S_level}), where {it: $S_level} is the default confidence level for confidence intervals for all commands that report confidence intervals (see also {bf: help set level} and {bf: macro dir}). {marker examples}{...} {title:Examples} nca_power, n(100 200 300) rep(100) {title:Author} {pstd}Daniele Spinelli{p_end} {pstd}Department of Statistics and Quantitative Methods {p_end} {pstd}University of Milano-Bicocca{p_end} {pstd}Milan, Italy{p_end} {pstd}daniele.spinelli@unimib.it{p_end}